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Kiel, Düsternbrooker Weg 20, 24105 Kiel.

E-mail: rgreatbatch@geomar.de

1

LaTeX File (.tex, .sty, .cls, .bst, .bib)
Click here to download LaTeX File (.tex, .sty, .cls, .bst, .bib): EDJ_revision2.tex 



ABSTRACT3

The equatorial deep jets (EDJ) are a striking feature of the equatorial ocean circulation. In4

the Atlantic Ocean, the EDJ are associated with a vertical scale of between 300 and 7005

m, a time scale of roughly 4.5 years and upward energy propagation to the surface. It has6

been found that the meridional width of the EDJ is roughly 1.5 times larger than expected7

based on their vertical scale. Here we use a shallow water model for a high order baroclinic8

vertical normal mode to argue that mixing of momentum along isopycnals can explain the9

enhanced width. A lateral eddy viscosity of 300 m2 s−1 is found to be sufficient to account10

for the width implied by observations.11
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1. Introduction12

Equatorial deep jets (EDJ) were first discovered in the equatorial Indian Ocean (Luyten13

and Swallow 1976) and are now known to be a ubiquitous feature of the zonal flow along the14

equator in all three ocean basins. The jets appear as vertically alternating bands of eastward15

and westward flow with a vertical scale measured in hundreds of meters and velocities typi-16

cally near 0.1 m s−1. Brandt et al. (2011) have shown that in the equatorial Atlantic these17

jets exhibit quite regular behaviour associated with downward phase propagation (implying,18

according to linear theory, upward energy propagation) and a time scale of roughly 4.5 years19

(see also Johnson and Zhang 2003; Bunge et al. 2008). The 4.5 year signal can be seen in20

sea surface temperature (SST) as well as atmospheric data (e.g. surface wind and rainfall)21

indicating the significance of the deep jets for climate.22

The similarity between the EDJ and the gravest equatorial basin mode (Cane and Moore23

1981) for a high order baroclinic vertical normal mode has been noted by many authors,24

e.g. Johnson and Zhang (2003), D’Orgeville et al. (2007) and Brandt et al. (2011), although25

since the EDJ propagate vertically they cannot correspond exactly to such a mode (in reality26

there is forcing and dissipation as well as the influence of variable bottom topography and27

non-linearity to break an exact correspondence to a basin mode). The gravest basin mode28

has a time scale set by the time taken for an equatorial Kelvin wave to propagate from29

the western to the eastern boundary and then return as the gravest, long equatorial Rossby30

wave. For the time scale of 4.5 years identified by Brandt et al. (2011) for the Atlantic Ocean,31

the corresponding gravity wave speed is about 0.17 m s−1, appropriate to roughly the 15th32

vertical normal mode (see Figure 11 in Brandt et al. (2008) who argue, based on the data33
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available to them, that the zonal velocity variations associated with the deep jets are best34

respresented by a spread of vertical normal modes centred on the 15th mode). Nevertheless,35

a baffling feature of the EDJ is that their cross-equatorial width is found to be roughly36

1.5 times larger than implied by their vertical structure based on inviscid, linear theory37

(Johnson and Zhang 2003), the topic we investigate in the present paper. The enhanced38

cross-equatorial width, again by a factor of 1.5, has also been noticed by Muench et al.39

(1994) in the case of the equatorial deep jets observed in the Pacific Ocean.40

Here we exploit the similarity between the EDJ and an equatorial basin mode and use a41

linear shallow water model for a high order baroclinic vertical normal mode to demonstrate42

the dependence of the meridional width about the equator on the lateral (isopycnal) mixing43

of momentum. The underlying physics is discussed by Yamagata and Philander (1985) and44

can be understood by noting that for a baroclinic equatorial basin mode, the zonal flow along45

the equator is to a good approximation in geostrophic balance. Reducing the strength of46

this flow by fluxing momentum away from the equator requires, by thermal wind, a reduced47

meridional density gradient either side of the equator. In the absense of diapycnal mixing to48

remove the equatorial density perturbation supporting the flow, there is then a requirement49

for a larger meridional width than given by inviscid theory. Diapycnal mixing is known to be50

particularly weak near the equator1 (Dengler and Quadfasel 2002; Gregg et al. 2003), with51

typical diapycnal diffusivities of order 10−6 m2 s−1, consistent with the above explanation.52

Brandt et al. (2008) have noted the importance of lateral mixing for closing the oxygen53

budget at the equator and used a value of 400 m2 s−1 which, as we show, is sufficient to54

account for the enhanced cross-equatorial width of the deep jets. It is nevertheless possible55

1At least below the region of strong vertical shear associated with the Equatorial Undercurrent.
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that other mechanisms play a role. For example, Hua et al. (1997) have suggested that56

nonlinearity induced by the strong zonal currents might lead to a broadening of the jets57

about the equator.58

Since the EDJ have much larger zonal than meridional scale, we expect lateral mixing of59

momentum to be associated with fluctuations in the meridional velocity that occur on much60

shorter time scales than the time scale of 4.5 years associated with the EDJ themselves. Such61

meridional velocity fluctuations are readily found in observations from moorings deployed62

at the equator, typically with a time scale of 10’s of days and often associated with Yanai63

waves (see, for example, Muench et al. (1994), Figures 3 and 4 in Bunge et al. (2008) and64

