
Christian-Albrechts-University Kiel
Department of Computer Science

Software Engineering Group

Diploma Thesis

Dynamic Analysis of .NET Applications
for Architecture-Based Model
Extraction and Test Generation

Felix Magedanz (fem@informatik.uni-kiel.de)

October 15, 2011

Advised by: Prof. Dr. Wilhelm Hasselbring
Dipl.-Inform. André van Hoorn

Abstract

Extending the Kieker framework [Software Engineering Group, University of Kiel 2011]
to allow comprehensive dynamic analysis of applications developed with Microsoft’s
.NET framework is the fundamental approach taken by this thesis. Furthermore, the
practicality and robustness of the presented extension—which we call Kieker.NET—had
to be proved not only by controlled experiments in the lab, but also by an in-depth case
study on a real-world software system.
We achieved the first goal by developing a .NET-based Kieker framework that does

not just simply co-exist with its Java-counterpart, but rather cooperates with it. We
employed a .NET/Java bridging technology to make Kieker’s core available to .NET,
and ported only as few Java classes as possible. Our monitoring probes are based on
Postsharp, a powerful AOP implementation for the .NET framework.
With running examples throughout the development stages of our framework, as well

as a comprehensive overhead analysis conducted with a micro-benchmark, we showed
that Kieker.NET is capable of performing almost all tasks in the .NET programming
environment that can be done with Kieker’s original monitoring components for Java-
based applications.
An extensive case study on a complex real-world software system provided by a major

German finance institute, including multiple extracted architecture- and trace-based
models and a macro-benchmark, substantiated our findings from the lab studies.

iii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Goals . 2
1.3. Document Structure . 3

2. Foundations 5
2.1. Dynamic Analysis . 5
2.2. Kieker Framework . 6
2.3. Microsoft .NET Framework . 8
2.4. Bookstore Sample Application . 9
2.5. Related Work . 10

3. .NET Integration of Kieker 17
3.1. .NET Integration Solutions for Kieker . 17
3.2. Bridging Solutions . 21
3.3. .NET Integration with JNBridge . 24

4. Dynamic Analysis With Kieker.NET 31
4.1. Monitoring Configuration . 31
4.2. Manual Instrumentation . 33
4.3. Monitoring of the Bookstore Sample Application 36

5. AOP-Based Monitoring With Kieker.NET 39
5.1. Aspect-Oriented Programming in .NET 39
5.2. Kieker.NET Implementation with Postsharp 42
5.3. Aspect Application . 48

v

Contents

6. Overhead Evaluation 55
6.1. Causes of Overhead . 55
6.2. Experiment Design . 57
6.3. Experiment Results . 62

7. Case Study 67
7.1. Nordic Analytics . 67
7.2. Code Instrumentation . 69
7.3. Dynamic Analysis of Nordic Analytics 72
7.4. Architecture-Based Model Extraction . 72
7.5. Overhead Analysis . 82

8. Conclusion 87
8.1. Summary . 87
8.2. Discussion . 89
8.3. Future Work . 90

A. Kieker.NET Visual Studio Solution 93
A.1. The Bookstore Projects . 93
A.2. The Kieker Project . 94

B. JNBridge Related Configuration Files and Scripts 109
B.1. Kieker Proxy Generation with JNBProxy 109
B.2. Monitoring Configuration Files . 110

Bibliography 113

Acknowledgments 117

Declaration 119

vi

List of Figures

2.1. Overview of the Kieker framework components. 7
2.2. Microsoft .NET framework components. 9
2.3. Structure and dynamics of the Bookstore sample application. 11
2.4. DynaMod work packages. 12
2.5. Basic principles of MDSD. 13
2.6. Architectural domains and modernization drivers. 14
2.7. ADM horseshoe model. 14

3.1. Schematic diagram of a re-implementation of Kieker in .NET. 18
3.2. Schematic diagram of a Kieker client/server architecture. 19
3.3. Schematic diagram of Kieker for .NET employing a bridging solution. . . 20
3.4. JNBBridge communication features. 23
3.5. Kieker.NET as a new framework component of Kieker. 25
3.6. JNBridge installation directory structure. 26
3.7. GUI version of JNBProxy. 27

4.1. Class diagram of the instrumented Bookstore sample application. 33
4.2. Monitored execution of instrumented Bookstore sample application. . . . 36
4.3. Kieker JVM console output. 37
4.4. Kieker monitoring log. 38

5.1. Postsharp’s post-compile-time aspect weaver. 40
5.2. Class diagram of all Kieker.NET classes. 43
5.3. Multithreading problems with bridged ControlFlowRegistry Java class. . 47

6.1. Stages I and II of the experiment design. 59

vii

List of Figures

6.2. Stage III. Quantification of monitoring overhead induced by JNBridge and
bridged Java-side Kieker monitoring controller (with Kieker monitoring
disabled). 61

6.3. Stage IV. Quantification of monitoring overhead induced by bridged Java-
side Kieker monitoring classes. 62

6.4. Micro-benchmark overall performance analysis results. 63

7.1. Nordic Analytics component dependency graph. 70
7.2. Manually created Nordic Analytics sequence diagram. 75
7.3. Nordic Analytics assembly component dependency graph (Job 7). 76
7.4. Nordic Analytics assembly operation dependency graph (Job 7). 77
7.5. Nordic Analytics aggregated assembly call tree (Job 7). 78
7.6. Nordic Analytics assembly component dependency graph (Job 29). 79
7.7. Nordic Analytics assembly operation dependency graph (Job 5). 80
7.8. Nordic Analytics assembly component dependency graph (Jobs 1 to 29). 81
7.9. Nordic Analytics macro-benchmark overall performance analysis results. . 83
7.10. Detailed Nordic Analytics performance analysis results. 84

A.1. Bookstore Visual Studio project structure. 93
A.2. Visual Studio project structure of the .NET-based Kieker. 94
A.3. Kieker.NET Visual Studio configuration. 95

viii

Listings

4.1. Instrumented Bookstore class. 35

5.1. Transformed method after aspect application. 41
5.2. Aspect Compile-time initialization method. 44
5.3. Aspect runtime initialization method. 44
5.4. OperationExecutionAspect’s OnEntry() advice. 45
5.5. OperationExecutionAspect’s OnExit() advice. 45
5.6. Method-level aspect application. 48
5.7. Monitoring log entry for instrumented Catalog.GetBook() method. 49
5.8. Class-level aspect application. 49
5.9. Monitoring log entry for class-level attributed Bookstore sample application. 50
5.10. Assembly attribute for assembly-level aspect application. 50
5.11. Assembly attributes for managed assembly-level aspect application. . . . 51
5.12. Batch file to apply a given aspect to an assembly. 52
5.13. Configuring the aspect targets programmatically. 52

6.1. Performance analysis benchmark (excerpt). 57
6.2. The monitored class containing the single monitored method with param-

eterized (operation) response time. 58
6.3. The “empty” dummy aspect. 60

7.1. Aspect multicast attributes and filters, leading to 2.836 instrumented
methods of Nordic Analytics. 70

A.1. OperationExecutionAspect class. 96
A.2. OperationExecutionAspectProvider class. 101
A.3. MonitoringControllerWrapper class. 102
A.4. ControlFlowRegistry class. 103

ix

Listings

B.1. Proxy generation BATCH script. 109
B.2. Kieker proxy class list text file that defines which Java classes to expose. 109
B.3. Batch file to start Kieker JVM. 110
B.4. jnbcore properties file for JNBridge (TCP). 110
B.5. jnbcore properties file for JNBridge (HTTP). 110
B.6. jnbcore properties file for JNBridge (shared memory, only needed for

Java/.NET directed communication). 111
B.7. .NET application configuration file for TCP/Binary communication with

JNBridge. 111
B.8. .NET application configuration file entry for shared memory communica-

tion with JNBridge. 112

x

List of Tables

3.1. Comparison of bridging solutions. 24
3.2. Exposed Kieker classes. 28

6.1. Stage I experiment results. 63
6.2. Micro-benchmark overall performance analysis results. 63
6.3. Micro-benchmark overhead results. 64

7.1. Code statistics of Nordic Analytics. 68
7.2. Detailed monitored Job statistics. 73
7.3. Nordic Analytics macro-benchmark overall performance analysis results. . 83
7.4. Nordic Analytics macro-benchmark overhead results. 83

xi

1. Introduction

1.1. Motivation

In the world of large business applications, software systems often have a lifespan not
only of a few years, but a few decades. They become legacy systems when they signifi-
cantly resist modification and evolution [Brodie and Stonebraker 1995]. However, legacy
systems are typically the backbone of an organization’s information flow and the main
vehicle for consolidating business information [Bisbal et al. 1999]. Given these charac-
teristics, in addition to the fact that the acquisition costs or development expenses—
together with the costs that would emerge in case of a transition to another software
system—can be extremely high, legacy systems are mission critical [Bennett 1995].

Retaining the maintainability of these “critical assets” [Comella-Dorda et al. 2000]
by continuous and sustainable modernization is the approach taken by the DynaMod
Project (DynaMod) [van Hoorn et al. 2011], an ongoing joint research project of the
b+m Informatik AG, the University of Kiel, and two associated companies, Dataport
and HSH Nordbank AG. The focus of DynaMod lays on techniques for Model-Driven
Modernization (MDM) of software systems. The innovative aspect of DynaMod is that
static and dynamic analysis are used for reverse engineering of architectural and usage
models [van Hoorn et al. 2011]. These models, together with semantic augmentation,
are the foundation for subsequent generative forward engineering steps and tests.

As one of the envisioned case study systems of DynaMod is a function library devel-
oped with the Microsoft .NET framework, this diploma thesis will be conducive to and
therefore part of the DynaMod project (for a more detailed introduction to DynaMod
see Section 2.5.1).

The goals of this thesis are presented in the next Section 1.2. An overview of the
document structure is given in Section 1.3.

1

1. Introduction

1.2. Goals

The context of this work is given by the DynaMod project. As indicated by the title,
its main purposes are (1) architecture-based model extraction and (2) test generation
for applications developed with .NET, and therefore running on Microsoft Windows
operating systems. The following goals will be substantial for accomplishing (1) and (2)
and determine the steps of the approach of this work, which are loosely based on some
of the work packages defined by DynaMod.

1.2.1. Technical Instrumentation of .NET

The first goal is enabling .NET-based applications to be dynamically analyzed with the
Kieker framework (Kieker) [van Hoorn et al. 2009]. For more details on Kieker see
Section 2.2. As of today, Kieker is currently restricted to Java-based systems only.
Performance—or the absence of overhead caused by the presented solutions—will be

a main concern of the tasks corresponding to this goal, as time related analysis, e.g.,
monitoring of the execution time of a method call, would be drastically affected by
overhead due to utilized frameworks, bridging solutions or other ways of framework
intercommunication. The same holds for monitoring activities in “live” environments,
where delays are often not tolerable.
Another important feature of Kieker is instrumentation by employing techniques based

on aspect-oriented programming (AOP) [Kiczales et al. 1997]. This allows monitoring
(e.g., measuring the response times of certain method calls) without actually modifying
the source code. This feature must be provided for .NET applications as well.

1.2.2. Extraction of Architectural and Usage Models

Developing techniques based on DynaMod and other similar approaches for extract-
ing architecture-based models from .NET-based systems and enriching them with user-
behavior data is the second goal of this thesis. Selecting appropriate meta-models and
generating usage models with data obtained by dynamic analysis will be the essential
tasks. As Kieker already supports different types of models to be generated from data
obtained by monitoring, accomplishing the first goal (i.e., instrumentation) also (par-
tially) accomplishes this one.

2

1.3. Document Structure

1.2.3. Test Generation

Developing means for test automation for .NET-based systems is the third goal. The
tests should be based on extracted models obtained by the previous steps, and must be
compatible with a testing framework to support the required test automation to test
even large systems. The generated tests should also be generic and therefore easily
adoptable to another system based on the same domain model—which is most likely
the same system but modernized with techniques of model-driven modernization in this
context.

1.2.4. Evaluation

The final goal is a proof of concept with multiple .NET-based applications, which
will indicate the practicality and efficiency of the developed methods and hopefully—
presumably after several reiterations—contribute to the success of the “mother project”
DynaMod. The main evaluation will be based on one of the case study systems of
DynaMod, namely Nordic Analytics, the C#-based function library mentioned in the
motivation to this document. HSH Nordbank AG uses this library internally for assess-
ment and risk control of finance products.

1.3. Document Structure

The structure of this document is described in the following list.

Chapter 2 briefly introduces the foundations of this work and presents some technolo-
gies that are crucial for understanding the following chapters. We also hint to
related work.

Chapter 3 focuses on the .NET integration of Kieker. Different approaches are pre-
sented, followed by our developed solution.

Chapter 4 shows how the newly integrated Kieker can be used in the .NET framework.
With the results of the previous chapter, basic dynamic analysis of .NET applica-
tions is already possible, and its core functionality will be illustrated with the help
of a running example .

3

1. Introduction

Chapter 5 deals with the employment of techniques based on aspect-oriented program-
ming to allow for a more elegant way of integrating monitoring logic into a system
under observation.

Chapter 6 introduces a staged micro-benchmark that will be used for a comprehensive
evaluation of the overhead that is caused by our monitoring framework.

Chapter 7 presents a case study that hopefully will show the practicality and robustness
of our solutions. The case study system will also be used for a comprehensive
macro-benchmark.

Chapter 8 draws the conclusions of this thesis and gives an outlook to possible future
work that could be done to further improve dynamic analysis of .NET applications
with Kieker.

4

2. Foundations

This chapter gives an overview of some of the prime methods and technologies that
will be used and referenced throughout the thesis. After a short motivation to dynamic
analysis in Section 2.1, we introduce the Kieker framework for dynamic analysis in
Section 2.2.
Section 2.3 presents the basic concepts of Microsoft’s .NET framework, and Section 2.4

introduces a sample application that we use throughout this thesis. Finally, a short
overview of related work is given in Section 2.5.

2.1. Dynamic Analysis
Dynamic software analysis is performed by executing the software and analyzing it at
runtime, therefore providing information about the runtime behavior of software systems.
Advantages of this method compared to static analysis—with the latter being basically
source code analysis—are usage profiling as well as the ability to obtain performance
measurements. The significance of the findings may depend on the test input the software
is executed with.
In their recently published article, Cornelissen et al. [2009] reported on a systematic

literature survey with a research body of 4,795 articles that had been published between
1999 and 2008. They systematically selected 176 articles for their comprehensive study.
After analyzing and categorizing their selection, their main findings were

1. that a significant technical progress had been made in the past decade by putting
great effort into comparing and combining earlier techniques;

2. that the studied literature may overemphasize standard object-oriented systems
at the cost of more modern web applications, distributed software systems, and
multithreaded systems. They argue that dynamic analysis is especially suitable
for those systems;

5

2. Foundations

3. that comparisons and benchmarking should be considered more often as evaluation
methods than they currently are. Moreover, conducting controlled experiments is
their recommended evaluation procedure.

They also encourage researchers to make their tools publicly available, so that evaluation
and verification is possible.

2.2. Kieker Framework

Dynamic analysis in the context of this thesis will be done with the Kieker framework
[Software Engineering Group, University of Kiel 2011] by van Hoorn et al. [2009]. Kieker
is a monitoring framework that allows dynamic analysis of (Java-based) applications by
providing monitoring probes employing AspectJ, Java EE Servlet, Spring, and Apache
CXF technology.
Kieker is actively developed and maintained by the Software Engineering Group at

the University of Kiel and, according to the description on the project website1, has
already been used for monitoring and profiling in several distributed industry systems
of companies in the telecommunications and business sectors. Kieker is licensed under
the Apache License, Version 2.0, and located for download at SourceForge2.

2.2.1. Kieker Components

Kieker is composed of two main components, Kieker.Monitoring and Kieker.Analy-

sis (Figure 2.1). By dynamically analyzing an instrumented application, the monitoring
component creates monitoring records. These records (bundled in a monitoring log) can
later be read by the analysis component. The Kieker.TraceAnalysis plugin can be
used to extract several different types of models and trace data visualization from the
monitoring logs.

2.2.2. Concept

The starting point of all monitoring with Kieker is the concept of probes. Monitoring
probes are in some way integrated into a system under observance—Kieker provides

1http://se.informatik.uni-kiel.de/kieker/
2http://sourceforge.net/projects/kieker/files/kieker/

6

http://se.informatik.uni-kiel.de/kieker/
http://sourceforge.net/projects/kieker/files/kieker/

2.2. Kieker Framework

M
o

n
it

o
ri

n
g

 R
ec

o
rd

sCurrent time

Memory/swap usage

CPU utilization

Operation execution

Resource utilization

<your monitoring record type>

K
ie
ke
r.
M
o
n
it
o
ri
n
g

P
er

io
di

c
S

am
pl

in
g

JM
X

In

te
rf

ac
e

Lo
gg

in
g

T
im

e
S

ou
rc

e

M
o

n
it

o
ri

n
g

W

ri
te

r
M

o
n

it
o

ri
n

g

C
o

n
tr

o
lle

r
M

o
n

it
o

ri
n

g

P
ro

b
e

Lo
gg

in
g

S
er

ia
-

liz
at

io
n

D
es

er
ia

-
liz

at
io

n

M
o

n
it

o
ri

n
g

R

ec
o

rd

K
ie
ke
r.
A
n
al
ys
is

M
o

n
it

o
ri

n
g

R

ea
d

er

A
n

al
ys

is
 /

V
is

u
al

iz
at

io
n

P
lu

g
-I

n

A
n

al
ys

is

C
o

n
tr

o
lle

r

M
o

n
it

o
ri

n
g

 W
ri

te
rs

M
o

n
it

o
ri

n
g

 P
ro

b
es

/S
a

m
p

le
rs

T
im

e
S

o
u

rc
es

File system

Database (SQL)

<your monitoring writer>

A
sy

nc
hr

. w
rit

er
s

S
yn

cr
.

System time (nanos)

<your time source>

C
on

tr
ol

-f
lo

w
tr

ac
in

gSpring AspectJ

ServletCXF/SOAP

Manual instrumentation

<your interception technology>

R
es

ou
rc

e
m

on
ito

rin
g

<your technology>

CPU utilization

Memory usage

S
ig

ar

S
er

vl
et

<your monitoring probe>

File system

Database (SQL)

Java Messaging Servcice (JMS)

Java Management Ext. (JMX)

Named pipe

<your monitoring reader>

File system

Named pipe

Real-time replayer

M
o

n
it

o
ri

n
g

 R
ea

d
er

s

<your visualization>

Sequence diagrams

Dependency graphs

Call graphs

V
is

ua
liz

at
io

n

A
rc

hi
te

ct
ur

e
re

co
ns

tr.

P
ip

e
an

d
fil

te
r

fr
am

ew
o

rk

A
n

al
ys

is
/V

is
u

al
iz

at
io

n
 P

lu
g

-I
n

s

<your trace analysis>

T
ra

ce
 a

na
ly

si
s

<your reconstruction plug-in>

<your analysis plug-in/tool>

Java Messaging Servcie (JMS)

Java Management Ext. (JMX)

Figure 2.1.: Overview of the Kieker framework components [Software Engineering
Group, University of Kiel 2011].

7

2. Foundations

several techniques for that—and collect and possibly preprocess monitoring data when
the analyzed application is executed.
The next element in Kieker’s “chain of command” is the monitoring controller. When

the probes are triggered, they interact closely with the monitoring controller. For exam-
ple, the controller provides a time source that can be used for temporal measurements
by the probes. The data collected by the probes is passed to the controller as records
(with OperationExecutionRecord being a prominent example in this work).
To store the monitoring data, a monitoring log writer is employed by the monitoring

controller. The elected writer implementation (e.g., filesystem writer, database writer,
or writers employing Java Management Extensions (JMX) and Java Messaging Service
(JMS)) is responsible for serializing the data as so-called monitoring logs. As mentioned
before, these logs are the foundation of all further analysis with the Kieker analysis
components.
For more details on Kieker and how it can be used for continuous monitoring of

software services and comprehensive dynamic analysis, see the Kieker project website,
van Hoorn et al. [2009], and the Kieker user guide by Ehmke et al. [2011].

2.3. Microsoft .NET Framework

Microsoft .NET3 is a programming framework that supports a wide range of program-
ming languages. Applications developed with (and for) .NET target primarily computers
with Microsoft Windows operating systems, but other implementations exist as well.
One special aspect of .NET is its capability to support language interoperability. A

function written in one of the supported languages can be used in any other supported
language as well. The most common .NET languages are C++, C#, and VB.NET, but
many other compatible languages (for example J#, an implementation of Java) exist.
Figure 2.2 shows the main components of the .NET framework. The core is the Com-

mon Language Infrastructure (CLI) with its Common Intermediate Language (CIL) and
its (software-based) runtime environment system Common Language Runtime (CLR).
Every application written in a supported language will be compiled into bytecode with

the CIL syntax. This bytecode can be executed in the software environment of the CLR.

