23

A First Implementation of PROSET

Ernst-Erich Doberkat Wolfgang Franke Ulrich Gutenbeil
Wilhelm Hasselbring Ulrich Lammers Claus Pahl

University of Essen
Computer Science / Software Engineering
Schiitzenbahn 70, 4300 Essen 1, Germany
pst@informatik.uni-essen.de

Abstract

The VHLL ProSET (Prototyping with Sets) has been designed at the University of Essen for
the support of experimental and evolutionary prototyping. The language is based on set theory
augmented by bits and pieces from A-calculus. PROSET provides, among other features, higher
order data types, flexible exception handling, generative communication, and the integration of
persistence. This note provides a short overview of the first PROSET implementation. Included
are both the compiler construction, being mostly supported by the compiler construction system
Eli, and a description of the runtime system. Finally, we conclude with a brief glimpse at our
current work constructing tools for a prototyping environment.

1 Review of ProSet

PROSET is a procedural, set-oriented very high level language (VHLL). Beneath the usual primitive
data types integer, real, boolean, string, and atom, the language provides the compound data types set
and fuple. Both have their usual mathematical semantics and are accompanied by the usual operations
(intersection, union, concatenation, etc.). Elements or components of a compound data type need not
have the same type. The control structures are similiar to those found in SETL [SDDS86] or SETL2
[Sny90]. The following features distinguish PROSET from other set-oriented languages:

e Data abstraction is supported uniformly by the data types function, module, and instance.
e Control abstraction is supported by a variety of constructs for exception handling.

o Data modeling is supported by persistence; each and every value having first class rights in the
language may be made persistent.

e Parallel programming is supported by features for generative communication; the control prim-
itives provided by the LINDA model for concurrent programming [Gel85] serve as a basis for
some primitive operations in our language.

A detailed discussion of the design and motivation for PROSET can be found in [DFG*92].

2 Implementation

The first version of the PROSET compiler is written in highly portable ANsi C on Sun Sparcs. Porta-
bility, efficiency, and wide availability suggest using ANsi C also as target language being further




24

translated by a C compiler and linked with the runtime library. Since PROSET’s powerful concepts
and constructs are not supported directly by C or the target platform, the design of the runtime
system is a non-trivial task.

2.1 Compiler

The compiler generation is supported by the compiler construction system Eli [GHL*92]. It integrates
off-the-shelf tools and libraries with specialized language processors to provide a system for generating
a complete compiler. The system derives an executable compiler from specifications of the structure
of different program representations.

Analysis The first compilation task, the analysis of the source program, consisting of the usual
subproblems lexical, syntactical, and semantical analysis, is very well supported by Eli. This enabled
us to generate an executable front end at a very early phase of the implementation. Additionally, the
front end could be easily extended by a translation of a subset of PROSET into SETL2. To a large
extend the specifications for the analysis task are based on an attribute grammar written in LIDO
[GHL*92]. This grammmar is derived from the abstract grammar of PROSET and also implicitly
defines a decorated abstract syntax tree being the input of the next step.

Transformation To facilitate the mapping to C as well as to obtain a better moduiarization of the
compiler, we perform as a next step a transformation into an intermediate language. PROSET is a
wide spectrum language which allows programming close to the conceptual ideas of a solution and
therefore on a high level as well as programming quite close to the machine comparable to ApA or
C. This property is exploited by the definition of the intermediate language, called uPROSET, being
essentially a subset of PROSET containing only the low level constructs of PROSET. Eli supports the
translation to a target tree by providing tree building functions derived from the attribute grammar
of the target language. These functions are used in the attribution of the source tree to build the
target tree in a bottom up way. For our purposes, a more powerful transformation mechanism (e.g.
transformation of attributed trees using pattern matching) would have been desirable, because the
attribution mechanism is not flexible enough.