Figure 2 in von Schuckmann et al. (2008)).65

In the model to be described below, we apply an oscillatory forcing to balance the dissi-66

pative effect of the lateral mixing of momentum. Here we choose simple forms, i.e. forcing67

only for the zonal momentum equation and forcing that is either spatially uniform within the68

regions it is applied (to avoid biasing the cross-equatorial width of the modelled jets) or is69

focussed on the equator to mimic the possibility that the EDJ are maintained by processes70

that take place within the equatorial wave guide. Exactly how the EDJ are maintained71

against dissipation in reality is a topic of ongoing research. Various mechanisms have been72

suggested, recent examples involving the destabilization of Yanai waves (Hua et al. 2008)73

excited either by fluctuations of the deep western boundary current (D’Orgeville et al. 2007;74

Eden and Dengler 2008; Ménesguen et al. 2009a) or by instabilities of the surface flow, e.g.75

tropical instability waves (Ménesguen et al. (2009a), Ascani, personal communication2). In-76

2Ascani et al. (2010) show that downward propagating Yanai waves, generated by tropical instability

waves and that break at depth, are able to generate the quasi-steady flanking jets with large vertical scale
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terestingly, Muench and Kunze (1999) and Muench and Kunze (2000) have suggested that77

momentum transfer into the EDJ due to critical layer interactions involving gravity waves78

could be important, a mechanism in which small scale processes inject momentum into the79

EDJ rather than remove it. Here we are not concerned with the details of the mechanism; we80

simply impose a forcing to counter the dissipation and allow the model to achieve a steady,81

oscillating state. However, we can use the shallow water model to test regions where applied82

forcing can more efficiently excite a dissipative basin mode, an issue we explore briefly in83

this paper.84

The plan of the paper is as follows. Section 2 provides the model description. In Section85

3 the model results are presented together with a comparison between the model results and86

an analysis of both ARGO float data (Lebedev et al. 2007) and cruise data (the cruises are87

listed in Table 1). Section 4 provides a summary and discussion.88

2. The model89

We work with a shallow water model for the horizontal structure associated with a high90

order baroclinic vertical normal mode (see Gill 1982), the governing equations of which are91

given in spherical coordinates by92

ut − fv = − g

a cos θ

∂η

∂λ
+X + F u (1)93

associated with the Equatorial Intermediate Current system. It is important to note that these flanking jets

are different from the EDJ. The latter, the main topic of this paper, have much smaller vertical scale and

exhibit quasi-periodic behaviour.
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94

vt + fu = −g

a

∂η

∂θ
+ F v (2)95

96

ηt +
H

a cos θ

[

∂u

∂λ
+

∂(cos θv)

∂θ

]

= 0 (3)97

where θ is latitude, λ is longitude, a is the radius of the Earth, g is the acceleration due to98

gravity, f = 2Ω sin θ is the Coriolis parameter, H is the equivalent depth, u, v the horizontal99

velocity components in the eastward and northward directions, respectively, η corresponds to100

the isopycnal displacement, and X = Xosin(ωt) is the oscillatory forcing we use to counter101

the dissipation. (F u, F v) is the lateral mixing of momentum with eddy viscosity, A, given102

by103

F u = A

[

∇2u+
u(1− tan2θ)

a2
− 2sinθ

a2cos2θ

∂v

∂λ

]

, (4)104

105

F v = A

[

∇2v +
v(1− tan2θ)

a2
+

2sinθ

a2cos2θ

∂u

∂λ

]

(5)106

and ∇2 is the Laplacian operator given by107

∇2γ =

[

1

a2cos2θ

∂2γ

∂λ2
+

1

a2cosθ

∂

∂θ

(

cosθ
∂γ

∂θ

)]

. (6)108

These equations are integrated using the method of Heaps (1971) applied to an idealised109

rectangular domain (in latitude/longitude space) of width 55◦ longitude, similar to that of110

the equatorial Atlantic, and extending from 10◦S to 10◦N. A free slip boundary condition111

is applied to the lateral viscosity term on all the boundaries and sponge layers are applied112

to the northern and southern boundaries to prevent Kelvin wave propagation along these113

boundaries (cf. Yang and Liu 2003). The equivalent depth H is chosen so that the gravity114
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wave speed c =
√
gH = 0.17 m s−1 for which the corresponding period of the gravest basin115

mode (4L
c
where L is the basin width) is TB = 1670 days (the same period that is identified by116

Brandt et al. (2011)). The horizontal resolution is 1/10◦ in latitude and longitude, sufficient117

to resolve the equatorial radius of deformation (
√

c/β = 0.8◦).118

3. Results119

a. Model results120

The analytic basin mode solutions in Cane and Moore (1981) are for an ocean with no121

forcing and dissipation. As noted earlier, to counter the dissipation when the eddy viscosity,122

A, is non-zero, we run the model using a zonal forcing (given by X = Xosin(ωt) in (1)) that123

oscillates in time. For each specification of the forcing and the eddy viscosity, the model is124

run to a steady oscillating state.125

We begin with a forcing that is spatially uniform and force the model using different126

oscillation periods (associated with the angular frequency ω), the same forcing amplitude3,127

