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Abstract. Cellular automata might be implemented as programmable special-purpose processors controlled by 
universal computer systems.This configuration is appropriate, because in general only special tasks of complex 
problems are efficiently parallelizable. Many tasks for image processing like window operators for filtering, 
smoothing or edge detection may be presented in a way particularly suitable for cellular automata . In this paper 
we present CELIP, a CEllular Language for Image Processing. It has been developed for prototyping cellular 
algorithms for image processing. 
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1. lntroduction 
 

 
The use of faster logical circuits and their minimization increased the performance of 

computers by magnitudes in the last decades. For a long time the classical von Neumann 
architecture and sequential processing of programmes has been kept. This kind of processing 
seems to come to an upper limit for further essential advance in programme efficiency. 

One way for an increase in the performance of computer systems is to parallelize computing. 
But only by the advancements in VLSI-technology and a dramatic drop of hardware costs this 
way became feasible. Two well-known types of parallel computers are the array processor and 
the multiprocessor. According to the classification of Flynn [2], the first belongs to the sing/e 
instruction stream-multiple data stream (SIMD) computers and the latter to the multiple 
instruction stream-multiple  data stream  (MIMD) computers. 

Another technique for increasing the performance is pipelining, where a problem is divided 
into functional units and pumped through corresponding hardware components. The input is 
processed according to the production-line principle. 

A theoretical model of a parallel computer is the cellular automaton. The reader is referred 
to [13] for a full account of cellular automata. A cellular automaton consists of a finite number 
of Moore-type automata being fixed to the gridpoints of a finite-dimensional space. The 
automata are connected  by a homogeneous  pattern. The states of  the automata are changed 
synchronously according to a given function. 

 
 



 

  

 
2. Cellular image processing 

 
The construction of parallel computer architectures on higher levels was  launched only 

recently, because it was-with respect to the costs for software engineering-more economical 
to increase the performance by improvements of the construction elements. 

Parallel programming and in particular cellular programming requires a new approach to 
problem solving compared with conventional sequential programming. It is possible to obtain 
relatively complex behavior of the entire system by relatively simple local instructions. A 
well-known example for this is the game of life, introduced by Conway [3]. A human being can 
emulate this global operations only in a sequential manner (cell by cell). That is remarkable, 
just because the human brain itself works in a parallel (neuronal) way. 

The u se of  cellular  automata,  however,  presents  some problems.  First,  barely  practical 
useable cellular algorithms are available. Another shortcoming is the requirement of too large 
and too many cells for a hardware realization. Hence it is necessary using simulators to develop 
cellular algorithms. Examples for this approach are CELLAS (cellular space simulation 
language) [8] and BVCP (the Brunswick Virtual Cellular Processor) [5]. 

The first cellular algorithms were constructive proofs for important theoretical questions like 
the computational universality of cellular automata. But these algorithms provide no practical 
support for cellular programming, because they mostly do not take advantage of the paralle- 
lism. Synchronization problems like the Firing Squad Synchronization Problem [13] have 
greater practical benefit. This are partial tasks to operate cellular automata. 

lt is well known that not all tasks are efficiently parallelizable. A measure for the degree of 
parallelizability  is the amount  of information  (data), that  is simultaneously  moved  around. 
Examples for good parallelizable numerical tasks are matrix operations [9]. 

On the other band, many tasks for image processing are tailor-made for cellular automata. A 
digital grey-scale image is represented in a computer as a two-dimensional rectangular array of 
discrete grey-scale values (pixels). Typical methods are window operators for filtering, smooth- 
ing or edge detection. Parallelization is attractive here since the same operation is applied to 
every image  point, at which the resulting value depends on the grey-scale values of the 
respective neighbouring points (in the window). 

But also in image processing only partial tasks are efficiently parallelizable. Thus a cellular 
automaton for it will not be operated as a stand-alone computer, but as a special-purpose 
processor in an universal computer system [7]. This mode of operation is quite appropriate, 
because in this way the parallelized tasks may be operated on the cellular automaton and all the 
services offered by the host system may be used. 

Programming of cellular automata is done essentially by constructing transition tables. This 
method is oriented towards the internal representation of cellular algorithms by tables and not 
towards the requirements of their app1ications. An additional difficulty for handling cellular 
programmes derives from this distance to the applications. It is hard to see which function such 
a table computes. 

