
PROSET - A Language for Prototyping with Sets*

Emst-Erich Doberkat Wolfgang Franke Ulrich Gutenbeil
Wilhelm Hasselbring Ulrich Lammers Claus Pahl

University of Essen
Fachbereich Mat hematik und Informatik - Software Engineering

Schutzenbahn 70, 4300 Essen 1, Germany
pst Qinformat i k.uni-essen. de

Abstract

We discuss the prototyping language PROSET (Pro-
totyping with Sets) as a language for experimental and
evolutionary prototyping, focusing its attention on al-
gorithm design. Some of PROSET’S features include
generative communication, flexible exception handling
and the integration of persistence. A discussion of
some issues pertaining to the compiler and the pro-
gramming environment conclude the paper.

1 Introduction and Overview

This paper discusses the programming language
PROSET which is an acronym for PROTOTYPING WITH
SETS [l]. This language has been defined and is cur-
rently being implemented at the University of Essen;
it is a descendant of the set-oriented prototyping lan-
guage SETL [2].

This introductory section is intended to provide
some thoughts regarding the definition of this lan-
guage. In particular we will have a brief look at pro-
totyping and how it might influence language design.
We discuss the relationship of PROSET to SETL and
demonstrate the flavor of the language in a brief ex-
ample.

1.1 Prototyping

It is well-known that the classical software life cy-
cle has some drawbacks which suggest that it should

*Work supported in part by NW - MWF through Ver-
bund Software-Technik Nordrhein-Westfalen, Integration se-
mantiacher Datenmodelle in eine Prototyping-Umgebung, and
by BMBW - MWF through FGrderprogramm Montanregie
nen, Implementation einer Programmierumgebung zum SOB-
ware Prototyping

be complemented by some auxiliary activities. This is
true in particular for the early phases. One of the main
drawbacks is the lack of support to experimental or
exploratory programming. Somewhat related to this
problem is the observation that the user’s involvement
in designing a program is kept to a minimum. Basi-
cally the user is only involved during the very early
phases when it comes to more or less informally stat-
ing the requirements, and a t a rather late phase when
it comes to acknowledge the functionality of the pro-
gram. This observation is particularly striking when
modeling user interfaces, but it is not restricted to that
area. Prototyping tries to find a way out of these prob-
lems by assigning the user a more active r6le during
requirements elicitation, and by making experimental
and exploratory programming part of the activities re-
lated to program design. This approach to program
construction may complement the life cycle approach
by incorporating a prototype subphase between plan-
ning and requirements definition during the analytic
phase. Boehm’s spiral model [3] also takes prototyp-
ing into account by proposing prototyping phases to
be carried out after risk analysis and assessment.

Having a look at the literature it is difficult to find
a concise definition of software prototyping since this
is really some sort of umbrella term, covering a mul-
titude of activities more or less related to each other.
We stick to the description given by Christiane Floyd
[5]: “Prototyping . . , refers to a well-defined phase in
the production process where a model is produced in
advance, exhibiting all the essential features of the fi-
nal product for use as test specimen and guide for fur-
ther production.” This description emphasizes that
prototyping really means modeling of software, it im-
plies that the model itself should be an executable
program. Moreover, it is seen from this description
that prototyping should be an activity aiming at the

235
0-8186-3520-7/92 $3.00 0 1992 IEEE

rapid production of a piece of software, since other-
wise the effects of modeling would be lost. This in
turn implies that a language for the support of soft-
ware prototyping should provide powerful features, in
particular versatile data structuring facilities together
with convenient control structures operating on these
complex data structures.

Consequently we need powerful mechanisms based
on a somewhat natural formal calculus. We emphasize
a natural approach here since it should be possible
to express one’s thoughts for constructing a program
in a programming language rather close to the way
one does express things mathematically. Finite set
theory provides such a way of cleanly expressing one’s
thoughts, and our proposal for a prototyping language
is based on set theory augmented by bits and pieces
from A-calculus.

1.2 SETL as an Ancestor

Using set theory for the purpose of formally de-
scribing program designs is by no means new, and
the most prominent programming language making
finite sets available has been SETL. This venerable
language was designed during the seventies at New
York University’s Courant Institute of Mathematical
Sciences by J .T. Schwartz and his group. The late
seventies, and the early eighties saw implementations
of this language on a variety of machines ranging from
mainframes to work stations. Subsequently, the lan-
guage has been used, and has proven the modeling
capacities of the language in a convincing way. High-
lights are

0 the development of the first ADA compiler (certi-
fied in April 1983) [6],

0 the S E T L optimizer (which really was an encom-
passing prototype of optimization techniques for
procedural languages) [7],

0 the Rutgers Abstract Program Transformation
System RAPTS [8],

a WAA, a tool for analyzing PASCAL program frag-
ments with respect to their potential for reuse [9].

The day-teday use of SETL, however, indicated that
the language is not free of problems since it displayed
some very baroque features, sometimes more hinder-
ing the use of the language than supporting it. This
applies particularly to programming in the large, the
organization of separately compiled components was
felt to be rather awkward. In addition, the arsenal of

data structures was considered incomplete since func-
tions as citizens with first class rights are missing,
the possibilities of making values persistent are felt
as a lack and parallel programming is not possible at
all. The programming environment was the subject
of the ESPRIT project SED during 1986 to 1989.
Some progress has been made here, but regrettably
the goal of integrating all the results into a coherent
and uniform programming environment could not be
achieved.

