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Abstract 

We discuss the prototyping language PROSET (Pro- 
totyping with Sets) as a language for experimental and 
evolutionary prototyping, focusing its attention on al- 
gorithm design. Some of PROSET’S features include 
generative communication, flexible exception handling 
and the integration of persistence. A discussion of 
some issues pertaining to the compiler and the pro- 
gramming environment conclude the paper. 

1 Introduction and Overview 

This paper discusses the programming language 
PROSET which is an acronym for PROTOTYPING WITH 
SETS [l]. This language has been defined and is cur- 
rently being implemented at the University of Essen; 
it is a descendant of the set-oriented prototyping lan- 
guage SETL [2]. 

This introductory section is intended to provide 
some thoughts regarding the definition of this lan- 
guage. In particular we will have a brief look at pro- 
totyping and how it might influence language design. 
We discuss the relationship of PROSET to SETL and 
demonstrate the flavor of the language in a brief ex- 
ample. 

1.1 Prototyping 

It is well-known that the classical software life cy- 
cle has some drawbacks which suggest that it should 

*Work supported in part by NW - MWF through Ver- 
bund Software-Technik Nordrhein-Westfalen, Integration se- 
mantiacher Datenmodelle in eine Prototyping-Umgebung, and 
by BMBW - MWF through FGrderprogramm Montanregie 
nen, Implementation einer Programmierumgebung zum SOB- 
ware Prototyping 

be complemented by some auxiliary activities. This is 
true in particular for the early phases. One of the main 
drawbacks is the lack of support to experimental or 
exploratory programming. Somewhat related to this 
problem is the observation that the user’s involvement 
in designing a program is kept to a minimum. Basi- 
cally the user is only involved during the very early 
phases when it comes to more or less informally stat- 
ing the requirements, and a t  a rather late phase when 
it comes to acknowledge the functionality of the pro- 
gram. This observation is particularly striking when 
modeling user interfaces, but it is not restricted to that 
area. Prototyping tries to find a way out of these prob- 
lems by assigning the user a more active r6le during 
requirements elicitation, and by making experimental 
and exploratory programming part of the activities re- 
lated to program design. This approach to program 
construction may complement the life cycle approach 
by incorporating a prototype subphase between plan- 
ning and requirements definition during the analytic 
phase. Boehm’s spiral model [3] also takes prototyp- 
ing into account by proposing prototyping phases to 
be carried out after risk analysis and assessment. 

Having a look at the literature it is difficult to find 
a concise definition of software prototyping since this 
is really some sort of umbrella term, covering a mul- 
titude of activities more or less related to each other. 
We stick to the description given by Christiane Floyd 
[5]: “Prototyping . . , refers to a well-defined phase in 
the production process where a model is produced in 
advance, exhibiting all the essential features of the fi- 
nal product for use as test specimen and guide for fur- 
ther production.” This description emphasizes that 
prototyping really means modeling of software, it im- 
plies that the model itself should be an executable 
program. Moreover, it is seen from this description 
that prototyping should be an activity aiming at the 
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rapid production of a piece of software, since other- 
wise the effects of modeling would be lost. This in 
turn implies that a language for the support of soft- 
ware prototyping should provide powerful features, in 
particular versatile data structuring facilities together 
with convenient control structures operating on these 
complex data structures. 

Consequently we need powerful mechanisms based 
on a somewhat natural formal calculus. We emphasize 
a natural approach here since it should be possible 
to express one’s thoughts for constructing a program 
in a programming language rather close to the way 
one does express things mathematically. Finite set 
theory provides such a way of cleanly expressing one’s 
thoughts, and our proposal for a prototyping language 
is based on set theory augmented by bits and pieces 
from A-calculus. 

1.2 SETL as an Ancestor 

Using set theory for the purpose of formally de- 
scribing program designs is by no means new, and 
the most prominent programming language making 
finite sets available has been SETL. This venerable 
language was designed during the seventies at New 
York University’s Courant Institute of Mathematical 
Sciences by J .T.  Schwartz and his group. The late 
seventies, and the early eighties saw implementations 
of this language on a variety of machines ranging from 
mainframes to work stations. Subsequently, the lan- 
guage has been used, and has proven the modeling 
capacities of the language in a convincing way. High- 
lights are 

0 the development of the first ADA compiler (certi- 
fied in April 1983) [6], 

0 the S E T L  optimizer (which really was an encom- 
passing prototype of optimization techniques for 
procedural languages) [7], 

0 the Rutgers Abstract Program Transformation 
System RAPTS [8], 

a WAA, a tool for analyzing PASCAL program frag- 
ments with respect to their potential for reuse [9]. 

The day-teday use of SETL,  however, indicated that 
the language is not free of problems since it displayed 
some very baroque features, sometimes more hinder- 
ing the use of the language than supporting it. This 
applies particularly to programming in the large, the 
organization of separately compiled components was 
felt to be rather awkward. In addition, the arsenal of 

data structures was considered incomplete since func- 
tions as citizens with first class rights are missing, 
the possibilities of making values persistent are felt 
as a lack and parallel programming is not possible at 
all. The programming environment was the subject 
of the ESPRIT project SED during 1986 to 1989. 
Some progress has been made here, but regrettably 
the goal of integrating all the results into a coherent 
and uniform programming environment could not be 
achieved. 