 

 
3. The programming  language CELlP 

 
The programming Language CELIP [4) is defined as an extension to Standard-C [6]. A 

language for cellular automata should be made available, since such an automaton attached to 
a computer system is to be programmed and controlled by the host. 

In  the  configuration  described  above  there  exists  the problem  of  transferring  the  input 
(digital image) between the cellular automaton and the host. To obtain a well-balanced relation 
between the time for loading and for processing, in most existing systems the input is pumped 
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cell 
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byte reg1, 

. reg2; 
byte regarr [9] ; 

Fig. 1.A definition of the automata cell. Fig.2. The '8-Neighbourhood'  in image processing. 
 
 

through a pipeline (column for column). Hence for window operators the grey-scale values of 
the neighbour points have to be held. To avoid this difficulty, in CELIP each operation is 
applied to all points simultaneously. This concept belongs to the above-mentioned SIMD 
organization. CELIP makes no operations for pipelining .available. 

In most existing systems it is necessary to define the cellular net (retina). In CELIP the 
cellular net is fixed in size and shape. Every image point corresponds exactly to one cell. 

The expanded instruction set allows defining the cell memory, the neighbourhood connec- 
tions and the transition functions for the cellular automaton. In principle it is possible to define 
an arbitrary neighbourhood. 

These assumptions are not realistic with a view towards a possible hardware realization, but 
they are well suited to prototyping cellular algorithms for image processing. 

 
3.1. The definition of the automata cell 

 
The user defines the local memory which is divided into several 8-bit-registers for the cells 

(identical in structure for every image point). The declarations take place in a ce ll-block to set 
them apart from the declarations for memory on the host. An example is given in Fig. 1. 

The reserved word byte indicates an 8-bit-register (one byte) which can hold the integer 
values from 0 to 255 (28-1). lt is planned to add further register types. Especially 16-bit-register 
to increase the range for intermediate results. Such supplements won't change the basic 
concepts of CELIP. 

 
3.2. Intensities 

 
Sometimes it is necessary to operate in several registers in all cells with certain intensities 

(grey-scale values). To meet this requirement  the data type intensity is introduced. inten-  
si ty-variables can hold the same values as a cell register, hence integer values from 0 to 255. 
The memory for variables of this data type is located in the host's memory, not in the cellular 
automaton. 

 
3.3. The definition of the neighbourhood 

 
In theory the neighbourhood connections are specified with a neighbourhood index [13]. In a 

two-dimensional space the neighbourhood index consists of a finite number of pairs of natural 
numbers. All pairs are different. The cellular automaton is an euclidean space, where each cell 
has an unique pair of x- and y-coordinates. The x- and y-coordinates of the neighbour of a cell 
are obtained by adding the corresponding elements of the neighbourhood index (offsets) to the 
coordinates of this cell. 

Figure 2 shows an example for the so-called 'Moore-Neighbourhood'. Especially in irnage 
processing it is also called '8-Neighbourhood'. 

In image processing it is usual to represent the neighbourhood connections in this way. In 
this  example  the  name  E  is  implicitly  assumed  to  mark  the  centre  cell.  The  pair  (0, 0) 
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neighbourhood 
{ 

 

(-1,  1)  (0,  1)  (1,  1) 
(-1,  0)   (0,  0)   (1,  0) 
(-1,-1)  (0,-1)  (1,-1) 

Fig. 3. Neighbourhood index for the '8·Neighbourhood'. 

 
 

} 
 

Fig. 4. The '8-Neighbourhood 'in CELIP. 

 
corresponds in the neighbourhood index to the centre cell. The neighbourhood index in Fig. 3 
corresponds with the above definition. Strictly spoken the name '9-Neighbourhood' would be 
more suitable, because each cell is a neighbour of itself. 

In CELIP the definition of the neighbourhood  takes place with (modest) graphical means. 
The implemented CELIP-compiler converts this representation into an internal representation, 
that is in accordance with the neighbourhood index. An example for the '8-Neighbourhood' is 
given in Fig. 4. 

The preceding reserved word neighbourhood could be replaced by the synonymous word 
neighbourhood. The declaration of the neighbours takes place inside the braces. The neighbour- 
hood index is assigned according to the positions of the names with respect to spaces or tabs 
and line feeds. The offsets are related to the position of the centre cell, which is marked with 
the character $. The first neighbour in the row with the centre cell obtains the lowest x-offset in 
the neighbourbood index. The line feed decreases the y-offset by 1. It is obligatory to declare 
exactly one such centre cell. The optional name behind S has to follow directly without 
preceding whitespace characters. 

lt is possible to define an indexed neighbourhood array. This is done by declaring the array 
indices explicitly to obtain the relation to their respective positions. These array indices should 
not be confused with the neighbourhood indices, which have geometrical means. 

