
Atmos. Chem. Phys., 12, 5691–5701, 2012
www.atmos-chem-phys.net/12/5691/2012/
doi:10.5194/acp-12-5691-2012
© Author(s) 2012. CC Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

Understanding and forecasting polar stratospheric variability with
statistical models

C. Blume1,2,* and K. Matthes1,2,*

1Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ), Potsdam, Germany
2Institute for Meteorology, Free University of Berlin (FUB), Berlin, Germany
* now at: Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany

Correspondence to:C. Blume (christian.blume@met.fu-berlin.de)

Received: 27 December 2011 – Published in Atmos. Chem. Phys. Discuss.: 22 February 2012
Revised: 27 May 2012 – Accepted: 6 June 2012 – Published: 2 July 2012

Abstract. The variability of the north-polar stratospheric
vortex is a prominent aspect of the middle atmosphere. This
work investigates a wide class of statistical models with re-
spect to their ability to model geopotential and temperature
anomalies, representing variability in the polar stratosphere.
Four partly nonstationary, nonlinear models are assessed: lin-
ear discriminant analysis (LDA); a cluster method based on
finite elements (FEM-VARX); a neural network, namely the
multi-layer perceptron (MLP); and support vector regression
(SVR). These methods model time series by incorporating all
significant external factors simultaneously, including ENSO,
QBO, the solar cycle, volcanoes, to then quantify their statis-
tical importance. We show that variability in reanalysis data
from 1980 to 2005 is successfully modeled. The period from
2005 to 2011 can be hindcasted to a certain extent, where
MLP performs significantly better than the remaining mod-
els. However, variability remains that cannot be statistically
hindcasted within the current framework, such as the unex-
pected major warming in January 2009. Finally, the statisti-
cal model with the best generalization performance is used to
predict a winter 2011/12 with warm and weak vortex condi-
tions. A vortex breakdown is predicted for late January, early
February 2012.

1 Introduction

The variability of the north-polar stratospheric vortex (Bald-
win and Holton, 1988) is a key dynamical feature of the mid-
dle atmosphere. Every two years on average it breaks down
during winter, resulting in a sudden stratospheric warm-
ing (Labitzke and Naujokat, 2000) with greatly increasing

temperatures within a few days. A large number of these ex-
treme warming events in the stratosphere have been found
to descend downward to the troposphere, influencing the
weather (Baldwin and Dunkerton, 2001).

There are external variability factors that influence the
dynamics of the polar stratosphere. These factors include
the Quasi-Biennial Oscillation (QBO) (e.g.Baldwin et al.,
2001), the El Nĩno-Southern Oscillation (ENSO) (e.g.
Manzini et al., 2006), the 11-yr solar cycle (e.g.Gray
et al., 2010), and high impact volcanic eruptions (Robock,
2000). These external factors (or forcings) also interact with
each other, resulting in a complex and nonlinear dynamical
response (e.g.Calvo et al., 2009; Richter et al., 2011).

Previous efforts investigated the impact of these factors.
Holton and Tan(1980, 1982) showed that the QBO east
phase leads to a generally warmer, more disturbed polar vor-
tex and vice versa for QBO west. This so-called Holton-Tan
relationship was later shown to be present during solar min-
imum but significantly weaker during solar maximum (e.g.
Labitzke, 1987; Labitzke and van Loon, 1988). They showed
that sudden stratospheric warmings are most likely to hap-
pen during solar maximum (minimum) and QBO west (east)
phase. Accordingly, a study byCamp and Tung(2007a)
found the least-perturbed vortex state to take place during so-
lar minimum and QBO west conditions. Recent studies have
shown that positive ENSO phases (El Niño) lead to a more
disturbed polar vortex, as opposed to negative ENSO phases
(La Niña) where the vortex is less disturbed (Camp and Tung,
2007b; Mitchell et al., 2011). The least understood forc-
ing factor is aerosols injected into the stratosphere by very
strong but rare volcanic eruptions (Robock, 2000), leading to
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nonlinear feedbacks with other forcings (e.g.Garfinkel and
Hartmann, 2007).

When making polar stratospheric forecasts, general cir-
culation model runs consisting of multiple observation con-
strained ensemble members are performed. These forecasts
are reliable on a daily scale but on a seasonal scale they
quickly become computationally very expensive and loose
their forecast skill (Gerber et al., 2009; Kuroda, 2010). This
work investigates statistical models that are mathematically
much simpler and demand significantly less computer power,
and even though they do not simulate physical processes
explicitly, one can learn about underlying relationships. A
wide class of statistical models are considered with respect
to their ability to model and seasonally forecast geopoten-
tial and temperature anomalies representing variability in the
polar middle stratosphere from 10 hPa to 30 hPa.

