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AbEtract

A CASE tool must, by definition, be a tool for engiaeering software for suppoding the entire lile
cycle - from requilements analysis to mainterance. In this paper we wiU present approaches to proto-
typing and trans{ormational programming trhat is capable of complementing this software life cycle {or
overcoming the well known deficiencieg of this classical model of software production. After intrcducing
the coocepts and principles we will discuss SETL/E ae a language {or realizing these approaches. Finally
we will summarize the actual and future work on this prototyping system.

Introduction and overview

One of the more receut approaches for complementing the classical model of software production using the

life cycle approach is Rapid Prototyping. Having a look at the literature it seems that Rapid Prototlping
is used as an umbrella uotion for a multitude of activities, aud it is not always too easy to find some sort of
common denominator. We consider a prototype as a model exhibiting the essential properties of the final
product. Thus a prototype is a model, and this model has to be executable as a proglam so that at least

part of the funciionality of the desired end product may be demonstrated.

Prototyping has been developed as an answer to deficiencies in the waterfall model, but it should not be

considered as an alternarive to this model. It is rather optimally useful when it complements the waterfall
model. The definition given above makes ii plausible that prototyping may be used during the early phases

of the design. Dearnly and Mayhew [2] suggest to augment the analytic first phase for the construction
of software with the components planning and definition of requirements by a protot.vping phase. It is

rather evident, however, that the effectiveness of prototyping exceeds the first phase in the waterfall model

considerably.

Our approach to protot!'ping is an evolutiona.ry development in versions. This is due to the fact that tlte

developed product may manipulate thc environment in which it is used' Thus the prototype ha's to evolve

in accordance rvith the changing environment. The linear ordering of development steps in the classical

waterfall model is mapped here into successive development cycles. This implies that users are involvcd in

the system development process which supports the communication between users and developers.

T[is approach is still comparible rvith the phase-oriented software production model. It primarily aflccts

t1e implementation phase. but is based on the overall design. Houever the maintenance phase :r-s such is



2 PROTOTYPING: MODELING PROGRÄMS ÄND DATA

ieplaced by further development cycles based on the existing system version and new requirements. The
prototyping environment has to be integrated in the production environment to justify this approach. In
the next section we will discuss this in more detail.

Prototypes should be built in very highJevel languages to make them rapidly available in the early phases

of the production process. Our approach rests on the hypothesis that set theory is a natural vehicle for
expressing one's thought when developing programs, since most algorithmic problems may easily be formu-
lated in terms ofsets and maps. Such a prototype utilizing constructs from set theory directly is usually not
a very eftcient program siace the runtime system has a lot of things to do for executing the highly expressive
canstructs. To obtain a more effcient production level version program transformations are needed.

Äs a {irst step it is possible to apply dialect transformations in a broad spectrum language for transforming
the high level specifications to a level of e.g. Ada whereby deeply nested set theoretic constructs have

vauished. The set-less representation is then transformed by crossing a language boundary into a language

like C. This approach also supports the reuse and verification of software products. We will discuss these

aspects in more detail in the third section.

In the fina.l sections we will present the Set Theoreiic Language/Essen (SETL/E) as a language for prototyping
and transformational implementation and ihe actual and future work on this system.

2 Prototyping: Modeling Prograrns and Data

The classical model of software production using the life cycle approach has severe deficiencies indicating
the desirability of complementing this model by oüher approaches. One of the more recent approaches for
ihis is rcpid prototyping. This term denotes a multitude of activities, judging from its use in the literature,
and it is not always too easy to find some sort of common denominator, see [10, 1, 5]. We stick here to
Christine Floyd's definition given in [7], according to which prototyping refers to the welldefined phase in the
production process of software in which a model is constructed which has all the essential properties of the
final product, and which is taken into account when properties have to be checked, and when further steps

in the development have to be determined. We want to record for later use that a prototype is a model,
and that this model taken as a program has to be executable so that at least part of the functionality of
the desired end product may be demonstrated on a computer. Thus software prototypes are di.stilguished
as models from other models in engineering: the clay model of a bridge is a model but certainly no model

that allows demonstrating part of the functionality of the final product.