When we had a look a t SETL we decided that we
wanted to reimplement it, clean up some of the fea-
tures and incorporate constructs we felt would be help-
ful. Reimplementation occurred to be necessary since
SETL was originally implemented in a little known
systems implementation language called LITTLE.

When working on the new language design and ob-
serving the design of SETL2 proposed by Kirk Sny-
der of Courant Institute [lo] we decided to incorporate
some features into our new language. The following
features distinguish our language proposal from both
SETL and SETL2:

e Data abstraction is supported uniformly by the
data types function, module, and instance
(note that SETL2 also provides anonymous func-
tions).

a Control abstraction is supported by a variety of
constructs for exception handling.

a Data modeling is supported by persistence; each
and every value having first class rights in the
language may be made persistent.

Parallel programming is supported by features for
generative communication; the control primitives
provided by the LINDA model for concurrent
programming [ll] serve as a basis for some prim-
itive operations in our language.

To avoid confusion between S E T L and its variants,
and to add a stone to the Tower of Babel we decided
to give the language a new name.

1.3 An Introductory Example: A Solu-
tion for the Queens’ Problem

We shall now present an introductory example to
give the reader a first impression of the language. In
Fig. 1 a PROSET-solution for the secalled queens’
problem is given. Informally, the problem may be
stated as follows:

236

~ ~ ~~ ~~ ~ ~

program Queens;
constant N := 4;
persistent constant npov, abs : llStdLibll ;

fields := {Cx,yl: x in Cl..NI, y in Cl..Nl>;
put ({NextPos: NextPos in npov(N, fields) I NonConflict(NextPos)));

begin

procedure NonConflict (Position);
begin

return forall F1 in Position, F2 in Position I
((F1 /= F2) !implies
(Fl(1) /= F2(1) and Fl(2) /= F2(2) and
abs(F2(1)-F1(1)) /= abs(F2(2)-F1(2)))) ;

procedure implies (a, b) ;
begin

return not a or b;
end implies;

end NonConflict;
end Queens;

Figure 1: Solution for the queens’ problem.
The predefined function npou(k, s> yields the set c- i L subsets of the set s w..ic-. contain exactly k elements.
The predefined function abs returns the absolute value of its argument. These functions are loaded from the
persistence store. NonConflict checks whether the queens in a given position do not attack each other. It is
possible to use procedures with appropriate parameters as user-defined operators by prefixing their names with
the “!” symbol. This is done here with the procedure implies. T(i) selects the ith element from tuple T.

Is i t possible t o place N queens (N E N) on
an N x N chessboard in such a way that they
do not attack each other?

Anyone familiar with the basic rules of chess also
knows what “attack” means in this context: in order
to attack each other, two queens are placed in the same
row, the same column, or the same diagonal.

The program in Fig. 1 does not solve the above
problem directly. It prints out the set of all positions
in which the N queens do not attack each other. If it
is not possible to place N queens in non-attacking po-
sitions, this set will be empty. We denote positions on
the chessboard by pairs of natural numbers for con-
venience (this is unusual in chess, where characters
are used to denote the columns). Ci, il denotes the
lower left corner. This program with N=4 produces the
following set as a result:

{{Cl, 31, C2, 11, C4, 21, C3. 41).
{C3, 11, C1, 21, C2, 41. C4, 33))

As sets are unordered collections, the program may
print the fields and positions in a different order. Note
that there are no explicit loops and that there is no

recursion in the program. All iterations are done im-
plicitly. One may regard this program also as a spec-
ification of the queens’ problem.

1.4 Overview

Now that we have discussed general aspects of pro-
totyping, and have given an example for the modeling
capacities of PROSET, we will discuss the language
in greater detail. This happens in section 2, where
first some salient linguistic features of PROSET are
discussed (2.1) and illustrated by a set of examples
(2.2). Section 3 outlines the compiler and indicates
some points deserving further discussion. Finally sec-
tion 4 sketches some of the work being done currently
in the areas of type inference and data structure selec-
tion (4.1) and outlines further work to be done for the
programming environment into which the language
system will be embedded.

237

2 The Prototyping Language PROSET

2.1 Salient Features

This section provides a brief discussion of some of
PROSET’S features which might be of interest. We
briefly look into issues pertaining to the type system,
to making values persistent, and to programming par-
allel applications.

Data Types PROSET makes the data types from
finite set theory available. The primitive data types
provided by the language are of course in teger , r e a l ,
boolean, s t r i n g , and atom. Compound data types
include finite sets and finite tuples. They have their
usual mathematical semantics, in particular we note
that we deal with value semantics rather than with
pointer semantics. Consequently, copying a compound
value and modifying the copy will not affect the origi-
nal. Sets may be described as familiar in mathematics,
viz., by enumerating the elements and by describing
their elements through properties. The same applies
to tuples. Having these types available makes it easy
to construct mathematical maps and relations by sim-
ply forming subsets of a Cartesian product. All these
data types are accompanied by the usual operations
(intersection, union, concatenation etc.). Thus the
convenience of using finite set theory for describing
solutions to problems is fully available.

Control Structures The control structures are
rather canonic: we provide the usual arsenal of con-
trol structures deriving from e.g. ALGOL and define
some operations which take the available compound
data types into account. It is for example possible to
iterate over a set and perform an operation for each
element of this set, or to test whether or not some
property is true for each element of a tuple.