3http://msdn.microsoft.com/netframework

8

http://msdn.microsoft.com/netframework

2.4. Bookstore Sample Application

VB.NET Code

J# Code

Common Language Infrastructure

C# Code

Common
Intermediate

Language

1001001101001011101010
1011010101110101010110
1010101001011010101111

Compiler

Compiler

Compiler

Common
Language
Runtime

Figure 2.2.: Microsoft .NET framework components.

Microsoft also provides their Visual Studio, an Integrated Development Environment
(IDE) that targets mainly .NET developers, currently available in the 2010 version.
Visual Studio is a commercial product, but there is also an Express version available for
download on the MSDN website for free. The initial release of .NET was in 2002, the
current release version is .NET 4.0.

2.4. Bookstore Sample Application

For having a convenient sample application for this work, we ported the Bookstore
sample application introduced by Ehmke et al. [2011] to the .NET environment by re-
implementing the classes in C#. The class diagram in Figure 2.3(a) shows the classes
of the .NET-based Bookstore and lists the members of each class.
Representing a customer facility to search for books (Bookstore), combined with

a customer relationship management system (CRM), the Bookstore sample application
provides a basic test setting for the development of our Kieker port to .NET. Most of
the methods are just stubs, as there is no need to actually do something there for our
purposes.
The sequence diagram in Figure 2.3(b) and the operation dependency graph in Fig-

ure 2.3(c) illustrate the dynamics of the application. The sequence diagram shows a

9

2. Foundations

typical trace (i.e., the order in which a given set of methods calls each other) through
the different classes. The operation dependency graph is augmented by the number of
calls that are made when executing the sample application. On most of the edges this is
the number 10, because the main method of the BookstoreStarter class actually starts
10 threads that execute the Request() method in parallel. This element has been added
to the Bookstore sample application to allow concurrency tests as well.

2.5. Related Work

2.5.1. The DynaMod Project: Dynamic Analysis for Model-Driven
Software Modernization

DynaMod4 is currently an active research project, which addresses model-driven mod-
ernization of software systems. The project started with the beginning of 2011 and
has a two-year funding from the German Federal Ministry of Education and Research
(BMBF). The Consortium that initiated the project consists of four members: the b+m
Informatik AG as development partner and consortium leader, the University of Kiel
as scientific partner, and two associated companies, Dataport and HSH Nordbank AG.
Dataport and HSH Nordbank AG provide the case study systems that are going to
be (partly) modernized and therefore be used to evaluate the techniques developed by
DynaMod.
The following key characteristics of the envisioned approach of DynaMod are listed in

the paper by van Hoorn et al. [2011]:

1. Combining static and dynamic analysis for extracting models of a legacy system’s
architecture and usage profile.

2. Augmenting these models with information that is relevant to the subsequent
architecture-based modernization steps.

3. Automatically generating implementation artifacts and test cases based on the
information captured in the models.

Figure 2.4 shows a finer grained view on the work packages of DynaMod—aligned with
the horseshoe model for re-engineering. Based on static analysis, the first DynaMod work

4http://kosse-sh.de/dynamod/ (in German).

10

http://kosse-sh.de/dynamod/

2.5. Related Work

(a) Class diagram of the Bookstore
sample application.

@4:..BookstoreStarter @3:..Bookstore @1:..Catalog @2:..Crm

Main()

Request(..)

SearchBook()

GetBook(..)

GetOffers()

GetBook(..)

(b) Sequence diagram of the Bookstore sample application.

<<assembly component>>
@4:..BookstoreStarter

<<assembly component>>
@3:..Bookstore

<<assembly component>>
@2:..Crm

<<assembly component>>
@1:..Catalog

Main() Request(..)1 SearchBook()10
GetOffers()10

GetBook(..)10

10

$

1

9

(c) Assembly operation dependency graph of the Bookstore sample application.

Figure 2.3.: Structure and dynamics of the Bookstore sample application, following
Ehmke et al. [2011].

11

2. Foundations

��
����

��
�����

���

���

��
�����

	������
���

�������

�����

�����
����

����������������
�����

�����

�
��
����

Figure 2.4.: DynaMod work packages [van Hoorn et al. 2011].

package (WP1) focuses on the extraction of architectural models. Appropriate meta-
models will be developed by employing and extending standards defined by the Object
Management Group for Architecture-Driven Modernization (ADM, see Section 2.5.2).
Supported programming platforms will be limited by those emerging from the evaluation
case studies provided by Dataport and HSH Nordbank AG.

The legacy system’s internal behavior and external usage profile are the concerns of
the dynamic analysis (WP2). For more detail on dynamic analysis and the employed
Kieker framework see Section 2.2.

Definition of transformations (WP3) means developing transformation rules for the
translation of enriched architecture-level models (i.e., models that describe the existing
systems) towards possible target architectures. ADM meta-models may serve for the
source models as well as the target models.

Code generation tasks (WP4) employ model-to-code transformation techniques intro-
duced by Stahl and Völter [2006] with the Model Driven Software Development (MDSD)
approach (see Figure 2.5 for the basic principles of MDSD). The modeling infrastruc-
ture will be based on the Eclipse Modeling Platform (EMP)—which includes the former

12

2.5. Related Work

Figure 2.5.: Basic principles of MDSD: different methods of code “generation”.

oAW framework that has been co-developed by the DynaMod consortium member b+m
Informatik AG.
Based on usage models of the legacy system obtained by dynamic analysis, model-

based testing (WP5) utilizes appropriate testing tools—most probably the load test tool
Apache JMeter—for workload generation and testing of both the modernized and the
outdated system. This will allow comparison of quality properties like performance and
reliability.
The evaluation (WP6) of the developed methodology and tooling infrastructure will

be based on three case study systems from Dataport and HSH Nordbank AG. They
are considered to be benchmark examples and representatives of modernization projects
pending in practice.

2.5.2. Architecture-Driven Modernization

Architecture-Driven Modernization (ADM) is a collection of standards defined by the
Object Management Group (OMG). Two White Papers [Ulrich and Khusidman 2007;
Khusidman 2008] are provided at the OMG’s website that present a basic insight into
the purposes of ADM.
Basically, ADM is the migration of an existing software system to a target (i.e., mod-

ernized) system by applying project-based incremental transformations to the underlying
architecture of that system. These projects can be located in the business domain, driven
by business related purposes (i.e., changes to business semantics or business processes),

13

2. Foundations

(a) Business & IT architecture domains. (b) Modernization drivers & trajectories.

Figure 2.6.: Architectural domains (a) and modernization drivers (b) [Ulrich and Khusid-
man 2007].

Figure 2.7.: ADM horseshoe model [Ulrich and Khusidman 2007].

as well as in the IT domain, driven by modifications to the technical architectures. (See
Figure 2.6).
Historically, modernization projects focused on the transformation of technical archi-

tectures. The approach proposed by OMG is referred to as the ADM horseshoe model,
as the knowledge curve of the transformational path resembles an upside down horseshoe
(see Figure 2.7).
Business architecture-driven modernization is by far the most complex transformation

in this model because it incorporates all three architectures. As synchronization of the
transformational paths must be both vertically and horizontally (i.e., in the business-to-
physical implementation as well as existing-to-target), very little modernization work in
the business architecture-driven modernization has been effectively deployed according

14

2.5. Related Work

to Ulrich and Khusidman [2007]. This is supposedly because the mapping paradigms
between the architectures lack standardization. Among others, the Knowledge Discovery
Meta-Model (KDM) [OMG 2010] and Software Metrics Meta-Model (SMM) [OMG 2009]
are those standards defined by the OMG’s KDM Task Force to facilitate complex busi-
ness architecture-driven modernization.

15

3. .NET Integration of Kieker

Dynamic analysis in the context of this thesis will be done with the Kieker framework.
As Kieker is a Java framework, monitoring is currently restricted to Java-based systems.
Enabling .NET-based applications to be dynamically analyzed with Kieker is the main
goal of this chapter.
Section 3.1 deals with the assessment of different solutions to the problem of .NET

integration of Kieker. In Section 3.2 we present three (commercial) .NET/Java bridging
solutions. The one most feasible for our implementation is then presented in detail in
Section 3.3.

3.1. .NET Integration Solutions for Kieker
The first step of the technical instrumentation of .NET is the determination of the best
way to enable the monitoring logic of Kieker to be called out of the .NET programming
environment. Due to the design of the .NET framework, this would allow monitor-
ing of applications written in all .NET programming languages (with C#, C++, and
VB.NET being the popular ones). There are several possible solutions, with three being
described in more detail in this section. Finally we present our approach based on a
short evaluation of the alternatives.

3.1.1. Alternative Approaches

The following paragraphs provide an overview of the diverse possible implementations,
ordered by descending assumptive complexity of implementation.

Re-implementing Kieker in .NET

Copying all functionality by re-implementing Kieker in a .NET programming language
like C# is one solution to the task of bringing the functional range of Kieker to .NET.

17

3. .NET Integration of Kieker

X86 compatible computer system(s)

JVM
«library»
kieker.jar

«executable»
JavaApplication.jar

CLR
«library»
Kieker.dll

«executable»
DotNetApplication.exe

Monitoring LogicMonitoring Logic

Figure 3.1.: Schematic diagram of a re-implementation of Kieker in .NET.

As C# is syntactically quite similar to Java, this approach would result in a more or
less direct copy of Kieker’s classes and interfaces (Figure 3.1). Existing .NET frameworks
could be utilized to achieve the same range of application that is provided by the Java
platform.
.NET applications execute in the Common Language Runtime (CLR) (see Section 2.3),

which is based on the same concept as Java’s Virtual Machine, so the expected runtime
characteristics of a Kieker port for .NET could be expected to be much similar to those
of its Java archetype.

Building a Client/Server Architecture

Another option is the employment of a communication method like web services for
interaction between a Kieker server (Java-based) and a rather lightweight—yet to be
developed—Kieker client based on a .NET programming language.
Existing Kieker components could be extended to enable Kieker to act as a server

that “listens” to network ports and reacts to messages sent by the client, i.e., providing
a web service. Possible messages could be the creation of a collection of monitoring data
(called a record), a method execution time measurement, etc.

18

3.1. .NET Integration Solutions for Kieker

X86 compatible computer system(s)

JVM
«library»
kieker.jar

«executable»
kiekerServer.jar

CLR
«library»

KiekerClient.dll

«executable»
DotNetApplication.exe

Monitoring LogicMonitoring Logic

Communication

Figure 3.2.: Schematic diagram of a Kieker client/server architecture.

The communication interface could be defined by a machine-readable description of
the operations provided by the web service, which is most commonly done with a Web
Service Description Language (WSDL).
The client would basically provide an interface that is compatible with all applications

written in a programming language compatible with the target platform .NET (see
Figure 3.2 for a schematic diagram) and send relevant information to the server via
messages defined by the WSDL. In this case, the client would be more than just a
Kieker probe. At least all communication with the monitoring controller—which should
probably stay on the Java-side—must be handled here as well (see Section 2.2 for the
basic principles of Kieker’s components).

Employing a Bridging Solution

Several (mostly commercial) bridging solutions enable interoperability between .NET
and Java by providing tools to wrap Java classes into .NET-compatible Dynamic-Link
Libraries (dll), which are the Java-archive (jar) equivalent of Windows Programming.
The other direction (Java/.NET) is also possible in some cases. The wrapped classes,
so called proxies, can be utilized by the target architecture as if they were native.

19

3. .NET Integration of Kieker

X86 compatible computer system(s)

JVM
«library»
kieker.jar

«library»
javaSideRuntime.jar

CLR

«library»
KiekerProxy.dll

«executable»
DotNetApplication.exe

Monitoring Logic

Monitoring Logic

TCP/IP *

«library»
DotNetSideRuntime.dll

* or shared mem / SOAP

Figure 3.3.: Schematic diagram of Kieker for .NET employing a bridging solution.

Figure 3.3 gives an overview of the involved components when employing a bridge.
In the case of our Kieker port, the KiekerProxy.dll library would be generated from
the Kieker Java classes with the proxy generation tool provided by the bridge. The
DotNetSideRuntime.dll and javaSideRuntime.jar are runtime libraries that ship with the
bridge and need to be accessible for the respective execution environments. Thus, all
inter-process communication is managed by the bridge and mostly hidden from the user/
programmer. Most of the solution’s communication is based on TCP/IP, but some also
support shared memory or even messaging based on web service protocols like Simple
Object Access Protocol (SOAP).

3.1.2. Evaluation

Re-implementing Kieker for .NET would probably be the “cleanest” solution, as no
additional overhead due to—in this case unnecessary—framework inclusion or commu-
nication would influence or even falsify monitoring results. As of today, the Java-based

20

3.2. Bridging Solutions

source code of Kieker consists of about 50 Java classes that use different Java tech-
nologies and frameworks. Mirroring all this functionality in .NET would be a very
time-consuming task. Another severe drawback of this solution would be the redun-
dancy of the two code bases for Kieker (one for the Java platform and one for .NET)
with basically the same functionality. This is the reason why we decided against the
approach of re-implementing Kieker.
Even though extending Kieker to a client/server architecture looks like an appealing

solution, it is questionable whether (1) because of the performance requirements, the
“client” to some extend would become a complete re-implementation of Kieker after all
(at least of the monitoring part), and (2) considering the third option, the implementa-
tion of a .NET-based client, alongside with the modifications to the original Java-based
Kieker, would be worth the effort. As pointed out before, all communication would have
to be implemented and optimized from scratch to allow efficient client/server interac-
tion. Bridging solutions claim to have all that “out-of-the-box”. One advantage of the
development of a Kieker server and the corresponding communication interface would
be the re-usability of such a solution.
The employment of a commercial bridging solution seems to be efficient and relatively

easy to implement, but its performance impact, i.e., the overhead that comes with
bridging technologies, must be evaluated properly. As most of the existing bridges
are commercial, license costs must also be taken into consideration. Because of the
rather efficient impression of this approach, we decided to choose the employment of a
bridging solution for the technical instrumentation of .NET with Kieker. Structurally,
the resulting .NET integration of Kieker can also be considered a “Kieker client”, as we
implement the probes on the target architecture, and all communication is taken care
of by the bridging solution.

3.2. Bridging Solutions

In this section we present three solutions to the .NET/Java interoperability problem. Af-
ter giving a short overview of the considered solutions in Section 3.2.1, namely EZ JCom
[Desiderata Software 2011], J-Integra.NET (J-Integra) [Intrinsyc Software International,
Inc. 2011], and JNBridgePro (JNBridge) [JNBridge LLC. 2011a], we discuss our evalu-
ation in Section 3.2.2.

21

3. .NET Integration of Kieker

3.2.1. Overview of Commercial Bridging Solutions

In general, .NET/Java bridging solutions can be divided into two classes, distinguished
by whether they target the Component Object Model COM interface (classic windows
programming, which is now largely superseded by .NET) or .NET directly.

EZ JCom

EZ JCom is a bridging solution that allows COM components to be called from Java,
and likewise allows Java to be called from COM-aware languages such as the .NET
languages. It provides a user interface for proxy generation and also has 64-bit support,
but not in the evaluation version. There was no intrinsic support for .NET, but as COM
components are accessible in .NET, this would not have been critical.
Aside from its relatively high license costs, the major drawback of EZ JCom was

its lack of documentation and its restricted evaluation version that would randomly
terminate the established bridge connection when utilized.

J-Integra

With J-Integra.NET and J-Integra COM, J-Integra provides two products that seem to
fulfill our requirements. However, we evaluated only J-Integra.NET, as we are interested
in calling Java from the .NET environment.
Like the evaluation version of EZ JCOM, the trial license of J-Integra.NET had the

limitation to perform a shutdown after two hours of continuous use. That was unac-
ceptable for us, as we expected the monitoring sessions of our case study system to be
much longer (which they certainly were).

JNBridge

JNBridge seemed to provide all functionality we needed. It aims directly at .NET/Java
intercommunication, can be integrated into a Kieker build process, and ships with a
complete reference documentation. The proxy generation tool of JNBridge has a user
interface version as well as a command line tool. JNBridge allows different ways of .NET/
Java intercommunication. Figure 3.4 gives an overview of all configurable options. For
more information about .NET/Java intercommunication with JNBridge see Section 3.3.

22

3.2. Bridging Solutions

Figure 3.4.: JNBBridge communication features [JNBridge LLC. 2011a].

23

3. .NET Integration of Kieker

Criteria EZ JCom J-Integra JNBridge
Documentation - +/- +
Actuality - - +
Ease of use +/- +/- +
GUI version + + +
Build integration - + +
Shared memory comm. + - +
Unrestricted evaluation - - +
License costs - - -

Table 3.1.: Comparison of bridging solutions.

3.2.2. Evaluation

Table 3.1 clearly identifies JNBridge as our “weapon of choice” for .NET/Java inter-
operability. After evaluating JNBridge along with the alternatives, the comprehensive
and up-to-date documentation, the comparatively long history of regular software up-
dates, and the ability to support allegedly fast shared memory communication lead to
the decision to employ JNBridge for .NET/Java intercommunication in the context of
our Kieker port.

3.3. .NET Integration with JNBridge

Enabling .NET applications to communicate with a Java system by simply “calling”
Java methods can be done with JNBridge in a straightforward manner. As pointed
out before, the documentation [JNBridge LLC. 2011b] and demos that come with the
distributed installation file give a good overview on how to start, but also have enough
depth to allow more advanced application.
We follow the introduction given in the Evaluation and Quick Start Guide [JNBridge

LLC. 2011c] to present the necessary steps for installation, configuration, and basic
use of JNBridge. The following information should be sufficient for understanding our
implementation of Kieker.NET employing JNBridge. In the remainder of this section,
all given examples cover .NET → Java directed communication (previously referred to as
.NET/Java), i.e., .NET code that calls Java code through the JNBridge communication

24

3.3. .NET Integration with JNBridge

Figure 3.5.: Kieker.NET as a new framework component of Kieker.

mechanism, as this is the only way we employ JNBridge for Kieker.NET. The other
direction (Java → .NET) is also possible, but is not shown here.
Our targeted result is an extension of the existing Kieker architecture, as shown in

Figure 3.5

3.3.1. Download and Installation

To download the latest version of JNBridge, one has to register with a valid email
address at the JNBridge web page1 to obtain a fully functional 30-day trial license and
the download link (more detail on JNBridge licensing, especially for open source projects
such as Kieker, follows in Section 3.3.2).
There are two different usage scenarios when installing JNBridge on a computer:

proxy generation and proxy use. Hence, as for JNBridge version 6.0 (Sept. 2011), either
Development Configuration for proxy generation or Deployment Configuration for proxy
use has to be selected after launching the JNBridge installation file.

Development Configuration is the mode for proxy generation. That means, that the
proxy generation tool JNBProxy will be installed along with the JNBridge runtime
libraries. With this tool, the developer is able to generate the proxy classes that
will be used to “call” methods written in the other programming language(s) and
compiled to the respective bytecode. We used this tool to generate the Kieker-

1http://www.jnbridge.com/downloads.htm

25

http://www.jnbridge.com/downloads.htm

3. .NET Integration of Kieker

JNBridgePro vX.X/
2.0-targeted/

jnbproxy.exe .Proxy generation tool
jnbproxyGui.exe .Proxy generation tool (GUI version)
JNBShare.dll .NET-side
JNBSharedMem.dll .NET-side
RegistrationTool.exe . License registration

jnbcore/
bcel-5.1-jnbridge.jar .Java-side
jnbcore.jar . Java-side
jnbcore_http.properties . Java-side
jnbcore_sharedmem.properties . Java-side
jnbcore_tcp.properties . Java-side

Figure 3.6.: JNBridge installation directory structure (only files we refer to are shown
here).

Proxy.dll proxy library for use in a .NET environment. More on proxy generation
in Section 3.3.3.

Deployment Configuration has to be selected when JNBridge is installed on a com-
puter where .NET or Java applications will be run that make use of the JNBridge
interoperability capabilities. This might be either a client machine for production
use, e.g., a terminal in a supermarket that runs a .NET front-end that communi-
cates with a server located Java back-end, or a workstation where the .NET side
and the Java-side are hosted in parallel on the same computer. In our case, this is
the convenient configuration for monitoring.

Figure 3.6 lists all files referred to in this chapter with their location inside the JNBridge
installation directory.