Floyd's definiiion shows rnoreover that prototyping can be used to overcome the disadvantages of the classical

model since a model can be easier manipulated than a production program. In pariicular it is possible to
proceed in an explorative way by binding the properties to be tested to the model and then evaluate it.
Ä model can grow so that an evolutionary way of program development is possible, and finally it is not
required by the tentative nature of a prototype that all requirements are fixed already. These rather general

statements will be substantiated by discussing some variants to prototyping.

We would like to point out here that we discuss only prototypes which are executable. This contrasts to
the approach used for example in the ClP-project [9] in which specifications are used which may contain

non-effective components and which are consequently not necessarily executable.

Following Floyd, we will develop prototyping along two orthogonal axes. One axis precises the function-
ality to be modeled, the second axis describes the intentions pursued by the prototype in greatel detail.

The functionality can be horizontal oder vertical, the intentions may be classified through the categories

"experimental", "evolutionary" and "throw away".

A uerticcl prototype realizes selected functionalities in each and ever,v detail (in a way rvhich would be done

in a production program). All other functionalities are only sketched, and this is done usually only in so

far as it is necessary for t he proper functioning of the prototype. Vertical prototyping is apparently useful

when carefully selected fulctions are studied in order to make statements about their behaviour. A large

part of the activities attributed by folklore to prototyping, viz., constructing user interfaccs falls into this
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category of vertical prototyping: here emphasis is put on constructing the interface in all details while the
data processing functions proper are usually neglected or only sketched.

A hoizotlal prototype implements all thce functionalities which the final product is to realize. But this
does not happen in a way which is suggested for the final version but rather as a model (so that a horizonial
prototype may be composed recursively from prototypes for the individual functionalities). This kind of
prototyping ig most useful as an approach whenever the complete program to be constructed is at one's
disposal, hence when principle questions regarding the entire design have to be answered.

While the characterization as horizontal or vertical prototypes makes use ofthe way the diverse functionalities
of the prototypes are realized the classification in an evolutionary, experimental or throw away cares more
about the way the prototype is constructed and the way it is us€d later on.

The bitter fate of a lhmw away prototype is characterized by its name: the purpose here is a practical
demonstration of pcsible system functions where feasibility is emphasized so that this approach has a
strong explorative component. Prototypes which have been developed in this way are rather well suited for
complementing the early phases in the life cycle model since they may be used for stabilizing requirements.

While a throw away prototype emphasizes exploration in order to be able to discuss desired properties
and to try alternative approaches lhe expeimeatal prototype focusses on the investigation of solutions with
t€spect to its adequacy. We see here - as Floyd does - some variants in the functions satisffed by the
prototypes: it may supplement the specification, refine parts of the specification (coming quite close to the
vertical approach), or even mea.n an intermediate step from the specification to an implementation.

Eoolatioaa,tn proiotypc grow in different versions till they stabilize and have reached a fixed point. They
may be classiffed according to whether they a,re incremental oder evolving. Both classes are subjected to
a cyclic approach. For the construction of an incremental prototype one starts wiih the first incomplete
solution and widens the solution stepwise to a complete one. Evolving solutions are usually constructed
using a cycle consisting of design, implementation, evaluation which is observed until the solution satisfies
the requirement. This kind of prototyping should be used in all situations in which efrects coming from
the environment have to be taken into account: a prototype is brought into the working environment for
the end product, possibly changes this environment, and consequently forces changes in its specifications or
requirements. This then requires changes in the prototype which is brought into the working environment,
is evaluated and so on.

It is essential and common to all approaches that ihey can work only under essential cooperation of the
user. Considered as a proceas it is important for prototyping to seek the consensus between the developer
and the user. In this way the user is given an opportunity to essentially influence the development of the
final product - this is a marked contrast to the distance which may be observed between a user and the
development process in the waterfall model. In prototyping the developer obtains important insights into
the user's problem sphere which may solten the developer's ctrangement to his product and allow for a
custom-tailored solution. Thus prototyping generat€ learning efects mostly by feed-back.

The process of modeling applies to progranr as well as to data: in the process of developing an application
the algorithms have to be explored, but the data and data structures on which the algorithms are to work
may emerge from this explorative activity as well. Semantic data models working with objects, attributes,
and fS.A-relationships investigate ways of modeling data according to their semantic contents (cp. [11]).
They are used for designing record-oriented schemata where the approach is somewhat similar to the one
used in so{tware prototyping, but rather than modeling programs highJevel representations of data are
modeled. This model is mapped into a lower-level structure (see [11], l.a). Khoshafian and Briggs point out
that data modeling should accomodate the user by making the representation and manipulation as close as

possible to the user's perception of the problem (cf. [12], p. 606). Ilence it is desirable to

model data according to the user's needs,

iterativell refine data representations (which requires access to previously formulated data models),

reuse patterns or templates of previously formulated data models.
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. share data either between different users and different prototyping sessions.