Xo, in each experiment and a value of A = 10 m2 s−1. Figure 1 shows the square root of128

the zonal/time average of the square of the zonal velocity along the equator in the final,129

steady oscillating state (the time average is taken over the final complete oscillation cycle).130

A resonance at the period of the gravest basin mode, 1670 days, is clearly evident and there is131

also a second resonance at the period of the second basin mode, near 835 days, corresponding132

to twice the frequency of the gravest mode.133

3Note that since the model is linear, the value used for the amplitude is not important.
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We now keep the amplitude of the (still spatially uniform) forcing fixed, the oscillation134

period fixed at 1670 days, and run the model to a steady oscillating state for a range of135

different values of the eddy viscosity A. For the different values of A, we compute, as a136

function of latitude, the square root of the zonal/time average of the square of the zonal137

velocity, averaged over the final cycle of each model run. The zonal average is carried out138

over the longitude range between 15◦ and 30◦ from the western boundary of the basin. The139

choice of longitude band used for the averaging is not especially important as long as the140

boundary layers at the eastern and western ends of the basin are avoided; here the longitude141

band is chosen to correspond to the same longitude band used for processing the ARGO142

float data, the choice being determined by the availability of the data (see Section 3b). To143

measure the width, Le, of the model response about the equator, we use the meridional144

distance over which this quantity decreases to 1

e
of its maximum value on the equator. Le is145

plotted in Figure 2 as a function of A (the case denoted “Full” and plotted with solid circles)146

from which it is clear that the width about the equator increases as A increases, as expected.147

A scale analysis, applied to the shallow water equations and derived in the Appendix, can148

be used to obtain an expression for the functional dependence of Le on A and is given by149

Le =

√

√

√

√

c

3β
+

√

(

c

3β

)2

+ 4AT
c

3β
(7)150

where T is a time scale. The basic ingredients used to derive (7) are (i) geostrophic balance151

of the zonal flow along the equator expressed through the dependence on c
β
and (ii) the152

influence of the Laplacian eddy viscosity A which spreads the velocity signal away from the153

equatorial wave guide a distance
√
AT during the time T . It is easily found that a good fit154

to the model results (case “Full” in Figure 2) is obtained by taking T equal to one third of155
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the basin mode period4. Using this choice for T , the theoretical width, as given by (7), is156

also plotted in Figure 2, from which it is clear that (7) captures the functional dependence157

of Le on A, despite the fact that only the time scale T in (7) has been fitted to the model158

results. The factor 3 that appears in combination with β in (7) arises from the dominance159

of the gravest Rossby wave (see Figure 4 and note that in both the cases shown, the phase160

propagation indicated along the equator is westward.). Johnson and Zhang (2003) have161

noted that the gravest Rossby wave also dominates the structure of the observed EDJ’s.162

Johnson and Zhang (2003) (their Figure 6) find that the cross-equatorial width of ob-163

served EDJs in the Atlantic is about 1.5 times larger than the cross-equatorial width of the164

gravest Rossby wave, where the width of the Rossby wave is that given by inviscid theory165

for the vertical mode that best fits the observed vertical structure. We can follow the same166

procedure to compute the cross-equatorial width for the gravest Rossby wave as is used to167

determine Le for the model results shown in Figure 2. Doing so gives a value of Le = 0.65◦168

for our model parameters - almost the same as given by (7) when A = 0 m2 s−1, i.e.
√

2c/3β.169

For a width of 1.5× 0.65◦ = 0.98◦, the corresponding value of A taken from Figure 2 based170

on both (7) and case “Full” is near 175 m2 s−1.171

We have also run the model with the forcing, X , confined to either the eastern third,172

the centre third or the western third of the basin (“East”, “Centre” and “West” respectively173

in Figure 2) but still with the same amplitude and oscillating in time with the basin mode174

period TB = 1670 days, exactly as before. The greater width of the model response in “West”175

and “Centre” reflects a more important role for the Kelvin wave in these cases compared to176

4The time scale T should not be confused with the time interval used for the averaging. The latter is

always a complete oscillation period and is carried out when the model is in a steady, oscillating state.

9



the “East” and “Full”cases in which the Rossby wave dominates. Also shown in Figure 2 is177

a case (“Equator”) in which the forcing (X in (1)) is given by178

X = Xoe
−

βy2

2c sin(ωt), (8)179

where y = aθ (θ in radians), and hence is uniform in the zonal direction but confined within180

an equatorial Rossby radius of deformation of the equator, ω = 2π/TB and Xo is the same181

amplitude as used for the previous experiments. For larger values of A in this experiment,182

there is a notable weakening of the dependence on A of the width, Le. Indeed, a width, Le,183

that is 1.5×0.65◦ gives a value of A near 300 m2 s−1 and therefore not greatly removed from184

the value of 400 m2 s−1 used by Brandt et al. (2008) to close the oxygen budget along the185

equator. A value of A = 400 m2 s−1 corresponds to a width of roughly 1.6× 0.65◦ = 1.02◦.186

Figure 2 also includes the case “Eq. half width” for which187

X = Xoe
−

βy2

8c sin(ωt) (9)188

so that the forcing is even more confined near the equator than in “Equator” (the cross-189

equatorial e-folding scale is half a radius of deformation). The weakened dependence of the190

width on A is even more apparent in this case and it is clear that even the largest value of191