Common statistical methods analyzing polar stratospheric
variability are linear (e.g.Camp and Tung, 2007b; Crooks
and Gray, 2005) and do not consider more than a few atmo-
spheric forcing factors at the same time. In this work, the
statistical methods used are partly nonstationary and nonlin-
ear, incorporating all external forcings simultaneously. The
statistical models are trained for the time period from 1 July
1980 through 31 June 2005, where training denotes the pro-
cess of minimizing a method specific cost function that quan-
tifies the deviation from the truth. Once trained, the statisti-
cal methods are used for hindcasting the period from 1 July
2005 to 30 April 2011. The impact of each forcing factor on
the statistical response will be quantified. While making rea-
sonable a priori assumptions about the external factors, the
statistical model with the best generalization performance is
used to forecast the winter 2011/12.

2 Data

This work makes use of two reanalysis data sets resolving the
stratosphere, available up to 0.1 hPa from 1979 to present.
These data sets are the ERA-Interim (hereafter ERA) re-
analysis (Simmons et al., 2006) and the MERRA reanalysis
(Rienecker et al., 2011), both considered from 1 July 1980
through 31 June 2011. ERA will be used to train the statisti-
cal models on the period from 7 July 1980 through 31 June
2005 and to test the models in a hindcast experiment from 1
July 2005 through 31 June 2011. MERRA is used to validate
the final results but not further utilized.

Two daily target geopotential and temperature time series
are computed so as to represent the variability in the polar
middle stratosphere. Anomalies of the area-weighted aver-
age on the polar cap (60–90◦ N) are computed at 10, 20, and
30 hPa. A subsequent principal component analysis (Jolliffe,
2002) of the three time series reveals that the first princi-
pal component (P1) explains more than 90 % of the over-
all variance in both ERA and MERRA. Therefore, only P1
was retained for both geopotential (P1Z) and temperature

(P1T). P1Z and P1T are both positive for weak and warm
vortex events and negative for strong and cold vortex condi-
tions. P1T was recently used inBlume et al.(2012) to clas-
sify sudden stratospheric warmings events while incorporat-
ing important external forcings.

A polar cap average of geopotential anomalies is equiv-
alent to the Northern Annual Mode (NAM) (Baldwin and
Dunkerton, 2001), only reversed in sign. The NAM is a
popular scalar index to measure polar stratospheric variabil-
ity (e.g. Thompson, 2003; Baldwin and Thompson, 2009).
The NAM is the leading principal component of geopoten-
tial anomalies north of 20◦ N. We decided to use the po-
lar cap method as it is simpler and the resulting time se-
ries for geopotential and temperature are positively corre-
lated (R = 0.8) (Baldwin and Thompson, 2009), pointing in
the same direction during extreme vortex events. P1Z and
P1T are physically closely correlated. A lead–lag correla-
tion analysis between P1Z and P1T reveals that there is a
correlation of approx. 0.7 when lagging P1T with 10 days,
whereas lagging P1Z leads to only 0.3. For instance, during a
sudden stratospheric warming, the temperature anomaly usu-
ally appears first and the actual vortex breakdown a few days
later. In addition, P1T reflects the strong stratospheric cool-
ing (overturning) proceeding most major warmings. For sim-
plicity, P1Z is referred to hereafter asgeopotentialand P1T
astemperature.

This analysis makes use of nine physicalexternal factors
which describe large-scale phenomena important for the po-
lar stratosphere. Their purpose is to improve model variabil-
ity and to obtain insight into relationships and impacts of the
various forcings. The factors representing variability in sea
surface temperatures (SSTs) are the El Niño-Southern Os-
cillation (ENS0) (Trenberth, 1997), the Pacific Decadal Os-
cillation (PDO) (MacDonald and Case, 2005), and the At-
lantic Multidecadal Oscillation (AMO) (Delworth and Mann,
2000). Deser et al.(2010) reviews variabilities in sea surface
temperature and describes how corresponding indices can
be computed. In this work, they have been calculated with
an EOF analysis of detrended SST anomalies from 60◦ S to
60◦ N with ENSO being the leading EOF (equivalent to the
Nino3.4 index).

Furthermore, the first two principal components of equato-
rial stratospheric zonal wind anomalies (QBO1 and QBO2)
(Wallace et al., 1993) are included. Factors representing
tropospheric high-latitude blockings (Martius et al., 2009;
Woollings and Hoskins, 2008) are the first two principal
components of geopotential anomalies between 35◦ N and
85◦ N at 500 hPa (BLOC1 and BLOC2). BLOC1, as the
leading principal component, is equivalent to the NAM in
500 hPa and represents blockings in both the Atlantic and
Pacific sectors simultaneously. Moreover, the F10.7 cm ra-
dio flux representing solar variability (SFL;ftp://ftp.ngdc.
noaa.gov/STP/SOLARDATA) and the aerosol optical depth
(AOD; http://data.giss.nasa.gov/modelforce/strataer) repre-
senting volcanic eruptions are included. Additionally, three
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baseline factors representing the seasonal cycle (one sine and
one cosine with a period of one year) and a linear trend term
are included. Since the different external factors have differ-
ent magnitudes and physical units, they are normalized on
the full period from 1980 to 2011, such that the minimum is
at−1 and the maximum at +1. To reduce short-term fluctua-
tions and extreme values, the daily external factors are low-
pass filtered using a 5-day running mean.

