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Abstract. Application-level monitoring is required for continuously op-
erating software systems to maintain their performance and availability
at runtime. Performance monitoring of software systems requires storing
time series data in a monitoring log or stream. Such monitoring may
cause a significant runtime overhead to the monitored system.

In this paper, we evaluate the influence of multi-core processors on
the overhead of the Kieker application-level monitoring framework. We
present a breakdown of the monitoring overhead into three portions and
the results of extensive controlled laboratory experiments with micro-
benchmarks to quantify these portions of monitoring overhead under
controlled and repeatable conditions. Our experiments show that the al-
ready low overhead of the Kieker framework may be further reduced on
multi-core processors with asynchronous writing of the monitoring log.
Our experiment code and data are available as open source software
such that interested researchers may repeat or extend our experiments
for comparison on other hardware platforms or with other monitoring
frameworks.

1 Introduction

Through the advent of multi-core processors in the consumer market, parallel
systems became a commodity [12]. The semiconductor industry today is rely-
ing on adding cores, introducing hyper-threading, and putting several processors
on the motherboard to increase the performance, since physical limitations im-
pede further performance gains based on increasing clock speed. A fundamental
question is how to exploit these emerging hardware architectures for software
applications. Parallel programming languages intend to offer the programmer
features for explicit parallel programming, while parallelizing compilers try to
detect implicit concurrency in sequential programs for parallel execution. In this
paper, we report on our research for exploiting parallel hardware for monitoring
software systems.

In addition to studying the construction and evolution of software systems,
the software engineering discipline needs to address the operation of continuously
running software systems. A requirement for the robust operation of software
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systems are means for effective monitoring of the software’s runtime behavior.
In contrast to profiling for construction activities, monitoring of operational
services should impose only a small performance overhead [5].

Various approaches attempt to reduce the overhead of monitoring large soft-
ware systems. Self-adaptive monitoring approaches start with a comprehensively
instrumented system and reduce the monitoring coverage through rule-based
(de-)activation of selected probes at runtime [3, 10, 17]. Ehlers et al. [4] demon-
strate the feasibility of this approach, given that the remaining overhead of
deactivated probes is negligible. Another approach to reducing the overhead of
monitoring is a reduction of the amount of data written with each monitoring
record. Instead of using human readable file formats (e.g. XML, CSV, or ASCII),
binary files provide an efficient storage of monitoring data. Chen et al. [2], for
instance, integrate a compression algorithm to reduce the amount of log data.
This compression could either be handled by a spare processor core or by using
generally available free CPU resources in enterprise systems.

Our complementary idea is to use (potentially) underutilized processing units
(processors, cores, hyper-threads) for further reducing the overhead of collect-
ing monitoring data. To evaluate our approach of exploiting parallel hardware
for monitoring software systems with the Kieker® framework and to determine
the positive or negative (e.g., higher overhead of communication) influence of
multiple available processing units we use benchmarks. As discussed by Tichy
[21], benchmarks are an effective and affordable way of conducting experiments
in computer science. As Georges et al. [6] state, benchmarking is at the heart of
experimental computer science and research.

As contribution of this paper, we present a breakdown of the Kieker monitor-
ing overhead into three portions and the results of extensive micro-benchmarks
on various multi-core processor configurations with application-level monitoring
tools on the example of the Kieker framework for application monitoring and
dynamic software analysis [9].

A major result is a quantification of the individual portions of monitor-
ing overhead, the identification of the main sources of overhead, and the proof
that for asynchronous monitoring writers with the Kieker framework, the avail-
ability of (idle) processing units (processors, cores, hyper-threads) significantly
reduces the (already very low) overhead of monitoring software applications.
Thus, we show that multi-core processors may effectively be exploited to re-
duce the runtime overhead of monitoring software systems with Kieker. The
micro-benchmarks available with our releases of Kieker can be applied to other
monitoring frameworks and on other hardware platforms.

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of the Kieker framework. Section 3 introduces a partition of monitor-
ing overhead into three portions. Section 4 presents the results of three different
micro-benchmarks with the Kieker framework to quantify these portions of over-
head in different scenarios. Section 5 discusses related work. Finally, Section 6
draws our conclusions and indicates areas for future research.