Code Generation The last task in the translation of PROSET to C is the generation of an ANsi
C program. The generation of structured text is supported by the Eli tool PTG [GHL*92]. Since
many of the high level constructs are transformed into equivalent lower level ones, the mapping to
C is essentially one to one for uPROSET’s statements and expressions. The main task of the code
generation consists of the translation of nested procedures, modules, and exception handlers to the
flat structure of C functions, preserving the scope rules. We have developed a contour model providing
a conceptual basis for this task (cfg. [DFG+92], appendix A). The model reflects that PROSET as a
block structured language is well suited to a stack implementation technique. However the availibility
of higher order types and copy semantics require rather a kind of block retention strategy (notice that
in PROSET procedures, modules and instances may access nonlocal objects; applying the closure
construct on them freezes the bindings to these objects). For the sake of efficiency we have integrated
both strategies into our model. Whenever possible we use a stack and only do retention, i.e. holding
the freezed bindings in the heap, when values of higher order type are involved. This strategy is
sometimes called mized mode strategy. The model is feasibly implementable with techniques known
as structurization and eztended parameter list [Sun90].

2.2 Runtime System

The runtime system supporting the execution of PROSET programs consists of four components: the
runtime library, an object management system implementing the persistent store, the transaction




25

manager, and the tuple space manager. The implementation of concurrency, comprising the latter
two components, is currently in progress.

Runtime Library The final executable output of the compiler is simply produced by linking the
translated C programs and the runtime library with the standard link-editor. The current version of
the runtime library provides only standard representations for PROSET’s data objects. For example
sets are implemented as hash tables. When data structure selection (section 3.1) will be integrated,
specialized representations, e.g. bitvectors for sets, will be added. Furthermore the library contains
functions corresponding to the predefined operations and some auxiliary functions supporting more
or less technical particulars, e.g. the iteration over composite objects.

Persistent Store The implementation of the persistent store is based on an object management
system called H-PCTE [Kel92]. The system is a simplified version of ECMA-PCTE and a high
performance implementation of it. The goal to maximize performance leads to an implementation
as main (or virtual) memory object base. Currently we have implemented on this basis a single-
user persistent store. Since H-PCTE is structurally object oriented, we use a dynamic link editor to
load values of higher order type. The next steps of our implementation deal with the extension to a
multi-user store, the distribution on a LAN, as well as the construction of a graphical browser for the
persistent store.

3 Further Developments

Our work has concentrated on language design and the implementation proper. We estimate that the
implementation will be mostly complete by the late summer of 1992, so that we may concentrate on
the design and realization of tools for the programming environment. Section 3.1 details the work on
type inference and data structure selection. In closing the overview we will provide a brief glimpse
at some of the tools to be constructed for technically supporting the programmer’s task of creating a
satisfactory model of an application.

3.1 Type Inference and Data Structure Selection

A consequence of PROSET’s intent to be a language for the support of rapid software prototyping on
a high expressive level is a weak type system: PROSET programs are dynamically checked for type
correctness such that even erroneous programs can partially be executed until the control flow reaches
the type error.

The advantages of static type checking, i.e. more efficiency w.r.t. both storage and execution time
and error detecting early in the programming process will partially be retained by an automatic type
inference mechanism including two steps: type inference on applicative language constructs is done
by an unification algorithm, which had to be extended for union types, since in some situations more
than one type leads to a correct typing. Afterwards the types inferred for expressions are minimized
by propagating them through the program flow graph until a fixed point is reached.

When type inference leads to a monotype for a variable, all overloading operations can be resolved
and more optimizations like data structure selection for that particular data object in that particular
program can be performed. The inferred type together with the operations applied to that object, the
frequency of those operations, and the relationship of that object to other objects in the program will
be used to to select an efficient data structure from a library of predefined implementations. Notice
that in contrast to other approaches to VHLL, PROSET gets along without a declaration mechanism
like the Data Representation Sub Language in SETL [SSS81] or the Constraints in V [GK83] —
all informations needed to choose an efficient representation for data objects are analyzed from the
program text [Dob91].



26

3.2 Further Work

Transformational issues Using finite differencing as a transformational paradigm [PK82] has
shown convincing results in particular with respect to improving the performance of programs asymp-
totically. We are in the process of adopting the approach to our current environment.