In order to obtain an idea on how the different factors vary
with time, their time series are visualized in Fig.1. The time
series of the sine, the cosine, and the trend term were omit-
ted for simplicity. It is noted that the factors vary on very
different timescales from days (e.g. BLOC1) to decades (e.g.
AMO). Others vary on both scales such as SFL and factors
such as AOD represent only singular events.

In order to improve regression results, optimal time lags of
each of the nine physical external factors were calculated us-
ing a lead-lag correlation analysis. Every external factor was
correlated with geopotential (temperature) for different lags
from 0 to 365 days. The largest statistically significant corre-
lation on this period indicates the optimal lag. We obtain zero
lags for PDO, BLOC1, BLOC2, and AOD for both geopoten-
tial and temperature. For ENSO we computed 96 (82) days;
for AMO 8 (185) days; for QBO1 173 (137) days; for QBO2
0 (264) days; and for SFL 0 (50) days, for geopotential and
temperature respectively. Please note that we have compiled
a list with acronyms and their meanings in Table1.

3 Statistical models

This work assesses and compares four statistical models with
respect to their ability to model geopotential and tempera-
ture. These models have been chosen because they make dif-
ferent assumptions about the underlying data. The model in-
tercomparison is similar to that inBlume et al.(2012), in
which three different learning approaches were compared
with respect to their ability to classify SSWs in major, mi-
nor, and final warmings by incorporating polar-cap temper-
ature anomalies along with external factors. The main dif-
ferences toBlume et al.(2012) are that here we solve a re-
gression problem and use the trained models for forecasting.
In addition, an advanced nonstationary method is included,
namely FEM-VARX. A statistical method is nonstationary if
its response depends on the event number and on time when
dealing with time series. The four models are:

1. Linear discriminant analysis (LDA) (Montgomery et al.,
2001), also known as multiple linear regression, which
is a linear and stationary model. LDA is one of the most
common statistical tools to analyze stratospheric vari-
ability (e.g.SPARC CCMVal, 2010; Randel et al., 2009;
Crooks and Gray, 2005). LDA models data by finding
the coefficients to a linear combination of external fac-
tors using the method of least-squares. The simplicity

Table 1. The acronyms and their meanings as used in this study.

AMO Atlantic Multidecadal Oscillation
AOD Aerosol Optical Depth
BLOC1 First PC of 500 hPa geopotential

anomalies from 35◦ N to 85◦ N
BLOC2 Second PC after BLOC1
COS Cosine term with one year period
ENSO El Nĩno-Southern Oscillation
EOF Empirical Orthogonal Function
FEM-VARX Finite element method plus vector

autoregression with external factors
LDA Linear Discriminant Analysis
MLP Multi-Layer Perceptron
PC Principal Component
PDO Pacific Decadal Oscillation
QBO Quasi-Biennial Oscillation
QBO1 First PC of equatorial stratospheric

zonal mean zonal wind anomalies
QBO2 Second PC after QBO1
SFL 11-yr solar cycle
SIN Sine term with one year period
SVR Support Vector Regression
TREND Linear trend term

and robustness of LDA make it a popular method. LDA
does not have free tuning parameters.

2. A cluster method based on finite elements (FEM-
VARX) (Horenko, 2010, 2011), which is locally linear
in the determined clusters but nonstationary since the
switching process between clusters is time dependent.
FEM-VARX models data by (a) finding persistent clus-
ters in the time series given the external factors using a
finite element method (FEM); and (b) linearly modeling
the data corresponding to each cluster by incorporating
the external factors using a VARX (vector autoregres-
sion with external factors) approach. In this work, au-
toregressive processes are not considered for simplic-
ity so that VARX boils down to a simple linear combi-
nation. FEM-VARX has two tuning parameters in this
work: The number of clustersK and the persistency
thresholdC which limits the maximum transitions from
a given cluster to any other cluster.