When we had a look a t  SETL we decided that we 
wanted to reimplement it,  clean up some of the fea- 
tures and incorporate constructs we felt would be help- 
ful. Reimplementation occurred to  be necessary since 
SETL was originally implemented in a little known 
systems implementation language called LITTLE. 

When working on the new language design and ob- 
serving the design of SETL2 proposed by Kirk Sny- 
der of Courant Institute [lo] we decided to  incorporate 
some features into our new language. The following 
features distinguish our language proposal from both 
SETL and SETL2: 

e Data  abstraction is supported uniformly by the 
data types function, module, and instance 
(note that SETL2 also provides anonymous func- 
tions). 

a Control abstraction is supported by a variety of 
constructs for exception handling. 

a Data  modeling is supported by persistence; each 
and every value having first class rights in the 
language may be made persistent. 

Parallel programming is supported by features for 
generative communication; the control primitives 
provided by the LINDA model for concurrent 
programming [ll] serve as a basis for some prim- 
itive operations in our language. 

To avoid confusion between S E T L  and its variants, 
and to add a stone to the Tower of Babel we decided 
to give the language a new name. 

1.3 An Introductory Example: A Solu- 
tion for the Queens’ Problem 

We shall now present an introductory example to 
give the reader a first impression of the language. In 
Fig. 1 a PROSET-solution for the secalled queens’ 
problem is given. Informally, the problem may be 
stated as follows: 
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~ ~ ~~ ~~ ~ ~ 

program Queens; 
constant N := 4; 
persistent constant npov, abs : llStdLibll ; 

fields := {Cx,yl: x in Cl..NI, y in Cl..Nl>; 
put ({NextPos: NextPos in npov(N, fields) I NonConflict(NextPos))); 

begin 

procedure NonConflict (Position); 
begin 

return forall F1 in Position, F2 in Position I 
((F1 /= F2) !implies 
(Fl(1) /= F2(1) and Fl(2) /= F2(2) and 
abs(F2(1)-F1(1)) /= abs(F2(2)-F1(2)))) ; 

procedure implies (a, b) ; 
begin 

return not a or b; 
end implies; 

end NonConflict; 
end Queens; 

Figure 1: Solution for the queens’ problem. 
The predefined function npou(k, s> yields the set c- i L subsets of the set s w..ic-. contain exactly k elements. 
The predefined function abs returns the absolute value of its argument. These functions are loaded from the 
persistence store. NonConflict checks whether the queens in a given position do not attack each other. It is 
possible to use procedures with appropriate parameters as user-defined operators by prefixing their names with 
the “!” symbol. This is done here with the procedure implies. T(i) selects the ith element from tuple T. 

Is i t  possible t o  place N queens ( N  E N) on 
an N x  N chessboard in such a way  that they 
do  not attack each other? 

Anyone familiar with the basic rules of chess also 
knows what “attack” means in this context: in order 
to attack each other, two queens are placed in the same 
row, the same column, or the same diagonal. 

The program in Fig. 1 does not solve the above 
problem directly. It prints out the set of all positions 
in which the N queens do not attack each other. If it 
is not possible to place N queens in non-attacking po- 
sitions, this set will be empty. We denote positions on 
the chessboard by pairs of natural numbers for con- 
venience (this is unusual in chess, where characters 
are used to denote the columns). Ci, il denotes the 
lower left corner. This program with N=4 produces the 
following set as a result: 

{{Cl, 31, C2, 11, C4, 21, C3. 41). 
{C3, 11, C1, 21, C2, 41. C4, 33)) 

As sets are unordered collections, the program may 
print the fields and positions in a different order. Note 
that there are no explicit loops and that there is no 

recursion in the program. All iterations are done im- 
plicitly. One may regard this program also as a spec- 
ification of the queens’ problem. 

1.4 Overview 

Now that we have discussed general aspects of pro- 
totyping, and have given an example for the modeling 
capacities of PROSET, we will discuss the language 
in greater detail. This happens in section 2, where 
first some salient linguistic features of PROSET are 
discussed (2.1) and illustrated by a set of examples 
(2.2). Section 3 outlines the compiler and indicates 
some points deserving further discussion. Finally sec- 
tion 4 sketches some of the work being done currently 
in the areas of type inference and data structure selec- 
tion (4.1) and outlines further work to be done for the 
programming environment into which the language 
system will be embedded. 
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2 The Prototyping Language PROSET 

2.1 Salient Features 

This section provides a brief discussion of some of 
PROSET’S features which might be of interest. We 
briefly look into issues pertaining to the type system, 
to making values persistent, and to programming par- 
allel applications. 

Data Types PROSET makes the data types from 
finite set theory available. The primitive data types 
provided by the language are of course in teger ,  r e a l ,  
boolean, s t r i n g ,  and atom. Compound data types 
include finite sets and finite tuples. They have their 
usual mathematical semantics, in particular we note 
that we deal with value semantics rather than with 
pointer semantics. Consequently, copying a compound 
value and modifying the copy will not affect the origi- 
nal. Sets may be described as familiar in mathematics, 
viz., by enumerating the elements and by describing 
their elements through properties. The same applies 
to tuples. Having these types available makes it easy 
to construct mathematical maps and relations by sim- 
ply forming subsets of a Cartesian product. All these 
data types are accompanied by the usual operations 
(intersection, union, concatenation etc.). Thus the 
convenience of using finite set theory for describing 
solutions to problems is fully available. 