Procedures Procedures are polymorphic and re-
turn a value. This is parametric polymorphism in
contrast to predefined operators, which are just over-
loaded. Parameters may be passed by value, by result,
and by value/result. This is very similar to SETL, in
addition it is possible to define anonymous functions
(As). Procedures and As may be converted into val-
ues of type func t ion using a closure operator. The
closure of a procedure freezes bindings to the values
of all non-local objects. Functions (i.e. the respective
results of applying the c losure operator) obtain an
identity in a rather straightforward way, consequently
these values may be handled as any other value with

an identity. In particular these values may be ele-
ments of sets, arguments to procedures and functions,
and they may be returned by them. This is quite sim-
ilar to, but subtly different from, the way things are
done in the SETL2 programming language.

Exception Handling Through an exception han-
dling mechanism we integrate a device for dealing
gracefully with errors in the program. For dealing
flexibly with a large class of situations we extend the
notion of error handling to exception handling. An
exception is a non-normal situation occurring in the
course of executing a program unit which has to be
handled by the invoking unit. Thus exception han-
dling is also a device for structuring and modeling, i.e.
a device for concisely formulating the algorithm and
for separating exceptional conditions and their han-
dling from the algorithm. An important improvement
to early approaches to exception handling is the dis-
tinction of exceptions and their handling units which
may be associated dynamically with each other. Thus,
the course of actions when handling an exception is as
follows:

1. If an exceptional condition is detected, an excep-
tion is raised, i.e. this event is signaled to the im-
mediate caller (and only to the immediate caller).

2. The caller reacts by invoking a previously associ-
ated handler (implicitly a default handler is asso-
ciated, if no handler has been associated explicitly
by the user).

3. The purpose of such handlers is diagnosing and
handling the situation, and finally determining
the subsequent flow of control.

In handling exceptions PROSET supports both a
termination and a resumption model, i.e. the execu-
tion of the exception raising unit may be terminated or
resumed by the handler. This is determined dynami-
cally. Exception handling introduces a new principle
of responsibility. Exceptions should not be handled by
the detecting unit, but by the superior one.

The clean separation of the specification of the al-
gorithm under normal conditions from the description
of exceptional situations together with a specification
of how to handle them is an aspect of prototyping
which helps the modeler as well as t3e prospective user
to better understanding the application to be proto-
typed. Thus the system to be constructed becomes
clearer, the communication between user and modeler
is enhanced, and the construction of the production
system is less error prone.

238

Modules and Instances Modules and instances
are used for the support of programming i n the large.
Modules are templates describing the operation of
functions around a common data structure. The ob-
jects imported to, and those exported from a module
are described in the interface to a module by giving its
name and the way the module treats the correspond-
ing object. Modules have to be instantiated before
the services they provide may be used. The result of
such an instantiation is a value of type instance. In
accordance with the philosophy of the language we do
not specify the type of the imported or the exported
values, so the polymorphism of procedures is carried a
step further. Modules are somewhat similar to generic
packages in ADA. Only after having instantiated a
module the values being exported from a module may
be used.

Modules and instances provide a data type of their
own. This has as a consequence that modules may
serve as parameters to procedures and may be re-
turned from them as values. Since values of each type
may be made persistent it is possible to deal with sep-
arate compilation as well as loading and binding of
program units in a very flexible way. So a module
is separately compiled by making it persistent, and an
instance of a separate compiled and instantiated mod-
ule is used by fetching the instance from the persistent
store.

Modules provide a basis for applying evolutionary
prototyping techniques like horizontal or vertical re-
finement, i.e. by completing existing procedures to
their full functional extent or by adding further func-
tions, respectively.

Persistence Modeling does not only apply to pro-
grams, but also to data: in the process of developing
an application not only the algorithms have to be ex-
plored, but the data and data structures on which the
algorithms are to work may emerge from this explo-
rative activity as well. Semantic data models working
with objects, attributes and ISA-relationships investi-
gate ways of modeling data according to their semantic
content; again, a set-oriented approach appears to be
most natural: it is well accepted in the data base re-
search community that data modeling should accom-
modate the user by making the representation and
manipulation as close as possible to the user’s percep-
tion of the problem.

Software prototyping will be most effective and
have maximal impact when it caters for the modeling
of programs and of data. Consequently we propose a
facility for handling persistent data in PROSET. Per-

sistence comes as a property orthogonal to types, so
each and every value having a legal type in PROSET
may be made persistent.

Programming Parallel Applications The con-
cept for process creation via MULTILISP’S futures [12]
is adapted to set-oriented programming and combined
with the concept for synchronization and communica-
tion via LINDA’S tuple space [ll] in PROSET. Com-
munication in LINDA is based on the concept of tu-
ple space, i.e. a virtual common data space, and also
called generative communication. Reading access to
tuples in tuple space is associative and not based on
physical addresses - in fact, the internal structure of
tuple space is hidden from the user. Reading access
to tuples is based on their expected content described
in secalled templates. Each component of a tuple or
template is either an actual, i.e. holding a value of
a given type, or a formal , i.e. a placeholder for such
a value. A formal is prefixed with a question mark.
Tuples in tuple space are selected by a matching pro-
cedure, where a tuple and a template are defined to
match, iff they have the same structure (correspond-
ing number and type of components) and the values of
their actuals are equal to the values of the correspond-
ing tuple fields. PROSET provides three tuple-space
operations. The deposit operation deposits new tu-
ples into tuple space, the f e t c h operation fetches and
removes a tuple from tuple space according to a speci-
fied template, and the meet operation meets and leaves
a tuple in tuple space. It is possible to change the tu-
ple’s value while meeting it. There is no difference
between PROSET-tuples and LINDA-tuples. LINDA
and PROSET both provide tuples thus it is quite nat-
ural to combine them on the basis of this common
feature.