3 http://kieker-monitoring.net
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Fig. 1. Top-level view on the Kieker framework architecture

2 Overview on the Kieker framework

The Kieker framework [8, 9] is an extensible framework for monitoring and an-
alyzing the runtime behavior of concurrent or distributed software systems. It
provides components for software instrumentation, collection of information, log-
ging of collected data, and analysis/visualization of monitoring data. Each Kieker
component is extensible and replaceable to support specific project contexts. A
top-level view on the Kieker framework architecture and its components is pre-
sented in Figure 1.

In this paper, we focus on the Kieker.Monitoring component to monitor software
systems. This configuration allows for the insertion of Monitoring Probes into the
Monitored Software System, e.g., instrumenting methods with probe code. With
any execution of the monitored (instrumented) methods, these probes collect
data and store it in Monitoring Records. The Monitoring Controller coordinates the
activation and deactivation of Monitoring Probes and connects the probes with the
single Monitoring Writer. This writer receives the records and forwards them to the
Monitoring Log/Stream, e.g., a file system, a database, or a remote message queue
connected to a Monitoring Reader. A more detailed description of how method
executions are monitored is presented in Section 3.

The Monitoring Log/Stream acts as an interface between the Kieker.Monitoring
and the Kieker.Analysis component, facilitating both online and offline analyses.

The Kieker.Analysis component consists of an Analysis Controller component that
instructs the Monitoring Reader to retrieve Monitoring Records from the Monitor-
ing Log/Stream enabling a series of Analysis Plugins to analyze and visualize the
recorded data. Some Analysis Plugins available with the Kieker framework sup-
port the reconstruction of traces, the automated generation of UML sequence
diagrams, dependency graphs, and call graphs. Refer to van Hoorn et al. [8, 9]
for more information on analysis and visualization with Kieker.

Note that the execution of all the components of Kieker.Monitoring up to the
point of storing/transferring the Monitoring Record into the Monitoring Log/Stream
is in the same execution context as the Monitored Software System, i.e., its execution
time and access to other resources have to be shared with the Monitored Software
System. Thus, a low overhead is essential. In the following section, we take a close
look at the portions that contribute to this overhead.
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3 Portions of the Monitoring Overhead

A monitored software system has to share some of its resources (e.g., CPU time
or memory) with the monitoring framework. In Figure 2, we present a UML
sequence diagram representation of the control flow for monitoring a method
execution. With a typical monitoring framework, such as Kieker, there are three
possible causes of overhead while monitoring an application:

I Before the code of the monitoredMethod() in the MonitoredClass is executed,
the triggerProbeBefore() part of the MonitoringProbe is executed. Within the
probe, it is determined whether monitoring is activated or deactivated for the
monitoredMethod(). If monitoring is deactivated, no further probe code will be
executed and the control flow immediately returns to the monitoredMethod().

C' The probe will collect some initial data during C; (in main memory), such
as the current time and the operation signature before returning the con-
trol flow to the monitoredMethod(). When the execution of the actual code
of the monitoredMethod() is finished with activated monitoring, the trigger-
ProbeAfter() part of the MonitoringProbe is executed. Again, some additional
data is collected during C5 (in main memory), such as the response time or
the return values of the monitored method. (C' = C; + Cs)

W Finally, writeMonitoringData() forwards the collected data to the Monitoring-
Writer. The MonitoringWriter either stores the collected data in an internal
buffer, that is processed asynchronously by a WriterThread into a Monitoring
Log/Stream, or it synchronously writes the collected data by itself into the
Monitoring Log/Stream. Here, only asynchronous writing is illustrated.

To sum up, in addition to the normal execution time of the monitoredMethod() 7',
there are three possible portions of overhead: (1) the instrumentation of the
method and the check for activation of the probe (I), (2) the collection of
data (C), and (3) the writing of collected data (W).



4 Micro-Benchmarks with Kieker

In order to determine these three portions of monitoring overhead, we perform a
series of micro-benchmarks designed to determine the overhead of each individual
portion. These experiments are performed with the Kieker framework, but any
typical application-level monitoring framework should produce similar results.
A detailed description of the used benchmarks will be published later.