Control Structures The control structures are 
rather canonic: we provide the usual arsenal of con- 
trol structures deriving from e.g. ALGOL and define 
some operations which take the available compound 
data types into account. It is for example possible to 
iterate over a set and perform an operation for each 
element of this set, or to test whether or not some 
property is true for each element of a tuple. 

Procedures Procedures are polymorphic and re- 
turn a value. This is parametric polymorphism in 
contrast to predefined operators, which are just over- 
loaded. Parameters may be passed by value, by result, 
and by value/result. This is very similar to SETL, in 
addition it is possible to define anonymous functions 
(As). Procedures and As may be converted into val- 
ues of type func t ion  using a closure operator. The 
closure of a procedure freezes bindings to the values 
of all non-local objects. Functions (i.e. the respective 
results of applying the c losure  operator) obtain an 
identity in a rather straightforward way, consequently 
these values may be handled as any other value with 

an identity. In particular these values may be ele- 
ments of sets, arguments to procedures and functions, 
and they may be returned by them. This is quite sim- 
ilar to, but subtly different from, the way things are 
done in the SETL2 programming language. 

Exception Handling Through an exception han- 
dling mechanism we integrate a device for dealing 
gracefully with errors in the program. For dealing 
flexibly with a large class of situations we extend the 
notion of error handling to exception handling. An 
exception is a non-normal situation occurring in the 
course of executing a program unit which has to be 
handled by the invoking unit. Thus exception han- 
dling is also a device for structuring and modeling, i.e. 
a device for concisely formulating the algorithm and 
for separating exceptional conditions and their han- 
dling from the algorithm. An important improvement 
to early approaches to exception handling is the dis- 
tinction of exceptions and their handling units which 
may be associated dynamically with each other. Thus, 
the course of actions when handling an exception is as 
follows: 

1. If an exceptional condition is detected, an excep- 
tion is raised, i.e. this event is signaled to  the im- 
mediate caller (and only to the immediate caller). 

2.  The caller reacts by invoking a previously associ- 
ated handler (implicitly a default handler is asso- 
ciated, if no handler has been associated explicitly 
by the user). 

3.  The purpose of such handlers is diagnosing and 
handling the situation, and finally determining 
the subsequent flow of control. 

In handling exceptions PROSET supports both a 
termination and a resumption model, i.e. the execu- 
tion of the exception raising unit may be terminated or 
resumed by the handler. This is determined dynami- 
cally. Exception handling introduces a new principle 
of responsibility. Exceptions should not be handled by 
the detecting unit, but by the superior one. 

The clean separation of the specification of the al- 
gorithm under normal conditions from the description 
of exceptional situations together with a specification 
of how to handle them is an aspect of prototyping 
which helps the modeler as well as t3e prospective user 
to better understanding the application to be proto- 
typed. Thus the system to be constructed becomes 
clearer, the communication between user and modeler 
is enhanced, and the construction of the production 
system is less error prone. 
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Modules and Instances Modules and instances 
are used for the support of programming i n  the large. 
Modules are templates describing the operation of 
functions around a common data structure. The ob- 
jects imported to, and those exported from a module 
are described in the interface to a module by giving its 
name and the way the module treats the correspond- 
ing object. Modules have to be instantiated before 
the services they provide may be used. The result of 
such an instantiation is a value of type instance. In 
accordance with the philosophy of the language we do 
not specify the type of the imported or the exported 
values, so the polymorphism of procedures is carried a 
step further. Modules are somewhat similar to generic 
packages in ADA. Only after having instantiated a 
module the values being exported from a module may 
be used. 

Modules and instances provide a data type of their 
own. This has as a consequence that modules may 
serve as parameters to  procedures and may be re- 
turned from them as values. Since values of each type 
may be made persistent it is possible to deal with sep- 
arate compilation as well as loading and binding of 
program units in a very flexible way. So a module 
is separately compiled by making it persistent, and an 
instance of a separate compiled and instantiated mod- 
ule is used by fetching the instance from the persistent 
store. 

Modules provide a basis for applying evolutionary 
prototyping techniques like horizontal or vertical re- 
finement, i.e. by completing existing procedures to 
their full functional extent or by adding further func- 
tions, respectively. 

Persistence Modeling does not only apply to pro- 
grams, but also to data: in the process of developing 
an application not only the algorithms have to be ex- 
plored, but the data and data structures on which the 
algorithms are to work may emerge from this explo- 
rative activity as well. Semantic data models working 
with objects, attributes and ISA-relationships investi- 
gate ways of modeling data according to their semantic 
content; again, a set-oriented approach appears to be 
most natural: it is well accepted in the data base re- 
search community that data modeling should accom- 
modate the user by making the representation and 
manipulation as close as possible to the user’s percep- 
tion of the problem. 

Software prototyping will be most effective and 
have maximal impact when it caters for the modeling 
of programs and of data. Consequently we propose a 
facility for handling persistent data in PROSET. Per- 

sistence comes as a property orthogonal to types, so 
each and every value having a legal type in PROSET 
may be made persistent. 