3.3.2. License Activation

After installing JNBridge, JNBridgePro registration tool (RegistrationTool.exe) has to be
launched to activate a valid license. For evaluation purposes, the 30-day trial-license-key
received via email after registration may be sufficient.
When evaluating JNBridge for an open source project like Kieker, or for use in tem-

porary project or work such as a thesis, a trial-extension-key for up to 6 months or even

26

3.3. .NET Integration with JNBridge

Figure 3.7.: GUI version of JNBProxy.

more can be obtained through contacting the JNBridge sales team. This is how we
managed to work with JNBridge for the past 8 months.

3.3.3. Proxy Generation

JNBProxy, the JNBridge proxy generation tool, is installed with JNBridge when se-
lecting Development Configuration during installation. To generate proxies, the devel-
oper may either launch the GUI version (jnbproxygui.exe) or the command-line version
(jnbproxy.exe) of the tool. Figure 3.7 shows the main view of the GUI version.

• The Environment pane on the left side shows the loaded Java classes. For our
project, the contents of the kieker-1.4.jar Java archive that ships with the Kieker
distribution had been loaded.

• In the middle, the Exposed Proxies pane shows the classes that will be exposed
via the proxy file that will be generated. The exposed classes correspond with the
checkboxes in the Environment pane on the left side. This is how the developer

27

3. .NET Integration of Kieker

Namespace Exposed classes
kieker.common.record AbstractMonitoringRecord

BranchingRecord

CPUUtilizationRecord

CurrentTimeRecord

IMonitoringRecord

MemSwapUsageRecord

OperationExecutionRecord*
ResourceUtilizationRecord

kieker.monitoring.core.configuration Configuration*
kieker.monitoring.core.controller AbstractController

IMonitoringController*
MonitoringController*

kieker.monitoring.core.sampler ISampler

ScheduledSamplerJob

kieker.monitoring.timer ITimeSource*

Table 3.2.: Exposed Kieker classes.

selects the classes to expose. We only exposed classes that are reasonable to use
on the .NET-side (Table 3.2).

• The right pane shows the Signature of a selected class. This provides all necessary
information when selecting the classes to expose.

In Table 3.2 we list the exposed Kieker classes. All classes marked with (*) are actually
used for manual instrumentation or by our Kieker.NET implementation. The other
exposed classes are candidates for future extension of the work of porting the functional
range of Kieker to .NET, e.g., by supporting other types of kieker.common.record for
different monitoring purposes.
After defining what classes to expose, the library with the proxies can be generated

and is then ready to be referenced and used by the target framework, which will be
.NET in our case. As depicted in Figure 3.5, the resulting proxy classes embody a new
Kieker component. Throughout the remainder of this document, we will refer to our
generated proxy library that contains the exposed Kieker classes as KiekerProxy.dll.

28

3.3. .NET Integration with JNBridge

The GUI version of JNBProxy also allows to generate a command-line script (BATCH
file) for integration of proxy generation into a build process. See Listing B.1 for a script
that can be used to generate the Kieker proxy library. For more detail on configuration
and operation of the proxy generation tool see the JNBridge Users’ Guide [JNBridge
LLC. 2011b].

29

4. Dynamic Analysis With Kieker.NET

In this chapter, we present the first part of an extension of the original Kieker framework,
which we call Kieker.NET, for dynamic analysis of .NET applications. In Section 4.1,
we give a detailed introduction on how to configure the monitoring environment for
dynamic analysis with Kieker.NET. Section 4.2 provides instructions on how to fulfill
the minimum requirements for monitoring in .NET (i.e., monitoring probes) are provided
that allow manual instrumentation by mixing monitoring logic with business logic.
Section 4.3 concludes this chapter with the results of a complete monitored run of the

Bookstore sample application employing the techniques we developed so far.

4.1. Monitoring Configuration

4.1.1. Java-Side Configuration

Before using the generated proxy library KiekerProxy.dll in our Bookstore sample applica-
tion, the Java-side, i.e., the computer that hosts the JVM with the exposed Kieker Java
classes loaded, must be properly configured. Starting of the JVM can be configured to
be triggered automatically. Then, whenever a first use of a proxy is made, a JVM with
the corresponding Java classes available is started within the same process the .NET
application is running. This can be configured in a configuration file on the .NET-Side
as shown in Section 4.1.2. Another option is starting the Java-side manually. This adds
another level of control, but is actually necessary if the Java-side resides on a different
machine than the .NET-side.
In any case, the JVM with the exposed classes is started by executing a Java pro-

gram (com.jnbridge.jnbcore.JNBMain) that ships with JNBridge as part of the library
jnbcore.jar. Manual starting of the JVM can be done efficiently by using a batch file.
Listing B.3 shows our start-kieker-jvm.bat batch file that can be used to start the Kieker

31

4. Dynamic Analysis With Kieker.NET

JVM for JNBridge operation. The JVM can also be started programmatically from
within an existing JVM running another Java program.
Configuration of the JVMs communication parameters (essentially the IP adress) must

be done with a properties file. This can be either jnbcore_sharedmem.properties for shared
memory communication, jnbcore_http.properties for HTTP/SOAP communication, or
jnbcore_tcp.properties for communication via TCP/Binary as in our case. Listing B.4
shows our configuration for the Kieker JVM (note that these are the default files that
ship with JNBridge).
Figure 3.6 helps locating the JNBridge-related files when editing the batch file. Analog

to starting of the JVM, its configuration can also be done programmatically.
When the communication settings are properly configured, Kieker itself also has

a kieker.monitoring.properties file that allows different monitoring configurations. As
Kieker.NET basically provides only the .NET-compatible monitoring probes, all con-
figuration entries in that file are still valid and necessary. Aside from basic settings like
the name of the Kieker instance and the hostname (both to appear in the monitoring log
file names), the actual monitoring log writer and different other monitoring parameters
are set up here.

4.1.2. .NET-Side Configuration

On the .NET-side, all that has to be done to access the exposed Java classes is referencing
the generated proxy library, in our case KiekerProxy.dll, together with the appropriate JN-
Bridge runtime library, JNBShare.dll for TCP/IP communication or JNBSharedMem.dll
for shared memory communication. The .NET application that uses the proxy classes
needs some JNBridge-specific configuration entries to be added to its app.config file. This
tells the .NET-side which communication mechanism should be used, the ip or hostname
of the server (i.e., the Java-side), and whether the secure communication via Secure
Sockets Library (SSL) should be used. These settings have to match those configured in
the Java-side’s jnbcore_tcp.properties or jnbcore_http.properties configuration file men-
tioned before when using TCP/Binary or HTTP/SOAP communication, respectively.
Listing B.7 shows a sample app.config file—consisting solely of the JNBridge-related
entries—configured for TCP/Binary communication. Listing B.8 shows the necessary
entries when shared memory communication is used. For this, the correct locations of
Java’s jvm.dll (installed with any version of the Java Runtime Environment (JRE) or

32

4.2. Manual Instrumentation

Figure 4.1.: Class diagram of the instrumented Bookstore sample application.

Java Development Kit (JDK)), as well as the location of JNBridge’s own libraries have
to be configured in the App.config file before execution. If the application does not yet
have a configuration file, the naming scheme is Application1.exe.config for a compiled
application Application1.exe.
Now that our JNBridge .NET/Java interoperability environment is set up, the next

step is the implementation of the manual instrumentation on the .NET-side to allow
monitoring with Kieker.NET.

4.2. Manual Instrumentation

Manual instrumentation with Kieker.NET can be implemented in a straightforward man-
ner and is not much different to the way Kieker allows manual instrumentation of Java
code as shown in Ehmke et al. [2011].
To demonstrate manual instrumentation, we use the C# Bookstore sample applica-

tion, as introduced in Section 2.4. The instrumented classes can be found in the Book-
storeInstrumented sub-folder of our Kieker.NET Visual Studio solution. Figure 4.1 shows
how the bridged MonitoringController is integrated when instrumenting the classes

33

4. Dynamic Analysis With Kieker.NET

Bookstore and CRM. Note that all MonitoringController class members are actually
available on the .NET-side.

4.2.1. Monitoring Probes

Listing 4.1 shows the instrumented Bookstore class. Specifically, we want to monitor the
execution of method calls to Catalog.GetBook(). The parameter of type bool is not
relevant in this context. Instrumentation of CRM is identical.

1. To monitor a method call in this class, first we need a reference to an instance
of the Kieker monitoring controller class MonitoringController. This reference
is obtained in Line 22. The call to the static getInstance() method is actually
our first application of JNBridge. Note that the using directives (Lines 1, 2) also
reference actual Java classes.

2. To monitor the execution time of calls to Catalog.GetBook(), we measure time
before and after the call (Lines 28 and 34, directly surrounding the actual call
in Line 31). Time measurement is also done by calling Kieker getTime() Java
methods through JNBridge.

3. After that, we create a new OperationExecutionRecord with our time measure-
ments and the name of the monitored method (Lines 37, 38) and hand it over to
our MonitoringController (Line 42).

Validating and all further handling and storing of monitored data is done on the Java-
side by Kieker and does not need to be changed.

4.2.2. Monitoring Preliminaries

For runtime monitoring of the Bookstore sample application, we just need to build the
Bookstore project with the instrumented Bookstore class shown above, and run its
executable BookstoreInstrumented.exe.
It is important that the Kieker JVM is running on the Java-side before executing the

instrumented application if TCP/Binary or HTTP/SOAP communication is chosen. As
the .NET-side runtime library of JNBridge needs access to the JVM as soon as any

34

4.2. Manual Instrumentation

1 using kieker.common.record; // Bridged Java class.
2 using kieker.monitoring.core.controller; // Bridged Java class.
3
4 public class Bookstore
5 {
6 private readonly Catalog _catalog;
7 private readonly Crm _crm;
8
9 // Private field that holds a reference to Java -based
10 // MonitoringController.
11 private readonly IMonitoringController _monitoringController;
12
13 public Bookstore ()
14 {
15 _catalog = new Catalog ();
16 _crm = new Crm(_catalog);
17
18 // Retrieving a reference to Java -based MonitoringController
19 // by calling a static Java method.
20 _monitoringController = MonitoringController.getInstance ();
21 }
22
23 public void SearchBook ()
24 {
25 // Measure time before method call.
26 var tin = _monitoringController.getTimeSource ().getTime ();
27
28 // Actual method call to be monitored.
29 _catalog.GetBook(true);
30
31 // Measure time when method returns.
32 var tout = _monitoringController.getTimeSource ().getTime ();
33
34 // Create a new OperationExecutionRecord with monitored data.
35 var e = new OperationExecutionRecord(
36 typeof (Catalog).FullName , "GetBook ()", tin , tout);
37
38 // Pass the new record to MonitoringController for further
39 // processing.
40 _monitoringController.newMonitoringRecord(e);
41 _crm.GetOffers ();
42 }
43 }
44 }

Listing 4.1: Instrumented Bookstore class.

35

4. Dynamic Analysis With Kieker.NET

Figure 4.2.: Monitored execution of instrumented Bookstore sample application.

bridged type is accessed, the monitored application will throw a TypeInitialization-

Exeption caused by JNBridge on startup otherwise. When using shared memory com-
munication, the Kieker JVM is started by the monitored process itself.

4.3. Monitoring of the Bookstore Sample Application

The following Sections show the console output of both a monitored execution of our
instrumented Bookstore sample application as well as the corresponding Kieker JVM.

4.3.1. .NET-Side

On .NET-side, there is nothing notably different when executing the instrumented ver-
sion of Bookstore. Figure 4.2 shows the console output of one execution of the Bookstore.

4.3.2. Java-Side

As pointed out before, the Kieker JVM has to be started before executing an in-
strumented application (when using TCP/binary communication as in our example).
The state of the running JVM before monitoring is the output in the first four lines
of Figure 4.3. After that, there is only output generated by Kieker itself. Most of
it is printed before monitoring and reflects the actual configuration of the started
MonitoringController.

36

4.3. Monitoring of the Bookstore Sample Application

Figure 4.3.: Kieker JVM console output after instrumented Bookstore sample applica-
tion has been run once.

37

4. Dynamic Analysis With Kieker.NET

Figure 4.4.: Resulting Kieker monitoring log for the instrumented Bookstore sample
application.

4.3.3. Kieker Monitoring Log

After a successful run of the monitored application, in this case the execution of the com-
piled BookstoreInstrumented.exe, the configured Kieker’s AsyncFsWriter wrote a moni-
toring log file to the hard disk of the machine that hosts the Java-side. Figure 4.4 shows
the file that is generated through manual instrumentation as shown in the previous sec-
tions. As expected, Kieker monitored 20 calls to Catalog.GetBook(), where 10 calls are
produced by Bookstore and the other 10 by Crm.
Note that a trace analysis is not possible with this data, as no entries (other than -1)

are there for eoi and ess values [van Hoorn et al. 2009]. This is because we did not keep
track of execution order or execution stack size with our basic manual instrumentation.
An analysis of the involved components or component’s operations is also not promising,
as we kept track of only one single method. A more efficient way of instrumenting the
code is required to allow a deeper analysis of complex applications. The following Chap-
ter introduces much more powerful instruments that will cope with the instrumentation
of even very complex systems easily.

38

5. AOP-Based Monitoring With
Kieker.NET

To allow non-intrusive and efficient instrumentation of .NET applications, Kieker.NET
supports monitoring based on the concepts of aspect-oriented programming (AOP). In
Section 5.1, we give a basic overview of different types of AOP in .NET and present three
different technologies that support AOP for .NET-based applications. The solution we
chose for Kieker.NET is presented in detail in Section 5.2. One challenge when dealing
with AOP is often the way the aspects are actually applied to the code. In Section 5.3,
we show different ways of how Kieker.NET’s main aspect can be applied.

5.1. Aspect-Oriented Programming in .NET

The principles of aspect-oriented programming (AOP) [Kiczales et al. 1997] can be
applied to the .NET languages just as well as to any other object-oriented language.
The core concept of cross-cutting concerns (i.e., aspects) is not language-restricted.
Several AOP frameworks for .NET exist, but they differ significantly in how, when,

and to which targets aspects can be applied (or woven). Kiczales et al. [1997] defined
two different approaches of when the aspects are applied to the code, runtime weaving
and compile-time weaving. For .NET implementations of AOP, the same classification
can be used.

5.1.1. Postsharp

Postsharp [SharpCrafters s.r.o. 2011a] calls itself a static aspect weaver because aspects
developed with Postsharp can only be woven to the targeted code at compile-time (post-
compile-time is also possible). The aspect weaver of Postsharp does this by altering the
application’s CIL code after it had been compiled (Figure 5.1).

39

5. AOP-Based Monitoring With Kieker.NET

VB.NET Code

J# Code

Common Language Infrastructure

C# Code

Common
Intermediate

Language

1001001101001011101010
1011010101110101010110
1010101001011010101111

Compiler

Compiler

Compiler

Common
Language
Runtime

Postsharp

Figure 5.1.: Postsharp’s post-compile-time aspect weaver.

Postsharp provides aspect parent classes and interfaces for most of the common cross-
cutting concerns. Developing an aspect is done by deriving from such a class or im-
plementing an interface and override/implement the aspect advices (i.e., the notifica-
tions when a method is entered and exited for the most common example, Postsharp’s
OnMethodBoundaryAspect).

Programmatically, aspect application can be done by utilizing .NET attributes (the
.NET equivalent of Java annotations). When an aspect is applied to a method, schemat-
ically, the aspect transforms the method at compile-time as shown in Listing 5.1.

For more information on aspect development and application see Section 5.2 and the
Postsharp reference documentation [SharpCrafters s.r.o. 2011b].

5.1.2. Spring.NET

Spring.NET1 is an open source application framework led and sustained by Spring-
Source2, the developers of the popular Spring development framework for Java.

1http://www.springframework.net/
2http://www.springsource.com/

40

http://www.springframework.net/
http://www.springsource.com/

5.1. Aspect-Oriented Programming in .NET

1 void InstrumentedMethod (...)
2 {
3 OnEntry ();
4 try
5 {
6 // Original method body.
7 OnSuccess ();
8 return returnValue;
9 }
10 catch (Exception e)
11 {
12 OnException ();
13 }
14 finally
15 {
16 OnExit ();
17 }
18 }

Listing 5.1: Transformed method after aspect application.

Spring.NET supports AOP through dependency injection for applications that have
been developed with the framework. As opposed to Postsharp, aspect weaving in
Spring.NET is called dynamic because it will be done at runtime.
This always has the advantage that the application the aspect is applied to does not

have to be altered at all, because the aspect can be woven into its bytecode at runtime.
There is one huge disadvantage coming with the AOP implementation of Spring.NET

(aside from the fact that, first of all, a potential monitored application must be a
Spring.NET application), namely the fact that only virtual methods can be targeted
by aspects.

5.1.3. Castle DynamicProxy

Castle DynamicProxy3 is another dynamic AOP implementation for .NET. Compared
to Spring.NET it has the “advantage” that it is not required for an application to be
developed with a certain application framework (other than .NET itself). But it shares
Spring.NET’s drawback of allowing only virtual methods to be targeted by the runtime
aspect weaver. In C#, all methods are per default non-virtual (unlike Java methods).

3http://docs.castleproject.org/

41

http://docs.castleproject.org/

5. AOP-Based Monitoring With Kieker.NET

5.2. Kieker.NET Implementation with Postsharp

The AOP implementation of the Java-based Kieker is based on AspectJ, which supports
both compile-time and runtime weaving. Unfortunately, no equivalent framework exists
for .NET, so we had to decide which way to go with our implementation.
We chose Postsharp for our work, as it is the de facto standard when it comes to

compile-time aspect weaving in a .NET-based environment. Moreover, the limited ap-
plicability of both of the other presented solutions was not acceptable, especially with
the case study system in mind.
Our Postsharp-based implementation of Kieker.NET consists of the C# classes shown

in the class diagram in Figure 5.2. We adopted the namespace from the Java-based
Kieker framework, ported all the code that has to be executed platform-specific, and
finally added new classes to the corresponding contexts. As we wanted to avoid code
redundancies, we only ported code where it was necessary. In the following sections,
we present our implementation in detail and will also comment on the platform-specific
changes that had to be done to the Java-based classes. The complete source code for
the presented classes can be found in Appendix A.2.3.

5.2.1. The OperationExecutionAspect Class

As introduced in Section 5.1.1, Postsharp basically is a post-compiler that weaves aspects
into applications or function libraries by altering their Common Intermediate Language
(CIL) bytecode (see Section 2.3 for an introduction to the concepts of .NET). Our
cross-cutting concern for monitoring is the creation of OperationExecutionRecords at
runtime. We want every instrumented method to have monitoring code—the probes—
executed before and after the method call.
The aspect that contains this code is our class OperationExecutionAspect. Figure 5.2

shows the class diagram with the aspect itself and its base class that is provided by Post-
sharp, alongside with other supporting classes that will be introduced in the following
sections. See Chapter A.2.3 for the complete source code of these classes. We explain
our implementation by describing the (public) methods of our aspect. Note that the
four implemented methods are all inherited or implemented from Postsharp aspect base
classes or interfaces (also shown in Figure 5.2).

42

5.2. Kieker.NET Implementation with Postsharp

Figure 5.2.: Class diagram of all Kieker.NET classes.

43

5. AOP-Based Monitoring With Kieker.NET

CompileTimeInitialize() is used for gathering information about the monitored method
(i.e., its name and parameter types) as well as the declaring type. This can be done
at compile-time (or build-time), so that no use of System.Reflection has to be
made at runtime. As reflection in .NET is done by examination of an assembly’s
meta-data, avoiding such operations at runtime is preferable whenever possible.
Especially when dealing with costly operations like string formatting as in our
case (the methods for that are omitted here), taking advantage of compile-time
initialization is most certainly beneficial for the performance at runtime.

1 public override void CompileTimeInitialize(MethodBase method , ...)
2 {
3 _componentName = FormatType(method.DeclaringType.FullName);
4 _method = FormatMethodName(method.Name)
5 + FormatParameters(method.GetParameters ());
6 }

Listing 5.2: Aspect Compile-time initialization method.

RuntimeInitialize() deals with initialization of the aspect’s references to the Moni-

toringController and the ControlFlowRegistry. This method is executed on
aspect load-time, i.e., when the class that contains the implementation of moni-
tored methods is loaded for the first time. This is due to the fact that our bridged
access to the Java-side Kieker JVM can only be established at runtime. Trying to
initialize bridged types at compile-time results in a TypeInitializationException
in the build process—a very uncommon behavior. In this case, the type of our field
_ctrlInst is such a bridged Java type, accessed through the MonitoringControl-
lerWrapper.

1 public override void RuntimeInitialize(MethodBase method)
2 {
3 _ctrlInst = MonitoringControllerWrapper.MonitoringController;
4 _cfRegistry = ControlFlowRegistry.Instance;
5 }

Listing 5.3: Aspect runtime initialization method.