We see that there are in fact striking simila.rities between protot)ping programs and modeling data. Both
construct a model to be experimented with and eventually to be transformed into a production version.

Thus it is valuable to have a programming language which is able to serve both sides,

e the software engineer who wants to model prograrns

o the data engineer who wants to construct a semantic model of her data.

Consequently, a prototyping language needs the ability to incorporate sema.ntic data models. Thus it will be
possible to formulate data on a very high level for modeling purposes, and it is simply a matter of economy
to make data persistent: once data are modeled it is not necessary to compute them each time they are
used. Ä related concern for reusing data comes from the obs€rvation that more than one program may want
to acce$ them. Thus one progratn may generate data and another one may want to accese these data.

Once the protoype becomes stable, it may be transformed into a production Program, see 3. The data
which have been modeled using the prototype, however, ate usually not afrected by this tra.nsformation.
Thus we may experieuce the situation that we have high-level data structures formulated in a prototlaing
la.nguage, following its data structuring principles and accessible in binary form in it, but not acccessible

in the production language. Consequently, reusability of code may be intertwined with reusability of data.
Reusing code by program transformatious ought to be complemented by a method of making data reusable

by transformations. A ffrst attempt to solving this problem in the context of transforming SETL programs
to Ada may be found in [14].

We will discuss our approach in the context of SETI/E, (see [6]) a weakly typed prototyping language
supporting set8, maps, tuples, and procedures as the generic data structuring facilities in the tradition of
sFrr ([15, 5]).

3 TlansformationalProgramming

SETL/E is a wide spectrum language which allows programming close to the conceptual ideas of a solution
as well as programming quite close to the machine on a level comparable to Ada. Prototypes are usually
formulated on a very high expressive level, since they may make use of all the expressive and notational
power of finite set theory. This makes for convenient problem solving, but it is also to be blamed for slowly
executing progranr. The gap between prototypes and production efficient programs writteu in a production
language is to be bridged by transformations. Here a two-step procedure is observed: first transformations
are performed within the langüage, thus lowering the expressive level towards the production end, then

a transformation (or beiter; a translation) produces the production language program. Since the latter
translation is essentially well understood (it resembles in some ways the production of intermediate code

in a compiler once types have been infened), we will briefly discuss transformations that do not cross the

la,nguage boundary.

The most important class of transformations is based on Paige's method offinite differencing. This is a variant
of the technique of strength reduction used in optimizing compilers for replacing expensive operations by

cheaper ones. Strength reduction works by establishing and maintaining invariant relations when objects

local to a loop, and in a similar way invariants are maintained by finite differencing

lVe give a simplified definition of difrerentiabiliiy; for a full account see [13], and for a tutotial discussion

[5]. Let f = f@r,...,x,) be an applicative expression, and dr; a modification to 2i. Then two code blocks

[,B1, 82] are called the derioalive of .O w.r.t. dti iff ihe equality

E - l(xr,...,t.)

Brid.tü Bz
is an invariant for the code block
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(thus the equality E -- l(rt, . .. ,r") holds before and after performing the compound code block; note that
the equality after executing the block works with the new value of c;). The block -B1 (ihe prederivative) is
used to manipulate the value of .E for the old value of c;, and 82 (the postderivative) is used correspondingly
for the new one. The differential of 0E < B > of -E w.r.t. a code block B is computed as follows

l. replace each definition dc; in B by the block By;d,a;;B2

2. replace each occurrence of f(c1,...c") in the code block generated by step I by the variable E.