Programming Parallel Applications The con- 
cept for process creation via MULTILISP’S futures [12] 
is adapted to set-oriented programming and combined 
with the concept for synchronization and communica- 
tion via LINDA’S tuple space [ll] in PROSET. Com- 
munication in LINDA is based on the concept of tu- 
ple space, i.e. a virtual common data space, and also 
called generative communication. Reading access to 
tuples in tuple space is associative and not based on 
physical addresses - in fact, the internal structure of 
tuple space is hidden from the user. Reading access 
to tuples is based on their expected content described 
in secalled templates.  Each component of a tuple or 
template is either an actual,  i.e. holding a value of 
a given type, or a formal ,  i.e. a placeholder for such 
a value. A formal is prefixed with a question mark. 
Tuples in tuple space are selected by a matching pro- 
cedure, where a tuple and a template are defined to 
match, iff they have the same structure (correspond- 
ing number and type of components) and the values of 
their actuals are equal to the values of the correspond- 
ing tuple fields. PROSET provides three tuple-space 
operations. The deposit  operation deposits new tu- 
ples into tuple space, the f e t c h  operation fetches and 
removes a tuple from tuple space according to a speci- 
fied template, and the meet operation meets and leaves 
a tuple in tuple space. It is possible to change the tu- 
ple’s value while meeting it. There is no difference 
between PROSET-tuples and LINDA-tuples. LINDA 
and PROSET both provide tuples thus it is quite nat- 
ural to combine them on the basis of this common 
feature. 

Putting a communication language like LINDA on 
top of a prototyping language like PROSET permits 
modeling parallel applications in an appropriate way. 
This approach has the advantage that no particular 
parallel or distributed architecture is assumed, and 
that no particular specific model of parallel processing 
is assumed. LINDA is powerful enough to simulate 
the major current paradigms in parallel processing, 
so a language for prototyping rather includes such a 
general model than indulging in a specific approach 
to parallel processing which later on cannot be real- 
istically reproduced when it comes to transform the 
prototype to a real program. 
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2.2 Examples 

2.2.1 

The following example will show some of the features 
mentioned above. We formulate a non-recursive algo- 
rithm for depth first search (dfs) in graphs. 

A graph G = (V, E )  is defined by a set V of nodes 
and a set E of (directed) edges. An edge e E E has 
a starting node v E V and a destination node w E V ;  
i.e. a natural representation for edges is a pair (U, U). 
We will use this representation in our algorithm, too. 

Depth First Search in Graphs 

Algorithm dfs Figure 2 shows the algorithm for 
dfs. It is embedded in a program to be self-contained. 
The input to the algorithm is a starting node s and 
the set E of nodes. It constructs as it goes the map 
pred mapping a node to is predecessor, and produces 
the tuple order  which contains the nodes ordered in 
one of the possible depth first visiting orders. Inspec- 
tion of the code shows that the program uses a set 
used of edges, and some auxilar nodes. 

The tuple order  is used as a queue: insertion is 
done at the end. The initialization in the first state- 
ment creates a tuple with the single element llall and 
assigns this tuple to order .  In the loop, (second line 
of i f )  the with:= assignment adds new elements at 
the end. A consumer may use the fromb-assignment 
x fromb order ;  to dequeue elements from the begin- 
ning or otherwise iterate over the tuple to obtair? its 
elements. 

The set E of edges mentioned in the description and 
used in the code is a set of pairs. In PROSET, a set s 
of pairs may be regarded as a finite single- or multi- 
valued map. A multi-valued map is a relation where a 
single element of the domain is related to an arbitrary 
number of elements in the range. Single-valued maps 
behave like discrete (and finite) functions: for each el- 
ement z in the domain, there is at most one pair (I, y) 
contained in the set. The set of adjacent nodes to a 
node v, i.e. the set {U: [v,ul i n  E} is formulated 
as E{v}. 

The map pred is single-valued, i.e. all pairs in pred 
must have different first components. To indicate this, 
the syntax pred(v) is used to denote that a single im- 
age element is expected. Maintaining the map pred by 
initializing it to the empty set and assigning the pre- 
decessor of a node U to be v (first line of if-statement) 
ensures this integrity. 

Another language construct visible here is the 
uhi le f  ound-loop. Its semantics is straightforward. 
Since in every step of the loop the iterator is evalu- 
ated newly, the predicate (making use of a set used) 

may yield different results. The altering of v will 
yield different values for E{v} to be used in the loop. 
This behavior makes depth first search possible. The 
a h i l e f  ound-loop makes v going into depth, whereas 
the outer repeat-loop goes the opposite direction (by 
using the map pred). 

Note that nothing is said about the representation 
of nodes - they can be of any type. The only re- 
striction is that no node may be represented by the 
undefined value om. 

2.2.2 The Module Stack 

We illustrate the above abstract ideas on modules, 
procedures, and exception handling with the well- 
known example of a stack. A module defining stacks 
and a selection of operations on them (functions t o p  
and is-empty are omitted to keep the example small) 
is shown in Fig. 3. Although it is possible to imple- 
ment stacks of unbounded depth using PROSET‘S data 
type t u p l e ,  we will introduce here a boundary to ob- 
tain an overflow, in order to  model a situation for ex- 
ploring our exception handling mechanism. 

Fig. 4 contains an instantiation of the stack mod- 
ule, i.e. the “holes” in the stack template are filled by 
providing the import parameters of the stack and an 
instance of the module is generated. Then we apply 
the push routine to put an element onto the stack. In 
terms of PROSET the stack is now an instance, i.e. an 
object with a state representing the stack itself. If in 
procedure push a stack overflow is detected, an ex- 
ception is signaled to the actual routine in which that 
exception has been associated with a handler which is 
defined below. The handler resumes the push routine: 
executing push will be continued by substituting the 
top of the stack by the actual argument of push. The 
second exported routine pop also uses exception han- 
dling but prevents itself from resuming execution by 
escape: invoking pop on an empty stack terminates 
popping in every case, here caused by an implicitly 
associated default handler. 