A we consider (i.e. 600 m2 s−1) is insufficient to increase the width of the jets to 1.5 times192

0.65◦. This experiment is important because it argues that in the real world, the forcing for193

the jets is very unlikely to be this narrow.194

Looking at Figure 2 we see a divergence of the different curves as we approach A = 0 m2
195

s−1. This is because many different Rossby waves (not only the gravest) increasingly come196

into play as the lateral eddy viscosity, A, is reduced to zero, complicating the interpretation197

of the width in this limit. For example, there is a strong focussing in the centre of the basin198
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on the equator - and hence a very narrow cross-equatorial width - even for the case with199

A = 10 m2 s−1, as can be seen in Figure 4. Rossby wave focussing is a feature of the analytic200

solutions shown in Cane and Moore (1981) and is a consequence of the beta-dispersion of201

Rossby waves described by Schopf et al. (1981).202

Figure 3 shows the square root of the zonal/time average of the square of the zonal203

velocity along the equator as a function of A for each case (the maximum amplitude of the204

forcing is the same in each model run). Here the zonal averaging is taken across the whole205

basin and the time averaging is taken over the final cycle of the model run (when the model206

is in a steady oscillating state). From this figure, it is clear that the amplitude of the model207

response is largest in the case when the forcing is spatially uniform, closely followed by the208

case in which the forcing is confined near the equator (but still zonally uniform). It is also209

clear that forcing in the centre of the basin leads to a larger amplitude than forcing in the210

western or eastern third, with the smallest amplitude found when the model is forced in211

the eastern third of the basin. In all cases, however, the amplitude decreases as the eddy212

viscosity, A, increases, as we expect. These results suggest that forcing in the centre of213

the basin is probably the most efficient way to excite a basin mode and that forcing in the214

eastern part of the basin is the most inefficient location. In reality, forcing via destabilizing215

Yanai waves excited by the deep western boundary current would be expected to provide216

a forcing in the western part of the basin whereas destabilizing Yanai waves generated by217

tropical instability waves could lead to forcing in almost any longitude band. Similar results218

(not shown) were obtained when the forcing was applied only over each of 6 equal widths219

spanning the basin, including when the forcing is confined near the equator as in Equation220
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(8).221

b. Comparison with observations222

In this subsection, we compare the model results to observations beginning with the223

available ARGO float data (Lebedev et al. 2007). The parking depth is around 1000 m224

(1000 m happens to be in the depth range where the EDJ have their largest amplitude).225

The first measurements are from August 1997 and the last from October 2011. We work in226

the longitude band 15◦W to 30◦W since this is where the ARGO float data are most plentiful227

(see Figure 4 in Brandt et al. (2011)). The data were binned into overlapping latitude bands228

of width 0.5◦ centered on a 0.25◦ zonal grid from 5◦N to 5◦S. A 1670 day harmonic was229

then fitted to the time series at each grid point. In Figure 5 the square of the resulting230

amplitude of the harmonic fit is shown at each grid point for the zonal velocity. The error231

bars show the estimated error of the harmonic fit with the assumption that all measurements232

are independent (in reality there is some autocorrelation, the effect of which is to increase233

the error bars).234

We have also analysed deep velocity data from the cruises listed in Table 1, four of which235

collected data along 23◦ W down to 4000 m or deeper (Thalassa in August 1999, Meteor in236

April 2000, Meteor in November 2009 and Maria S. Merian in May/June 2011, where the237

name refers to the name of the research vessel). Vertical normal modes were computed from238

the mean density profile of the upper 4000 m from the different cruises and the zonal velocity239

was then projected onto these vertical normal modes5. From the four sections, we found the240

5If the water depth was less than 4000 m, as was the case for a few stations along the section, the observed
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maximum mean modal energy associated with the deep jets to be at the 17th vertical normal241

mode, for which the gravity wave speed c = 0.16 m s−1 (very close to the 0.17 m s−1 used242

in the model). Figure 6 shows the projection of the zonal velocity on to this mode as a243

function of latitude. Note that the data collected in 1999, 2000 and 2009 correspond to a244

similar phase of the 4.5 year cycle and all show projections of the same sign. The 2011 case,245

on the other hand, occurred when the phase of the 4.5 year cycle had changed leading to246

the opposite sign of the projection from the 1999, 2000 and 2009 cases.247

Figure 7 shows cross-equator profiles of the model response for different values of A for248

the case that uses forcing confined near the equator (case “Equator” in Figure 2). The model249

response is the zonal/time average of the square of the zonal velocity, the zonal average being250

taken over the longitude band between 15◦ and 30◦ from the western boundary of the model251

domain (to correspond to the longitude range used for the analysis of the ARGO data)252

and the time average is over the last complete cycle of the model experiment (at a time253

when the model is in a steady oscillating state). For comparison, the figure also shows the254

cross-equator profile derived from the ARGO float data that is shown in Figure 5 (this time255

with no errors bars) and also the average of the cruise data shown in Figure 6 (here the256

projections in Figure 6 have been squared and then averaged to produce the profile shown in257