First, we document the configuration of the experiment (Section 4.1). Then,
we describe benchmarks to measure the influence of available cores (Section 4.2),
to determine the linear scalability of the Kieker framework (Section 4.3), and to
compare the influence of different multi-core platforms (Section 4.4).

4.1 Micro-Benchmark Configuration

The micro-benchmark used in our experiments is designed to measure the three
individual portions of monitoring overhead. In order to allow an easy repeata-
bility, all necessary parts of the benchmark are included in releases of Kieker.

Each experiment consists of four independent runs. Each individual portion
of the execution time is measured by one run (see T, I, C', and W in Figure 2). In
the first run, only the execution time of the monitoredMethod() is determined (7).
In the second run, the monitoredMethod() is instrumented with a Monitoring Probe,
that is deactivated for the monitoredMethod(). Thus, the duration 7'+ I is mea-
sured. The third run adds the data collection with an activated Monitoring Probe
without writing any collected data (7' + I 4+ C). The fourth run finally repre-
sents the measurement of full monitoring with the addition of an active Moni-
toring Writer and possibly an active Writer Thread (7' + I + C' + W). This way, we
can incrementally measure the different portions of monitoring overhead.

We utilize a typical enterprise server machine for our experiments, in this case
a X6270 Blade Server with two Intel Xeon 2.53 GHz E5540 Quadcore processors
and 24 GB RAM running Solaris 10 and an Oracle Java 64-bit Server VM in
version 1.6.0 26 with 1 GB of heap space. We use Kieker release 1.4 as the Mon-
itoring component. AspectJ release 1.6.12 with load-time weaving is used to insert
the particular Monitoring Probes into the Java bytecode. As mentioned before, the
Kieker framework can easily be replaced by another monitoring framework to
compare our benchmark results with results of similar frameworks.

We repeat the experiments on ten identically configured JVM instances, call-
ing the monitoredMethod() 2,000,000 times on each run with an execution time
of 500 s per method call. We discard the first 1,000,000 measured executions
as the warm-up period and use the second 1,000,000 steady state executions to
determine our results.

In this configuration, each experiment consists of four independent runs and
each run takes a total time of 20 minutes. Each run with an active Monitoring
Writer produces at least 362 MB of Kieker monitoring log files.

We perform our benchmarks under controlled conditions in our software per-
formance engineering lab that is exclusively used for the experiments. Aside from
the experiment, the server machine is held idle and is not utilized.
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4.2 The Influence of Available Cores on the Monitoring Overhead

The focus of this series of experiments is to quantify the three portions of moni-
toring overhead and to measure the influence of different assignments of multiple
cores or processors to the application (and to the Monitoring component) on the
monitoring overhead. In order to achieve this goal, we are using operating sys-
tem commands to assign only a subset of the available cores to the monitored
application and to the monitoring framework.* Our X6270 Blade Server contains
two processors, each processor consists of four cores, and each core is split into
two logical cores via hyper-threading. The assignment of cores is documented in
Figure 3.

The configuration of all experiments in this section is as specified in Sec-
tion 4.1. The Monitoring Writer that is used by the Monitoring component during
the measurement of the portion W of the overhead is either the Kieker asyn-
chronous file system writer (AsyncFS) or the Kieker synchronous file system
writer (SyncFS).

The results of the experiments are presented in Figure 3 and described below.

4 On our Solaris 10 server we use the psrset command. Similar commands are available
on other operating systems.
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We start our series of experiments with a synchronous file system Monitoring-
Writer, thus disabling the internal buffer and the asynchronous WriterThread,
yielding a single-threaded benchmark system. First, we assign a single physi-
cal core to the application and disable its second logical core, thus simulating
a single core system. The main portion of overhead in S1 is generated by the
writer W (7.31s), that has to share its execution time with the monitored
application. The overhead of the instrumentation I is negligible (0.1 ns), the
overhead of the data collection C' is low (1.0ps).

In Experiment S2 we activate two logical cores (hyper-threading) in a single
physical core and repeat the experiment with the synchronous writer. There
is no significant difference between one or two assigned cores. For this reason
we omit further synchronous experiments. Only with asynchronous writing,
multiple processing units may reduce the monitoring overhead.