As an example serves the so-called 'von Neumann-Neighbourhood'  in Fig. 5. Especially in 
image processing it is also called '4-Neighbourhood'. 

The '-'-characters inside the neighbourhood definition increases the x-offset by 1. It can be 
seen as a neighbour without a name or an index. Both left '-'-characters are necessary in Fig. 5 
to obtain the right x-offsets for N[2] (0, 1)  and N[4] (0, - 1). The right ones were inserted for 
the optical symmetry. 

An indexed neighbourhood  array is in particular useful for processing the neighbours in a 
loop. 

The access to registers of the neighbours is syntactical similar to the selection of structure 
components in C. For example in the expression 'A. reg1' register reg 1 of neighbour A is 
selected. The selection 'E. reg1' is equivalent to 'reg1', because the own registers (in the centre 
cell) are the default. 

 

 
 
 
 

neighbourhood 
{ 

N  [ 
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} Fig.5. The '4-Neighbourhood '. 
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where (F.reg1 <= 150) 
{ 

where (reg2 >   100) 
{ 
there reg1=255; 
else reg2=O; 

} 

there 
else 
there 
else 

} 

reg1= B.reg2; 
reg2= F .reg1; 
reg2= A.reg1; 
regl= D.reg2; 

Fig.  6. Threshold  binarization  with  the  where-state- Fig. 7.The where-statement. 
ment.    

 

 
 

main () 

{ 
int i, j; 
cell 
{ 

/* suitable index counter */ 

byte reg, /* for the greyscale image */ 
temp; /* for exchange */ 

byte regarr [9];  /* for sorting */ 
} 
neighbourhood 
{ 

MOORE [ 
 
 
 

   ] 

} 

 
4   3   2 

5 $0 1 
6 7 8 

/* Fetch the neighbour values from a file for sorting: */ 
load ("greyscale.dat", &reg); 
for (i = O; i <  9; i ++) 

regarr[i] = MOORE(i].reg; 
/*  The Bubblesort-Algorithm: */ 
for (i = O; i <  5; i ++) 

{ 
for (j = 8; j > 1; j --) 
{ 

where (regarr[j] < regarr(j-1)) 
{ 

/* temp is temporary used to excha.nge the 
* contents (to bubble): 
*/ 
there temp =regarr[j]; 
there regarr[j] =regarr[j-1]; 
there  regarr[j-1] =temp; 

} 
} 

} 
reg = regarr [4]; /*  The resulting median */ 

} 
 

 
 

Fig. 8. Median filtering. 



 

  

 
3.4. Cellular statements 
 

The transition functions are specified by assignments to a register of the centre cell. This 
cellular statements are executed on the cellular automaton. The syntax corresponds with the 
syntax of plain C-assignments. First an example (the above definitions are valid) : 

intensity    threshold; 
threshold = 100; 
reg1  =  reg2  > threshold; 

Tue first  statement  is  no  cellular  Statement,  because  it  is executed  by  the  host.  Cellular 
statements like the second one are executed by the cellular automaton. The result of the 
operation on the right side of the assignment then becomes the subsequent state for the register 
specified on the lef t hand side. 

The binary operator > performs a binarization: The registers reg1 in all those cells, in which 
the relation 'reg2 > threshold' is valid, obtain the integer value 255; elsewhere they will hold 
the value 0. This operation is a so-called threshold binarization. lt is a point operation because 
the neighbourhood connections are not used. The result of such a binarization is a binary image 
in the destination register. 

There are binary operators for other comparisons and arithmetic and logical operations with 
the common priorities available. The results of the arithmetic operations are restricted to the 
values from 0 to 255 (to be able to hold them in 8-bit-registers). 

Tue logical operators are represented by the reserved words and, or, xor and the unary 
operator not resp. to distinguish them  from the corresponding C-operators. In C there exist 
different operators for logical and bit-wise logical operation s, but in CELIP only bit-wise 
logical cellular operators are available. 