Figure 7). The curves (both model and observations) are normalised so that the area under258

each curve between 1◦ latitude either side of the equator is the same in each case. Near259

the equator, the ARGO float data show a strong bias to the north side of the equator (the260

bias is much reduced in the cruise data) although beyond 0.5◦ of the equator, the profiles261

are more symmetric. The symmetry of the model profiles is a consequence of using forcing262

velocity field was extended down to 4000 m depth using zero velocity.
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that is symmetric in latitude about the equator6. Comparing the model curves with the263

ARGO float data between 1◦ and 0.5◦ of the equator leaves the impression that the model264

agrees best with the observations for values of A between 100 m2 s−1 and 300 m2 s−1 on265

the southern side of the equator and between 300 m2 s−1 and 600 m2 s−1 on the northern266

side of the equator. The large value of up to 600 m2 s−1 on the northern side of the equator267

is a consequence of the weak dependence of the cross-equatorial width on A, noted when268

discussing Figure 2, for values of A greater than about 200 m2 s−1. However, given the error269

bars on the profile from the ARGO float data (Figure 5) it is clear that a wide range of eddy270

viscosities, A, are compatible with the observations, although the case with the smallest271

value (A = 10 m2 s−1) is hard to reconcile with the observations. This latter conclusion272

is reinforced by the cruise data which are clearly not compatible with the A = 10 m2 s−1
273

case. The cruise data profile also extends further away from the equator on the south side,274

favouring a fit to larger values of A than the ARGO data. Put together, these results are275

broadly consistent with our previous findings, indicating that a value of A of 300 m2 s−1 is276

sufficient to account for the observed cross-equatorial width of the deep jets.277

c. Possible influence of the background, quasi-steady flow278

Figure 8a shows the mean zonal flow along 23◦ W, where the mean here refers to the279

average over all the cruises listed in Table 1 (Figure 8a is an update of the corresponding280

panel shown in Figure 2 of Brandt et al. (2010), including here the deep flow down to the281

6Of course, it is possible that the asymmetry seen in the ARGO data is a consequence of asymmetry in

the forcing that is producing the observed jets, a topic that is beyond the scope of the present paper.
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bottom). Particularly striking are the eastward jets near 2◦N and 2◦S. These jets extend282

all the way to the bottom, have much larger vertical structure than the few hundred metres283

associated with the EDJ, and are the topic of the papers by Fruman et al. (2009) and Ascani284

et al. (2010) who attribute their existence to the destabilisation (Fruman et al.) or breaking285

(Ascani et al.) of Yanai waves generated in Ascani et al. by the instability of the surface286

equatorial current system (see also Ménesguen et al. (2009a)). The question arises as to287

whether these flanking jets can influence the EDJ?288

The first point to note is that, in contrast to the EDJ, the flanking jets are quasi-steady289

phenomena. Indeed, the reason the flanking jets do not appear in Figure 5 is because a 1670290

day harmonic fit is used to create Figure 5 and there is no projection of the flanking jets on291

to this fit. Since in our study, the lateral eddy viscosity, A, is taken to be a time-independent292

constant, it follows that there can be no direct influence of the flanking jets on the EDJ in our293

model set-up. Nevertheless, it is possible that the small scale velocity fluctuations responsible294

for the lateral mixing of momentum parameterised using A depend on the presence of the295

flanking jets, for example due to instabilities arising from the interaction between the jets296

and the EDJ. It is also possible that the lateral eddy viscosity, A, should vary spatially,297

depending on the background mean flow; the flanking jets could in fact act as a barrier to298

lateral mixing as suggested by Ménesguen et al. (2009a). While we recognise this possibility,299

it should be noted that it is only for very large values of A (see Figure 2) that the modelled300

EDJ impinge significantly on the flanking jets. It follows that the flanking jets are at the301

outer limit of the range of widths being considered here, corresponding only to the largest302

values of A when, in fact, the dependence of the cross-equatorial width on A is already weak303

(as noted when discussing Figure 2). Hence, while the flanking jets may indeed act as a304

15



barrier to lateral mixing, we argue that it is the lateral mixing within the region bounded305

by the flanking jets that is important.306

Secondly, since the EDJ are associated with much higher (baroclinic) vertical normal307

modes than the flanking jets but, nevertheless, like the flanking jets extend to considerable308

depth, one way to assess the impact of the flanking jets is to compute the gradient of the309

absolute vorticity field shown in Figure 8b and compare this to the gradient of the planetary310

vorticity, β = 2.3 × 10−11 m−1 s−1. The influence of the flanking jets is clearly seen in the311

figure, especially on the south side of the equator where there is a tendency between 2◦S312

and 1◦S for the gradient to be reduced compare to β. This reduction might be a factor in313

determining the northward bias in the EDJ between 1◦S and 1◦N noted when discussing314

Figure 7. The most striking feature, however, is the vertical band of enhanced values of the315

gradient near 2◦S. This band of enhanced gradient might be related to the larger amplitude316

of the side lobe in the EDJ at this latitude compared to the corresponding feature on the317

north side of the equator (see Figure 5). Both these issues are topics for further investigation.318

Overall, however, the plot suggests that our analysis using a linear shallow water model for319

a high order baroclinic vertical normal mode is a reasonable first approximation for the320