Note that our stack operations work on every arbi- 
trary element type. The stack may be heterogeneous, 
due to our polymorphic typing principles. 

2.2.3 Persis t ence 

Now let us consider a little bit closer the integration 
of persistence into PROSET, guided by some examples. 
Persistent values are kept in data structures called P- 
files, faintly resembling archives under UNIX, which 
in turn are identified in a program through strings. 
In addition to the value itself a P-file stores further 
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program dfs;  
constant a := lla", b := "b", c := lac"; -- Ye use 3 nodes a ,  b,  c 
constant E := C[a,bl, [b,c]. [a ,c l ) ;  -- 
constant s := a;  -- a is the start ing node 

begin 
order := [SI ; 
used := { 1; 
pred := c 1; 
V := s; 
repeat 

-- the start ing 

whilefound w i n  E{v) I [v,w] notin used 
used with := [v,w] ; -- mark 
i f  w notin order then 

pred(w) := v;  
order with:= U; 
v := w ;  

end i f ;  
end whilef ound; 
v := pred(v); 

node is v i s i t e d  f i r s t  

do 
edge as  used 

u n t i l  v = om end repeat; 
put ("order : "1 ; 
put (order) ; 

end df s ;  

-- append at the end 
-- go into depth 

-- i f  a l l  edges are used, 
-- continue with predecessor 

Figure 2: Depth First Search in Graphs 

information, e.g. access rights and time stamps, and 
a name for the identification of the value. 

The first example (Fig. 5) deals with making a value 
persistent. We declare the value accessed through the 
identifier Sort as persistent together with an indica- 
tion that it will be taken from the P-file denoted by 
the string literal "MyProject .Utilities". Suppose 
the P-file exists, the user has the appropriate access 
rights, and there exists no value with name Sort in 
this P-file. Then a write lock is set to prevent any 
other program from accessing this P-file entry and a 
signal exception nissingpersistentvalue is raised. 
Therefore, we have to associate a handler with this ex- 
ception, which terminates with resume (otherwise the 
predefined default handler would abort the program). 
Then Sort is inserted into the P-file as having the 
undefined value om. When leaving the program Demo, 
the value of Sort is written to the P-file. Note that 
we cannot directly make the procedure MySort persis- 
tent, since procedures do not have first class rights. 
The example demonstrates also the possibility of sep- 
arate compilation. 

The next example (Fig. 6) illustrates the use of 
some existing persistent values. In addition to the 

function accessed through Sort, we use a set being 
stored in the P-file University .Home under the name 
PhoneList to model a simple phone-book. When the 
program is executed the persistent values are loaded 
as a constant and a variable, respectively. The pro- 
gram reads a name and a phone number from stan- 
dard input, adds them to PhoneList and sorts this 
list. It makes use of the persistent sorting routine 
Sort , demonstrating the use of persistent functions. 
Note that Sort is passed the (closure of the) compari- 
son procedure It as a parameter. Upon program exit, 
i.e when leaving the range within which the persis- 
tent declarations are encountered, the modified value 
of PhoneList is written back to the persistent store. 

This provides only a very sketchy picture of per- 
sistence. Combined with the powerful facilities of fi- 
nite set theory, persistence will permit an adequate 
semantic modeling of data, thus providing a link be- 
tween software prototyping and semantic data model- 
ing. Consequently, data  base issues may be formulated 
in PROSET, provided the data base is not too large 
(this limitation is due to performance restrictions). 
This applies in particular to  program components like 
procedures, modules, and instances which may be in- 
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module s tack ( rd  m a r ,  

v i s i b l e  Localstack ; 
begin 

w r  push, pop) i 

LocalStack := cl ; 

-- Imports a maximal depth 
-- Exports those t v o  routines. 
-- The da ta  s t ruc ture  s tack.  
-- I n i t i a l i z a t i o n  p a r t .  

procedure push(x); 
begin 

-- Pushes one element t o  the s tack.  I f  s tack 
-- is f u l l  an exception is signaled, i . e .  
-- resuming is allowed (and m i l l  be done in 
-- our example). 
-- The top element w i l l  be subs t i tu ted  
-- by the  actual  argument x. 

i f  #Localstack = max then 
s ignal  StacMverf low 0 ; 
pop(Loca1Stack); 

end if; 
Localstack with:= x; 

end push; 

procedure pop(wr t )  ; 
begin 

i f  LocalStack = [I then 

e l s e  

end i f ;  

escape EmptyStacko ; 

t frome Localstack; 

end pop; 

-- Pops the top element and re turns  it 
-- i n  vr-parameter t .  
-- If the stack is empty popping is aborted. 

end Stack; 

Figure 3: Module Maintaining Stacks 

terchanged freely among applications through a per- 
sistent store. In addition, libraries of PROSET com- 
ponents become feasible and may be accessed through 
the language itself, hence the architecture of programs 
may easily be described in PROSET. This is an added 
benefit in prototyping, helping to elucidate the struc- 
ture of a particular software solution. 

2.2.4 The Queens’ Problem Revisited 

In section 1.3 the queens’ problem was introduced t G  
gether with a sequential solution. In Fig. 7 a parallel 
solution based on the master-worker model is given. 
It is recommended to examine the sequential solution 
in Fig. 1 again. 

Our program employs the master-worker model 
where one master process interacts with a collection 
of identical workers. The master generates task tu- 
ples (positions) and collects results while the worker 
processes repeatedly grab tasks from tuple space and 
perform the required actions. 