The following operation is an example for a window binarization to present a more complex 
example: 

reg1  =  100 < reg2  and  reg2  < 200; 
For binary images erosion is used for noise reduction, whereby the object areas are reduced by 
their marginal  points. An object area in a binary image is represented  by connected object 
points. Object points are cells with the integer value 255 in the register for the binary image. An 
object point only remains an object point , if all his neighbours are object points themselves. 
This may be expressed as follows: 

reg1  = A .reg1  and  B.reg1  and  C .reg1  and  D .reg1  and 
E .reg1  and  F.reg1  and  G.reg1  and  H .reg1  and  I.reg1; 

Small interferences, but also thin lines, are eliminated. The reverse operation dilatation can be 
realized with the or-operator instead of and. 

The aggregate operators max and min are used as function calls with a variable number of 
operands. Tue resulting values are the maximal resp. minimal values of the cellular operands. 
Thus another expression for erosion is the following: 

reg1  =  max   (A.reg1,  B .reg1,  C.reg1,  D.reg1,  E .reg1,   F .reg1, 
G.reg1,  H .reg1,  I.reg1); 

The 'Roberts-Gradient' is used for edge enhancement [14]. lt is realized in CELIP as follows: 
reg1  =  max   (|B.reg1  - A .reg1|,  |D.reg1  - A.reg1|); 

The character   | can be used  as parentheses.  For addition and subtraction the resulting  values are 
the absolute values of  the result  given by  the enclosed expression. 

A  more complex  statement  is  the conditional  where-statement.  Figure 6 shows another 
realization of the above-mentioned threshold binarization. 

An example to explain the reasons for the choosen syntax is given in Fig. 7. 
In every there- and else-branch we allow only one assignment or an interlocked where- 

statement. This restriction is necessary to synchronize the statements. In general in some cells 



 

  

 
the given condition  is valid (the there-statements are executed) and in others it is not valid 
(the else-statements are executed). Thus the there- and else-statements can  influence each 
other via the neighbourhood connections. Consequently the necessary synchronization is done 
in a syntactical way. The else-branches are optional. 

 

 
 

4. Examples 
 

We discuss now some more sophisticated examples. 
 

4.1. Median filtering 

 
Median filtering is a smoothing operation, working with various neighbourhood connections 

(windows) [11,14). 

 
4.1.1. The algorithm 

The values in the neighbourhood of each cell are ordered according to their grey-scale 
values. The middle value is the resulting median. This filter is used to eliminate short-wave 
fluctuations (among other things the noise) without levelling the edges out. 

 
4.1.2. The implementation in CELIP 

In this example an indexed '8-Neighbourhood ' is used. The complete programme is given in 
Fig. 8. 

At first the values of the neighbours are stored in the local array regarr to sort them there. 
The obtained values are sorted by a bubblesort-algorithm. lt is sufficient to sort up to the 
middle. 
 

4.1.3. Application 
Figure 9 shows the application of this median filter. Figure 9(a) is the original image. In Fig. 

9(b) the original is overlayed with random noise and in Fig. 9(c) the obtained noisy image is 
median filtered . 

 
4.2. Thinning 

 
We now present a parallel thinning algorithm. 

 

 
 

 
Fig.9.Application of the median filter. 
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1 1 * **0 0 0 0 0*1 Fig.  10. Configurations  in which the
B1 B2 B3 B4 central element is dele1ed.    

 
 

 
main () 
{ 

cell 
{ 

byte r, 
oldr, 
mark; 

} 

/* the binary image */ 
/*   the previous state */ 
/*  marked for deletion */ 

neighbourhood 
{ 

 
 
 

} 
load ("binary.dat", &r); 
oldr = O; 
vhile (difference (&r, &oldr)) 
{ 

oldr = r; 
/* Sequently application of the masks A1  to B 4    !  */ 
mark = r and F.r and H.r and not(D.r or A.r or 
B.r); r = r and not (mark); 
mark = r and G.r and H.r and not(A.r or B.r or 
C.r); r = r and not (mark); 
mark = r and D.r and H.r and not(B.r or C.r or F.r); 
r = r and not (mark); 
mark = r and A.r and D.r and not(C.r or F.r or I.r); 
r = r and not (mark); 
mark = r and B .r and D.r and not(F.r or H.r or 
I.r); r = r and not (mark); 
mark = r and B.r and C.r and not(G .r or H.r or I.r); 
r = r and not (mark); 
mark'"' r and B.r and F.r and not(D.r or G.r or H.r); 
r =  r and not (mark); 
mark = r and F.r and I.r and not(A.r or D.r or G.r); 
r =  r and not (mark); 

} 
} 

 
 

Fig. 11. Thinning. 