3. The multi-layer perceptron (MLP) (Zhang et al., 1998),
a fully-connected, feed-forward neural network which
is a stationary but nonlinear model. Approximation and
generalization performance of the MLP stem from the
nonlinear transfer function (sigmoid) and the numerous
connections within the hidden layers (Bishop, 1995).
This analysis is restricted to two hidden layers since
it was shown that an MLP with two hidden layers and
sigmoidal transfer function can approximate any con-
tinuous function (Kurkova, 1992). MLP is trained us-
ing back-propagation (Avriel, 2003) which iteratively

www.atmos-chem-phys.net/12/5691/2012/ Atmos. Chem. Phys., 12, 5691–5701, 2012



5694 C. Blume and K. Matthes: Polar stratospheric forecasting

1980 1985 1990 1995 2000 2005 2010-1

0

1
ENSO

1980 1985 1990 1995 2000 2005 2010-1

0

1

AMO

1980 1985 1990 1995 2000 2005 2010-1

0

1
PDO

1980 1985 1990 1995 2000 2005 2010-1

0

1

QBO1

1980 1985 1990 1995 2000 2005 2010-1

0

1

QBO2

1980 1985 1990 1995 2000 2005 2010-1

0

1

BLOC1

1980 1985 1990 1995 2000 2005 2010-1

0

1

BLOC2

1980 1985 1990 1995 2000 2005 2010-1

0

1

SFL

1980 1985 1990 1995 2000 2005 2010
-1

0

1

AOD

Fig. 1. The different external factors in green as used in this study, omitting sine, cosine, and trend terms for simplicity. Blue denotes the
training and red the hindcast period.

adjusts weights and biases. A weight is given at each
synapse (connection between two neurons) and a bias
at each neuron. Each neuron calculates a weighted lin-
ear combination of its inputs from neighboring neurons.
This linear combination is then post-processed with the
sigmoid function. In this work, MLP has two tuning pa-
rameters: the number of neurons in the first hidden layer
L1 > 0 and the number of neurons in the second hidden
layerL2 ≥ 0.

4. The support vector regression (SVR) (Basak et al.,
2007), which is also stationary but nonlinear. SVR is
a support vector machine (Vapnik, 1995) adjusted to
solve regression problems. Approximation and gener-
alization performance of a support vector machine stem
from the nonlinear kernel that is used to transform the
feature space into a higher dimensional space. In this
work, the popular radial basis kernel is used. This ker-
nel was shown to be the most efficient while being very
simple and including the linear case (Keerthi and Lin,
2003). SVR has two tuning parameters: the scaling pa-
rameterγ in the radial basis kernel and the parameter
δ controlling the trade-off between approximating the
training data and generalizing to unseen data.

It is worth noting that LDA and FEM-VARX can in prin-
ciple also be used in a nonlinear fashion by transforming
the external factors with a nonlinear function (e.g. higher or-
der polynomials, cross-products of different factors, etc.) in
a first step. However, this has not been done here because
the corresponding functions are unknown a priori. The non-
linearity in MLP and SVR stems from the nonlinear transfer
function and the nonlinear kernel in MLP and SVR, respec-
tively, so that the explicit knowledge of a transfer function is
not necessary.

It is interesting to see in which areas of atmospheric re-
search more advanced statistical methods are already in use.
For instance,Walter and Scḧonwiese(2002) addressed the
detection and attribution of observed global climate change
in global temperature anomalies using a neural network.Lu
et al. (2009) used a nonlinear neural network to receive an
alternative representation of the QBO.Coughlin and Gray
(2009) use the K-Means cluster algorithm to determine two
distinct states in the polar stratosphere, one representing nor-
mal, the other weak vortex conditions.Nao et al.(2006)
presents a technique based on support vector machines to es-
timate the surface area of polar stratospheric clouds.Franzke
et al. (2009) used the nonstationary FEM-VARX cluster-
ing approach to identify large-scale dynamical circulation
patterns in GCM simulations.
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As previously indicated, all models but LDA depend on
a set of free tuning parameters that needs to be determined,
which is called the model architecture. The optimal model ar-
chitecture (combination of tuning parameters) aims at meet-
ing the principle of Occam’s Razor (Ariew, 1976), stating
that the simplest model is the preferred if it contains just as
much information as any of the more complicated models.
There are two major branches found in the literature of in-
formation theory (Burnham and Anderson, 2002) aiming at
selecting the optimal model: information criteria and cross-
validation. The approach to be used depends on the statistical
method and the specific application.

For FEM-VARX, the optimal architecture was determined
with the use of the Akaike information criterion (Akaike,
1974; Horenko, 2011) where the parameter setting leading
to the smallest criterion is preferred. For MLP and SVR,
a 5-fold cross-validation (Kohavi, 1995) was conducted in
which the training data were partitioned into 5 equally-sized
contiguous subsets (folds). The model architecture with the
largest correlation calculated from these tested subsets was
selected. In the following, the optimal values are given in
parentheses for geopotential and temperature, respectively.
For FEM-VARX, K (5, 5) denotes the number of clusters
andC (146, 112) the persistency threshold. For MLP,L1 (8,
3) andL2 (5, 0) denote the number of neurons in the first and
second hidden layer, respectively. For SVR,γ (1, 0.2) de-
notes the radial scaling parameter andδ (0.3, 0.3) the trade-
off parameter.