Abstract data types The designer cannot use abstract data types for protecting data against
unsuitable operations, since abstract data types cannot be formulated. We need a powerful mechanism
for specifying and implementing ADTs, supporting in this way semantic data modeling.

Support for persistence Persistent values are maintai ned in a structure called P — File. Working
with these archives should be supported through tools for browsing (display the contents of a P — File
graphically, show the interconnections and interdependencies between various items in a P — File

modify items in a P — File, etc.). ;

Architectural description Since functions, modules and instances are first class citizens of the
language, and since binding as well as loading can be described in the language itself via the persistence
mechanism, the design of an application may be described in the language. We will investigate which
process models are appropriate in the context we are envisioning, and how to formulate them in

PROSET.

Support for reusing program parts Prototypes written in PROSET provide their functionality
on a very high semantic level, hence it is more feasible to recognize what they are doing than for
programs written in a production language like C. We are currently gaining some experience with
tools permitting the identification of program components based on Prieto-Diaz’s faceted classification
scheme [PDF87]. These tools will be incorporated into the prototyping environment.

Literal programming Documentation usually serves as the token that is passed between the de-
signer and the user of a system, describing the intended functionality. Literal programming unifies
documentation and code in oné single document from which either may be generated. This may be
a way of demonstrating to the customer where the desired functionality is realized in a program sys-
tem, enabling her (or him) to communicate in a more versatile and competent way with the system
designer. We plan to experiment with this approach to communication in the context of prototyping.

The user interface The user interface requires particular attention, and its construction should
be supported by suitable tools. We consider currently constructing an interface to the toolkit DIWA
[Vos90] which allows specifying user interfaces on a sufficiently high level.

References

[DFG+92] E.E. Doberkat, W. Franke, U. Gutenbeil, W. Hasselbring, U. Lammers, and C. Pahl.
PROSET — Prototyping with Sets: Language Definition. Informatik-Bericht 02-92, Uni-
versity of Essen, April 1992.

[Dob91] E.E. Doberkat. Type Checking and Data Structure Selection for Mini-ML with Sets
Informatik-Bericht 04-91, University of Essen, September 1991. -

[Gel85] D. Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80-112, 1985.

[GHL*92] RW Gray, V.P. Heuring, S.P. Levi, A.M. Sloane, and W.M. Waite. Eli: A complete, flex-
ible compiler construction system. Communications of the ACM, 35(2):121-131 I-‘eb’ruary
1992. ; :




27

[GK83] A. Goldberg and G. Kotik. Knowledge based programming: An overview of data struc-
ture selection and control structure refinement. In H.L. Hausen, editor, Symp. Software
Validation, pages 287-309, Darmstadt, West Germany, 1983. North Holland.

[Kel92] U. Kelter. H-PCTE - A High Performance Object Management System for System De-
velopment Environments. Internal report 128, University of Hagen, FernUniversitat-GHS-
Hagen, Feithstr. 140, D-5800 Hagen, May 1992.

[PDF87] R. Prieto-Diaz and P. Freeman. Classifying software for reusability. IEEE Software,
4(1):6 — 16, 1987.

[PK82] R. Paige and S. Koenig. Finite differencing of computable expressions. ACM Trans. Prog.
Lang. Syst., 4(3):402 - 454, 1982.

[SDDS86] J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets -
An Introduction to SETL. Graduate Texts in Computer Science. Springer-Verlag, 1986.

[Sny90] W.K. Snyder. The SETL2 programming language. Technical Report 490, Courant Insti-
tute, New York University, September 1990.

[SSS81] E.Schonberg, J.T. Schwartz, and M. Sharir. An Automatic Technique for Selection of Data
Representations in SETL Programs. ACM Trans. on Prog. Lang. and Systems, 3(2):126-
143, Apr. 1981.

[Sun90] N. Sundaresan. Translation of Nested Pascal Routines to C. SIGPLAN Notices, 25(5):69-
80, 1990.

[Vos90] J. Voss. Entwurf und Implementierung von graphischen Benutzeroberflichen: Ein inte-
grierter, objektorientierter Ansaiz. PhD Thesis, University of Hagen, Hagen, Germany,
1990.