Putting a communication language like LINDA on
top of a prototyping language like PROSET permits
modeling parallel applications in an appropriate way.
This approach has the advantage that no particular
parallel or distributed architecture is assumed, and
that no particular specific model of parallel processing
is assumed. LINDA is powerful enough to simulate
the major current paradigms in parallel processing,
so a language for prototyping rather includes such a
general model than indulging in a specific approach
to parallel processing which later on cannot be real-
istically reproduced when it comes to transform the
prototype to a real program.

239

2.2 Examples

2.2.1

The following example will show some of the features
mentioned above. We formulate a non-recursive algo-
rithm for depth first search (dfs) in graphs.

A graph G = (V, E) is defined by a set V of nodes
and a set E of (directed) edges. An edge e E E has
a starting node v E V and a destination node w E V ;
i.e. a natural representation for edges is a pair (U, U).
We will use this representation in our algorithm, too.

Depth First Search in Graphs

Algorithm dfs Figure 2 shows the algorithm for
dfs. It is embedded in a program to be self-contained.
The input to the algorithm is a starting node s and
the set E of nodes. It constructs as it goes the map
pred mapping a node to is predecessor, and produces
the tuple order which contains the nodes ordered in
one of the possible depth first visiting orders. Inspec-
tion of the code shows that the program uses a set
used of edges, and some auxilar nodes.

The tuple order is used as a queue: insertion is
done at the end. The initialization in the first state-
ment creates a tuple with the single element llall and
assigns this tuple to order . In the loop, (second line
of i f) the with:= assignment adds new elements at
the end. A consumer may use the fromb-assignment
x fromb order ; to dequeue elements from the begin-
ning or otherwise iterate over the tuple to obtair? its
elements.

The set E of edges mentioned in the description and
used in the code is a set of pairs. In PROSET, a set s
of pairs may be regarded as a finite single- or multi-
valued map. A multi-valued map is a relation where a
single element of the domain is related to an arbitrary
number of elements in the range. Single-valued maps
behave like discrete (and finite) functions: for each el-
ement z in the domain, there is at most one pair (I, y)
contained in the set. The set of adjacent nodes to a
node v, i.e. the set {U: [v,ul i n E} is formulated
as E{v}.

The map pred is single-valued, i.e. all pairs in pred
must have different first components. To indicate this,
the syntax pred(v) is used to denote that a single im-
age element is expected. Maintaining the map pred by
initializing it to the empty set and assigning the pre-
decessor of a node U to be v (first line of if-statement)
ensures this integrity.

Another language construct visible here is the
uhi le f ound-loop. Its semantics is straightforward.
Since in every step of the loop the iterator is evalu-
ated newly, the predicate (making use of a set used)

may yield different results. The altering of v will
yield different values for E{v} to be used in the loop.
This behavior makes depth first search possible. The
a h i l e f ound-loop makes v going into depth, whereas
the outer repeat-loop goes the opposite direction (by
using the map pred).

Note that nothing is said about the representation
of nodes - they can be of any type. The only re-
striction is that no node may be represented by the
undefined value om.

2.2.2 The Module Stack

We illustrate the above abstract ideas on modules,
procedures, and exception handling with the well-
known example of a stack. A module defining stacks
and a selection of operations on them (functions t o p
and is-empty are omitted to keep the example small)
is shown in Fig. 3. Although it is possible to imple-
ment stacks of unbounded depth using PROSET‘S data
type t u p l e , we will introduce here a boundary to ob-
tain an overflow, in order to model a situation for ex-
ploring our exception handling mechanism.

Fig. 4 contains an instantiation of the stack mod-
ule, i.e. the “holes” in the stack template are filled by
providing the import parameters of the stack and an
instance of the module is generated. Then we apply
the push routine to put an element onto the stack. In
terms of PROSET the stack is now an instance, i.e. an
object with a state representing the stack itself. If in
procedure push a stack overflow is detected, an ex-
ception is signaled to the actual routine in which that
exception has been associated with a handler which is
defined below. The handler resumes the push routine:
executing push will be continued by substituting the
top of the stack by the actual argument of push. The
second exported routine pop also uses exception han-
dling but prevents itself from resuming execution by
escape: invoking pop on an empty stack terminates
popping in every case, here caused by an implicitly
associated default handler.

Note that our stack operations work on every arbi-
trary element type. The stack may be heterogeneous,
due to our polymorphic typing principles.

2.2.3 Persis t ence

Now let us consider a little bit closer the integration
of persistence into PROSET, guided by some examples.
Persistent values are kept in data structures called P-
files, faintly resembling archives under UNIX, which
in turn are identified in a program through strings.
In addition to the value itself a P-file stores further

240

program dfs;
constant a := lla", b := "b", c := lac"; -- Ye use 3 nodes a , b, c
constant E := C[a,bl, [b,c]. [a ,c l) ; --
constant s := a; -- a is the start ing node

begin
order := [SI ;
used := { 1;
pred := c 1;
V := s;
repeat

-- the start ing

whilefound w i n E{v) I [v,w] notin used
used with := [v,w] ; -- mark
i f w notin order then

pred(w) := v;
order with:= U;
v := w ;

end i f ;
end whilef ound;
v := pred(v);

node is v i s i t e d f i r s t

do
edge as used

u n t i l v = om end repeat;
put ("order : "1 ;
put (order) ;

end df s ;

-- append at the end
-- go into depth

-- i f a l l edges are used,
-- continue with predecessor

Figure 2: Depth First Search in Graphs

information, e.g. access rights and time stamps, and
a name for the identification of the value.