 

  

 
4.2.1. The algorithm 

A characterization of a wide class of parallel thinning algorithms was presented by 
Rosenfeld [10]. We will present an algorithm of this family as described in [l]. 

Thinning is a basic transformation for binary images which associates with any object 
area (connected set of object points) a connected subset consisting only of simple digital arcs 
and curves (the skeleton). Thinning is usually achieved by considering local operations 
assigning state 0 to all object points which are not used either for identifying locally elongated 
regions or for preserving the connectivity both of the figure and of the background. The 
skeleton  is considered as 8-connected (by the 'Moore-Neighbourhood') and the background is 
considered as 4-connected (by the 'von Neumann-Neighbourhood'). 

The skeleton is obtained after a finite number of steps as a stick-like figure having the same 
connectivity as the original objects. Hence all the elements of the skeleton have only two 
neighbours, except branch points, which have more than two, and end points, which have on1y 
one neighbour. 

A practical application of thinning is the preprocessing of handdrawn symbols or other 
line-pattems, that generally have first to be enhanced and then transformed into  a more 
suitable representation [12]. 

The algorithm suggested in [1] involved erasing the central elements lying in each configura- 
tion shown in Fig. 10. 

The state of the *-elements can be either 0 or 1. Tue masks have to be applied in the 
sequence A 1,B1,A 2, B2, A 3, B3,  A4 , B4 until all deletable points have been removed . In 
[1] it was shown that the algorithm works correctly. 

 

 
4.2.2. The implementation in CELIP 

The logical 1-elements are cells with the intensity value 255 in the corresponding registers 
(we are working with binary images). 

The '8-Neighbourhood ' given in Fig. 4 is used. For the application of mask A 1 for example 
at first all cells in the according configuration are marked: 

mark = r and F.r and H.r and not(D.r or A.r or B.r); 
All marked cells are deleted: 

r =  r and not (mark); 
The other mask operations are applied accordingly until no more changes will occur. To check 
this condition the previous states are remembered  in register  oldr. The complete programme is 
given  in Fig. 11. 

 

 

 
 

Fig. 12.Application of thinning. 



 

 

  

 
4.2.3. Application 

Figure 12 shows the application of this thinning algorithm to handdrawn letters. The 
background is black. The original letters  are displayed with an  average intensity and the 
skeleton is white. 

 

 
5. Actual and prospective  implementation 
 

A CELIP-compiler was implemented on a µ-VAX which serves as a host. The cellular 
Statements are executed on a peripheral image-processing device VTE-PICTURECOM which 
emulates the cellular automaton. This specia1-purpose computer is capable of storing  24 grey-
scale images (8-bit-register) with (512 X 512) image points. lt can operate with two registers at 
a time via arithmetic-logical-units (ALUs). Such a read-write cycle is executed in video-time 
(40 ms). 

lt is possible to add the presented cellular extensions of C to another programming language 
like Pascal or Modula without any essential syntactical or semantical modifications. 

For the implementation on different hardware the principle of operating a cellular automa- 
ton via a host system should be maintained. The main problem is to implement the variable 
neighbourhood connections with justifiable expense. 

 

 
6. Possible extensions 
 

The restriction  to 8-bit-registers  for the partition  of  cell  memory  is a concession  to the 
capabilities of the VTE-PICTURECOM  that emulates the cellular automaton. 16-bit-registers 
are desirable for increasing the range of intermediate results. The corresponding new data types 
for the implementation on different hardware would not change the basic concepts of CELIP. 

The transmission of information between cells should be supported by syntax. For example 
sending and receiving signals is a usual task of cellular algorithms. 

The explicit support of pipeline processing should also be considered. 
 

 
7. Conclusion 

 
A cellular language has been presented , which allows prototyping cellular algorithms for 

image processing by operating a cellular automaton attached to an universal computer system 
as a peripheral device. The operation of a cellular automaton via a host system is appropriate, 
because most problems are only partially efficiently parallelizable. To meet these requirements 
CELIP is defined as an extension of C. 

Tue cellular extensions are concerned with the definition of the cell memory and the 
neighbourhood  connections as well as for the cellular statements (transition functions). This 
concept is custom tailored for image processing. 

The language in the present  form is intended  as a proposal  for the basic paradigm  of a 
programming language for cellular image processing. 
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