Consider for example the expression
-E:={r€Slr(a)=t}

for aset S and amap F' from S to the integers in which S doeg not occur ftee. Adding anew element c to
5 results in the following block 81:

il F(z) = t then E := E U {z}; l;;
and Block Il2 is ernpty. Thus maintaining the equality E = {z e S I ,F'(r) = r} by recomputing the latter set

is replaced by the test (F(r) = t) and by an insertion, if necessary. Thus a substantial amount of computing
time may be saved, as the following example shows. Specialize ,F(r) = I to c mod,2 = 0 by computing the
differential of E:= {a€Slz mod 2=0} w.r.t. the following code block I

It can be shown ihat E is ditrerentiable w.r.t. .B. The set S is modified at the points marked lrere and tÄere.
The prederivate at l91q is the assignment E := {}, and the postderirative is empty. For the point marked
there, the postderivative is also empty, and the prederivative is giveu above. Thus computing AE < B >
yields

s,-- { };
rcad(i);
loop while i / om do

S;--,9u{i};
nad (i);

end;
pn ({xESltmod2=0});

E:= {};
sj={}'
rcad(i);
loop while i { om do

ifimod2=0then
E:= Eu { i};

fr;
5:='9u{i};

S here

$ om is lhe tnd,efned elemett
S there.

$ prcdeiratfue for !3p
$ herv
S emplg postderiratiae

S prcdeiralite for !!gg
$ lhert.
S empty postdeirolite

nad(i);
end;
pnnt(E);

Differentiabiliiy of an expression can be verified automatically for a large class of expressions, and the
derivative [81,82] can be computed given an appropriate knowledge base of primitire derivatives. Paige's
transformation system RAPTS computes additionally informations on the protrtabiliiy of the transformation,
and usually the complexity may be reduced substantially.

Consequently, these transformations provide a way of making a proglam more efficient rvithout sacrificing
correctness. It is not to be expected, however, that the manipulations are performed automatically. The
user rather has a collection of a few powerful transformations at her disposal, the system assists in linding
invariants, and performs the transformations selected by the user
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4 .serlTe 
as a Language fop Prqtotyping and Tlansformational Pro-

grarnming

As described in section 2, all approaches on prototyping have in common to seek the consensus between
user and developer and therefore are a method for the user to influence the design of the final software
package. To satisfy these requirements, a prototyping language must provide ihe possibility to formulate on
a high expressive niveau and thus permits the programmer to concentrate on the essential of the solution to
the problem, the functionality, without becoming lost in detail like storage layout, input/output of complex
user-defined data structures or preventing overflow of length restricted static structures.

SETI/E is an imperative language based on finite set theory and first order logic. Thus SETL/E programs
are easy to read and they allow a concise formulation of the problem and make it possible for the software
engineer to work directly on the executable formal epeciffcation. SETL/E is weally t1ped, so the program-
rner is freed from declaring the data objects used, and it supplies a very powerful mechanism to introduce
short hand notations for code fragments in form of parameterized and with local variables equipped macros.
Programming in the large in SETL/E is supported by a module concept, in which data structures are sub-
divided in specification and implementation module and which makes possible programming techniques like
information hiding, data abstraction and data encapsulation.

The type concept of SETI/E offers simple types like atoms, Booleans, integers, reals and strings, and struc-
tured types with arbitra^ry length and heterogeneous component types, additional named and anonymous
procedures as first clase objects, for developers used to program in functional languages. The structured
types are linear ordered tuples, unordered sets and mathematical maps which make it possible to design all
kinds of complex data structures up to data bases. The facet of a prototyping language for data engineers
is also supported in SETL/E by a persistent store, which allows storiug data as well as first class operations
manipulating these data and therefore to save these data types for later use in other programs.

To manipulate the structured types on a high abstract niveau, powerful operations like tuple and set former
expressions, existential and universal quantifiers, iterators for structured objects and routines for unformated
input/output are available. On the other side the user who wants to program on a niveau of languages like
Ada to formulate in the fashion of a vertical prototype in each and every detail, is provided with for- and
while loops, an Ad+like exception handling mechanism, and procedures for formated input/output.

Thus SETL/E is a wide spectrum language which permits transforming expressions on a high level into
expressions on a lower one without leaving the language. This makes optimizations like reductions of the
strength for arithmetic expressions and differentiation calculus for set expressions possible as discussed above.