The first example (Fig. 5) deals with making a value
persistent. We declare the value accessed through the
identifier Sort as persistent together with an indica-
tion that it will be taken from the P-file denoted by
the string literal "MyProject .Utilities". Suppose
the P-file exists, the user has the appropriate access
rights, and there exists no value with name Sort in
this P-file. Then a write lock is set to prevent any
other program from accessing this P-file entry and a
signal exception nissingpersistentvalue is raised.
Therefore, we have to associate a handler with this ex-
ception, which terminates with resume (otherwise the
predefined default handler would abort the program).
Then Sort is inserted into the P-file as having the
undefined value om. When leaving the program Demo,
the value of Sort is written to the P-file. Note that
we cannot directly make the procedure MySort persis-
tent, since procedures do not have first class rights.
The example demonstrates also the possibility of sep-
arate compilation.

The next example (Fig. 6) illustrates the use of
some existing persistent values. In addition to the

function accessed through Sort, we use a set being
stored in the P-file University .Home under the name
PhoneList to model a simple phone-book. When the
program is executed the persistent values are loaded
as a constant and a variable, respectively. The pro-
gram reads a name and a phone number from stan-
dard input, adds them to PhoneList and sorts this
list. It makes use of the persistent sorting routine
Sort , demonstrating the use of persistent functions.
Note that Sort is passed the (closure of the) compari-
son procedure It as a parameter. Upon program exit,
i.e when leaving the range within which the persis-
tent declarations are encountered, the modified value
of PhoneList is written back to the persistent store.

This provides only a very sketchy picture of per-
sistence. Combined with the powerful facilities of fi-
nite set theory, persistence will permit an adequate
semantic modeling of data, thus providing a link be-
tween software prototyping and semantic data model-
ing. Consequently, data base issues may be formulated
in PROSET, provided the data base is not too large
(this limitation is due to performance restrictions).
This applies in particular to program components like
procedures, modules, and instances which may be in-

24 1

module s tack (rd m a r ,

v i s i b l e Localstack ;
begin

w r push, pop) i

LocalStack := cl ;

-- Imports a maximal depth
-- Exports those t v o routines.
-- The da ta s t ruc ture s tack.
-- I n i t i a l i z a t i o n p a r t .

procedure push(x);
begin

-- Pushes one element t o the s tack. I f s tack
-- is f u l l an exception is signaled, i . e .
-- resuming is allowed (and m i l l be done in
-- our example).
-- The top element w i l l be subs t i tu ted
-- by the actual argument x.

i f #Localstack = max then
s ignal StacMverf low 0 ;
pop(Loca1Stack);

end if;
Localstack with:= x;

end push;

procedure pop(wr t) ;
begin

i f LocalStack = [I then

e l s e

end i f ;

escape EmptyStacko ;

t frome Localstack;

end pop;

-- Pops the top element and re turns it
-- i n vr-parameter t .
-- If the stack is empty popping is aborted.

end Stack;

Figure 3: Module Maintaining Stacks

terchanged freely among applications through a per-
sistent store. In addition, libraries of PROSET com-
ponents become feasible and may be accessed through
the language itself, hence the architecture of programs
may easily be described in PROSET. This is an added
benefit in prototyping, helping to elucidate the struc-
ture of a particular software solution.

2.2.4 The Queens’ Problem Revisited

In section 1.3 the queens’ problem was introduced t G
gether with a sequential solution. In Fig. 7 a parallel
solution based on the master-worker model is given.
It is recommended to examine the sequential solution
in Fig. 1 again.

Our program employs the master-worker model
where one master process interacts with a collection
of identical workers. The master generates task tu-
ples (positions) and collects results while the worker
processes repeatedly grab tasks from tuple space and
perform the required actions.

The master program uses explicit loops, whereas in
the sequential program no explicit loops are needed
and thus the parallel solution seems to have a lower

level of abstraction than the sequential one. Such
observations are often made in a wide spectrum lan-
guage’ like PROSET, where programs may be trans-
formed within the language using lower-level con-
structs to increase efficiency.

3 Implementation

The first version of the PROSET compiler is written
in highly portable ANSI C on a Sun Sparc machine.
Portability, efficiency, and wide availability suggest us-
ing ANSI C also as target language being further
translated and linked with the runtime library by a
C compiler. Since PROSET’S powerful concepts and
constructs are not supported directly by C or the tar-
get platform, the design of the runtime system is a
non-trivial task.

Organisation of the Compiler The overall struc-
ture of the compiler is shown in Fig. 8. The implemen-

‘In a wide spectrum language it is possible to program on a
high level of abstraction as in Fig. 1 as well M on a level of e.g.
PASCAL.

242

...
my-stack := instantiate closure stack -- nodule stack is instantiated.

rd max := 10; -- Import parameters are i n i t i a l i z e d .
wr push;
vr pop;

-- Export parameters are named.

end instantiate;
...
my-stack.push(stack-elem) when StackOverflorr use Substitute; -- If push ra i se s the

-- exception StackOverflow the associated
-- handler Substitute is executed.

my-stack. pop (1 ;

handler Substitute;
begin

end Substitute ;
resume ;

-- Substitutes the former top of

-- stack by stack-elem.

Figure 4: Using the Stack Module

tation of PROSET is supported by the compiler con-
struction system Eli. Eli integrates off-the-shelf tools
and libraries with specialized language processors to
provide a system for generating complete compilers
quickly and reliably [13].