LDA and SVR only lead to global solutions, whereas
FEM-VARX and MLP might run into local minima during
training. In order to reduce this effect, a total of 30 models
were trained for FEM-VARX and MLP. For FEM-VARX,
K is fixed and values ofC were chosen slightly different
from the optimal value. For MLP, those pairs ofL1 andL2
were chosen that were ranked highest according to the cross-
validation. The regression and forecast results are the average
across these realizations.

4 Results for training and hindcast period

The statistical models are trained with data from the training
period (1980–2005) while being set up with optimal model
architectures as described above. After being trained, the
models are used to hindcast the period from 2005 through
2011, meaning that the models are evaluated with the avail-
able external factors from this period. The result of this pro-
cedure is presented for geopotential in Fig.2, where the truth
is shown in gray. The correlation coefficient between each
model and truth is given in parentheses. The training pe-
riod is modeled well (R ≈ 0.9) by all models except LDA
(R ≈ 0.3). FEM-VARX possesses the highest explanatory
power over the training period. Please note that all external
factors are used in a resolution of a few days.
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Fig. 2. Geopotential results for the training period (top) and the
hindcast period (bottom) for each of the statistical models together
with the correlation coefficientR (in parentheses) calculated be-
tween the particular model and truth (gray). The hindcast is shown
for the full hindcast period whereas the training results are only
shown for a representative period (last six years). Labeled year is
the first of January of the particular year. The 95 % confidence in-
terval of the correlation factors are±0.02 for the training and±0.04
for the hindcast period.

For the hindcast period a large drop in correlation is ob-
served for all methods. Please note that when the perfor-
mance on the hindcast period is much worse than the per-
formance on the training period, it is generally referred to as
overfitting. As observed, the effect of overfitting is largest for
SVR and also still large for MLP and FEM-VARX. There is
no significant overfitting found for the LDA response. Over-
fitting is not necessarily a problem but it shows that approx-
imating training data does not imply a proper generalization
to unseen data.

As mentioned earlier, the truths are anomalies with respect
to a climatology. This means that any statistically signifi-
cant correlation larger than zero between truth and model
beats the climatology. As shown in Fig.2, this is true for
all models on the training and the hindcast period. SVR
(R = 0.26) performs significantly worse than the other mod-
els on the hindcast period. FEM-VARX (R = 0.34) leads to a
higher correlation than LDA (R = 0.31) which are, however,
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not significantly different from each other. MLP shows the
best overall hindcast performance. The MLP correlation
of 0.42 is significantly larger than that of the remaining
model responses.

Despite only moderate correlations between truth and
model response, FEM-VARX and MLP are able to approx-
imate most anomalies and hindcast the general behavior in
5 out of 6 winters. Looking more closely, significant dif-
ferences between truth and hindcast become evident. The
most obvious is the sudden stratospheric warming in January
2009. This is an extraordinary strong warming (Labitzke and
Kunze, 2009b) during solar minimum and QBO west, which
was not expected according to the Solar-QBO relationships
by Labitzke and Kunze(2009a) andCamp and Tung(2007a).
This is an example of variability that cannot be explained us-
ing the current statistical models. This may be due to errors
and deficiencies in the statistical models or due to the internal
chaotic nature of the system. Also, the present set of external
factors might not be optimal, needing further investigation.

The temperature results (not shown) are similar to the
geopotential results but lead to smaller correlations. For the
training period, correlations of 0.25 (LDA), 0.53 (SVR), 0.86
(MLP), and 0.92 (FEM-VARX) are obtained. For the hind-
cast period, correlations of 0.22 (LDA), 0.16 (SVR), 0.25
(MLP), and 0.24 (FEM-VARX) are computed. These correla-
tions, except for SVR, are statistically indistinguishable. The
hindcast performance for temperature is not satisfactory and
aims at improving it should be made in future statistical anal-
ysis. However, we still obtain the same correlation ranking of
the different models as for geopotential, pointing to the MLP
as the model with the best generalization performance.

It can be seen that it is possible to statistically model and
hindcast polar stratospheric variability to a certain extent.
The MERRA reanalysis is utilized to validate the regression
results by evaluating each statistical model with MERRA
data on both the training and the hindcast period. This leads
to very similar results compared to ERA (not shown). We
conclude that the ERA results can be considered robust and
trustworthy.