The following SETL/E program for topologically sorting a directed graph provides an example.

progran TopSot't;
visiblo nodes, edg€.r,'

get('%!t , edges);
nodes := dor.aln (edges);
il is-dcg(,/ tbea

SorlTuP := [];
rhile aodes <> { } ao

r .-- a€l€ct y lt nodes | ftoteri.sts z in nodes | [2, g] t\ edges);

t lrtto SodTup;
zodes less x; edge$ lasst r;

erd sbiIe,'
ead i.t;
prt('%t\n" , SoriTup[{SoaTup .. 1]);
-- defne lhe prccedurc is-dag

procedure is-dcA,'

-- retxrts trte iff lhe gmph does nol cotlain a cgcle
g;= todes:
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säriaÄ-.9. loop
z.'-- s€l€ct g ir .9 | edges{y} * S -- { };
it z = on ther quit sÄriz,u,. cnd ii,.
S leea y,'

end särin*$
return (5 <> { }/;
erd is-dog,'
el.d TopSor4;

The graph is read in by reading the set edges which contains pairs, i.e. tuples of length 2. An edge between
the nodes a and y is indicated by listing the pair [e,y] in the set edges. The va,riables nodes and. edges
are declared as visible, hence as accegsible in all scopes surordinate to the one containing the declaration
(variables and constants are by default local to the scope in which they occur). The set edgcs may be
interpreted as a (possibly set valued) map, assigning each node a the set edges{xl of its neighbors. The set
aodes is the domain of edges, i.e. the set of all first components of tuples in edges (we could alternatively
have defin@nodes as {e(1) ; e fn edges}\. The procedure isJcg tests whether or not the graph contains
any cycles by repeatedly selecthg and removing nodes from the candidate set .9. If there is no longer any z
to be removed from 5, the variable z gets the value on, indicating that it is no longer defined. The procedure
is-dag returns true ifr the graph does not contain a cycle. The main program repeatedly selects a node r
without a predecessor, puts a into the tuple Sorl?up of nodes already eorted, removes t from the set of all
nodes as well as all edges emanating from c- This iB done until there are uo longer auy nodes üo be processed.
The program terminates after writing the nodes in reverse order in which they have been found.

5 Actual and future work

The SETL/E system is at present under development. The definition of the lauguage kernel is given in [6].
A system view on persistence was presented in [3] and consideratious on concurency ate under way.

The way to execute a SETL/E program is to translate it into au ÄNSI-C program and then compile, load
and execute the latter program.

The compiler construction system Eli [8] is the central tool for implementing SETL/E. It derives an exe.
cutable compiler from specifications and produces the ANSI-C source of the derived compiler. Thus the
implementation will be highly portable and target machine independent; our current target machines are

UP 9000/800 and SUN 4 workstations.

The system kernel is complemented by some tools which support program development under the prototyping
paradigma presented here. It goes without saying that minimal tools like tracer, debugger and browser are

available, and that a graphical user interface based on X-Windows will be created. An attempt will be made
for incorporating a tool for program development based on Knuth's literate programming.

It has become apparent that serious program development is difficult withoui substantial data base support.
Incorporating persistence into the language proper opens this avenue. It allows describing semantic data
models in the language itself which in turn will be utilized to supporting the reuse of modules and a data base

for configuration control. By the same token, SETL/E may be used as a module interconnection language.

Work is under way to incorporate program transformations along the lines of section 3, and type finding as

well as value flow analysis serve as a basis for translating the highJevel set theoretic constructs into efficient
data structures in the target program. For static, persistent data we have developed an algebraic approach
that allows us to generate persistent data accessible through the target language, see [4].

Figure I gives an overview of the system structure, figure 2 sketches the flow of concepts in a graph of
conceptual componelts.
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Figure l: The system structure. Tlansformation, data flow analysis and type
finding are optional.

6 Conclusion

We work under the hypothesis that finite set theory is an adequate formalism for prototyping substantial
softwa.te systems. This assumption is put to work in our system by ihe set oriented language SETI/E, a
variant of and successor to SETL

a programming environment supporting the work with sets with tools for

- browsing, tracing and debugging

- transforming progranr based on a calculus of finite differences

- translaiing prototypes to production progranur

- translating data based on an algebraic specification of data types

persistence in SETL/E, thus making semantic descriptions of data possible in the language itself, sup-
porting seamless transitions between prototyping of programs and data.

The system under construction may be considered as a CASE tool since it allows generating production code
from stable operational requirements. We intend to study the problem of interfacing it with other CASE
tools (e.g. the HP Workbench) in order to integrate our system into a production environment.
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