The first phases of the compiler, the lexical, the
syntactical, and the semantical analysis, are summa-
rized in the figure as front end. Essential parts of the
front end are based on a preparatory work, the trans-
lation of a subset into SETL2. The main output of
the analysis part is a decorated abstract syntax tree
(AST) based on the abstract grammar of PROSET.

The next phase denoted by trans1 in the figure
consists of the application of some correctness pre-
serving transformation rules. The output is again a
decorated abstract syntax tree, but this time based
on the abstract grammar of PROS ET, a proper sub-
set of PROSET. The transformation to PROS ET has
two advantages. First it reduces the high level of ab-
straction thus facilitating the mapping to C. Second it
provides a clean interface for the integration of future
optimizing phases (indicated though the dashed lines
of the box) before code is generated. In preparation
are the incorporation of current work on type inference
and data structure selection (see section 4.1).

The generation of C code is performed by the next
phase. The mapping to C is essentially one to one
for PROS ET'S statements and expressions. The main
task of code generation consists of the translation of
nested procedures, modules, and exception handlers to
the flat structure of C functions, preserving the scope

rules. We have developed a contour model providing
a conceptual basis for this task (cfg. [l, appendix A]).
The model reflects that PROSET as a block structured
language is well suited to a stack implementation tech-
nique. However the availability of higher order types
and copy semantics require rather a kind of block re-
tention strategy (remember that procedures, modules
and instances may access nonlocal objects; applying
the closure operator on them freezes the bindings to
them). For the sake of efficiency we have integrated
both strategies into our model. Whenever possible we
use a stack and only do retention, i.e. holding the
freezed bindings in the heap, when values of higher
order type are involved. This strategy is sometimes
called mixed mode strategy. The generated C code is
compiled in the last step by a C compiler into an ex-
ecutable program.

The runtime system supporting the execution of
PROSET programs consists of the runtime library, the
transaction manager, and an object management sys-
tem. The implementation of concurrency is currently
in progress.

Runtime Library The current version of the run-
time library provides only standard representations
for PROSET'S data objects. For example sets are im-
plemented on the basis of a hash technique. When
the data structure selection will be integrated, spe-
cialized representations, e.g. bitvectors for sets, will
be added. Furthermore the library contains functions
corresponding to the predefined operations and some

243

program Demo;
visible persistent Sort : 'WyProject .Utilities"

-- declaration of a persistent value accessed via Sort.
when MissingPersistentValue use NevHember;

-- association of the handler NevMember to the exception
-- MissingPersistentValue: the non-existence of a value
-- identified by Sort in the P-file results in raising the
-- signaled exception HissingPersistantValue.

begin
Sort := closure MySort; -- yields a value of type function having.

-- first class rights.

-- Handling the exception HissingPersistentValue
-- with resume leads to au initialization of
-- Sort to omega.

handler NewHemberO :
begin

resume ;
end NevMember;

procedure MySort (rd Compound, rd LessThan) ;
begin

end MySort;
-- your favorite sorting routine returning the result as a sorted tuple.

end Demo;

Figure 5: An example for separate compilation.

auxiliary functions supporting more or less technical
particulars, e.g. the iteration over composite objects.

Persistent Store The implementation of the persis-
tent store is based on an object management system
H-PCTE [14]. This system is a simplified version of
ECMA-PCTE and a high performance implementa-
tion of it. The goal to maximize performance leads to
an implementation as main (or virtual) memory object
base.

Currently we have implemented on this basis a
single-user persistent store. Since H-PCTE is struc-
tural object oriented, we use a dynamic link editor
to load values of higher order type. The next steps of
our implementation deal with the extention to a multi-
user store, the distribution on a LAN, as well as the
construction of a graphical browser for the persistent
store.

4 Further Developments

We want to briefly sketch our plans for the program-
ming environment which is a necessary addition to any
language supporting software prototyping. We outline

some components of the environment (most of which
are already under construction) in 4.2, and it should
become clear from this discussion that the language
itself is an interesting object of study. One particular
aspect is type inference and data structure selection.
Both problems are somewhat intertwined, and we dis-
cuss issues pertaining to these questions in 4.1.

4.1 Type Inference and Data Structure
Select ion

Weak Type System The intention of PROSET to
be designed as a language for the support of rapid
software prototyping is also reflected in the under-
lying type system. The software developer does not
have to declare the types of the objects used in a
PROSET program. This makes him free of burden-
some routine work and also gives him the necessary
flexibility needed during the process of modeling al-
gorithms and data. In addition to declaration free-
ness, the iteration over non-homogeneous compound
data objects and the desirable feature of allowing user-
defined polymorphic procedures in an imperative pro-
gramming language may change the type of variables
during runtime.

A consequence of this flexibility in the usage of the

244

program AddPhone ;
persistent constant Sort : 'WyProject .Ut i l i t i e s";
v i s i b l e persistent PhoneList : "University. Home" ;

putf ("Enter name: "1 ;
Name :- getf (%") ;
putf ("Enter phone: "1 ;
Phone := getf ("%d") ;
PhoneList with := [Name, Phone I ; -- add the new iter t o the list

begin
-- read the f i r s t name as string

-- read the phone as integer

for p in Sort(PhoneList. closure I t) do -- print the entries of the
-- list sorted by name.

putf ("Name: X2Os Phone:%d\n", ~ (1) . ~ (2)) ;
end for ;

procedure I t (I. y> ;
begin

end It;
return x(1) < ~ (1) ;

end AddPhone;

-- used i n the sorting routine

Figure 6: An example for the use of persistent values.