5 Impact of external factors

The statistical importance (orimpact) of each of the exter-
nal factors on the statistical models is calculated. The im-
pact Ik is the standard deviation of the difference between
model responses so thatIk = σ(Y − Y (k)), whereY is the
original model response andY (k) is the model response for
external factork held constant at its median.Ik represents the
averaged response deviation from the equilibrium response
given by Y . The relative impact is then simplyIk divided
by the sum of all impacts for one statistical model. This is
shown in Fig.3 for geopotential and temperature along with
a weighted average over all four models. The weights were
determined from the correlation coefficients of the training
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Fig. 3. Relative impact of the external factors on each of the statis-
tical models for geopotential (top) and temperature (bottom). The
average impact (gray) is calculated as a weighted mean over the
different models where the weights are calculated from the correla-
tion coefficients (see left panel of Fig.2) on the training period. The
error bars of the FEM-VARX and MLP impacts denote the 95 %
confidence interval calculated from the 30 model realizations.

period, meaning that FEM-VARX is given the largest weight
and LDA the smallest. It is observed that the impacts of
FEM-VARX, MLP, and SVR are very similar, whereas LDA
misinterprets the importance of factors, such as the impact of
high-latitude blockings (BLOC1) on the geopotential or the
solar cycle (SFL) on the temperature. LDA assumes linear
and stationary relationships, which is not valid for the polar
stratosphere (e.g.Calvo et al., 2009; Richter et al., 2011).

Apart from LDA, the impacts in geopotential and temper-
ature are very similar across the different models. A large
impact of the QBO terms and a medium impact of SFL are
observed, in agreement with e.g.Holton and Tan(1982),
Labitzke and Kunze(2009a) andCamp and Tung(2007a).
QBO1 is more important than QBO2 for geopotential and
vice versa for temperature. The ENSO impact on vortex
variability is moderate, as also found byCamp and Tung
(2007b) andMitchell et al.(2011). The AMO and PDO im-
pacts are of similar magnitude. There are only two suffi-
ciently powerful volcanic eruptions (El Chichón in 1982 and
Mt. Pinatubo in 1991) (Robock, 2000). Therefore, the im-
pact of the aerosol optical depth (AOD) index is very small
for this period. It is worth noting that the AOD impacts vary
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significantly across the four models, reflecting a large uncer-
tainty for this forcing, possibly caused by the small number
of eruptions important for the stratosphere. Surprisingly, the
two factors representing tropospheric high-latitude blockings
(BLOC1/2) show a relatively small importance. Especially
for the modeling of temperature, they can be omitted. How-
ever, the BLOC1 impact on geopotential is of the same order
as the SFL impact and needs to be accounted for. However,
as stressed byWoollings and Hoskins(2008), BLOC1 repre-
sents high-latitude blockings in both the Atlantic and Pacific
sectors simultaneously and cannot be used as a proxy for all
blocking situations. Another challenge with blockings is that
they are shown to precede SSWs but they also appear without
an SSW following (Martius et al., 2009), making it difficult
to use them for statistical modeling and therefore resulting in
small statistical impacts. The sine and cosine terms largely
influence the model response, which reflects the strong sea-
sonal dependence of the dynamics in the polar stratosphere.
The linear trend term was also found to be relatively strong
(≈ 10 %).

6 The winter 2011/12 forecast

MLP performs best over the hindcast period (see Fig.2) and
is therefore used to predict the winter 2011/12. As this win-
ter lies in the future, we need to make assumptions about
the external factors while taking into account the optimal
lags from Sect.2. For SST variability along with SFL, we
used predictions from the NOAA Climate Prediction Center
(http://www.cpc.ncep.noaa.gov). We obtain−0.5 for ENSO,
0 for AMO, −0.3 for PDO, and−0.5 for SFL. Please note
that the external factors are normalized between−1 and +1
for the period from 1980 to 2011. BLOC2 has a very small
impact (see Fig.3), which is why it is set to zero. AOD is
held at−1, as future volcanic eruptions that might affect the
stratosphere are unknown. The trend term is held at one (its
value in 2011), as an approximate value for the extension of
only one winter. We selected 0.8 for QBO1 and 0 for QBO2
by extending the corresponding oscillations with a period of
28 months.

Figure4 shows the resulting MLP forecast for the winter
2011/12 by only varying the sine and cosine terms for geopo-
tential and temperature and for three different conditions of
BLOC1. A value of−1 represents extremely pronounced
high-latitude blocking situations (Woollings and Hoskins,
2008), whereas +1 represents no high-latitude blockings at
all. For moderate values of BLOC1, the synoptic situation
remains unclear and regional blocking situations may still
occur. It is shown in Fig.4 that the geopotential forecast
changes significantly with varying BLOC1. However, for
minimum and average BLOC1 conditions, the geopotential
forecast is well above one standard deviation. This also holds
for the temperature forecast, which is almost unaffected by
BLOC1 changes, indicating the small statistical importance
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Fig. 4. MLP forecast for the winter 2011/12, holding the external
factors constant and varying only the sine and cosine terms. The as-
sumptions about the external factors are partly received from predic-
tions made by the NOAA and partly from scientific reasoning (see
text). The forecast is shown for geopotential (top) and temperature
(bottom) for three different conditions of BLOC1. The hatched area
denotes the 95% confidence interval calculated from the 30 model
realizations. Please note the additional uncertainty imposed by the
only moderate hindcasting performance (see right panel of Fig.2).