We continue the rest of our series of experiments with the asynchronous
file system Monitoring Writer. Similar to experiment S1, we assign a single
physical core to the application and disable its second logical core. The
portion W of the overhead caused by the writer (14.5ps) is almost doubled
compared to the synchronous writer. This can be explained by the writer
thread sharing its execution time with the monitored application. Compared
to the experiment S1, context switches and synchronization between the two
active threads degrade the performance of the system.

Next, we activate two logical cores in a single physical core. The addi-
tional core has no measurable influence on the overhead of instrumenta-
tion I (0.1 ps) and collecting data C' (1.0 ps). Due to the additional available
core, which is exclusively used by the writer thread, the overhead of writing
the data W (2.7 ns) is significantly reduced. Even though both logical cores
have to share the resources of a single physical core, the second logical core
proofed to be an enormous improvement. The overhead could be reduced
by 55% of the overhead of the synchronous writer (S1) and by 76% of the
overhead of the single core system with the asynchronous writer (Al).

In this experiment we assign two different physical cores on the same proces-
sor to the benchmark system. This setup provides the best results of the series
of experiments with again greatly improved writer performance W (1.2 ps).
The improvement can be explained by no longer sharing the processing re-
sources of a single physical core by two logical cores (via hyper-threading).
Thus, the overhead of monitoring could be reduced by 73% of the overhead
of the synchronous writer (S1) and by 85% of the overhead of the single core
system with the asynchronous writer (Al).

Next, we assign two physical cores of two different processors on the mother-
board. The increased synchronization overhead between two different pro-
cessors causes results similar to A2.

Finally, we activate all physical and logical cores in the system. Since the
monitored software system uses a single thread and the monitoring frame-
work uses an additional writer thread, no additional benefit of more than
two available cores is measurable: the two threads (one for the application
and one for monitoring) cannot exploit more than two cores.
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4.3 The Scalability of Monitoring Overhead

Only a linear increase of monitoring overhead is acceptable for good scalabil-
ity. In order to determine whether the increase of the amount of monitoring
overhead with each additional monitored method call is linear, we perform a
series of experiments with increasing recursion depths. Thus, in each experiment
run, each call of the monitoredMethod() results in additional recursive (monitored)
calls of this method, enabling us to measure the overhead of monitoring mul-
tiple successive method calls. The benchmarks are performed with the Kieker
asynchronous file system writer (AsyncFS) in a configuration similar to the one
described in experiment A5 in the previous section. Apart from the increasing
recursion depths, the configuration of the experiment is as described previously.

The results of this experiment are presented in Figure 4 and described below.

The measured overhead of instrumentation I increases with a constant value
of approximately 0.1 s per call. The overhead of collecting data C' increases with
a constant value of approximately 0.9 s per call. The overhead of writing W
consists of two parts: a constant overhead of approximately 2.5ps during the
period of 500 ps and an increasing value of approximately 0.1ps per additional
call.

Our experiments include recursion depths up to 64 method calls per 500 ps.
With higher values of the recursion depth, the monitoring system records method
calls faster than it is able to store monitoring records in the file system.

In each experiment run, the Monitoring Writer has to process 362 MB of moni-
toring log data per step of recursion depth. In the case of a recursion depth of 64,
23 GB Kieker monitoring log data were processed and written to disk within the
20 minutes execution time (at 19.3 MB/s).
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4.4 The Influence of Different Multi-core Architectures

In this final experiment, we compare the results of our benchmarks on several
different multi-core architectures with each other. The goal of this experiment
is a generalization of our results in the previous sections.

Besides the X6270 Blade server with two Intel Xeon E5540 (Intel), we use a
X6240 Blade with two AMD Opteron 2384 2.7 GHz processors (AMD), a T6330
Blade with two Sun UltraSparc 1.4 GHz T2 processors (T2), and a T6340 Blade
with two Sun UltraSparc 1.4 GHz T2+ processors (T2P).

On each server, we compare two different benchmark runs. The first run is
performed with a synchronous writer (S) and is similar to S2 in Section 4.2. The
second run is performed with an asynchronous writer (A) and corresponds to
experiment A5. The results of these experiments are presented in Figure 5 and
are described below.