OnEntry() contains the code that will be executed before the body of the monitored
method is entered. In our case, this is time measurement, the initialization of a
OperationExecutionRecord, and to support tracing, we also manage counter for

44

5.2. Kieker.NET Implementation with Postsharp

execution order and call stack size at this point. To allow concurrency, we have to
initialize the OperationExecutionRecord locally, thus avoiding interference from
possible concurrent calls to the same monitored method. This is only possible
because we can store the collected data in the aspect context for later use.

1 public override void OnEntry(MethodExecutionArgs args)
2 {
3 if (! _ctrlInst.isMonitoringEnabled ()) { return; }
4 OperationExecutionRecord execData = InitExecutionData ();
5 int eoi = 0; // execution order index
6 int ess = 0; // execution stack size
7 if (execData.isEntryPoint)
8 {
9 _cfRegistry.StoreThreadLocalEoi (0);
10 _cfRegistry.StoreThreadLocalEss (1);
11 }
12 else
13 {
14 eoi = _cfRegistry.IncrementAndRecallThreadLocalEoi ();
15 ess = _cfRegistry.RecallAndIncrementThreadLocalEss ();
16 }
17 if ((eoi == -1) || (ess == -1))
18 {
19 _ctrlInst.terminateMonitoring ();
20 }
21 execData.eoi = eoi;
22 execData.ess = ess;
23 // Time when monitored method begins execution.
24 execData.tin = _ctrlInst.getTimeSource ().getTime ();
25 // Store execData for further use in OnExit ().
26 args.MethodExecutionTag = execData;
27 }

Listing 5.4: OperationExecutionAspect’s OnEntry() advice.

OnExit() is executed when the monitored method returns. Here, we measure the time
again, and hand over all data to the (Java-based) MonitoringController.

1 public override void OnExit(MethodExecutionArgs args)
2 {
3 if (! _ctrlInst.isMonitoringEnabled ()) { return; }
4 // Restore execData.
5 OperationExecutionRecord execData = (OperationExecutionRecord)

args.MethodExecutionTag;
6 // Time the monitored method is finished.
7 execData.tout = _ctrlInst.getTimeSource ().getTime ();

45

5. AOP-Based Monitoring With Kieker.NET

8 if (execData.isEntryPoint)
9 {
10 _cfRegistry.UnsetThreadLocalTraceId ();
11 }
12 // Create a new monitoring record with the measured data.
13 _ctrlInst.newMonitoringRecord(execData);
14 if (execData.isEntryPoint)
15 {
16 _cfRegistry.UnsetThreadLocalEoi ();
17 _cfRegistry.UnsetThreadLocalEss ();
18 }
19 else
20 {
21 _cfRegistry.StoreThreadLocalEss(execData.ess);
22 }
23 }

Listing 5.5: OperationExecutionAspect’s OnExit() advice.

Of the four advices of the base aspect OnMethodBoundaryAspect, we only implement
OnEntry() and OnExit(), as we are not interested in exception logging in this context.

5.2.2. The ControlFlowRegistry Class

To support (thread-safe) call tracing, we needed to re-implement the ControlFlowRe-

gistry of Java-based Kieker in C#. The sequence diagram in Figure 5.3 shows the
problem that occurs when using the bridged ControlFlowRegistry. There was no way
to ensure that the ThreadLocal fields of the registry on Java-side are accessed by the
exact threads that initiated the aspect in the first place. Instead, we observed that
aspects were not able to recall their (supposed-to-be thread-local) values they stored in
the registry in previous executions.
The functionality of the methods of our implementation of ControlFlowRegistry—

which are basically accessor and mutator methods for thread-local fields traceId, exe-
cution order index (eoi), and execution stack size (ess)—is mostly unchanged from the
Java version.
Listing A.4 shows the source code of this class. Analog to the Java-based class, we

used the Singleton pattern [Gamma et al. 1995] to ensure that only one instance of the
ControlFlowRegistry exists at a time and all aspects have the same reference to it. This
is important, because we want to store global call traces, and identifying the connection
between data generated by single aspects would be impossible otherwise.

46

5.2. Kieker.NET Implementation with Postsharp

OperationExecutionAspectMonitoredClass

OnEntry()

OnEntry()

UserProcess JNBridge ControlFlowRegistry

set()

IncrementAndRecallThreadLocalEoi()

Get()

MonitoredOperation() Java
classes

StoreThreadLocalEoi()

ThreadLocal ThreadLocal

= ?

MonitoredOperation()

Figure 5.3.: Multithreading problems with bridged ControlFlowRegistry Java class.

For the same reasons, the SessionRegistry class of Java-based Kieker should also
be re-implemented when the functional range of Kieker.NET is extended to support
session-based monitoring.

5.2.3. The MonitoringControllerWrapper Class

As the name suggests, this class is a wrapper for the Java-based MonitoringController

instance which we access via JNBridge. Basically, this would not be necessary, but
we wanted to hook into the ProcessExit event of the monitored application to sent a
terminateMonitoring() signal to the MonitoringController. Aside from providing a
reference to the singleton MonitoringController to our .NET-side, this is all we do here.
Structurally, inheriting from the Java-based MonitoringController and overriding the
shutdown logic would be possible, but the class is final on Java-side, and this also
applies to the .NET-side. See Listing A.3 for the source code of this class.

47

5. AOP-Based Monitoring With Kieker.NET

5.2.4. The OperationExecutionAspectProvider Class

This class, an implementation of Postsharp’s IAspectProvider, can be used to apply
aspects to compiled function libraries (dll) or applications (exe) where no alterations of
source code and no new build is needed. More details on this in Section 5.3.4.

5.3. Aspect Application

Our Postsharp-based implementation of Kieker.NET supports several levels to apply
the aspect, i.e., the Kieker monitoring probe, to an application. Sections 5.3.1, 5.3.2,
and 5.3.3 deal with applications techniques that involve different degrees of changes
to the targeted source code and new build of the targeted application. Additionally,
Section 5.3.4 presents an approach for aspect application to compiled assemblies that
cannot be altered by editing their source code.

5.3.1. Method Level

Aspect application on method level can be considered the common case. This simply
allows instrumentation of a method without mixing monitoring and business logic. List-
ing 5.6 shows how our OperationExecutionAspect can be applied to the Bookstore sam-
ple application’s Catalog.GetBook() method by simply adding the [OperationExecu-

tionAspect] attribute to it.

1 public class Catalog
2 {
3 [OperationExecutionAspect]
4 public void GetBook(bool complexQuery)
5 {
6 Thread.Sleep(complexQuery ? 20 : 2);
7 }
8 }

Listing 5.6: Method-level aspect application.

All calls to Catalog.GetBook() are now monitored. Listing 5.7 shows one entry of
the monitoring log that is generated by Kieker for this instrumentation when running
the Bookstore sample application once.

48

5.3. Aspect Application

1 $1 ;1317074261977377840;1; BookstoreAnnotated.Catalog.GetBook(System.Boolean);N/A
;3242591731706757121;1317074261974127505;1317074261976446825; Felix -PC;0;0

Listing 5.7: Monitoring log entry for instrumented Catalog.GetBook() method.

For the 10 iterations of BookstoreStarter calling Bookstore.SearchBook(), Kieker
created exactly 20 monitoring log entries, all of them much similar to the one shown in
Listing 5.7, with zero values on logged execution order index and execution stack size
(the last two values). This is because the instrumentation of one single method cannot
produce traces as long as no recursion is involved.

5.3.2. Class Level

Class-level aspect application is much similar to method-level application. Here, the
OperationExecutionAspect attribute is added to classes directly. This automatically
applies the aspect to all methods of a class, regardless of their access level modifier.
In our Bookstore sample application, these classes could be Bookstore and Catalog,
which now also should allow us to actually monitor traces (note that this is also possible
with method-level aspect application, even if the effort of applying the aspect would be
higher).

1 [OperationExecutionAspect]
2 public class Bookstore
3 {
4 private readonly Catalog _catalog;
5 private readonly Crm _crm;
6
7 public Bookstore ()
8 {
9 _catalog = new Catalog ();
10 _crm = new Crm(_catalog);
11 }
12
13 public void SearchBook ()
14 {
15 _catalog.GetBook(false);
16 _crm.GetOffers ();
17 }
18 }

Listing 5.8: Class-level aspect application.

49

5. AOP-Based Monitoring With Kieker.NET

Listing 5.8 exemplifies class-level aspect application on the Bookstore class. Adding
the attribute to the class constructor (Bookstore()) and the SearchBook() method
instead of the class would have the exact same effect. For Catalog, the attribute just
can be moved from the GetBook() method to the class declaration.

1 $1 ;1317137637484078573;1; BookstoreAnnotated.Catalog.ctor();N/A
;1837468647967162369;1317137637482419620;1317137637483238505; Felix -PC;1;1

2 $1 ;1317137637485977494;1; BookstoreAnnotated.Bookstore.ctor();N/A
;1837468647967162369;1317137637479510425;1317137637485432545; Felix -PC;0;0

3 $1 ;1317137637494477895;1; BookstoreAnnotated.Catalog.GetBook(System.Boolean);N/A
;1837468647967162370;1317137637492050826;1317137637493944268; Felix -PC;1;1

4 $1 ;1317137637499171323;1; BookstoreAnnotated.Catalog.GetBook(System.Boolean);N/A
;1837468647967162370;1317137637496517801;1317137637498814476; Felix -PC;2;1

5 $1 ;1317137637500195841;1; BookstoreAnnotated.Bookstore.SearchBook ();N/A
;1837468647967162370;1317137637489299418;1317137637499837534; Felix -PC;0;0

6 $1 ;1317137637507210781;1; BookstoreAnnotated.Catalog.GetBook(System.Boolean);N/A
;1837468647967162371;1317137637504758511;1317137637506838594; Felix -PC;1;1

7 $1 ;1317137637511214257;1; BookstoreAnnotated.Catalog.GetBook(System.Boolean);N/A
;1837468647967162371;1317137637509239364;1317137637510848644; Felix -PC;2;1

8 $1 ;1317137637513432038;1; BookstoreAnnotated.Bookstore.SearchBook ();N/A
;1837468647967162371;1317137637502548764;1317137637513064965; Felix -PC;0;0

9 ...

Listing 5.9: Monitoring log entry for class-level attributed Bookstore sample application.

Monitoring the execution of the class-level attributed classes produces the monitoring
log shown in Listing 5.9. This time, the tracing values are zero and non-zero, which
would allow us to consider a first Kieker trace analysis (although the resulting diagrams
would be incomplete, as not all classes (i.e., Crm) are instrumented and therefore not
under observation).

5.3.3. Assembly Level

Attributing all classes of an assembly produces the same result as the one single instruc-
tion shown in Listing 5.10. With this, we apply the aspect to all methods of all classes
contained in the assembly.

1 [assembly: OperationExecutionAspect]

Listing 5.10: Assembly attribute for assembly-level aspect application.

In fact, the [assembly: ...] attribute can be anywhere inside any class of the whole
assembly, but it can be considered good practice to have a dedicated “class" file (in our
case named AspectInfo.cs) added to the other sources that contain the classes that will
be monitored.

50

5.3. Aspect Application

It may be necessary to control to what methods the aspect will actually be applied.
The above example is an unlimited multicast that makes no restrictions, resulting in
the instrumentation of all classes’ methods. Listing 5.11 shows three example assembly
attributes that can be used to manage aspect application.

1 [assembly: OperationExecutionAspect(
2 AttributeTargetTypes = "Bookstore .*")]
3
4 [assembly: OperationExecutionAspect(
5 AttributeExclude = true ,
6 AttributeTargetTypes = "Bookstore.Crm.*")]
7
8 [assembly: OperationExecutionAspect(
9 AttributeExclude = true ,
10 AttributeTargetMembers = "regex:ctor|get_ .*| set_.*")]

Listing 5.11: Assembly attributes for managed assembly-level aspect application.

By specifying the AttributeTargetTypes property of the first attribute, we instruct
Postsharp to apply our aspect to all classes in the Bookstore namespace (for our Book-
store example application, this is analog to the attribute in Listing 5.10). With the
second attribute, we exclude the classes in the Bookstore.Crm namespace—that have
been included before—by specifying the AttributeExclude=true property. The third
attribute removes constructors and accessor and mutator methods from our observation.

Especially the third attribute can be quite valuable when monitoring complex soft-
ware systems where a too coarse grained positioning of monitoring points can lead to
unmanageable amounts of monitoring output (logs), as well as poor performance [van
Hoorn et al. 2009]. For more detail on how to specify aspect target elements, see the
Postsharp reference documentation [SharpCrafters s.r.o. 2011b].

We now finally have a convenient tool that allows comprehensive dynamic analysis
of .NET applications. With assembly-level aspect application, we can target all classes
of an application at once, without having to modify any of the original classes. For
the Bookstore sample application, the operation dependency graph and the sequence
diagram that are shown in the Foundations chapter in Section 2.4 are actually generated
by monitoring the .NET-based Bookstore sample application with assembly-level aspect
application.

51

5. AOP-Based Monitoring With Kieker.NET

5.3.4. Build-Independent Aspect Application

With the help of a new feature in the newest version of Postsharp (version 2.1) and
our OperationExecutionAspectProvider introduced in Section 5.1.1, we can apply the
OperationExecutionAspect also to compiled assemblies, regardless whether targeting
pure function library assemblies (dll) or executables (exe).

1 @ECHO OFF
2 SETLOCAL
3
4 SET POSTSHARP=C:\Program Files (x86)\PostSharp 2.1
5 SET .NET_VERSION =2.0
6 SET ARCHITECTURE=x86
7 SET TARGET_ASSEMBLY=Bookstore.exe
8
9 @"%POSTSHARP%\Release\postsharp.%.NET_VERSION%-%ARCHITECTURE%-cil.exe" "

%TARGET_ASSEMBLY%" /p:AspectProviders=Kieker.Monitoring.Probe.Postsharp
.OperationExecution.OperationExecutionAspectProvider ,Kieker /p:Output=
output\Bookstore.exe

10
11 @COPY /y *.dll .\ Output
12 @PAUSE

Listing 5.12: Batch file to apply a given aspect to an assembly.

Listing 5.12 shows how Postsharp can be utilized for this type of aspect application.
Here, we apply the OperationExectuionAspect to our non-instrumented Bookstore.exe
compiled executable. Afterwards, the now instrumented file will be in a subfolder called
Output, together witch all needed libraries.

1 foreach (MethodInfo targetMethod in type.GetMethods(BindingFlags.Instance
| BindingFlags.Public | BindingFlags.DeclaredOnly))

2 {
3 ...
4 }

Listing 5.13: Configuring the aspect targets programmatically.

The aspect targets can be defined in the OperationExecutionAspectProvider class.
Listing 5.13 shows the line of this class where this can be done programmatically. It
would probably be better to extend the aspect provider, so that the aspect targets can
be defined by an external configuration file, e.g., in XML format.

52

5.3. Aspect Application

Creating a Bookstore.exe.config file as described in Section 4.1.2 with the entries for
JNBridge is all that is needed to monitor execution of Bookstore.exe with Kieker.NET
without the need to have access to the source code.
Any usage of the interface IAspectProvider—that includes our OperationExecution-

AspectProvider—requires a valid Professional license of Postsharp registered on the
computer where the aspect application as described above will be performed.

53

6. Overhead Evaluation

Evaluation of the performance of Kieker.NET is the main concern of this chapter. For
this, we have to quantify the overhead that is induced by Kieker.NET to an application
under observance. We present monitoring overhead analysis with a micro-benchmark,
following van Hoorn et al. [2009], and concentrate on quantitative assessment, more
precisely on quantifying the monitoring overhead that is induced by Kieker.NET.
That Kieker.NET works for small example applications (i.e., that the logged data is

valid and can be analyzed further with Kieker’s analysis tools), has already been shown
in our running examples throughout Chapters 4 and 5.
By measuring and assessing the monitoring overhead and comparing the results with

reference values obtained by runtime analysis of non-instrumented applications, we
present information that may allow to weigh whether monitoring of certain components
is adequate (e.g., complex computation of a mathematical problem that involves a large
sum of iterative steps).
Because of the number of involved frameworks and utilities (Postsharp, JNBridge,

Java), we expect several different causes of overhead with their diverse performance (i.e,
response time) impacts. We try to break down and identify these causes in Section 6.1.
A convenient experiment design that allows us to distinguish and quantify all involved
causes for overhead is introduced in Section 6.2. Finally, we present the results of our
analysis in Section 6.3.

6.1. Causes of Overhead

When the decisions to employ the different frameworks for Kieker.NET were made, their
impact on the pure performance was not the main deciding factor. As we described in
Sections 3.1 and 5.1, it was more the practicality and technical maturity of the solutions
that abetted their employment.

55

6. Overhead Evaluation

The overhead caused by the original Java-based Kieker was thoroughly evaluated
and analyzed by van Hoorn et al. [2009]. Here, we need to focus on the .NET-related
technologies, namely Postsharp and JNBridge. Especially JNBridge is expected to have
a significant impact on performance.
However, as we evaluate Kieker.NET as a whole, we have to be aware of the different

causes for the expected overhead. With this in mind, the more fine-grained our observa-
tions can be, the better. Hence, the goal for our experimental setting(s) must be finding
a way to distinguish each source of overhead individually. Possible causes of overhead
are:

.NET Framework itself is supposedly a cause for overhead, given its application vir-
tual machine approach as opposed to native compiled code (e.g., compiled C or
COBOL applications). For two reasons we are not going to incorporate this into
our performance analysis at all. First, the native Java Kieker runs in a comparable
Java environment as well, so there is not point in considering .NET as a cause of
overhead. And second, all applications that can potentially be monitored with
Kieker.NET are affected by a possible overhead themselves.

Postsharp is potentially the first cause of overhead that is directly related to our tech-
nological choices when implementing Kieker.NET. Here, we have to assess the
overhead that comes with the employment of AOP. The aspect class of Postsharp
we chose for Kieker.NET places code (i.e., advices) on a methods boundary. To
what extend the performance impact of this is linear to the amount of instructions
added is to be analyzed.

JNBridge with its .NET/Java intercommunication features is expected to account for
the biggest part of Kieker.NET’s monitoring overhead. According to the JNBridge
user guide, it is also crucial which communication mechanism is used, as shared
memory is supposed to be much faster than the other two alternatives TCP/binary
and HTTP/SOAP. We will try to verify this by using both in our experiments.

Java-side Kieker is somewhat directly related to JNBridge. Without the class loader of
JNBridge, there would be no active Kieker instance. And analyzing the (communi-
cation) overhead of JNBridge without the respective Java classes to communicate
with would not make any sense. There is, of course, a certain amount of monitor-
ing to be expected from the Java classes, because—after all—their methods are

56

6.2. Experiment Design

called via JNBridge. Quantifying this very amount is most probably outside of the
focus of this analysis, as it would require additional alterations to the Java classes,
which is not envisioned.

Our Experiment design to be introduced in the next section attempts to take all different
causes of monitoring overhead into account by introducing a staged design.

6.2. Experiment Design
All experiments presented in this chapter are performed on an up-to-date workstation,
powered by an Intel Xeon W3530 quad-core processor running at 2.8 GHz, with 12
GB DDR3 memory, and an Intel 510 series solid-state drive. The operating system is
Microsoft Windows 7 Professional 64-bit. The micro-benchmark is a Microsoft .NET
3.5 project, using Postsharp version 2.1.3.3 and JNBridgePro version 5.1. The Java-side
(Kieker 1.4-dev-SNAPSHOT) is hosted by a version 1.6.0_24-b07 JVM.

6.2.1. Benchmark

The benchmark is a .NET 3.5 console application. An excerpt with the part where the
actual method call of the monitored method is made is shown in Listing 6.1.

1 #region Benchmark
2
3 var monitoredClass = new MonitoredClass ();
4 var stopWatchSingle = new Stopwatch ();
5
6 for (var i = 0; i < TotalOperationCalls; i++)
7 {
8 stopWatchSingle.Start();
9 monitoredClass.MonitoredOperation(MethodTime);
10 stopWatchSingle.Stop();
11 if (i >= TotalOperationCalls - MonitoredOperationCalls)
12 {
13 ResponseTimes.Add(stopWatchSingle.Elapsed.TotalMilliseconds);
14 }
15 stopWatchSingle.Reset();
16 }
17
18 #endregion

Listing 6.1: Performance analysis benchmark (excerpt).

57

6. Overhead Evaluation

Listing 6.2 shows the MonitoredClass with its single MonitoredOperation(). We
tried to keep the non-instrumented execution time of the monitored method as close
as possible to the reference value given by the parameter methodTime (we chose 100
microseconds). To achieve this, we also utilized the .NET Stopwatch class, the same
class used for the actual response time measurement as shown before.