EDJ between 1◦S and 1◦N. One further point to note is that the plot shown here is derived321

from an averaged representation of the background flow field. Instantaneously, it is possible322

that the absolute vorticity gradient could occasionally become negative, especially south323

of the equator, indicating the potential for barotropic instability. Variability arising from324

barotropic instability could be contributing to the lateral momentum mixing represented in325

our model by the lateral eddy viscosity, A. Finally we note that some authors have noted326

that the westward flowing bands of the EDJ are prone to inertial instability (Hua et al.327
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(1997), Ménesguen et al. (2009b); see also Fruman et al. (2009) for another example related328

to the dynamics of the flanking jets). Such instability might also be a source of mixing329

associated with the lateral eddy viscosity being invoked here.330

4. Summary and discussion331

We have used a linear shallow water model to simulate a forced, dissipative equatorial332

basin mode for a high order baroclinic vertical normal mode which, in turn, we have taken to333

be a simple model for the equatorial deep jets (EDJ). We have shown that lateral mixing of334

momentum leads to a significant broadening of the basin mode structure about the equator335

(see Figure 2). We suggest that the same mechanism plays a role in explaining the enhanced336

cross-equatorial width of the EDJ compared to that implied by their vertical structure based337

on inviscid theory, a property of the EDJ that has been noted by Johnson and Zhang (2003)338

in the Atlantic Ocean and Muench et al. (1994) in the Pacific Ocean. Our attempt to339

compare the model solutions with the available observations suggests that a value of A of340

300 m2 s−1 is sufficient to explain the observed cross-equatorial width of the EDJ. Based341

on a budget for oxygen along the equator, Brandt et al. (2008) estimated a lateral diffusion342

coefficient of 400 m2 s−1, a value that is broadly consistent with the above, especially given343

the weak dependence of width, Le, on A in the case that is forced only near the equator344

(“Equator” in Figure 2). The model results also argue that the forcing for the deep jets345

cannot be as narrow as half a radius of deformation for the dominant vertical mode since346

then unrealistically large values for the lateral mixing coefficient would be required to explain347

the observed cross-equatorial width of the EDJ.348
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These results point to the importance of lateral mixing of momentum for explaining349

the cross-equatorial width of the EDJ. Further work is required to assess the role of other350

processes. For example, a typical observed flow speed in the EDJ is 0.1 m s−1, a significant351

fraction of the shallow water gravity wave speed for the corresponding vertical normal mode352

(here taken to be 0.17 m s−1), and pointing to the need to investigate nonlinear processes. We353

also noted that since the EDJ propagate vertically, they cannot correspond exactly to a basin354

mode. In reality, different vertical modes must be excited and energy transferred between the355

different vertical modes. However, given that our simple theory applies to all vertical modes,356

our suggestion concerning the role of lateral mixing of momentum nevertheless remains valid.357

The interaction of the EDJ with the (barotropic) flanking jets, briefly discussed in Section358

3c, also deserves further study.359

As noted earlier, Muench et al. (1994) point out that the equatorial deep jets in the360

Pacific Ocean are, like those in the Atlantic, wider across the equator than implied by their361

vertical structure according to inviscid linear theory (in fact, wider by the same factor 1.5 as362

found by Johnson and Zhang (2003) in the case of the Atlantic EDJ). These authors attribute363

the enhanced width to the effect of Eulerian averaging of the cross-equatorial advection of364

the jets by meridional flows associated with mixed Rossby-gravity (i.e. Yanai) waves, a365

possibility that cannot be ruled out in the Atlantic Ocean also. One possibility is that our366

lateral eddy viscosity, A, is simply mimicing the effect of such meridional flows. There is,367

nevertheless, an important difference between the two processes, that noted by Muench et al.368

(1994) and that suggested here. In Muench et al. (1994), the process described is entirely369

reversible whereas a lateral eddy viscosity, by its nature, implies a loss of energy from the370

mean flow (here the EDJ) to smaller (horizontal) scale motions (for example, other equatorial371
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waves). In our defense, we note that the oxygen budget analysis of Brandt et al. (2008) has372

already suggested that lateral mixing of similar magnitude to that invoked here is important373

near the equator. A broadened jet, such as envisaged by Muench et al. (1994), must also374

be a solution of the Eulerian averaged equations of motion. To maintain an averaged flow375

that is broader than implied by inviscid theory then requires a forcing term in the Eulerian376

averaged equations that must come from the divergence of the Reynolds stress in the Eulerian377

averaged zonal momentum equation. We suggest that the divergence of the lateral mixing378

of momentum in our study (represented by F u and F v in (1) and (2), respectively) is a379

parameterisation for the necessary divergence of the Reynolds stress. Clearly, a very careful380

analysis of observed data and/or models is required to properly unravel these two effects,381

one reversible and one irreversible.382
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APPENDIX391

392

Scaling argument for the jet width393

For simplicity we use the equations written on an equatorial β-plane (cf. Gill (1982)).394