Compared to our Intel experiments, the AMD architecture provides slightly
improved performance in the collecting portion C' with a similar performance of
the synchronous writer while the performance gain of the asynchronous writer
is slightly worse. The Sun UltraSparc architectures provide lots of slower logical
cores (64 on the T2, 128 on the T2+) compared to the Intel or AMD archi-
tectures. The result is a significant increase of the monitoring overhead. Yet, an
asynchronous writer provides an even greater benefit compared to a synchronous
writer. In the case of the T2 processor, the overhead of writing W is reduced
from 69.4 s to 9.4 ps. In the case of the T2+ processor, the overhead is reduced
from 64.9 s to 13.7 ps.

In all experiments, the writing portion W of the overhead can be greatly re-
duced with the usage of an asynchronous monitoring writer and available cores.



5 Related Work

In this section, we compare related approaches to exploiting multiple cores to
reduce the runtime overhead for monitoring software systems.

One approach is the usage of additional specialized hardware mechanisms
to reduce the overhead of profiling, monitoring, or analysis of software sys-
tems [2, 16]. Contrary to this, our goal with the Kieker framework is to build a
software-based, portable framework for application performance monitoring that
imposes only a very small overhead to the monitored application, particularly
via exploiting multi-core processors. Furthermore, additional cores reserved or
used for monitoring are comparable to dedicated profiling hardware.

Several authors [15, 19, 23] propose shadow processes, i.e., instrumented
clones of actual parts of the monitored system, running on spare cores, thus min-
imizing influence on the execution of the main system. The goal of application-
level monitoring is recording the actual events in the system, including any side
effects, while keeping the overhead and the influence of monitoring minimal.
Furthermore, cloning is usually not viable for interactive enterprise systems.

Another possibility is the separation of monitoring and analysis [2, 7, 24|
in order to either execute the analysis concurrently on another core or to dele-
gate it to specialized hardware. This is the usual approach in application-level
monitoring and also employed by Kieker.

Most of these related works apply to profilers and fine-grained monitoring
solutions. In the field of application-level performance monitoring, most perfor-
mance evaluations are far less sophisticated. Despite the fact that reports on
monitoring frameworks often include an overhead evaluation, a detailed descrip-
tion of the experimental design and a detailed analysis of the results, including
confidence intervals, is often missing (see for instance [1, 11, 13, 14, 18, 22]).

6 Conclusion & Future Work

Multi-core processors may effectively be exploited to reduce the runtime over-
head of monitoring software systems on the application level. To evaluate whether
monitoring frameworks are really able to use available processing units (proces-
sors, cores, hyper-threads) for reducing the overhead of collecting monitoring
data, we proposed a splitting of monitoring overhead in three portions and de-
signed a micro-benchmark with a series of experiments to quantify these various
portions of monitoring overhead under controlled and repeatable conditions.
Extensive micro-benchmarks were performed with the Kieker framework and
the results are presented in this paper. For asynchronous monitoring writers, the
availability of (idle) processing units may significantly reduce the (already very
low) overhead of monitoring software applications with the Kieker framework.
The benchmarks may be applied to other monitoring frameworks and on
other hardware platforms. So far, we performed our experiments on multiple
hardware platforms with a specific operating system and a specific Java virtual
machine. Other combinations of hardware, operating system and virtual ma-
chines may yield other results. Thus, we intend to validate the presented results



on other platforms that are available in our software performance engineering
lab. Further experiments can be performed to determine the exact assignment
of processing units to active threads within the monitoring framework. Thus,
a more detailed analysis of possible contention as a new source of overhead is
possible. Additionally, the benchmarks might be adapted to other monitoring
concepts, such as event based monitoring, that support a wider range of possible
applications. Since, our experiment code and data are available as open source,
interested researchers may repeat or extend our experiments for comparison on
other hardware platforms or with other application-level monitoring frameworks.

According to Sim et al. [20], our benchmarks are so-called proto-benchmarks
since benchmarks require a community that defines and uses its benchmarks.
Such a community does not, as yet, exist. However, our intention is that inter-
ested researchers may repeat or extend our experiments for comparison. The
Software Engineering Group of the University of Kiel is a member of the SPEC
Research Group (http://research.spec.org/). We share Kieker and our mon-
itoring benchmarks with this group and with other research groups that use
Kieker [17, 25] as a start for community building.
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