1 class MonitoredClass
2 {
3 readonly Stopwatch _stopWatch = new Stopwatch ();
4
5 [OperationExecutionAspect]
6 public void MonitoredOperation(double methodTime)
7 {
8 _stopWatch.Start();
9 while (_stopWatch.Elapsed.TotalMilliseconds < methodTime)
10 {
11 }
12 _stopWatch.Reset();
13 }
14 }

Listing 6.2: The monitored class containing the single monitored method with
parameterized (operation) response time.

In one benchmark run, we call MonitoredOperation() exactly 100,000 times and store
each response time in an array after a call returns. To avoid scattered results due to
including the “warm-up phase” in our analysis, we only record the last 10,000 calls
made. Later, we calculate mean, median, and standard deviation values for these 10,000
recorded calls. To verify the results, we complete one “initialization” run and five “live”
runs subsequently for each stage of the benchmark.

6.2.2. Staged Benchmark Execution

The following staged benchmark design is the core of our analysis. We try to incorporate
and distinguish most causes of monitoring overhead by successively enabling the different
technologies and frameworks in the five stages of our experiment design. It follows a
description of the stages and justification for why we think which exact overhead is
triggered and therefore identified in each single stage.

58

6.2. Experiment Design

Stage I: Reference

The first stage is the non-instrumented benchmark application. The results of this stage
are the reference values for all further comparisons. Every additional microsecond needed
by any of the following stages can be considered overhead. The sequence diagram in
Figure 6.1(a) shows this. The reference time for the monitored operation will be denoted
as ∆I in the remainder of this chapter.

MonitoredClassUserProcess

ΔI

MonitoredOperation()

(a) Stage I. Method execution time.

DummyAspectMonitoredClass

OnEntry()

OnExit()

UserProcess

ΔI ΔII

MonitoredOperation()

(b) Stage II. Postsharp overhead.

Figure 6.1.: Stages I and II of the experiment design.

Stage II: Postsharp

In the second stage, the overhead that comes with the employment of Postsharp is ana-
lyzed. For that, the MonitoredOperation() will be “instrumented” with the quasi empty
DummyAspect shown below in Listing 6.3. The OnEntry() and OnExit() methods are not
complete stubs to avoid possible compiler optimizations, but the added instructions can
be considered as non-demanding.
The resulting sequence diagram in Figure 6.1(b) shows the expected overhead ∆II .

As Postsharp is a compile-time aspect weaver, we expect the performance impact of this
stage to be relatively insignificant.

59

6. Overhead Evaluation

1 [Serializable]
2 class DummyAspect : OnMethodBoundaryAspect
3 {
4 private int _x;
5
6 public override void OnEntry(MethodExecutionArgs args)
7 {
8 _x = 1;
9 }
10
11 public override void OnExit(MethodExecutionArgs args)
12 {
13 _x = _x == 1 ? 2 : 1;
14 }
15 }

Listing 6.3: The “empty” dummy aspect.

Stage III: JNBridge/Kieker #1

In this Stage, the OperationExecutionAspect of Kieker.NET is applied to the Moni-

toredOperation(), but for now, Kieker monitoring will be disabled.
A closer look at the OnEntry() and OnExit() methods of the aspect (see Section 5.2)

reveals that in this configuration, the aspect makes exactly one call to the Java-based
MonitoringController before and after execution of MonitoredOperation(), to check
whether Kieker monitoring is enabled. If not, the aspect methods return immediately.
The resulting overhead as depicted in Figure 6.2 is the sum of ∆IIIa and ∆IIIb. As
mentioned before, we will not distinguish between “pure” JNBridge overhead (∆IIIa)
and the resulting Java overhead (∆IIIb), because they clearly belong together.
As JNBridge supports multiple communication mechanisms, it may also be of in-

terest to show how switching from the allegedly fast shared memory mode to TCP/
binary affects the overall performance of Kieker.NET. For that, we include an addi-
tional Stage IIITCP in our analysis.

Stage IV: Kieker #2

Now with Kieker monitoring enabled, the full aspect will be executed on each call to
MonitoredOperation() in this stage. Figure 6.3 shows the combined monitoring over-
head as ∆IV . There is no need for a finer grained classification in this stage, as we

60

6.2. Experiment Design

OperationExecutionAspectMonitoredClass

OnEntry()

OnExit()

UserProcess

ΔI ΔII

MonitoringControllerProxy JNBridge MonitoringController

isMonitoringEnabled()

isMonitoringEnabled()

ΔIIIa ΔIIIb

MonitoredOperation()
Java class

Figure 6.2.: Stage III. Quantification of monitoring overhead induced by JNBridge and
bridged Java-side Kieker monitoring controller (with Kieker monitoring
disabled).

incrementally got to this point and can subtract the previous results to get ∆IV without
∆II and ∆III included if needed.
We set Kieker’s monitoring writer to the DummyWriter class to exclude all possible

hard disk access delay from the observations of this stage. The DummyWriter receives all
data just as, for example, the “regular” AsyncFsWriter, but does nothing further with
it, so no overhead coming from storing the monitoring logs can be expected.

Stage V: HDD Access

All that is left for the final stage is enabling Kieker’s actual monitoring log writer, in
our case the AsyncFsWriter, and see how flushing the monitored data to the Java-
side’s file system impacts the performance of a monitored application. We omit another
sequence diagram for this stage, as it would look exactly like the one of Stage IV shown
in Figure 6.3 without going deeper into the class structure of Java-side Kieker.

61

6. Overhead Evaluation

OperationExecutionAspectMonitoredClass

OnEntry()

OnExit()

UserProcess

ΔI ΔIV

MonitoringControllerProxy JNBridge MonitoringController

* *

*

* *

*

MonitoredOperation()
Java class

Multiple calls
to Java-side

ΔIIIΔII

Figure 6.3.: Stage IV. Quantification of monitoring overhead induced by bridged Java-
side Kieker monitoring classes.

6.3. Experiment Results

After executing one “initialization” and five “live” runs for each stage, we collected
many time measurements concerning the overhead caused by Kieker.NET to a monitored
application.

In the first stage, as expected, the execution time of MonitoredOperation() (∆I)
is about 100 microseconds. Table 6.1 shows the results of the total of six runs with
100,000 (10,000 actually recorded) executions each for Stage I. The measured execution
time is close to the value of 100 microseconds. We suspect the Stopwatch class to be
accountable for the (admittedly very small) difference.

During the following benchmark executions for the Stages II to V, it can be observed
that the results of the initialization and live runs do not significantly deviate from each
other. Therefore, we combine the results of all stages in Table 6.2 and Figure 6.4. We
choose the results of each stage’s third live run, and use those for the calculation of the
∆II to ∆V values, too.

62

6.3. Experiment Results

Run Init 1st 2nd 3rd 4th 5th
Mean 100.1547 100.1686 100.0719 100.1165 100.1086 100.0997

Median 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
Std. dev. 0.0026 0.0035 0.0015 0.0022 0.0021 0.0023

Table 6.1.: Stage I experiment results. Response times (in microseconds) of a single
operation.

100.07

100.12

179.01

242.14

1,526.79

1,563.11

100.00

100.00

175.60

222.00

1,497.50

1,536.20

0 200 400 600 800 1000 1200 1400 1600 1800

I

II

III

III*

IV

V

Execution time (μs)

Mean Median

Figure 6.4.: Micro-benchmark overall performance analysis results (the row marked with
(*) is Stage IIITCP).

Stage I II III IIITCP IV V
Mean 100.0719 100.1212 179.0138 242.1381 1,526.7927 1,563.1077

Median 100.0000 100.0000 175.6000 222.0000 1,497.5000 1,536.2000
Std. dev. 0.0015 0.0019 0.0190 0.0328 0.5134 0.5237

Ratio 1.0000 1.0004 1.7888 2.4196 15.2569 15.6198

Table 6.2.: Micro-benchmark overall performance analysis results. Results taken from
each stage’s third run. All values in microseconds, ratio values are with
respect to Stage I for each stage.

63

6. Overhead Evaluation

∆ II III IIITCP IV V Σ
Mean 0.0493 78.8926 (142.0169) 1,347.7789 36.3150 1,463.0358

Median 0.0000 75.6000 (122.0000) 1,321.9000 38.7000 1,436.2000

Table 6.3.: Micro-benchmark overhead results. All values in microseconds.

As expected, the overhead induced by Postsharp (∆II) can be considered nonsignif-
icant. As shown in Table 6.3, the application of the DummyAspect produced a mean
execution time increase of only .0493 microseconds. This is most probably the execution
time of the two lines of code in each of the aspect’s methods, alongside with the fact that
the the actual execution of MonitoredOperation is transformed into a try-catch-finally
block statement by Postsharp at compile-time, as shown in our Postsharp introduction
in Section 5.1.1.

The performance impact of applying our OperationExecutionAspect has a different
order of magnitude. For ∆III (the sum of ∆IIIa and ∆IIIb), we calculate a mean value
of 78.8926 microseconds when using JNBridge’s shared memory communication, and for
TCP/binary, the calculated value of ∆IIIT CP

even doubles that with 142.0169 additional
microseconds when compared to the results of Stage II.

This significant increase in execution time is coming from the two calls the aspect
makes (one in OnEntry() and one in OnExit()) to the Java-based MonitoringController

instance through the JNBridge proxy class. On the Java-side, there is definitely no
complex computation involved in checking if Kieker monitoring is enabled (which is not
the case in Stage III).

As our OperationExecutionAspectmakes several calls through JNBridge when Kieker
monitoring is enabled, the results for Stage IV are not surprising after examining the
previous Stage. In Stage IV, we calculated a mean value of 1347.7789 microseconds for
∆IV , which is more than a thousand times the reference execution time of about 100
microseconds.

Compared to the previous stages, the hard disk access “measured” in Stage V is
surprisingly not a major cause of overhead. This is probably due to the rather slow
communication of JNBridge that gives the asynchronous file system writer of Kieker
plenty of time to be started and executed without affecting the performance at all. The
deviation of execution times of the Stages IV and V is also almost identical, which is

64

6.3. Experiment Results

surprising as well, because we expected a greater variability when any hard disk access
is involved.
In summary, the total overhead when monitoring a method’s execution with the Post-

sharp/JNBridge-based Kieker.NET is about 1.5 milliseconds.

65

7. Case Study

Aside from the performance impact that our monitoring framework has on the moni-
tored application, testing and analyzing its robustness and also its practicality is equally
important. For that, HSH Nordbank AG provided us their Nordic Analytics risk as-
sessment system as a case study system. We employed Kieker.NET for comprehensive
dynamic analysis of Nordic Analytics. The results are presented in this case study.
Section 7.1 begins with a short introduction to Nordic Analytics and explains how the

system was used for the analysis. In Section 7.2, we focus on the challenges of finding
the right instrumentation (or monitoring points) to find a adequate balance between
completeness of monitoring data regarding the models to be extracted and the sheer size
and complexity of this data.
In Sections 7.3 and 7.4, we present some of the data we obtained from Nordic Ana-

lytics during several monitoring sessions and instrumented evaluations of prepared risk
assessment Jobs. This includes multiple extracted component and operation dependency
graphs.
To substantiate our results of the overhead analysis with the micro-benchmark in

Chapter 6, we also conducted the same experiment in a comprehensive performance
(macro-)benchmark of Nordic Analytics, presented in Section 7.5.

7.1. Nordic Analytics

Nordic Analytics is a complex, C#-based function library for assessment and risk control
of finance products, developed and actively employed by the German financial institute
HSH Nordbank AG.
With Nordic Analytics, the user can create/modify and then evaluate a set of diverse

(given) Jobs that contain, for example, valuation of interest rate cap and floor options,
Swaptions, TARN, Swaps, or SABR-volatility, employing multiple different financial

67

7. Case Study

Classes 1,657
Abstract Classes 136
Interfaces 218
Enums 234
Enums values 1,313
Value types 27
Properties 4,815
Objects 2,272
Methods 23,920
Total lines of code 390,481
Code lines 245,069
Comment lines 111,651
Empty lines 33,761

Table 7.1.: Code statistics of Nordic Analytics.

models such as Blacksholes, Monte Carlo, etc. This involves complex mathematical
calculations and tree operations.
Nordic Analytics provides an Application Programming Interface (API) and can also

be used either as a function library for Microsoft Excel, where the user can trigger an
evaluation of Job data out of Excel, or as a stand-alone console application that has one
or more Jobs formatted as text files, so called Nordic Analytics Object (NAO) files, as
input. These text files are usually generated with Excel as well.
Nordic Analytics was first released in 2004 and was initially developed in cooperation

with Prof. Dr. Wolfgang Schmidt from HfB - Frankfurt School of Finance &Management,
and is now maintained and further developed by the Financial Engineering department
of HSH Nordbank AG.

7.1.1. Code Statistics

HSH Nordbank AG provided us with some code statistics of the current version (2.0.52)
of Nordic Analytics. Table 7.1 shows those that are relevant to our case study. The
sheer amount of classes and methods is remarkable and—as we will see—introduces
some problems when finding the “right” code instrumentation.

68

7.2. Code Instrumentation

7.1.2. Nordic Analytics Monitoring Environment

As Kieker.NET probes can only be applied by re-building the code of an application (this
is because of the post-compile-time aspect weaver of Postsharp), it was not possible to
continuously monitor Nordic Analytics in its operational “live” environment.
Instead, the application we utilized for our case study is Nordic Analytics Console

Application, which can be used to evaluate prepared Jobs. The Financial Engineering
department of HSH Nordbank AG developed a set of test files (or Nordic Analytics
benchmark), consisting of about 650 Jobs that cover all functionality of Nordic Analyt-
ics. To run this test, one can simply point Nordic Analytics Console Application to the
folder that contains all these 650 test files and execute a full evaluation. Our contri-
bution to the DynaMod project (in which HSH Nordbank AG participates) focuses on
extraction of architectural models, so the monitoring of “artificial” (but probably more
comprehensive) operation was not a drawback for our work at all.
During our first monitoring attempts with the newly developed Kieker.NET, we found

that the sheer amount of calculations and repetitive model evaluations of the benchmark
with 650 Jobs was probably a case of “too much information”. In addition to finding a
convenient instrumentation (i.e., restricting the set of methods that are actually moni-
tored to only the important ones), down-scaling of the benchmark was required.
With the help of Dr. Marcus Steinkamp of HSH Nordbank AG, we managed to narrow

the test down to 29 Jobs that cover many of the important model evaluations and should
lead to feasible architectural models when analyzed.

7.2. Code Instrumentation

One very challenging task was the process of finding the right code instrumentation
(or monitoring points) for Nordic Analytics. As shown in Table 7.1, Nordic Analytics
is a rather complex system, consisting of many components. The monitoring with the
first instrumentation we came up with—after first discussions with the developers of the
system—had to be cancelled after eight days of continuous monitoring and producing
more than 40 GB of monitoring logs. At that moment, only four of the 650 Jobs had been
completed. The resulting assembly component dependency graph we—out of curiosity—
created with Kieker is shown in Figure 7.1. Creating an operation dependency graph or

69

7. Case Study

Figure 7.1.: Nordic Analytics component dependency graph with (close-to) full instru-
mentation, generated with Kieker.TraceAnalysis.

even a call tree was impossible with all tools we tested, because the complexity of the
data caused out-of-memory terminations all the time.
With elaborated aspect multicast attributes and filters (see Listing 7.1), we limited

our instrumentation of Nordic Analytics to 2,863 of the total 23,920 methods, primarily
by trying to avoid instrumentation of accessor and mutator methods, as well as some
“low-level” methods used excessively by some complex calculations.
Together with limiting the number of Jobs executed while monitoring to only 29,

this rather sophisticated set of aspect multicast attributes and filters allowed us to
gather much smaller monitoring logs, and therefore enabled us to finally extract more
meaningful system models than the “negative example” shown in Figure 7.1.

1 // Includes
2
3 [assembly: OperationExecutionAspect(
4 AttributeTargetTypes = "NordicAnalyticsProject.Engine.Analytics .*")]
5 [assembly: OperationExecutionAspect(
6 AttributeTargetTypes = "NordicAnalyticsProject.Engine.Evaluation .*")]
7 [assembly: OperationExecutionAspect(
8 AttributeTargetTypes = "NordicAnalyticsProject.Engine.Job.*")]
9 [assembly: OperationExecutionAspect(
10 AttributeTargetTypes = "NordicAnalyticsProject.Engine.ObjectFactory.

cObjectPool")]

70

7.2. Code Instrumentation

11 [assembly: OperationExecutionAspect(
12 AttributeTargetTypes = "NordicAnalyticsProject.Engine.Result .*")]
13 [assembly: OperationExecutionAspect(
14 AttributeTargetTypes = "NordicAnalyticsProject.Engine.Securities .*")]
15
16 // Excludes
17
18 [assembly: OperationExecutionAspect(
19 AttributePriority = 5,
20 AttributeExclude = true ,
21 AttributeTargetTypes = "NordicAnalyticsProject.Engine.Analytics.

ObjectFunctions .*")]
22 [assembly: OperationExecutionAspect(
23 AttributePriority = 5,
24 AttributeExclude = true ,
25 AttributeTargetTypes = "NordicAnalyticsProject.Engine.Analytics.

cAnalyticsConstructorLog")]
26 [assembly: OperationExecutionAspect(
27 AttributePriority = 5,
28 AttributeExclude = true ,
29 AttributeTargetTypes = "NordicAnalyticsProject.Engine.Evaluation.

PricingModels.AmericanOptionPricingModel .*")]
30 [assembly: OperationExecutionAspect(
31 AttributePriority = 5,
32 AttributeExclude = true ,
33 AttributeTargetTypes = "NordicAnalyticsProject.Engine.Evaluation.

PricingModels.BermudanStyleOptionPricingModel.
NormalShortRateTreeModel .*")]

34 [assembly: OperationExecutionAspect(
35 AttributePriority = 5,
36 AttributeExclude = true ,
37 AttributeTargetTypes = "NordicAnalyticsProject.Engine.Securities.

cCashFlowDescriptionTableFloatFlowDescription")]
38 [assembly: OperationExecutionAspect(
39 AttributePriority = 5,
40 AttributeExclude = true ,
41 AttributeTargetTypes = "NordicAnalyticsProject.Engine.Securities.

cCashFlowDateGrid")]
42
43 // Removing ctors , getters , setters , and NA-intrinsic tracking methods.
44
45 [assembly: OperationExecutionAspect(
46 AttributePriority = 10,
47 AttributeExclude = true ,
48 AttributeTargetMembers = "regex:ctor|get_ .*| set_ .*| TrackUsage .*")]

Listing 7.1: Aspect multicast attributes and filters, leading to 2.836 instrumented
methods of Nordic Analytics.

71

7. Case Study

7.3. Dynamic Analysis of Nordic Analytics

After the optimization of the number and exact locations of monitoring points as de-
scribed before, we were finally able to extract plenty of useful data from Nordic Analytics.
Of the 2,863 methods we instrumented with our OperationExecutionAspect, a total

of 1,087 methods were actually called during the execution of Nordic Analytics Console
Application evaluating the 29 Jobs of the benchmark we prepared.
The full monitored execution resulted in a total of 51 Kieker monitoring log files,

with a combined file size of 357 MB. These monitoring log files contain execution data
of 1,255,467 operations (i.e., method calls), including trace and timing information for
each operation execution.
In Table 7.2, we present some information about each individual Job. This data was

collected not by monitoring a sequential execution of all 29 Jobs, but by starting Nordic
Analytics Console Application for each Job individually. This is why the sum of all
operation executions in Table 7.2 is not exactly equal to 1,255,467 (i.e., the number
we determined out of a single sequential execution of all 29 Jobs in a row as described
above). Obviously, there was a (very small) “infrastructural overhead” included in the
monitoring data when starting each Job individually. On the other hand, the results
show that our instrumentation seems to “avoid” almost all methods that are not directly
related to Job evaluation, which is good, as we can be sure that the monitoring points
we chose cover only the core functionality of Nordic Analytics.

7.4. Architecture-Based Model Extraction

One of the main goals of our work is to provide the means for architecture-based model
extraction of .NET applications. With our implementation of Kieker.NET, we were
able to generate the monitoring log files that allowed comprehensive models of Nordic
Analytics to be created with Kieker’s trace analysis tool Kieker.TraceAnalysis.
We start with a sequence diagram that has been created manually prior to our case

study by a member of the Financial Engineering department of HSH Nordbank AG
(Figure 7.2). It shows the expected internal component dependencies and control flow
for an evaluation of a (rather simple) Swaption valuation with Nordic Analytics.
In Figure 7.3, we show an assembly component dependency graph created out of moni-

toring logs obtained by monitoring evaluation of Job 7, which is also a Swaption valuation

72

7.4. Architecture-Based Model Extraction

Job Operation executions Monitoring log size (MB))
1 6,212 1.46
2 8,139 1.94
3 254,000 60.70
4 62,292 16.20
5 3,973 0.94
6 1,797 0.42
7 1,802 0.43
8 11,573 2.79
9 5,669 1.35
10 4,301 1.00
11 46,105 12.10
12 84,842 26.70
13 4,498 1.05
14 10,598 3.59
15 9,332 3.00
16 95,785 32.70
17 3,283 0.80
18 230,099 60.60
19 56,966 16.70
20 3,130 0.74
21 3,113 0.73
22 64,053 20.80
23 139,168 45.80
24 44,574 15.70
25 29,930 7.03
26 907 0.29
27 49,540 17.30
28 14,448 3.42
29 5,422 1.27
Σ 1,255,551 357.56

Table 7.2.: Detailed monitored Job statistics.