The master program uses explicit loops, whereas in 
the sequential program no explicit loops are needed 
and thus the parallel solution seems to have a lower 

level of abstraction than the sequential one. Such 
observations are often made in a wide spectrum lan- 
guage’ like PROSET, where programs may be trans- 
formed within the language using lower-level con- 
structs to  increase efficiency. 

3 Implementation 

The first version of the PROSET compiler is written 
in highly portable ANSI C on a Sun Sparc machine. 
Portability, efficiency, and wide availability suggest us- 
ing ANSI C also as target language being further 
translated and linked with the runtime library by a 
C compiler. Since PROSET’S powerful concepts and 
constructs are not supported directly by C or the tar- 
get platform, the design of the runtime system is a 
non-trivial task. 

Organisation of the Compiler The overall struc- 
ture of the compiler is shown in Fig. 8. The implemen- 

‘In a wide spectrum language it is possible to program on a 
high level of abstraction as in Fig. 1 as well M on a level of e.g. 
PASCAL. 
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... 
my-stack := instantiate  closure stack -- nodule stack is instantiated. 

rd max := 10; -- Import parameters are i n i t i a l i z e d .  
wr push; 
vr pop; 

-- Export parameters are named. 

end instantiate;  
... 
my-stack.push(stack-elem) when StackOverflorr use Substitute; -- If push ra i se s  the 

-- exception StackOverflow the associated 
-- handler Substitute is executed. 

my-stack. pop (1 ; 

handler Substitute; 
begin 

end Substitute ; 
resume ; 

-- Substitutes the former top of 

-- stack by stack-elem. 

Figure 4: Using the Stack Module 

tation of PROSET is supported by the compiler con- 
struction system Eli. Eli integrates off-the-shelf tools 
and libraries with specialized language processors to  
provide a system for generating complete compilers 
quickly and reliably [13]. 

The first phases of the compiler, the lexical, the 
syntactical, and the semantical analysis, are summa- 
rized in the figure as front end. Essential parts of the 
front end are based on a preparatory work, the trans- 
lation of a subset into SETL2. The main output of 
the analysis part is a decorated abstract syntax tree 
(AST) based on the abstract grammar of PROSET. 

The next phase denoted by trans1 in the figure 
consists of the application of some correctness pre- 
serving transformation rules. The output is again a 
decorated abstract syntax tree, but this time based 
on the abstract grammar of   PROS ET, a proper sub- 
set of PROSET. The transformation to   PROS ET has 
two advantages. First it reduces the high level of ab- 
straction thus facilitating the mapping to C. Second it 
provides a clean interface for the integration of future 
optimizing phases (indicated though the dashed lines 
of the box) before code is generated. In preparation 
are the incorporation of current work on type inference 
and data structure selection (see section 4.1). 

The generation of C code is performed by the next 
phase. The mapping to  C is essentially one to one 
for   PROS ET'S statements and expressions. The main 
task of code generation consists of the translation of 
nested procedures, modules, and exception handlers to 
the flat structure of C functions, preserving the scope 

rules. We have developed a contour model providing 
a conceptual basis for this task (cfg. [l, appendix A]). 
The model reflects that PROSET as a block structured 
language is well suited to a stack implementation tech- 
nique. However the availability of higher order types 
and copy semantics require rather a kind of block re- 
tention strategy (remember that procedures, modules 
and instances may access nonlocal objects; applying 
the closure operator on them freezes the bindings to 
them). For the sake of efficiency we have integrated 
both strategies into our model. Whenever possible we 
use a stack and only do retention, i.e. holding the 
freezed bindings in the heap, when values of higher 
order type are involved. This strategy is sometimes 
called mixed mode strategy. The generated C code is 
compiled in the last step by a C compiler into an ex- 
ecutable program. 

The runtime system supporting the execution of 
PROSET programs consists of the runtime library, the 
transaction manager, and an object management sys- 
tem. The implementation of concurrency is currently 
in progress. 

Runtime Library The current version of the run- 
time library provides only standard representations 
for PROSET'S data objects. For example sets are im- 
plemented on the basis of a hash technique. When 
the data structure selection will be integrated, spe- 
cialized representations, e.g. bitvectors for sets, will 
be added. Furthermore the library contains functions 
corresponding to  the predefined operations and some 
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program Demo; 
visible persistent Sort : 'WyProject .Utilities" 

-- declaration of a persistent value accessed via Sort. 
when MissingPersistentValue use NevHember; 

-- association of the handler NevMember to the exception 
-- MissingPersistentValue: the non-existence of a value 
-- identified by Sort in the P-file results in raising the 
-- signaled exception HissingPersistantValue. 

begin 
Sort := closure MySort; -- yields a value of type function having. 

-- first class rights. 

-- Handling the exception HissingPersistentValue 
-- with resume leads to au initialization of 
-- Sort to omega. 

handler NewHemberO : 
begin 

resume ; 
end NevMember; 

procedure MySort (rd Compound, rd LessThan) ; 
begin 

end MySort; 
-- your favorite sorting routine returning the result as a sorted tuple. 

end Demo; 

Figure 5: An example for separate compilation. 

auxiliary functions supporting more or less technical 
particulars, e.g. the iteration over composite objects. 