prototyping language is a weak type system. Hence
PROSET programs cannot statically be checked for
type correctness in general and even erroneous pro-
grams can partially be executed until the flow reaches
the type error. It follows that the user has to pay for
this

0 in less efficiency w.r.t. both storage and execu-
tion time - the possibility of changing the type
of a variable during runtime forces the implemen-
tation to use union types for PROSET values and
to add code for dynamic type checks to the exe-
cuting program.

in more expensive during testing phases - in
larger programs there are often parts which are
rarely executed, so the program may be in use
for a long time before dynamic checking detects
a type error.

e Since type changing during runtime is allowed,
there are situations in which more than one type
leads to a correct typing. So type inference must
be extended to assign a whole set of correct typ-
ings to expressions. Sets of types are not unifiable
because the members may appear in any arbitrary
order. Thus unification has been extended by a
more general algorithm for set intersection, which
supplies the program with a weak principle type,
i.e. the set of correct typings.

0 Since PROSET is an imperative programming lan-
guage, side effects of procedures to global vari-
abies are possible. This implies that type infer-
ence cannot be performed on the syntax tree of
the source program alone. It has to take the data
flow into account, and propagate the analyzed
type information of expressions through the flow
graph until a fixed point is reached. This data
flow oriented type inference algorithm is more
flexible but less efficient than unification. This dilemma can be softened by a static type infer-

ence mechanism.
Data Structure Selection for Compound Data
Objects The compound data types set and tuple
in PROSET are supported by many operations, but
efficient support for all operations using only one rep-
resentation is not possible. For instance a linear list
implementation of the data type t u p l e efficiently sup-
ports the insertion of an element into the tuple, but

Type Inference Type Inference in applicative pro-
grLmming languages is a well known problem, and
there are efficient unification algorithms to detect type
errors in the structure of types. In PROSET the fol-
lowing situations are observed:

245

program Parallelqueens ;
constant N := 8 , NumWorker := argv(2). -- program argument

TS := createTS(om); -- dynamically created tup le space
begin

Posit ions := npow(N, {[x,yl: x i n [l . . N l . y i n [l..Nl});

ProSet

f o r i i n [l . . NmWorkerl do
I I Worker(TS); -- spawn the worker processes

end f o r ;
deposit [1) 3 , [0 1 a t TS end deposit ;
f o r NextPosition i n Posit ions do

end fo r :

-- i n i t i a l i z e the r e s u l t s e t

deposit [NextPosition 1 a t TS end deposit ;

I
:.front e n d , decorated transl decorated ;I ' optim I

I I

f e t ch (#Positions) a t TS end fe tch ;
f e t ch (? Nonconflict I(type $ = s e t)) a t TS end f e t ch ;
put (NonConf l i c t) ;

procedure Worker (TS); begin

f e t ch (? MyPosition) a t TS
i f Nonconflict (MyPosition)

meet (? I(type $ = s e t)
a t TS

end meet;

loop

end i f ;
meet (? I(type $ = integer)

end loop;
end Worker;

end Parallelqueens;

end f e t ch ;
then -- add t o the r e s u l t
i n to ($ with HyPosition)

i n to ($ + 1)) a t TS end meet;

Figure 7: Parallel solution for the queens' problem.
See Fig. 1 for the procedure NonConf l i c t . The resulting set of non-conflicting positions is built in tuple
space via changing meet operations. The master program spawns MumYorker worker processes. This
number is an argument to the main program. The resulting set of non-conflicting positions is built in
tuple space via changing meet operations. The counter in tuple space is necessary to let the master wait
until all positions are evaluated. The unary operator # returns the number of elements in a compound
data structure. The symbol $ is a placeholder for the corresponding tuple-component in tuple space.

I
decorated code

Figure 8: The structure 'of the compiler.

246

a sublinear membership test for a special element or
an efficient access to the ith component is not possi-
ble with this data structure. This implies that the
default data structures used for the implementation
of the data types set and tuple should balance the
requirements for all operations. When type inference
is performed and leads to exactly one correct typing
for a variable, overloading can be resolved and the us-
age of this variable can be analyzed to select a more
efficient data structure from a library of predefined
implementations for this particular program. This se-
lection process is based on the following informations:

the operations which are applied to that object in
this particular program.

the frequency of those operations: If it is not
possible to support efficiently all operations, the
support of operations used in deeply nested loops
should be preferred.

the inclusion relations between structured ob-
jects: With these information the universe of all
objects related to each other can be chosen as a
base for the implementation. Each object can be
represented over this base as a bit vector, list of
pointers to the base, etc. This prevents multi-
ple storage of the members and allows to support
different operations by different implementations
(see [15]).

It should be noticed that the whole program has to be
analyzed before data structure selection can be per-
formed. Whenever two structured objects are used
as operands of one and the same binary operation,
the same implementation has to be selected for these
objects - otherwise combinatorial explosion is in-
evitable.

4.2 Programming Environment and Fur-
ther Work

Our work has concentrated mostly on language de-
sign and the implementation proper. We estimate that
the implementation will be complete by the end of
1992, so that we may concentrate on the design and
realization of tools for the programming environment.
In closing the paper we will provide a brief glimpse
at some of the tools to be constructed for technically
supporting the programmer’s task of creating a satis-
factory model of an application.

Transformational issues Using finite differencing
as a transformational paradigm [8] has shown surpris-
ing results in particular with respect to improving the

performance of programs asymptotically. We are in
the process of adopting the approach to our current
environment.