73

7. Case Study

much like the depicted execution in the manually created sequence diagram. The cor-
responding assembly operation dependency graph and aggregated assembly call tree, also
created with Kieker.TraceAnalysis, are shown in Figures 7.4 and 7.5.
Figures 7.6 and 7.7 then present the extracted models of the evaluation of two more

complex Jobs (5 and 29), involving Constant Maturity Swaps (CMS) and utilization of
static replication models by Hagan.
Finally, Figure 7.8 shows the combined result of our refined instrumentation, the

assembly component dependency diagram of the evaluation of all 29 Jobs of the bench-
mark. Opposed to the “negative example” shown in Figure 7.1, this graph actually
could (and probably will) be a valuable source of information when used in architectural
analysis of Nordic Analytics.
All following models except Figure 7.2 are vector graphics that allow seamless zooming

when viewed in digital format.

74

7.4. Architecture-Based Model Extraction

Figure 7.2.: Nordic Analytics components involved in a (rather simple) Swaption valu-
ation. The Sequence diagram was manually created prior to our case study
by a member of the Financial Engineering department of HSH Nordbank
AG.

75

7. Case Study

$
<

<
as

se
m

bl
y

co
m

po
ne

nt
>

>
@

1:
..c

A
na

ly
tic

s
7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
6:

..c
S

in
gl

eO
pt

io
nS

ec
ur

ity

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

:..
cJ

ob
O

bj
ec

t

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
2:

..c
V

aR
M

et
ho

dF
ac

to
ry

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
3:

..c
A

cc
ru

al
C

on
ve

nt
io

n

13
43

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
4:

..c
O

bj
ec

tP
oo

l

22

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
8:

..c
S

ec
ur

ity
F

ac
to

ry
1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
9:

..c
M

od
el

T
yp

e
5

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

:..
cM

od
el

P
ar

am
et

er
s

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

:..
cM

od
el

D
es

cr
ip

tio
n

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

:..
cJ

ob
D

es
cr

ip
to

r

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

:..
cE

va
lu

at
io

nO
bj

ec
ts

8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

:..
cJ

ob

7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
5:

..c
S

ec
ur

ity

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
7:

..c
S

w
ap

tio
n

1

11 1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

:..
cS

ec
ur

ity
D

ep
en

de
nc

y
3

3

64

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

:..
cV

al
ua

tio
nD

at
eF

in
de

r

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
25

:..
cV

al
ua

tio
nC

on
tr

ol
1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
26

:..
cI

m
pl

ic
itC

al
ib

ra
tio

n

3

68

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

:..
cT

yp
eF

ilt
er

10

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

:..
cP

ric
in

g

31

1

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
24

:..
cS

w
ap

tio
nP

ric
in

gM
od

el
2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
20

:..
cS

w
ap

tio
nP

ric
in

gA
na

ly
tic

51
2

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
21

:..
cP

la
in

S
w

ap
D

at
eG

rid
1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
22

:..
cP

la
in

S
w

ap
P

ric
in

g

2

25

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
23

:..
cS

w
ap

tio
nP

ric
in

gR
es

ul
t

2 1

1

1

2

7

Figure 7.3.: Assembly component dependency graph of the monitored execution of
Nordic Analytics evaluating a Swaption valuation using a Blackscholes
model (Job 7).

76

7.4. Architecture-Based Model Extraction

<<assembly component>>
@26:..cImplicitCalibration

<<assembly component>>
@25:..cValuationControl

<<assembly component>>
@24:..cSwaptionPricingModel

<<assembly component>>
@23:..cSwaptionPricingResult

<<assembly component>>
@22:..cPlainSwapPricing

<<assembly component>>
@21:..cPlainSwapDateGrid

<<assembly component>>
@20:..cSwaptionPricingAnalytic

<<assembly component>>
@19:..cPricing

<<assembly component>>
@18:..cValuationDateFinder

<<assembly component>>
@17:..cSecurityDependency

<<assembly component>>
@16:..cTypeFilter

<<assembly component>>
@15:..cJobObject

<<assembly component>>
@14:..cJob

<<assembly component>>
@13:..cEvaluationObjects

<<assembly component>>
@12:..cJobDescriptor

<<assembly component>>
@11:..cModelDescription

<<assembly component>>
@10:..cModelParameters

<<assembly component>>
@9:..cModelType

<<assembly component>>
@8:..cSecurityFactory

<<assembly component>>
@7:..cSwaption

<<assembly component>>
@6:..cSingleOptionSecurity

<<assembly component>>
@5:..cSecurity

<<assembly component>>
@4:..cObjectPool

<<assembly component>>
@3:..cAccrualConvention

<<assembly component>>
@2:..cVaRMethodFactory

<<assembly component>>
@1:..cAnalytics

IsCalibrated(..)

Evaluate(..)

InitializeLMMPricing(..)

1

InitializeCommodityMCPricing(..)

1

InitializeIndexMCPricing(..)1

IsHistoricalSecurity(..)

1

IsShortRateMC(..)

1

CreateSwaptionPricing(..)

1

Price(..)

1

JobPartObjects(..)

2

SetJobPart(..)

1

GetHashCode()

1

Price(..)

PriceSwaption(..)

1

SetResultProperties(..)1

GetSpecificMarketData(..)

1

PriceSwaption(..)

1

GetPricingResult(..) AddResultProperty(..)11

AddResultProperty(..)

1

FairRate(..)

PriceFloatLeg(..)

1
PriceFixLeg(..)1

PriceFloatCF(..)10

PriceFixCF(..)10

BuildDateGrids(..) GetAdditionalDays(..)25

GetVolatility(..)1

GetObject(..)

3

GetObject(..)

1

PriceSwaption(..)1

1

1

1

GetBlackScholesOptionType(..)

1
GetSwaptionValueEvaluationType(..)1

StoreAdditionalPricingResults(..)

1

GetSwapTenor()
2

GetSwapTenorTime()

1

5

GetEndDate()1

Price(..)
1

AddIPricingResults(..)

1

1

1

1

1

2

1

GetValuationDate()

GetObject(..)

GetDependencies()

ReplaceDependence()

Accept(..)

Objects(..)

10

Objects(..)

29

GetObjects(..)
GetObjects(..)3

35

ReplaceDependence(..)
ReplaceDependence(..)1

GetUseUsageTracking(..)

InitializeMarketDataUsageTracking()

9

InitializeObjectTracking(..)

9

InitializeUsageTracking()

9

1

9

1

InitializeTemplateObjects()

SetStoreLossDistributions()

InitializePartialJobs(..)

10

Evaluate()

1

1

1

1

1

1

BuildNotBuiltDefaultCurves()

1

ToString()1

ClearIntermediateObjects()

1

MarketDataUsageCheck()

1

1

3
21

SetObjectAndCheckImpliedCalibration(..)2

2

3

9

FindCollections(..)

SetCollectionObjects(..)

GetObjectSignatures(..)

CheckObjectsAreUnique(..)

InitializeObjects()

CopyOrId(..)

ReplaceDependenceByObjectSignature()

1

1

1

1

GetObjects()4

GetDependencyHandle()

1

ReadObjectsTable(..) ReadObjectsTable(..)1

ReadObjects(..)
1

ProveOfUniqueObjects(..)

1

CheckNumberOfObjects(..)

2

ReadScenarioTable(..)

InitMembersWithCorrespondingNullValues()

Initialize(..)

ReadMethodAssetClassSpecification(..)

GetDefaultIRSubModelType(..)

InitializeMethodAssetClassSpecification()

ReadAnalyticMethodsTable(..)

CreateInstance(..)

ReadDescriptionTableProperties(..)

1

ReadCurrencyProperty(..)

1

GetUnderlyingCashRateIndex()1

ReadDescriptionTableProperties(..)

1

GetCreditNames()

Insert(..) OnInsertObject(..)7

OnClearPool()

Create(..)

GetVersionNumber()

GetCompilationDate()

SetContactMessage()

ReadObjectsFromFile(..) CreateObject(..)6

CreateObject(..)
6

CreateObjectPreProcessing(..)6

CreateObject(..)

6

1

1

1

1

1

1

1

1

1

1343

2

CreateObjectPostProcessing(..)

6

6

EvaluateJob(..)

1

1

1

1

1

1

1

1

1

1

1

1

3

1

1

WriteLogInfo(..)
1

WriteLogInfo(..)
1

WriteObjectsToFile(..) GetOutConverter(..)1

ClearPools()

15

$

1

1

1

1

1

1

1

1

1

Figure 7.4.: Assembly operation dependency graph of a monitored execution of Nordic
Analytics evaluating a Swation valuation utilizing a Blackscholes model
(Job 7).

77

7. Case Study

$

@
1:
..c
A
na
ly
tic
s

.G
et
V
er
si
on
N
um
be
r(
)

1

@
1:
..c
A
na
ly
tic
s

.G
et
C
om
pi
la
tio
nD
at
e(
)

1

@
1:
..c
A
na
ly
tic
s

.S
et
C
on
ta
ct
M
es
sa
ge
()

1

@
1:
..c
A
na
ly
tic
s

.R
ea
dO
bj
ec
ts
F
ro
m
F
ile
(.
.)

1

@
1:
..c
A
na
ly
tic
s

.E
va
lu
at
eJ
ob
(.
.)

1

@
6:
..c
S
in
gl
eO
pt
io
nS
ec
ur
ity

.G
et
C
re
di
tN
am
es
()

1

@
15
:..
cJ
ob
O
bj
ec
t

.G
et
O
bj
ec
ts
(.
.)

1

@
1:
..c
A
na
ly
tic
s

.W
rit
eO
bj
ec
ts
T
oF
ile
(.
.)

1

@
1:
..c
A
na
ly
tic
s

.C
le
ar
P
oo
ls
()

1

@
1:
..c
A
na
ly
tic
s

.C
re
at
eO
bj
ec
t(
..)

6

@
1:
..c
A
na
ly
tic
s

.C
re
at
eO
bj
ec
t(
..)

6

@
1:
..c
A
na
ly
tic
s

.C
re
at
eO
bj
ec
tP
re
P
ro
ce
ss
in
g(
..)

6

@
1:
..c
A
na
ly
tic
s

.C
re
at
eO
bj
ec
t(
..)

6

@
2:
..c
V
aR
M
et
ho
dF
ac
to
ry

.C
re
at
e(
..)

2

@
3:
..c
A
cc
ru
al
C
on
ve
nt
io
n

.G
et
A
dd
iti
on
al
D
ay
s(
..)

13
43

@
1:
..c
A
na
ly
tic
s

.C
re
at
eO
bj
ec
tP
os
tP
ro
ce
ss
in
g(
..)

6

@
8:
..c
S
ec
ur
ity
F
ac
to
ry

.C
re
at
eI
ns
ta
nc
e(
..)

1

@
9:
..c
M
od
el
T
yp
e

.R
ea
dM

et
ho
dA
ss
et
C
la
ss
S
pe
ci
fic
at
io
n(
..)

1

@
9:
..c
M
od
el
T
yp
e

.G
et
D
ef
au
ltI
R
S
ub
M
od
el
T
yp
e(
..)

1

@
9:
..c
M
od
el
T
yp
e

.I
ni
tia
liz
eM
et
ho
dA
ss
et
C
la
ss
S
pe
ci
fic
at
io
n(
)

1

@
9:
..c
M
od
el
T
yp
e

.R
ea
dA
na
ly
tic
M
et
ho
ds
T
ab
le
(.
.)

1

@
10
:..
cM

od
el
P
ar
am
et
er
s

.I
ni
tM
em
be
rs
W
ith
C
or
re
sp
on
di
ng
N
ul
lV
al
ue
s(
)

1

@
10
:..
cM

od
el
P
ar
am
et
er
s

.I
ni
tia
liz
e(
..)

1

@
11
:..
cM

od
el
D
es
cr
ip
tio
n

.R
ea
dS
ce
na
rio
T
ab
le
(.
.)

1

@
12
:..
cJ
ob
D
es
cr
ip
to
r

.R
ea
dO
bj
ec
ts
T
ab
le
(.
.)

1

@
4:
..c
O
bj
ec
tP
oo
l

.I
ns
er
t(
..)

6

@
4:
..c
O
bj
ec
tP
oo
l

.O
nI
ns
er
tO
bj
ec
t(
..)

6

@
5:
..c
S
ec
ur
ity

.R
ea
dC
ur
re
nc
yP
ro
pe
rt
y(
..)

1

@
7:
..c
S
w
ap
tio
n

.R
ea
dD
es
cr
ip
tio
nT
ab
le
P
ro
pe
rt
ie
s(
..)

1

@
6:
..c
S
in
gl
eO
pt
io
nS
ec
ur
ity

.R
ea
dD
es
cr
ip
tio
nT
ab
le
P
ro
pe
rt
ie
s(
..)

1

@
7:
..c
S
w
ap
tio
n

.G
et
U
nd
er
ly
in
gC
as
hR
at
eI
nd
ex
()

1

@
12
:..
cJ
ob
D
es
cr
ip
to
r

.R
ea
dO
bj
ec
ts
T
ab
le
(.
.)

1

@
12
:..
cJ
ob
D
es
cr
ip
to
r

.R
ea
dO
bj
ec
ts
(.
.)

1

@
12
:..
cJ
ob
D
es
cr
ip
to
r

.P
ro
ve
O
fU
ni
qu
eO
bj
ec
ts
(.
.)

1

@
12
:..
cJ
ob
D
es
cr
ip
to
r

.C
he
ck
N
um
be
rO
fO
bj
ec
ts
(.
.)

2

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.F
in
dC
ol
le
ct
io
ns
(.
.)

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.S
et
C
ol
le
ct
io
nO
bj
ec
ts
(.
.)

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.G
et
O
bj
ec
tS
ig
na
tu
re
s(
..)

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.C
he
ck
O
bj
ec
ts
A
re
U
ni
qu
e(
..)

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.I
ni
tia
liz
eO
bj
ec
ts
()

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.C
op
yO
rI
d(
..)

3

@
9:
..c
M
od
el
T
yp
e

.I
ni
tia
liz
eM
et
ho
dA
ss
et
C
la
ss
S
pe
ci
fic
at
io
n(
)

1

@
14
:..
cJ
ob

.G
et
U
se
U
sa
ge
T
ra
ck
in
g(
..)

1

@
14
:..
cJ
ob

.I
ni
tia
liz
eM
ar
ke
tD
at
aU
sa
ge
T
ra
ck
in
g(
)

1

@
14
:..
cJ
ob

.I
ni
tia
liz
eU
sa
ge
T
ra
ck
in
g(
)

1

@
14
:..
cJ
ob

.I
ni
tia
liz
eT
em
pl
at
eO
bj
ec
ts
()

1

@
14
:..
cJ
ob

.S
et
S
to
re
L
os
sD
is
tr
ib
ut
io
ns
()

1

@
14
:..
cJ
ob

.I
ni
tia
liz
eP
ar
tia
lJ
ob
s(
..)

1

@
14
:..
cJ
ob

.E
va
lu
at
e(
)

1

@
1:
..c
A
na
ly
tic
s

.W
rit
eL
og
In
fo
(.
.)

1

@
4:
..c
O
bj
ec
tP
oo
l

.I
ns
er
t(
..)

1

@
1:
..c
A
na
ly
tic
s

.W
rit
eL
og
In
fo
(.
.)

1

@
15
:..
cJ
ob
O
bj
ec
t

.O
bj
ec
ts
(.
.)

9

@
14
:..
cJ
ob

.I
ni
tia
liz
eO
bj
ec
tT
ra
ck
in
g(
..)

9

@
15
:..
cJ
ob
O
bj
ec
t

.O
bj
ec
ts
(.
.)

9

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.O
bj
ec
ts
(.
.)

9

@
16
:..
cT
yp
eF
ilt
er

.A
cc
ep
t(
..)

3

@
15
:..
cJ
ob
O
bj
ec
t

.G
et
O
bj
ec
ts
(.
.)

1

@
15
:..
cJ
ob
O
bj
ec
t

.O
bj
ec
ts
(.
.)

9

@
14
:..
cJ
ob

.I
ni
tia
liz
eO
bj
ec
tT
ra
ck
in
g(
..)

9

@
5:
..c
S
ec
ur
ity

.G
et
H
as
hC
od
e(
)

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.G
et
O
bj
ec
ts
(.
.)

1

@
15
:..
cJ
ob
O
bj
ec
t

.O
bj
ec
ts
(.
.)

9

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.O
bj
ec
ts
(.
.)

9

@
16
:..
cT
yp
eF
ilt
er

.A
cc
ep
t(
..)

3

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)

10

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)

10

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.O
bj
ec
ts
(.
.)

10

@
15
:..
cJ
ob
O
bj
ec
t

.O
bj
ec
ts
(.
.)

1

@
15
:..
cJ
ob
O
bj
ec
t

.R
ep
la
ce
D
ep
en
de
nc
e(
..)

1

@
14
:..
cJ
ob

.B
ui
ld
N
ot
B
ui
ltD
ef
au
ltC
ur
ve
s(
)

1

@
15
:..
cJ
ob
O
bj
ec
t

.G
et
O
bj
ec
ts
(.
.)

1

@
14
:..
cJ
ob

.T
oS
tr
in
g(
)

1

@
18
:..
cV
al
ua
tio
nD
at
eF
in
de
r

.G
et
V
al
ua
tio
nD
at
e(
)

1

@
25
:..
cV
al
ua
tio
nC
on
tr
ol

.E
va
lu
at
e(
..)

1

@
14
:..
cJ
ob

.C
le
ar
In
te
rm
ed
ia
te
O
bj
ec
ts
()

1

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)

1

@
14
:..
cJ
ob

.M
ar
ke
tD
at
aU
sa
ge
C
he
ck
()

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.O
bj
ec
ts
(.
.)

1

@
16
:..
cT
yp
eF
ilt
er

.A
cc
ep
t(
..)

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.R
ep
la
ce
D
ep
en
de
nc
e(
..)

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.R
ep
la
ce
D
ep
en
de
nc
eB
yO
bj
ec
tS
ig
na
tu
re
()

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.G
et
O
bj
ec
ts
()

4

@
5:
..c
S
ec
ur
ity

.G
et
D
ep
en
de
nc
yH
an
dl
e(
)

1 @
17
:..
cS
ec
ur
ity
D
ep
en
de
nc
y

.G
et
O
bj
ec
t(
..)

1

@
17
:..
cS
ec
ur
ity
D
ep
en
de
nc
y

.G
et
D
ep
en
de
nc
ie
s(
)

1

@
17
:..
cS
ec
ur
ity
D
ep
en
de
nc
y

.R
ep
la
ce
D
ep
en
de
nc
e(
)

1

@
15
:..
cJ
ob
O
bj
ec
t

.O
bj
ec
ts
(.
.)1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.O
bj
ec
ts
(.
.)

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.G
et
O
bj
ec
ts
(.
.)

1

@
14
:..
cJ
ob

.S
et
Jo
bP
ar
t(
..)

1

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)

2

@
19
:..
cP
ric
in
g

.I
ni
tia
liz
eL
M
M
P
ric
in
g(
..)

1

@
19
:..
cP
ric
in
g

.I
ni
tia
liz
eC
om
m
od
ity
M
C
P
ric
in
g(
..)

1

@
19
:..
cP
ric
in
g

.I
ni
tia
liz
eI
nd
ex
M
C
P
ric
in
g(
..)

1

@
19
:..
cP
ric
in
g

.I
sH
is
to
ric
al
S
ec
ur
ity
(.
.)

1

@
19
:..
cP
ric
in
g

.I
sS
ho
rt
R
at
eM
C
(.
.)

1

@
19
:..
cP
ric
in
g

.C
re
at
eS
w
ap
tio
nP
ric
in
g(
..)

1

@
5:
..c
S
ec
ur
ity

.G
et
H
as
hC
od
e(
)

1

@
19
:..
cP
ric
in
g

.P
ric
e(
..)

1

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)

2

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.O
bj
ec
ts
(.
.)

2

@
7:
..c
S
w
ap
tio
n

.G
et
E
nd
D
at
e(
)

1

@
14
:..
cJ
ob

.S
et
Jo
bP
ar
t(
..)