Persistent Store The implementation of the persis- 
tent store is based on an object management system 
H-PCTE [14]. This system is a simplified version of 
ECMA-PCTE and a high performance implementa- 
tion of it. The goal to maximize performance leads to  
an implementation as main (or virtual) memory object 
base. 

Currently we have implemented on this basis a 
single-user persistent store. Since H-PCTE is struc- 
tural object oriented, we use a dynamic link editor 
to load values of higher order type. The next steps of 
our implementation deal with the extention to a multi- 
user store, the distribution on a LAN, as well as the 
construction of a graphical browser for the persistent 
store. 

4 Further Developments 

We want to briefly sketch our plans for the program- 
ming environment which is a necessary addition to any 
language supporting software prototyping. We outline 

some components of the environment (most of which 
are already under construction) in 4.2, and it should 
become clear from this discussion that the language 
itself is an interesting object of study. One particular 
aspect is type inference and data structure selection. 
Both problems are somewhat intertwined, and we dis- 
cuss issues pertaining to these questions in 4.1. 

4.1 Type Inference and Data Structure 
Select ion 

Weak Type System The intention of PROSET to 
be designed as a language for the support of rapid 
software prototyping is also reflected in the under- 
lying type system. The software developer does not 
have to declare the types of the objects used in a 
PROSET program. This makes him free of burden- 
some routine work and also gives him the necessary 
flexibility needed during the process of modeling al- 
gorithms and data. In addition to declaration free- 
ness, the iteration over non-homogeneous compound 
data objects and the desirable feature of allowing user- 
defined polymorphic procedures in an imperative pro- 
gramming language may change the type of variables 
during runtime. 

A consequence of this flexibility in the usage of the 
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program AddPhone ; 
persistent  constant Sort : 'WyProject .Ut i l i t i e s";  
v i s i b l e  persistent PhoneList : "University. Home" ; 

putf ("Enter name: "1 ; 
Name :- getf  (%") ; 
putf ("Enter phone: "1 ; 
Phone := getf ("%d") ; 
PhoneList with := [ Name, Phone I ;  -- add the new iter t o  the list 

begin 
-- read the f i r s t  name as string 

-- read the phone as  integer 

for p in Sort(PhoneList. closure I t )  do -- print the entries  of the 
-- list sorted by name. 

putf ("Name: X2Os Phone:%d\n", ~ ( 1 ) .  ~ ( 2 ) ) ;  
end for ;  

procedure I t  (I.  y> ; 
begin 

end It;  
return x(1) < ~ ( 1 ) ;  

end AddPhone; 

-- used i n  the sorting routine 

Figure 6: An example for the use of persistent values. 

prototyping language is a weak type system. Hence 
PROSET programs cannot statically be checked for 
type correctness in general and even erroneous pro- 
grams can partially be executed until the flow reaches 
the type error. It follows that the user has to pay for 
this 

0 in less efficiency w.r.t. both storage and execu- 
tion time - the possibility of changing the type 
of a variable during runtime forces the implemen- 
tation to use union types for PROSET values and 
to add code for dynamic type checks to the exe- 
cuting program. 

in more expensive during testing phases - in 
larger programs there are often parts which are 
rarely executed, so the program may be in use 
for a long time before dynamic checking detects 
a type error. 

e Since type changing during runtime is allowed, 
there are situations in which more than one type 
leads to a correct typing. So type inference must 
be extended to  assign a whole set of correct typ- 
ings to expressions. Sets of types are not unifiable 
because the members may appear in any arbitrary 
order. Thus unification has been extended by a 
more general algorithm for set intersection, which 
supplies the program with a weak principle type, 
i.e. the set of correct typings. 

0 Since PROSET is an imperative programming lan- 
guage, side effects of procedures to global vari- 
abies are possible. This implies that type infer- 
ence cannot be performed on the syntax tree of 
the source program alone. It has to take the data 
flow into account, and propagate the analyzed 
type information of expressions through the flow 
graph until a fixed point is reached. This data 
flow oriented type inference algorithm is more 
flexible but less efficient than unification. This dilemma can be softened by a static type infer- 

ence mechanism. 
Data Structure Selection for Compound Data 
Objects The compound data types set and tuple  
in PROSET are supported by many operations, but 
efficient support for all operations using only one rep- 
resentation is not possible. For instance a linear list 
implementation of the data type t u p l e  efficiently sup- 
ports the insertion of an element into the tuple, but 

Type Inference Type Inference in applicative pro- 
grLmming languages is a well known problem, and 
there are efficient unification algorithms to detect type 
errors in the structure of types. In PROSET the fol- 
lowing situations are observed: 
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program Parallelqueens ; 
constant N := 8 ,  NumWorker := argv(2). -- program argument 

TS := createTS(om); -- dynamically created tup le  space 
begin 

Posit ions := npow(N, {[x,yl: x i n  [ l . . N l .  y i n  [l..Nl}); 

ProSet 

f o r  i i n  [l . . NmWorkerl do 
I I Worker(TS); -- spawn the  worker processes 

end f o r ;  
deposit  [ 1) 3 ,  [ 0 1 a t  TS end deposit ;  
f o r  NextPosition i n  Posit ions do 

end fo r :  

-- i n i t i a l i z e  the  r e s u l t  s e t  

deposit  [ NextPosition 1 a t  TS end deposit ;  