of BLOC1 on the temperature response (see Fig.3). To sum-
marize, both forecasts tend to be positive and well above
one sigma, indicating extreme variability and a warm strato-
spheric winter with a weak stratospheric vortex. Since the
anomalies in Fig.4 are quite large, denoting extreme con-
ditions, a sudden stratospheric warming is likely to take
place in late January, early February 2012. The temperature
anomaly leads and is proceeded by the geopotential anomaly.

The winter 2011/12 will most probably coincide with a
westerly QBO in 50 hPa and weak solar activity (NOAA).
Hence, our finding contrasts the Solar-QBO relationship
found byLabitzke and Kunze(2009a), which predicts a cold
and undisturbed polar stratosphere under these conditions.
Correspondingly,Camp and Tung(2007a) found that solar
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minimum conditions and a westerly QBO point to the least
disturbed vortex state. Moreover, work performed by, e.g.
Camp and Tung(2007b) andMitchell et al.(2011), indicates
that a warm and disturbed polar stratosphere is more likely
to take place during warm ENSO phases (El Niño) than dur-
ing cold ENSO phases (La Niña). This is also in contrast
to our forecast, since the ENSO index is most likely to be
moderately negative for the winter 2011/12 according to the
NOAA predictions. However, since the impacts of the indi-
vidual external factors do not add up linearly, a nonlinear sta-
tistical method is certainly more appropriate. Our analysis,
in addition to being nonlinear, incorporates all the significant
external factors simultaneously.

7 The winter 2011/12 – observations

During the review process of this paper, the winter 2011/12
has passed, giving us now the opportunity to directly com-
pare our prediction of the polar vortex conditions with actual
observations. The NCEP/NCAR reanalysis (Kalnay et al.,
1996) is used as a reference as it provides a gridded, freely
available data set until almost present day. This is shown in
Fig. 5 for geopotential and temperature, which represent po-
lar cap anomalies and were computed as described in Sect.2.
Hence, they can be directly compared to the statistical fore-
cast presented in Fig.4. In order to measure if the vortex
broke down, the zonal mean zonal wind at 60◦ N and 10 hPa
is shown on the bottom panel of Fig.5. During a vortex
breakdown, i.e. a sudden stratospheric warming, the zonal
wind is smaller than zero (easterlies).

It is observed in Fig.5 that the polar vortex in early winter
was stronger and colder than usual, indicated by the negative
anomalies in November and December 2011. Also, the zonal
wind is slightly stronger than the climatology during early
winter with a maximum of 48 m s−1, indicating a strong polar
vortex. Then, suddenly, the temperature rises by almost 3σ

at the end of December within a few days. The geopotential
follows approx. two weeks after and both reach maximum
values of 2.5σ (geopotential) and 3.5σ (temperature) in mid
January to then decrease to climatological values within ap-
prox. four weeks (geopotential) and two weeks (tempera-
ture). The zonal wind follows somewhat the progression of
the geopotential and reaches a first minimum of 8 m s−1 in
mid January. The zonal wind, however, does not drop below
values of 6 m s−1 for the rest of the actual winter, so that
no vortex breakdown, i.e. no major stratospheric warming
took place. At the end of March, the transition toward the
stratospheric summer circulation is observed.

There was no vortex breakdown, but the vortex conditions
of the winter 2011/12 were extreme. The vortex was anoma-
lously weak from mid January to mid February and anoma-
lously warm from end of December to end of January. This
is a classical example of a minor warming during mid-winter
(Labitzke and Naujokat, 2000). Therefore, a winter 2011/12
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Fig. 5. Observed polar stratospheric variability of the winter
2011/12 until March 31st for geopotential and temperature (top) and
the zonal mean zonal wind at 60◦ N and 10 hPa (bottom).

with warm and weak stratospheric vortex conditions was pre-
dicted correctly in Sect.6. Even the temperature maximum
for mid January was predicted correctly, as shown in Fig.4.
The forecast for the geopotential is already large in mid Jan-
uary (for BLOC1= −1, 0) but does not peak until February.
It is notable that the magnitudes of the forecast (except for
BLOC1= 1) are similar to those found in observations. In
addition to correctly forecasting weak and warm vortex con-
ditions in Sect.6, a vortex breakdown for late January, early
February was also predicted. This did not take place, as men-
tioned earlier, and was not forecasted correctly. However, the
vortex remained the weakest from mid January to mid Febru-
ary, as observed in Fig.5 for the geopotential and the zonal
wind. The overall forecast was correct to a large extent con-
cerning the positive anomalies representing the minor warm-
ing in mid-winter. The strong negative anomalies in early and
late winter, representing strong and cold vortex conditions,
could not be forecasted correctly. It appears to be a particu-
lar challenge to statistically forecast strong vortex events, as
also observed in the hindcast results shown in Fig.2.
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8 Conclusions