1

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)

1

@
19
:..
cP
ric
in
g

.P
ric
e(
..)

1

@
5:
..c
S
ec
ur
ity

.G
et
H
as
hC
od
e(
)

1

@
19
:..
cP
ric
in
g

.A
dd
IP
ric
in
gR
es
ul
ts
(.
.)

1

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.O
bj
ec
ts
(.
.)

1

@
5:
..c
S
ec
ur
ity

.G
et
H
as
hC
od
e(
)2

@
24
:..
cS
w
ap
tio
nP
ric
in
gM

od
el

.P
ric
e(
..)

1

@
24
:..
cS
w
ap
tio
nP
ric
in
gM

od
el

.P
ric
eS
w
ap
tio
n(
..)

1

@
20
:..
cS
w
ap
tio
nP
ric
in
gA
na
ly
tic

.G
et
S
pe
ci
fic
M
ar
ke
tD
at
a(
..)

1

@
20
:..
cS
w
ap
tio
nP
ric
in
gA
na
ly
tic

.P
ric
eS
w
ap
tio
n(
..)

1

@
23
:..
cS
w
ap
tio
nP
ric
in
gR
es
ul
t

.S
et
R
es
ul
tP
ro
pe
rt
ie
s(
..)

1

@
14
:..
cJ
ob

.G
et
O
bj
ec
t(
..)

3

@
20
:..
cS
w
ap
tio
nP
ric
in
gA
na
ly
tic

.G
et
V
ol
at
ili
ty
(.
.)

1

@
14
:..
cJ
ob

.G
et
O
bj
ec
t(
..)

3

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)

4

@
14
:..
cJ
ob

.S
et
O
bj
ec
tA
nd
C
he
ck
Im
pl
ie
dC
al
ib
ra
tio
n(
..)

1

@
5:
..c
S
ec
ur
ity

.G
et
H
as
hC
od
e(
)

1

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)

4

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.O
bj
ec
ts
(.
.)

4

@
14
:..
cJ
ob

.G
et
O
bj
ec
t(
..)

1

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)

17

@
14
:..
cJ
ob

.S
et
O
bj
ec
tA
nd
C
he
ck
Im
pl
ie
dC
al
ib
ra
tio
n(
..)

1

@
5:
..c
S
ec
ur
ity

.G
et
H
as
hC
od
e(
)

1

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)

17

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.O
bj
ec
ts
(.
.)

17

@
20
:..
cS
w
ap
tio
nP
ric
in
gA
na
ly
tic

.P
ric
eS
w
ap
tio
n(
..)

1

@
7:
..c
S
w
ap
tio
n

.G
et
S
w
ap
T
en
or
()

2

@
21
:..
cP
la
in
S
w
ap
D
at
eG
rid

.B
ui
ld
D
at
eG
rid
s(
..)

1

@
22
:..
cP
la
in
S
w
ap
P
ric
in
g

.F
ai
rR
at
e(
..)

1

@
22
:..
cP
la
in
S
w
ap
P
ric
in
g

.P
ric
eF
ix
L
eg
(.
.)

1

@
3:
..c
A
cc
ru
al
C
on
ve
nt
io
n

.G
et
A
dd
iti
on
al
D
ay
s(
..)

5

@
20
:..
cS
w
ap
tio
nP
ric
in
gA
na
ly
tic

.G
et
B
la
ck
S
ch
ol
es
O
pt
io
nT
yp
e(
..)

1

@
20
:..
cS
w
ap
tio
nP
ric
in
gA
na
ly
tic

.G
et
S
w
ap
tio
nV
al
ue
E
va
lu
at
io
nT
yp
e(
..)

1

@
6:
..c
S
in
gl
eO
pt
io
nS
ec
ur
ity

.G
et
S
w
ap
T
en
or
T
im
e(
)

1

@
20
:..
cS
w
ap
tio
nP
ric
in
gA
na
ly
tic

.S
to
re
A
dd
iti
on
al
P
ric
in
gR
es
ul
ts
(.
.)

1

@
3:
..c
A
cc
ru
al
C
on
ve
nt
io
n

.G
et
A
dd
iti
on
al
D
ay
s(
..)

25

@
22
:..
cP
la
in
S
w
ap
P
ric
in
g

.P
ric
eF
lo
at
L
eg
(.
.)

1

@
22
:..
cP
la
in
S
w
ap
P
ric
in
g

.P
ric
eF
ix
L
eg
(.
.)

1

@
22
:..
cP
la
in
S
w
ap
P
ric
in
g

.P
ric
eF
lo
at
C
F
(.
.)

10

@
22
:..
cP
la
in
S
w
ap
P
ric
in
g

.P
ric
eF
ix
C
F
(.
.)

5

@
22
:..
cP
la
in
S
w
ap
P
ric
in
g

.P
ric
eF
ix
C
F
(.
.)

5

@
23
:..
cS
w
ap
tio
nP
ric
in
gR
es
ul
t

.A
dd
R
es
ul
tP
ro
pe
rt
y(
..)

11

@
23
:..
cS
w
ap
tio
nP
ric
in
gR
es
ul
t

.A
dd
R
es
ul
tP
ro
pe
rt
y(
..)

1

@
24
:..
cS
w
ap
tio
nP
ric
in
gM

od
el

.G
et
P
ric
in
gR
es
ul
t(
..)

1

@
15
:..
cJ
ob
O
bj
ec
t

.J
ob
P
ar
tO
bj
ec
ts
(.
.)

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.O
bj
ec
ts
(.
.)

1

@
15
:..
cJ
ob
O
bj
ec
t

.O
bj
ec
ts
(.
.)

9

@
26
:..
cI
m
pl
ic
itC
al
ib
ra
tio
n

.I
sC
al
ib
ra
te
d(
..)

3

@
15
:..
cJ
ob
O
bj
ec
t

.O
bj
ec
ts
(.
.)

9

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.O
bj
ec
ts
(.
.)9

@
16
:..
cT
yp
eF
ilt
er

.A
cc
ep
t(
..)

3

@
4:
..c
O
bj
ec
tP
oo
l

.O
nI
ns
er
tO
bj
ec
t(
..)

1

@
13
:..
cE
va
lu
at
io
nO
bj
ec
ts

.G
et
O
bj
ec
ts
(.
.)

1

@
1:
..c
A
na
ly
tic
s

.G
et
O
ut
C
on
ve
rt
er
(.
.)

1

@
4:
..c
O
bj
ec
tP
oo
l

.O
nC
le
ar
P
oo
l()

15

Figure 7.5.: Aggregated assembly call tree of a monitored execution of Nordic Analytics
evaluating a Swation valuation utilizing a Blackscholes model (Job 7).

78

7.4. Architecture-Based Model Extraction

$
<

<
as

se
m

bl
y

co
m

po
ne

nt
>

>
@

1:
..c

A
na

ly
tic

s
7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
6:

..c
S

w
ap

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
33

:..
cJ

ob
O

bj
ec

t

1
<

<
as

se
m

bl
y

co
m

po
ne

nt
>

>
@

2:
..c

O
bj

ec
tP

oo
l

27
<

<
as

se
m

bl
y

co
m

po
ne

nt
>

>
@

3:
..c

V
aR

M
et

ho
dF

ac
to

ry
3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
5:

..c
C

re
di

tB
as

ke
ts

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

:..
cS

cr
ip

tT
ab

le
s

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
25

:..
cS

ec
ur

ity
F

ac
to

ry

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
26

:..
cM

od
el

T
yp

e

5

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
27

:..
cM

od
el

P
ar

am
et

er
s

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
28

:..
cM

od
el

D
es

cr
ip

tio
n

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
29

:..
cJ

ob
D

es
cr

ip
to

r
1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
30

:..
cE

va
lu

at
io

nO
bj

ec
ts

13

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
31

:..
cJ

ob

7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
4:

..c
S

ec
ur

ity

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
7:

..c
L

eg
D

es
cr

ip
to

r

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

:..
cL

eg

32

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

:..
cS

cr
ip

tC
as

hF
lo

w
H

an
dl

er
2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
43

:..
cC

ol
le

ct
or

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
8:

..c
P

ay
of

fD
es

cr
ip

to
r

4

20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
9:

..c
C

re
di

tD
es

cr
ip

to
r

24
24

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

:..
cC

as
hF

lo
w

B
ui

ld
er

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

:..
cC

as
hF

lo
w

10
0

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
22

:..
cC

as
hF

lo
w

S
cr

ip
tG

en
er

at
or

20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
36

:..
cC

he
ck

C
ur

re
nc

y
40

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
37

:..
cC

he
ck

In
de

x

40

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
42

:..
cI

nd
ex

F
ix

in
gD

es
cr

ip
tio

nC
ol

le
ct

or

40

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
47

:..
cL

M
M

P
ric

in
g+

cD
at

es
C

ol
le

ct
or

20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
48

:..
cI

nd
ex

N
am

eC
ol

le
ct

or

20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
56

:..
cC

he
ck

S
cr

ip
tF

un
ct

io
nA

rg
um

en
ts

20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
67

:..
cC

ur
re

nc
yC

ol
le

ct
or

20

20

20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

:..
cA

cc
ru

al
C

on
ve

nt
io

n

20

20

2020

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

:..
cS

cr
ip

tP
ar

am
et

er
s

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

:..
cF

or
m

ul
aB

ui
ld

er

20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

:..
cS

ta
nd

ar
dF

or
m

ul
aB

ui
ld

er

20
20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

:..
cS

cr
ip

tO
pt

io
ns

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
20

:..
cR

ep
la

ce
In

de
xN

am
eB

yF
un

ct
io

n

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
21

:..
cS

cr
ip

t
30 60

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
45

:..
cS

et
In

de
x

40

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
62

:..
cS

et
In

de
xV

al
ue

s

50
0

40

20

402040

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
23

:..
cO

pt
io

nD
es

cr
ip

to
r

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
24

:..
cO

pt
io

nS
w

ap
1

5

1

2

7

41

5

1
<

<
as

se
m

bl
y

co
m

po
ne

nt
>

>
@

34
:..

cS
ec

ur
ity

D
ep

en
de

nc
y

3

2

17
2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
35

:..
cV

al
ua

tio
nD

at
eF

in
de

r

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
75

:..
cV

al
ua

tio
nC

on
tr

ol
1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
76

:..
cI

m
pl

ic
itC

al
ib

ra
tio

n
7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
32

:..
cT

yp
eF

ilt
er

17
7

25

40

20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
38

:..
cL

M
M

P
ric

in
g+

cS
ec

ur
ity

C
he

ck
F

or
L

M
M

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
39

:..
cP

or
tf

ol
io

3

1

2

1

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
40

:..
cL

M
M

P
ric

in
g

10

3

5

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
46

:..
cP

ric
in

gP
ar

am
s

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
49

:..
cL

ib
or

D
at

eG
rid

6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
54

:..
cL

ib
or

S
am

pl
es

F
ac

to
ry

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
41

:..
cS

cr
ip

tI
nd

ex
D

es
cr

ip
to

rF
un

ct
io

n

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
44

:..
cT

er
m

T
re

eF
un

ct
io

nI
nd

ex
25

0

2

40

40 20 20
10 21

20

40

1
13

8

20

20

20

1

20
20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
50

:..
cL

ib
or

S
am

pl
es

59
91

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
52

:..
cS

im
ul

at
io

nP
ar

am
sL

S
F

ac
to

ry
1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
68

:..
cL

ib
or

M
ar

ke
tM

od
el

10

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
51

:..
cS

im
ul

at
io

nP
ar

am
sL

S
L

N
F

ac
to

ry
2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
53

:..
cL

ib
or

S
am

pl
es

L
N

14
39

1

6

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
55

:..
cP

ric
in

g
3

1

1

1 1

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
57

:..
cM

on
te

C
ar

lo
P

ric
in

g

2

10

1

3

8

10
60

25
0

13
9

6

2

4

24

36

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
58

:..
cP

ric
in

gP
ar

am
sS

cr
ip

t

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
59

:..
cS

cr
ip

tP
ric

in
gP

ar
am

sM
C

7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
60

:..
cL

ib
or

S
am

pl
es

N
um

er
ai

re

52

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
61

:..
cC

as
hF

lo
w

T
ot

al
N

am
eC

om
pa

re
r

60
55

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
63

:..
cS

cr
ip

tE
va

lu
at

io
n

14
50

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
64

:..
cS

cr
ip

tC
F

D
et

ai
ls

50
0

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
65

:..
cM

on
te

C
ar

lo
P

ric
in

g+
C

on
st

an
tO

ne
50

0

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
66

:..
cF

lo
w

M
at

rix
50

0

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
70

:..
cF

lo
w

D
et

ai
ls

20
1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
71

:..
cO

cc
ur

en
ce

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
72

:..
cS

cr
ip

tR
es

ul
tG

en
er

at
or

P
ar

am
s

50
2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
73

:..
cS

cr
ip

tR
es

ul
ts

G
en

er
at

or
10

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
74

:..
cP

at
hW

is
eR

es
ul

t

1

2

20

1

1

6

21
0

25
0

25
0

20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
69

:..
cF

lo
w

D
et

ai
ls

R
ow

15
8

19
85

2

10
40

20

2

2

222 30
5

20 20

20

1

1

2

6

Figure 7.6.: Assembly component dependency graph of a monitored execution of Nordic
Analytics evaluating a computationally intensive CMS utilizing a static
replication model by Hagan (Job 29).

79

7. Case Study

<<assembly component>>
@55:..cImplicitCalibration

<<assembly component>>
@54:..cValuationControl

<<assembly component>>
@53:..cSecurityDetailsCFP

<<assembly component>>
@52:..cLegDetailsCFP

<<assembly component>>
@51:..cCashRateVolatilityFinder

<<assembly component>>
@50:..cAccruedInterestCalculator

<<assembly component>>
@49:..cSwapRateVolatilityFinder

<<assembly component>>
@48:..cVolatilityFinder

<<assembly component>>
@47:..cIndexSpreadModel

<<assembly component>>
@46:..cMarketAnalyticModel

<<assembly component>>
@45:..cReplicationModelLRM

<<assembly component>>
@44:..cSetIndex

<<assembly component>>
@43:..cTermTreeFunctionIndex

<<assembly component>>
@42:..cPlainSwapDateGrid

<<assembly component>>
@41:..cPricingParamsCFP

<<assembly component>>
@40:..cPricingParamsCreditLinked

<<assembly component>>
@39:..cPricingParams

<<assembly component>>
@38:..cCollector

<<assembly component>>
@37:..cScriptIndexDescriptorFunction

<<assembly component>>
@36:..cIndexFixingDescriptionCollector

<<assembly component>>
@35:..cCashFlowPricingModel

<<assembly component>>
@34:..cPricing

<<assembly component>>
@33:..cValuationDateFinder

<<assembly component>>
@32:..cSecurityDependency

<<assembly component>>
@31:..cJobObject

<<assembly component>>
@30:..cTypeFilter

<<assembly component>>
@29:..cJob

<<assembly component>>
@28:..cEvaluationObjects

<<assembly component>>
@27:..cJobDescriptor

<<assembly component>>
@26:..cModelDescription

<<assembly component>>
@25:..cModelParameters

<<assembly component>>
@24:..cModelType

<<assembly component>>
@23:..cSecurityFactory

<<assembly component>>
@22:..cCashFlowScriptGenerator

<<assembly component>>
@21:..cScript

<<assembly component>>
@20:..cReplaceIndexNameByFunction

<<assembly component>>
@19:..cScriptOptions

<<assembly component>>
@18:..cStandardFormulaBuilder

<<assembly component>>
@17:..cFormulaBuilder

<<assembly component>>
@16:..cScriptCashFlowHandler

<<assembly component>>
@15:..cScriptParameters

<<assembly component>>
@14:..cScriptTables

<<assembly component>>
@13:..cCashFlow

<<assembly component>>
@12:..cCashFlowBuilder

<<assembly component>>
@11:..cLeg

<<assembly component>>
@10:..cCreditDescriptor

<<assembly component>>
@9:..cPayoffDescriptor

<<assembly component>>
@8:..cLegDescriptor

<<assembly component>>
@7:..cSwap

<<assembly component>>
@6:..cCreditBaskets

<<assembly component>>
@5:..cSecurity

<<assembly component>>
@4:..cAccrualConvention

<<assembly component>>
@3:..cVaRMethodFactory

<<assembly component>>
@2:..cObjectPool

<<assembly component>>
@1:..cAnalytics

IsCalibrated(..)

Evaluate(..)

InitializeSubModels(..)

1

InitializeDelegates(..)

1

InitializePrepareForPricingDelegate()

1

InitializeLMMPricing(..)
1

InitializeCommodityMCPricing(..)

1

InitializeIndexMCPricing(..)

1

IsHistoricalSecurity(..)

1

IsShortRateMC(..)

1

IsCashflowPricing(..)

1

Price(..)

1

JobPartObjects(..)

2

SetJobPart(..)

1

GetHashCode()

1

CompleteSecurityDetails(..)

CompleteSecurityDetailsIfStorePricingDetails(..) isCapOrFloor()2

CompleteSecurityAndModelDependentLegDetailsIfStorePricingDetails()

ModelDependentSecurityDetailsOutput(..)

FillLegDetails(..)

GetFXValue(..)

2

FillLegDetailsIfStorePricingDetails(..)

ModelSpecificLegDetailsOutput(..)

IsForwardCapFloor(..)

2

GetVolatility(..)

GetVolatility(..)

18

GetLMMVolatilityTypes()

18

ReturnVolatility(..)

18

GetObject(..)

36

GetObject(..)

18

Create(..)

36

Accrual(..)

Calculate(..)15

CalcPartialPeriodLength(..)4

IsHistorical(..)

4

GetAdditionalDays(..)

4

AccrualAtSettlement(..) 15

GetVolatility(..) GetBlackVolatilityTypes()10

20

10

10

CreateInstance(..)

GetCcyVolatility(..)

38

GetIdxRefVolatility(..)

38

GetObject(..)

38

38

ForwardRatesWithoutAdjustment(..)

ForwardRate(..)

28

GetCashFlowIndex(..)

14

GetCashFlowIndex2(..)

14

ForwardRates(..)

PrepareForCashflow(..)

14

168

42

42

GetObject(..)

42

84

552

CapletRate(..)

14

FloorletRate(..)
14

FixedIndexRates(..)

1

1

CheckAbilityToHandleLeg(..)

CheckAbilityToHandleCashFlow(..) ForwardRate(..)

196

546

PrepareForPricing(..)

Action(..) FindIndex(..)60

GetObservationAndFixingDates(..)60

GetIndexName(..)

60

GetIndex(..)

BuildDateGrids(..)

10

GetFixIntervals()10

80

300

ResetFlow()

ResetFlow()

18

GetHashCode()

292

GetCashFlowIndexes(..)101

ResetCashFlow()

15

ResetLeg()

2

CollectIndexDescriptions(..)

ApplyToAllFlows(..)

1

GenerateCashFlowIndexes(..)

30

SetIndexesOfIndexTremTreeFunctions(..)1

GetIndexDescriptor(..)

30

74

ForEachFormula(..)

30

202

AddObject()

IsNDef(..)

30

Action(..)

15

Action(..)

30

30

AddObject(..)30

30

30

InitializeDelegatesIRSubModelType(..)1

Price(..)

2

2

1

1

2

2

2

1

1

1

1

Price(..)1

15

2

Price(..)2

GetCashFlowIndexNames()

2

2

15
Price(..)

15

15

15

15

15

PricingCouponCashflow(..)

15

GetDiscountCurve(..)

15

GetForecastCurves(..)

15

15

GetIndexNames()

15

GetCouponPayType(..)

15RateCalculation(..)15

FlowAndPVLetCalculation(..)

15

15

15

IndexSpreadRateCalculation(..)15

15

15

14

14

14

14

1

59

44

GetIndexVolatility(..)

28

15

15

18

10

28

GetEndDate()

1

Price(..)

1 AddIPricingResults(..)

1

1

1

2

1

1

GetValuationDate()

GetObject(..)

GetDependencies()

ReplaceDependence()Objects(..)

Accept(..)

107

Objects(..)

49

GetObjects(..)

GetObjects(..)

3

848
ReplaceDependence(..)

ReplaceDependence(..)

1

GetObject(..)

GetObject(..)

18 18

GetUseUsageTracking(..)

InitializeMarketDataUsageTracking()

9

InitializeObjectTracking(..)9

InitializeUsageTracking()

9

1

9

1

InitializeTemplateObjects()

SetStoreLossDistributions()

InitializePartialJobs(..)

10

Evaluate()
1

1

1

1

1

1

BuildNotBuiltDefaultCurves()
1

ToString()

1
ClearIntermediateObjects()1

MarketDataUsageCheck()

1

1

180

GetInterestCurve(..)