These equations are a good approximation given that we are working in a limited range of395

latitudes centred around the equator. The (unforced) zonal momentum can then be written396

as397

398

[

−A∇2 +
∂

∂t

]

u− βyv = −g
∂η

∂x
(A1)399

Let U and P be scales for the variations of u and −gη, respectively, and L and Le400

be horizontal length scales for variations in the zonal (L) and meridional (Le) directions,401

respectively. We assume Le

L
<< 1 and work at the equator (i.e. we put y = 0). From (A1)402

it follows that403

[
2A

Le
2
+

1

T
]U =

P

L
(A2)404

where a simple dependence in the meridional direction of e
−

y2

L2
e has been assumed (consistent405

with evaluating Le from the model as an e-folding scale; note that the factor of 2 comes from406

evaluating the second derivative of e
−

y2

L2
e at y = 0). Since Le

L
<< 1, we can make the long407

wave approximation to give408

βyu = −g
∂η

∂y
. (A3)409
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Differentiating (A3) with respect to y and putting y = 0 gives410

βu = −g
∂2η

∂y2
(A4)411

from which it follows that412

βU = 2
P

L2
e

(A5)413

again assuming an e
−

y2

L2
e dependence for η. Eliminating P

U
from (A2) and (A5) leads to414

L4

e −
2

β

L

T
L2

e −
4AT

β

L

T
= 0. (A6)415

Since the model results are dominated by the westward propagation of the gravest Rossby416

wave (see Figure 4), and these waves propagate with speed c
3
(where c =

√
gH), we set417

L

T
=

c

3
. (A7)418

(A6) then becomes419

L4

e −
2c

3β
L2

e − 4AT
c

3β
= 0 (A8)420

whose solution is421

Le =

√

√

√

√

c

3β
+

√

(

c

3β

)2

+ 4AT
c

3β
(A9)422

as given by (7). When A = 0, (A9) reduces to423

Le =

√

2c

3β
. (A10)424

This is the e-folding width for the gravest Rossby wave in the inviscid limit obtained using425

the same procedure as we apply to the model solutions (see the text immediately before (7)).426

As we note in the text following equation (7), the best fit to the model results (for spatially427

uniform forcing) is given when T in (A9) equals one third of the basin mode period. It is clear428
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from Figure 2 that this simple scaling is remarkably successful at capturing the functional429

dependence of the e-folding width, Le, on the lateral eddy viscosity, A, despite that fact that430

only one parameter, T , has been fitted.431
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List of Tables502

1 List of the cruises used to calculate the mean velocity section at 23◦W shown503

in Figure 8. 27504
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Table 1. List of the cruises used to calculate the mean velocity section at 23◦W shown in
Figure 8.

Cruise Section max. depth (m)
Thalassa (Aug. 1999) 6◦S-6◦N; 23◦W 6000
Seward Johnson (Jan. 2000) 6◦S-4◦N; 23◦W 2000
Meteor 47/1 (Apr. 2000) 5◦S-4◦N; 23◦W 5000
Meteor 55 (Oct. 2002) 0◦N-10◦N; 24◦W 650
Polarstern ANT XXII/5 (June 2005) 20◦S-20◦N; 23◦W 300
Meteor 68/1 (May 2006) 2◦S-0.5◦N; 23◦W 500
Ron Brown (June 2006) 5◦S-13.5◦N; 23◦W 1500
Meteor 68/2 (June-July 2006) 4◦S-15.25◦N; 23◦W 1300
Ron Brown (June-July 2006) 5◦N-14.5◦N; 23◦W 1500
Ron Brown (May 2007) 4◦N-15.5◦N; 23◦W 1500
Maria S. Merian 08/1 (Apr. 2008) 7.5◦N-14◦N; 23◦W 600
L’Atalante (Feb.-Mar. 2008) 2◦S-14◦N; 23◦W 400
L’Atalante (Mar. 2008) 2◦S-14◦N; 23◦W 1300
Maria S Merian 10/1 (Nov.-Dez) 2008 4◦N-14◦N; 23◦W 1000
Polarstern ANT XXV/5 (Apr.-May 2009) 20◦S-20◦N; 23◦W 250
Endeavour 463 (May 2009) 5◦S-3◦N; 23◦W 725
Meteor 80/1 (Oct.-Nov. 2009) 6◦S-15◦N; 23◦W 600
Polarstern ANT XXVI/1 (Oct.-Nov. 2009) 20◦S-20◦N; 23◦W 250
Meteor 80/1 (Nov.2009) 6◦S-15◦N; 23◦W 4500
Meteor 81/1 (Feb. 2010) 11.5◦S-13◦N; 22◦W 1200
Polarstern ANT XXVI/4 (Apr.-May 2010) 5◦S-13.5◦N; 23◦W 250
Maria S. Merian 18/2 (May 2011) 0◦N-15◦N; 23◦W 2000
Maria S. Merian 18/2 (May-June 2011) 5◦S-5◦N; 23◦W 5200
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List of Figures505