I 
:.front e n d ,  decorated transl decorated ;I ' optim I 

I I 

f e t ch  ( #Positions ) a t  TS end fe tch ;  
f e t ch  ( ? Nonconflict I(type $ = s e t )  ) a t  TS end f e t ch ;  
put (NonConf l i c t )  ; 

procedure Worker (TS); begin 

f e t ch  ( ? MyPosition ) a t  TS 
i f  Nonconflict (MyPosition) 

meet ( ? I(type $ = s e t )  
a t  TS 

end meet; 

loop 

end i f ;  
meet ( ? I(type $ = integer) 

end loop; 
end Worker; 

end Parallelqueens; 

end f e t ch ;  
then -- add t o  the  r e s u l t  
i n to  ($ with HyPosition) 

i n to  ($ + 1) ) a t  TS end meet; 

Figure 7: Parallel solution for the queens' problem. 
See Fig. 1 for the procedure NonConf l i c t .  The resulting set of non-conflicting positions is built in tuple 
space via changing meet operations. The master program spawns MumYorker worker processes. This 
number is an argument to the main program. The resulting set of non-conflicting positions is built in 
tuple space via changing meet operations. The counter in tuple space is necessary to  let the master wait 
until all positions are evaluated. The unary operator # returns the number of elements in a compound 
data structure. The symbol $ is a placeholder for the corresponding tuple-component in tuple space. 

I 
decorated code 

Figure 8: The structure 'of the compiler. 
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a sublinear membership test for a special element or 
an efficient access to the ith component is not possi- 
ble with this data structure. This implies that the 
default data structures used for the implementation 
of the data types set and tuple should balance the 
requirements for all operations. When type inference 
is performed and leads to exactly one correct typing 
for a variable, overloading can be resolved and the us- 
age of this variable can be analyzed to select a more 
efficient data structure from a library of predefined 
implementations for this particular program. This se- 
lection process is based on the following informations: 

the operations which are applied to that object in 
this particular program. 

the frequency of those operations: If it is not 
possible to support efficiently all operations, the 
support of operations used in deeply nested loops 
should be preferred. 

the inclusion relations between structured ob- 
jects: With these information the universe of all 
objects related to each other can be chosen as a 
base for the implementation. Each object can be 
represented over this base as a bit vector, list of 
pointers to the base, etc. This prevents multi- 
ple storage of the members and allows to support 
different operations by different implementations 
(see [15]). 

It should be noticed that the whole program has to be 
analyzed before data structure selection can be per- 
formed. Whenever two structured objects are used 
as operands of one and the same binary operation, 
the same implementation has to be selected for these 
objects - otherwise combinatorial explosion is in- 
evitable. 

4.2 Programming Environment and Fur- 
ther Work 

Our work has concentrated mostly on language de- 
sign and the implementation proper. We estimate that 
the implementation will be complete by the end of 
1992, so that we may concentrate on the design and 
realization of tools for the programming environment. 
In closing the paper we will provide a brief glimpse 
at some of the tools to be constructed for technically 
supporting the programmer’s task of creating a satis- 
factory model of an application. 

Transformational issues Using finite differencing 
as a transformational paradigm [8] has shown surpris- 
ing results in particular with respect to improving the 

performance of programs asymptotically. We are in 
the process of adopting the approach to our current 
environment. 

Abstract data types The designer cannot use ab- 
stract data types for protecting data against unsuit- 
able operations, since abstract data types cannot be 
formulated. We need a powerful mechanism for for- 
mulating ADTs, supporting in this way semantic data 
modeling. 

Support for persistence Persistent values are 
maintained in a structure called P - File. Working 
with these archives should be supported through tools 
for 

Browsing: display the contents of a P - File 
graphically, show the interconnections and inter- 
dependencies between various items in a P - File 
etc. 

Module interfaces: modules lack an interface al- 
lowing a static check of consistency with respect 
to import and export. This is due to  the lan- 
guage’s philosophy of not restricting the user 
through the necessity of type declarations. This 
violates type security considerably, and we cur- 
rently investigate ways of providing weak type 
checks eliminating most typing errors at run time. 

Architectural description Since functions, mod- 
ules and instances are first class citizens of the lan- 
guage, and since binding as well as loading can be de- 
scribed in the language itself via the persistence mech- 
anism, the design of an application may be described 
in the language. We will investigate which process 
models are appropriate in the context we are envision- 
ing, and how to formulate them in PROSET; our first 
impression is that an approach like MERLIN [16] us- 
ing backward chaining and forward propagation over 
a persistent knowledge base might be suitable. 

Support for reusing program parts Prototypes 
written in PROSET provide their functionality on a 
very high semantic level, hence it is more feasible 
to recognize what they are doing than for programs 
written in a production language like C. We are cur- 
rently gaining some experience with tools permitting 
the identification of program components based on 
Prieto-Diaz’s faceted classification scheme [17]. These 
tools will be incorporated into the prototyping envi- 
ronment. 
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Literal programming Documentation usually ser- 
ves a8 the token that is passed between the designer 
and the user of a system, describing the intended func- 
tionality. Literal programming unifies documentation 
and code in one single document from which either 
may be generated. This may be a way of demonstrat- 
ing to the customer where the desired functionality is 
realized in a program system, enabling her (or him) to 
communicate in a more versatile and competent way 
with the system designer. We plan to experiment with 
this approach to communication in the context of pro- 
totyping. 

The user interface The user interface requires par- 
ticular attention, and its construction should be sup- 
ported by suitable tools. We consider currently con- 
structing an interface to  the toolkit DIWA [18] which 
allows specifying user interfaces on a sufficiently high 
level. 
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