We have presented a novel statistical treatment of variabili-
ties in the polar middle stratosphere, making use of four in-
dependent and different statistical models. For the first time,
partly nonstationary and nonlinear statistical methods were
trained with polar stratospheric geopotential and tempera-
ture anomalies incorporating all significant external factors
simultaneously (Fig.1). It was shown that, with the help of
external factors, SVR, FEM-VARX, and MLP are able to ef-
ficiently approximate geopotential (Fig.2, left) and tempera-
ture anomalies on the training period (1980–2005), whereas
LDA performs significantly worse. On the hindcast period
(2005–2011) for geopotential (Fig.2, right), MLP performs
significantly better than the other models. MLP and FEM-
VARX are able to hindcast most anomalies and the gen-
eral winter behavior in 5 out of 6 winters. It should be
noted, however, that the FEM-VARX hindcast is not signif-
icantly better than that of LDA in terms of the correlation
coefficient. The temperature hindcast correlations are gener-
ally smaller but still lead to the same ranking, pointing to
MLP as the model with the best generalization performance.
However, the current methodology needs significant future
improvements in order to use statistical models to reliably
hindcast polar stratospheric temperature anomalies. But the
MLP hindcast performance for geopotential in particular is
promising. However, a degree of variability remains, seen in
the sudden stratospheric warming of January 2009, that can-
not be forecasted using the current framework. This may be
due to model errors or due to the chaotic nature of the system.
Also, the present set of external factors might not be optimal.

The statistical impact of each of the external factors on the
statistical models was computed (Fig.3). It was shown that
the QBO factors, the seasonal terms, and the trend term show
the greatest impact. The solar cycle and the SST variabilities
have a medium impact along with high-latitude large-scale
blockings (BLOC1). Volcanic eruptions (AOD) only point to
a small but more uncertain statistical importance. It was ob-
served that relative impacts of external factors are very simi-
lar for FEM-VARX, MLP, and SVR, whereas those of LDA
differ significantly from the model-averaged impact. There-
fore, LDA should not be used for a study like this as it does
not weight the external factors correctly.

Since the multi-layer perceptron (MLP) showed the best
generalization performance, it was used to predict the win-
ter 2011/12 under reasonable assumptions about the exter-
nal factors (Fig.4). It predicts a disturbed and warm polar
stratosphere, with a sudden stratospheric warming likely to
take place during late January, early February 2012. This is
in contrast to previous studies which expect a cold and less
disturbed polar stratosphere given the same external factors
(weak solar, QBO west, La Niña). However, standard anal-
ysis is based on linear models and does not consider more
than a few external factors at the same time. Our prediction

is based on a nonlinear statistical method incorporating all
significant external factors simultaneously.

During the review process of this paper, the winter
2011/12 has passed so that the statistical forecast could be
compared to actual observations (Fig.5). It was found that
the prediction of warm and weak vortex conditions was cor-
rect. The prediction of a vortex breakdown was not. However,
a strong minor warming was observed during mid-winter
and the zonal flow slowed down and was the smallest from
mid January to mid February. Hence, the forecast of posi-
tive anomalies during the winter 2011/12 was correct to a
large extent, which shows the great potential in using nonlin-
ear statistical models for the modeling and forecasting of po-
lar stratospheric variability. However, it was not possible to
forecast the large negative anomalies in early and late winter,
representing strong and cold vortex conditions.

There are several improvements that could be made to this
analysis. There may exist other, currently not included exter-
nal factors that may improve the statistical forecasting of po-
lar stratospheric variability. For instance, a different and pos-
sibly more regional blocking index should be tested within
the current framework. In the current study, a set of factors
was held constant and the optimal model architecture was
computed for each statistical method. However, it would be
favorable to optimize on the set of external factors plus the
internal model setting. For each tested set of external factors,
the optimal model setting would have to be estimated using
information criteria or cross-validation. This is usually com-
putationally expensive but may be feasible for a reasonable
number of training events and external factors.

Instead of a linear lag correlation analysis, the lags should
be computed separately for each statistical model, with a grid
search technique using cross-validation. Unfortunately, these
lag calculations would be computationally extremely expen-
sive. It would also be interesting to decrease the temporal
resolution of the considered time series to see if the model-
ing improves. Additionally, the nonlinear interrelationships
between external factors should be further investigated using
the introduced methods.
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