1 The square root of the zonal/time average over the final cycle of the square506

of the zonal velocity along the equator as a function of the period To of the507

applied forcing. A = 10 m2 s−1 and To is normalised by the period of the508

gravest basin mode, corresponding to To = 1 in the figure. The velocity in509

the ordinate is normalised by the maximum plotted amplitude. 31510

2 The e-folding width (in degrees latitude) of the model response, Le, about the511

equator and the theoretical prediction given by (7). In the different cases, the512

forcing is applied over the whole basin (Full), the centre third of the basin513

(Centre), the western third (West), the eastern third (East) or is zonally514

uniform but confined near the equator according to (8) (Equator) and (9)515

(Eq. half width). 32516

3 The zonal/time average of the square of the zonal velocity along the equator517

as a function of A for cases with forcing applied over the whole basin (Full),518

the centre third of the basin (Centre), the western third (West), the eastern519

third (East) and when the forcing is zonally uniform but confined near the520

equator (Equator). The amplitude of the velocity shown by the ordinate is521

set by the choice of maximum forcing amplitude used for the model and is the522

same for all experiments. The numerical values appearing in the ordinate are523

normalised by the largest value shown. 33524
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4 The amplitude and phase of the model solution for A = 10 m2 s−1 (left525

panels) and A = 300 m2 s−1 (right panels) in cases corresponding to case526

“Full” in Figure 2. The amplitude is normalised with respect to the maximum527

amplitude in each plot and the phase is plotted with a contour interval of 45◦,528

with positive phase indicating a lag compared to zero and dashed contours529

indicating negative values. 34530

5 The amplitude squared of the 1670 day harmonic fit to the zonal velocity from531

the ARGO float data (parking depth 1000 m) in the longitude band 15◦W to532

30◦W plotted as a function of latitude together with error bars assuming each533

measurement to be independent. See text for details. 35534

6 The projection of the zonal velocity onto the 17th vertical normal mode (cor-535

responding to the equatorial deep jets) from the cruises with data down to536

4000 m and deeper listed in Table 1. See text for details. 36537

7 A comparison between normalised cross-equator profiles of the deep jet zonal538

velocity squared from the ARGO float data (derived from Figure 5), the ship539

sections (derived from the zonal velocity projections plotted in Figure 6) and540

the zonal velocity squared from the model for values of A = 10, 100, 300 and541

600 m2 s−1 (see text for details). 37542
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8 (a) The mean zonal flow through 23◦W derived from the cruises listed in Table543

1. Negative values, indicating westward flow, are shown using dashed contours544

and the contour interval is 0.05 m s−1. (b) The meridional gradient of the545

absolute vorticity derived from the flow field in (a). The contour interval is546

0.5× 10−11 m−1 s−1 and dashed contours indicate values below 2× 10−11 m−1
547

s−1 (corresponding roughly to planetary β). In (b) a smoothing has been548

applied using a Gaussian filter with influence radii of 100 m in the vertical549

and 0.5◦ in latitude and cut-off radii of 200 m and 1 degree latitude. 38550
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Fig. 1. The square root of the zonal/time average over the final cycle of the square of
the zonal velocity along the equator as a function of the period To of the applied forcing.
A = 10 m2 s−1 and To is normalised by the period of the gravest basin mode, corresponding
to To = 1 in the figure. The velocity in the ordinate is normalised by the maximum plotted
amplitude.
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Fig. 2. The e-folding width (in degrees latitude) of the model response, Le, about the
equator and the theoretical prediction given by (7). In the different cases, the forcing is
applied over the whole basin (Full), the centre third of the basin (Centre), the western third
(West), the eastern third (East) or is zonally uniform but confined near the equator according
to (8) (Equator) and (9) (Eq. half width).
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Fig. 3. The zonal/time average of the square of the zonal velocity along the equator as a
function of A for cases with forcing applied over the whole basin (Full), the centre third of
the basin (Centre), the western third (West), the eastern third (East) and when the forcing
is zonally uniform but confined near the equator (Equator). The amplitude of the velocity
shown by the ordinate is set by the choice of maximum forcing amplitude used for the model
and is the same for all experiments. The numerical values appearing in the ordinate are
normalised by the largest value shown.
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Fig. 4. The amplitude and phase of the model solution for A = 10 m2 s−1 (left panels)
and A = 300 m2 s−1 (right panels) in cases corresponding to case “Full” in Figure 2. The
amplitude is normalised with respect to the maximum amplitude in each plot and the phase
is plotted with a contour interval of 45◦, with positive phase indicating a lag compared to
zero and dashed contours indicating negative values.
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Fig. 5. The amplitude squared of the 1670 day harmonic fit to the zonal velocity from the
ARGO float data (parking depth 1000 m) in the longitude band 15◦W to 30◦W plotted as a
function of latitude together with error bars assuming each measurement to be independent.
See text for details.
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Fig. 6. The projection of the zonal velocity onto the 17th vertical normal mode (corre-
sponding to the equatorial deep jets) from the cruises with data down to 4000 m and deeper
listed in Table 1. See text for details.
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Fig. 7. A comparison between normalised cross-equator profiles of the deep jet zonal velocity
squared from the ARGO float data (derived from Figure 5), the ship sections (derived from
the zonal velocity projections plotted in Figure 6) and the zonal velocity squared from the
model for values of A = 10, 100, 300 and 600 m2 s−1 (see text for details).
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Fig. 8. (a) The mean zonal flow through 23◦W derived from the cruises listed in Table 1.
Negative values, indicating westward flow, are shown using dashed contours and the contour
interval is 0.05 m s−1. (b) The meridional gradient of the absolute vorticity derived from the
flow field in (a). The contour interval is 0.5 × 10−11 m−1 s−1 and dashed contours indicate
values below 2× 10−11 m−1 s−1 (corresponding roughly to planetary β). In (b) a smoothing
has been applied using a Gaussian filter with influence radii of 100 m in the vertical and 0.5◦

in latitude and cut-off radii of 200 m and 1 degree latitude.

39