Abstract data types The designer cannot use ab-
stract data types for protecting data against unsuit-
able operations, since abstract data types cannot be
formulated. We need a powerful mechanism for for-
mulating ADTs, supporting in this way semantic data
modeling.

Support for persistence Persistent values are
maintained in a structure called P - File. Working
with these archives should be supported through tools
for

Browsing: display the contents of a P - File
graphically, show the interconnections and inter-
dependencies between various items in a P - File
etc.

Module interfaces: modules lack an interface al-
lowing a static check of consistency with respect
to import and export. This is due to the lan-
guage’s philosophy of not restricting the user
through the necessity of type declarations. This
violates type security considerably, and we cur-
rently investigate ways of providing weak type
checks eliminating most typing errors at run time.

Architectural description Since functions, mod-
ules and instances are first class citizens of the lan-
guage, and since binding as well as loading can be de-
scribed in the language itself via the persistence mech-
anism, the design of an application may be described
in the language. We will investigate which process
models are appropriate in the context we are envision-
ing, and how to formulate them in PROSET; our first
impression is that an approach like MERLIN [16] us-
ing backward chaining and forward propagation over
a persistent knowledge base might be suitable.

Support for reusing program parts Prototypes
written in PROSET provide their functionality on a
very high semantic level, hence it is more feasible
to recognize what they are doing than for programs
written in a production language like C. We are cur-
rently gaining some experience with tools permitting
the identification of program components based on
Prieto-Diaz’s faceted classification scheme [17]. These
tools will be incorporated into the prototyping envi-
ronment.

247

Literal programming Documentation usually ser-
ves a8 the token that is passed between the designer
and the user of a system, describing the intended func-
tionality. Literal programming unifies documentation
and code in one single document from which either
may be generated. This may be a way of demonstrat-
ing to the customer where the desired functionality is
realized in a program system, enabling her (or him) to
communicate in a more versatile and competent way
with the system designer. We plan to experiment with
this approach to communication in the context of pro-
totyping.

The user interface The user interface requires par-
ticular attention, and its construction should be sup-
ported by suitable tools. We consider currently con-
structing an interface to the toolkit DIWA [18] which
allows specifying user interfaces on a sufficiently high
level.

References

E.-E. Doberkat, W. Ranke, U. Gutenbeil,
W. Hasselbring, U. Lammers, and C. Pahl,
“PROSET - Prototyping with Sets: Language
Definition,” Informatik-Bericht 02-92, University
of Essen, Apr. 1992.

E.-E. Doberkat and D. Fox, Software Prototyp-
ing mit SETL. Leitfaden und Monographien der
Informatik, Stuttgart: Teubner-Verlag, 1989.

B. Boehm, “A spiral model of software deve-
lopment and enhancement ,” IEEE Computer,
vol. 21, no. 5, pp. 61-72, 1988.

R. Budde, K. Kuhlenkamp, L. Mathiassen, and
H. Zullinghoven, eds., Approaches to Prototyping.
Berlin: Springer Verlag, 1984.

C. Floyd, “A systematic look at prototyping,” in
Budde et al. [4], pp. 1-18.

P. Kruchten, E. Schonberg, and J. Schwartz,
“Software prototyping using the SETL program-
ming language,’’ IEEE Software, vol. 1, no. 5,
pp. 66-75, 1984.

R. J . Mintz, G. A. Fisher, and M. Sharir,
“The design of a global optimizer,” in Proc.
ACM SIGPLAN Symp. on Compiler Construc-
tion, pp. 226-234, 1979.

[8] R. Paige and S. Koenig, “Finite differencing
of computable expressions,” A CM Trans. Prog.
Lung. Syst., vol. 4, no. 3, pp. 402-454, 1982.

[9] E.-E. Doberkat, “Zur Wiederaufbereitung von
Software,” Informatik - Forschung und Entwick-
lung, vol. 4, pp. 14-24, 1989.

[lo] W. Snyder, “The SETL2 programming lan-
guage,” Technical Report 490, Courant Institute,
New York University, Sept. 1990.

[ll] D. Gelernter, “Generative communication in Lin-
da,” ACM Trans. Programming Languages and
Systems, vol. 7, no. 1, pp. 80-112, 1985.

[12] R. Halstead, “Multilisp: A language for concur-
rent symbolic computation,” ACM Trans. Pro-
gramming Languages and Systems, vol. 7, no. 4,
pp. 501-538, 1985.

[13] R. Gray, V. Heuring, S. Levi, A. Sloane, and
W. Waite, “Eli: A complete, flexible compiler
construction system,” Communications ACM,
vol. 35, pp. 121-131, Feb. 1992.

[14] U. Kelter, “Einfuhrung in H-PCTE,” Internal Re-
port, University of Hagen, May 1991.

[15] J . Cai, P. Facon, F. Henglein, R. Paige, and
E. Schonberg, “Type transformation and data
structure choice,” in IFIP WG2.1 Working Con-
ference, Pacific Grove, California, 1991.

[16] B. Peuschel and W. Schafer, “Concepts and im-
plementation of a rule-based process engine,” in
Proc. 14th International Conference on Soflware
Engineering, (Melbourne, Australia), May 1992.

[17] R. Prieto-Diaz and P. Freeman, “Classifying soft-
ware for reusability,” IEEE Software, vol. 4, no. 1,
pp. 6-16, 1987.

[18] J . Voss, Entwurf und Implementierung von gra-
phischen Benutzeroberflichen: Ein integrierter,
objektorientierter Ansatt. PhD thesis, University
of Hagen, 1990.

248