15

150

75

GetIndexDescriptors(..)

30
GetForecastCurve(..)

60

60

GetForecastCurve(..)60 GetInterestCurve(..)60 60

504

SetObjectAndCheckImpliedCalibration(..)70

70

GetObject(..)

42

42

120

2

18

10

9

FindCollections(..)

SetCollectionObjects(..)

GetObjectSignatures(..)

CheckObjectsAreUnique(..)

InitializeObjects()

CopyOrId(..)

ReplaceDependenceByObjectSignature()

1

1

1

1

GetObjects()12

GetDependencyHandle()

1

ReadObjectsTable(..)

ReadObjectsTable(..)
1

ReadObjects(..)

1

ProveOfUniqueObjects(..)

1

CheckNumberOfObjects(..)2

ReadScenarioTable(..)

InitMembersWithCorrespondingNullValues()

Initialize(..)

ReadMethodAssetClassSpecification(..)

GetDefaultIRSubModelType(..)

InitializeMethodAssetClassSpecification()

ReadAnalyticMethodsTable(..)

CreateInstance(..)

ReadScriptParametersTable(..)

1

InitializeScriptText(..)

1

InitializeScriptReferenceObjects(..)

1

ReadScriptVariablesTable(..)

1

ReadScriptIndexDescriptors(..)

1

InitializeRangeAccrual(..)

1

InitializeLegs(..)

1

InitializeMiscellaneousPayments(..)

1

SetScriptsToCashFlows(..)

1

CheckAbilityToBeHandled()

1

CheckConsistency()

1

PostPreparation()

1

GetCreditBasketNamesTable(..)

1

ReadBasketsWithNotional(..)

1

ReadCurrencyProperty(..)

1

Action(..)

30

FillOptionsList()

15

BuildRateFormula()

15

BuildNotionalFormula()

15

GetFormula(..)

15

15

GetCashFlowName(..)

15

390

195

Action(..)195

GenerateRateFormula(..)

15

AddFormula(..)15

15

GenerateCollaredFloaterFormula(..)15 GenerateCollaredFloaterStandardFormula(..)15 GetIndexSpreadIndexExpression(..)15

Function(..)35 Plus(..)

15

Multiply(..)

30

Function(..)

15

15

Multiply(..)
30

20

ToNumberFormatedString(..)
35

5

SetIndexNames(..)

PostProcessing(..)

CalcDayCountFraction(..)

15

CheckAbilityToBeHandled()

SetDefaultValues()

SetDefaultValue(..)
60

CheckConsistency()

CheckNotional()

15

CheckMembersInitialization()

15

CheckStartAndEndDate()

15

CheckFixingAndPaymentDate()

15

CheckDefaultPayType()

15

CheckRangeAccrual()

15

CheckSecondIndex()

15
CheckMultiplierIfIndexSpread()

15
CheckPayoffPart(..)

15
CheckScript()15

CheckCapFloor()

15

CheckConsistency(..)

15

Build()

BuildNothing(..)

8

BuildAccrualStartDate(..)

2

BuildAccrualEndDate(..)

2

BuildPaymentDate(..)

2

BuildFixingDate(..)

2

BuildPerformanceAnchorDate(..)

2

BuildPerformanceResetRequired(..)

2

BuildAveragingStartDate(..)

2

BuildAveragingEndDate(..)

2

BuildNotionalInput(..)

2

BuildNotionalChangeInput(..)

2

BuildCurrency(..)

2

BuildQuantity(..)

2

BuildUnit(..)

2

BuildPayReceive(..)

2

BuildDayCountConvention(..)

2

BuildDiscountReference(..)

2

BuildIndexName(..)

2

BuildIndex2Name(..)

2

BuildIndexNatural(..)

2

BuildPerformanceCoupon(..)

2

BuildScriptName(..)

2

BuildSpread(..)

2

BuildMultiplier(..)

2

BuildMultiplier2(..)

2

BuildConstantRate(..)

2 BuildCouponFloor(..)

2 BuildCouponCap(..)

2 BuildStrikeRate(..)

2 BuildPayoffOption(..)

2
BuildPayoffOptionType(..)2

BuildWidth(..)

2

BuildAveragingType(..)

2

BuildSpreadMethod(..)

2

BuildPayoffRate(..)

2

BuildATMPayoff(..)

2

BuildCouponInput(..)

2

BuildPayCoupon(..)

2

BuildAnnuityInput(..)

2

BuildPayNotionalChange(..)

2

BuildNotionalDiscountReference(..)

2

BuildRedeemNotional(..)

2

BuildDefaultPayType(..)

2

BuildNthCreditBasketEvent(..)

2

BuildPaymentDelayInDefault(..)

2

BuildPayAccrualInDefault(..)

2

BuildPayRecoveryInDefault(..)

2

BuildFixedRecoveryRate(..)

2

BuildLossAttachment(..)

2

BuildLossDetachment(..)

2

BuildAccrualConvention(..)

2

BuildAveragingFixingFrequency(..)

2

BuildCreditName(..)

2

ReadNotionalsFromCreditBaskets(..)

2

BuildRangeAccrual(..)

2

BuildDayCountFraction()

2

CreateInstance(..)

15

GetColumn(..)

2

SetCreditNameAndCreditBasketNames(..)

15

GetNotional(..)

15

2

CalculateDayCountFraction(..)

15

15

BuildAveragingDescriptions(..)

GenerateCashFlowDescriptionTable(..) GetCashFlowDescriptionColumn(..)16

GetCashFlowDescriptionColumn(..)92

GetCashFlowDescriptionColumn(..)

4

PayNotional(..)

4

4

SetCashFlowDescriptors(..)

2

2

InitMembers(..)

15

CheckAbilityToBeHandled()

15

CheckConsistencyAndSetDefaultValues()

15

15

ApplyToAllCashFlows(..)

15

15

15

GetCreditBasketNames(..)

GetNthCreditBasketEvent(..) GetDefaultNthCreditBasketEvent(..)2

RiskyFloatLeg(..)

2

2

15

GetBasketWithNotional(..)

15

CheckScript()

15

CheckNthCreditBasketEvent()

15
CheckOption()

15

CheckOptionType()15

CheckDoubleComponents()

15

InitMembersWithNullValues()

Initialize(..)

2

2

GetLegType(..)
2

RiskyFloatLeg(..)
2

GetStartDate(..)

2

GetDefRollStart(..)
2

GetEndDate(..)2

GetStartDate(..)2

2

GetLegsFromLegsTable(..)

1

GetLegsFromCashflowDescriptionTables(..)1

2

2

2

2

GetLegSpecifyingTables(..)2

2

GetScriptCashFlowRelation(..)1

2

2

1

4

GetCreditNames()

PostProcessing(..)

Insert(..) OnInsertObject(..)15

OnClearPool()

GetVersionNumber()

GetCompilationDate()

SetContactMessage()

ReadObjectsFromFile(..) CreateObject(..)14 CreateObject(..)14 CreateObjectPreProcessing(..)14

CreateObject(..)

14

1

1

1

1

1

1

1

1

1

1352

5

CreateObjectPostProcessing(..)

14

1

1

14

EvaluateJob(..)

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

WriteLogInfo(..)

1

WriteLogInfo(..)1

WriteObjectsToFile(..)

GetOutConverter(..)

1

ClearPools()

15

$

1

1

1

1

1

1

1

1

1

Figure 7.7.: Assembly operation dependency graph of a monitored execution of Nordic
Analytics evaluating another complex CMS, again with a static replication
model by Hagan (Job 5).

80

7.4. Architecture-Based Model Extraction

$
<

<
as

se
m

bl
y

co
m

po
ne

nt
>

>
@

1:
..c

A
na

ly
tic

s
11

9

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
6:

..c
S

w
ap

24

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
32

:..
cJ

ob
O

bj
ec

t

29

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
92

:..
cS

in
gl

eO
pt

io
nS

ec
ur

ity

12

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

6:
..c

In
de

xO
pt

io
n

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
2:

..c
O

bj
ec

tP
oo

l

76
2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
3:

..c
V

aR
M

et
ho

dF
ac

to
ry

10
9

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
5:

..c
C

re
di

tB
as

ke
ts

24

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

:..
cA

cc
ru

al
C

on
ve

nt
io

n

27
09

7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

:..
cS

cr
ip

tT
ab

le
s

24

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
23

:..
cS

ec
ur

ity
F

ac
to

ry

38

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
24

:..
cM

od
el

T
yp

e

15
9

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
25

:..
cM

od
el

P
ar

am
et

er
s

64

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
26

:..
cM

od
el

D
es

cr
ip

tio
n

32

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
27

:..
cJ

ob
D

es
cr

ip
to

r

33

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
28

:..
cE

va
lu

at
io

nO
bj

ec
ts

36
5

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
30

:..
cJ

ob

20
3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
95

:..
cP

la
in

S
w

ap
D

at
eG

rid

48
74

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
96

:..
cP

la
in

S
w

ap
P

ric
in

g

35
26

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

1:
..c

P
la

in
F

ix
L

eg
D

at
eG

rid
D

es
cr

ip
to

r

33
7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

2:
..c

P
la

in
F

lo
at

L
eg

D
at

eG
rid

D
es

cr
ip

to
r

33
7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

9:
..c

R
is

k

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
4:

..c
S

ec
ur

ity

10

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
7:

..c
L

eg
D

es
cr

ip
to

r

82

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

:..
cL

eg

36
5

10

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

:..
cS

cr
ip

tP
ar

am
et

er
s

88

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

:..
cS

cr
ip

tC
as

hF
lo

w
H

an
dl

er

35
7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
21

:..
cS

cr
ip

t

52
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
39

:..
cC

ol
le

ct
or

9

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

3:
..c

P
ay

of
fS

cr
ip

t

60

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
8:

..c
P

ay
of

fD
es

cr
ip

to
r

80

50
4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
9:

..c
C

re
di

tD
es

cr
ip

to
r

58
2

69

65
0

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

:..
cC

as
hF

lo
w

B
ui

ld
er

90

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

:..
cC

as
hF

lo
w

24
89

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
22

:..
cC

as
hF

lo
w

S
cr

ip
tG

en
er

at
or

56
8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
37

:..
cI

nd
ex

F
ix

in
gD

es
cr

ip
tio

nC
ol

le
ct

or

90
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
60

:..
cC

he
ck

C
ur

re
nc

y

21
4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
61

:..
cC

he
ck

In
de

x

14
2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
65

:..
cL

M
M

P
ric

in
g+

cD
at

es
C

ol
le

ct
or

68

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
66

:..
cI

nd
ex

N
am

eC
ol

le
ct

or

17
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
73

:..
cC

he
ck

S
cr

ip
tF

un
ct

io
nA

rg
um

en
ts

10
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
84

:..
cC

ur
re

nc
yC

ol
le

ct
or

31
0

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

4:
..c

S
et

In
fla

tio
nQ

uo
te

s
32

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
20

0:
..c

L
eg

T
yp

eC
he

ck

25

56
8

50
4

56
8

57
2

56
8

56
6

15
6

15
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

:..
cF

or
m

ul
aB

ui
ld

er
49

0

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

:..
cS

ta
nd

ar
dF

or
m

ul
aB

ui
ld

er

61

49
0

16
02

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

:..
cS

cr
ip

tO
pt

io
ns

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
20

:..
cR

ep
la

ce
In

de
xN

am
eB

yF
un

ct
io

n

10 27
66

27
76

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
44

:..
cS

et
In

de
x

32
70

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
79

:..
cS

et
In

de
xV

al
ue

s

79
11

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

4:
..c

In
de

xN
am

eC
ol

le
ct

or
37

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

5:
..c

S
cr

ip
tC

as
hF

lo
w

H
an

dl
er

+
cR

ep
la

ce
In

de
xN

am
eB

yF
un

ct
io

n
84

97

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

6:
..c

P
ar

am
et

er
S

et
te

r

84
97

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

1:
..c

T
er

m
T

re
eF

un
ct

io
nA

vg

6

98
0

49
0

98
0

49
0

98
0

35

48

16
8

9626

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
59

:..
cO

pt
io

nS
w

ap

35

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
93

:..
cS

w
ap

tio
n

11

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

5:
..c

F
X

O
pt

io
n

6

15

51

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
29

:..
cR

el
at

iv
eH

is
to

ric
al

V
aR

M
et

ho
d

27

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
33

:..
cS

ec
ur

ity
D

ep
en

de
nc

y
15

3

2

16
69

33
41

12
98

9

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
34

:..
cV

al
ua

tio
nD

at
eF

in
de

r

32

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
55

:..
cV

al
ua

tio
nC

on
tr

ol

33

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
56

:..
cI

m
pl

ic
itC

al
ib

ra
tio

n

22
7

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

4:
..c

S
A

B
R

C
al

ib
ra

tio
nF

ac
to

ry
+

cI
sC

ub
e

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

1:
..c

F
or

w
ar

dR
at

eC
ur

ve
s+

cI
sF

or
w

ar
dC

ur
ve

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
31

:..
cT

yp
eF

ilt
er

2

13
46

3

24
81

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
35

:..
cP

ric
in

g

90

20

27

27

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
36

:..
cC

as
hF

lo
w

P
ric

in
gM

od
el

21

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
63

:..
cP

or
tf

ol
io

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
64

:..
cL

M
M

P
ric

in
g

8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
74

:..
cM

on
te

C
ar

lo
P

ric
in

g

7

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
98

:..
cS

w
ap

tio
nP

ric
in

gM
od

el

8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

2:
..c

B
er

m
ud

an
S

ty
le

O
pt

io
nP

ric
in

gM
od

el

2

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

0:
..c

In
de

xO
pt

io
nM

od
el

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

2:
..c

In
fla

tio
nP

ric
in

gM
od

el

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

5:
..c

M
ul

tiF
ac

to
rM

C
F

ac
to

ry

1

45

44
3

28
11

16
68

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
40

:..
cP

ric
in

gP
ar

am
s

44

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
41

:..
cP

ric
in

gP
ar

am
sC

re
di

tL
in

ke
d

48
8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
42

:..
cP

ric
in

gP
ar

am
sC

F
P

18
88

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
45

:..
cD

ef
au

ltF
un

ct
io

ns

19
87

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
46

:..
cM

ar
ke

tA
na

ly
tic

M
od

el

15
93

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
47

:..
cA

cc
ru

ed
In

te
re

st
C

al
cu

la
to

r

88
4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
48

:..
cV

ol
at

ili
ty

F
in

de
r

37
5

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
49

:..
cC

as
hR

at
eV

ol
at

ili
ty

F
in

de
r

26
7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
50

:..
cC

on
ve

xi
ty

A
dj

us
tm

en
tM

od
el

66
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
52

:..
cC

re
di

tM
on

te
C

ar
lo

M
od

el

21

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
53

:..
cL

eg
D

et
ai

ls
C

F
P

10
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
54

:..
cS

ec
ur

ity
D

et
ai

ls
C

F
P

10
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
57

:..
cL

in
ea

rR
at

eM
od

el
B

la
ck

86

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
99

:..
cR

ep
lic

at
io

nM
od

el
L

R
M

19
3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

0:
..c

In
de

xS
pr

ea
dM

od
el

12
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

1:
..c

S
w

ap
R

at
eV

ol
at

ili
ty

F
in

de
r

10
8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

2:
..c

R
ep

lic
at

io
nM

od
el

22

4

90
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
38

:..
cS

cr
ip

tI
nd

ex
D

es
cr

ip
to

rF
un

ct
io

n

21
18

15
39 36

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
43

:..
cT

er
m

T
re

eF
un

ct
io

nI
nd

ex

76
23

15
39

18
2

31
9

31

34
64

84
7

95
3

95
3

48
8

10
84

76

25
9

51
2

13
04

21
8

25
70

39
2

10

2

10
9

23
71

28
2

13
0

34
60

9

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
51

:..
cJ

ob
D

at
aS

to
re

42

71

36

96
6

53
4

80
1

80
1

84

32
0

34
6

84

13

2

1

6

1

10

1

21

34

44

34

28

3

37

51

17
5

45

8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

3:
..c

D
ea

lD
at

es

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

1:
..c

C
al

ib
ra

tio
n

16

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

0:
..c

Ja
rr

ow
Y

ild
iri

m
M

od
el

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

2:
..c

Ja
rr

ow
Y

ild
iri

m
M

C
M

od
el

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

3:
..c

In
fla

tio
nJ

ar
ro

w
Y

ild
iri

m
M

C
P

ric
in

g

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

9:
..c

H
is

to
ric

al
V

al
ue

A
tR

is
k

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

1:
..c

T
im

eC
on

su
m

in
gC

al
cu

la
tio

n

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

4:
..c

T
im

eC
on

su
m

in
gC

al
cu

la
tio

nW
ith

ou
tF

or
m

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

0:
..c

C
ou

nt
er

P
ar

ty
R

is
kF

ac
to

ry
2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

1:
..c

C
ou

nt
er

P
ar

ty
R

is
k

2

28

4

6

43

86

46

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
58

:..
cO

pt
io

nD
es

cr
ip

to
r

7

15

14
2

74

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
62

:..
cL

M
M

P
ric

in
g+

cS
ec

ur
ity

C
he

ck
F

or
L

M
M

8

6

2

2

42

34

6

2

10

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
67

:..
cL

ib
or

D
at

eG
rid

12

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
72

:..
cL

ib
or

S
am

pl
es

F
ac

to
ry

2

2

17
6

17
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
68

:..
cL

ib
or

S
am

pl
es

99
17

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
70

:..
cS

im
ul

at
io

nP
ar

am
sL

S
F

ac
to

ry

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
85

:..
cL

ib
or

M
ar

ke
tM

od
el

10

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
69

:..
cS

im
ul

at
io

nP
ar

am
sL

S
L

N
F

ac
to

ry
4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
71

:..
cL

ib
or

S
am

pl
es

L
N

14
39

1

13

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

7:
..c

L
ib

or
S

am
pl

es
R

S
L

N
2

15
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

8:
..c

S
cr

ip
tK

ey
F

un
ct

io
n

25
0

6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

7:
..c

T
er

m
T

re
eF

un
ct

io
nN

am
eO

nl
y

6

4

12

21
22

38

63
8

16

12
0

13
9

18

8

59

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
75

:..
cP

ric
in

gP
ar

am
sS

cr
ip

t

14

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
76

:..
cS

cr
ip

tP
ric

in
gP

ar
am

sM
C

19

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
77

:..
cL

ib
or

S
am

pl
es

N
um

er
ai

re

95

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
78

:..
cC

as
hF

lo
w

T
ot

al
N

am
eC

om
pa

re
r

11
62

5

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
80

:..
cS

cr
ip

tE
va

lu
at

io
n

28
41

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
81

:..
cS

cr
ip

tC
F

D
et

ai
ls

96
8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
82

:..
cM

on
te

C
ar

lo
P

ric
in

g+
C

on
st

an
tO

ne

96
0

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
83

:..
cF

lo
w

M
at

rix

19
10

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
87

:..
cF

lo
w

D
et

ai
ls

26
4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
88

:..
cO

cc
ur

en
ce

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
89

:..
cS

cr
ip

tR
es

ul
tG

en
er

at
or

P
ar

am
s

96
6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
90

:..
cS

cr
ip

tR
es

ul
ts

G
en

er
at

or

29

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
91

:..
cP

at
hW

is
eR

es
ul

t

4

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

7:
..c

Ja
rr

ow
Y

ild
iri

m
M

C
M

od
el

+
cJ

ar
ro

w
Y

ild
iri

m
IR

M
C

12
0

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

8:
..c

Ja
rr

ow
Y

ild
iri

m
N

um
er

ai
re

33

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

6:
..c

C
om

m
od

ity
M

C
P

ric
in

g

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

8:
..c

G
ab

ill
on

S
am

pl
es

10
9

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

9:
..c

In
te

re
st

C
ur

ve
N

um
er

ai
re

5

9

15
2

6

6

6

29
5

45
5942

43
27

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

9:
..c

S
cr

ip
tK

ey
F

un
ct

io
nN

ot
io

na
l

42
8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

0:
..c

S
cr

ip
tK

ey
F

un
ct

io
nR

at
e

10
6

42

31
0

1

3

4

5

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
86

:..
cF

lo
w

D
et

ai
ls

R
ow

20
0

29
27 648

2

10
40

10
3

12

10
62

6

22
56

10
3

98

10
6

2

3

1 12

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

2:
..c

C
al

ib
ra

tio
nI

m
pl

em
en

ta
tio

n

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

8:
..c

S
w

ap
tio

nC
ol

le
ct

io
nC

al
ib

ra
tio

n

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

9:
..c

C
al

ib
ra

tio
nP

ar
am

s

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
20

1:
..c

C
al

ib
ra

tio
nP

ar
am

sA
T

M
S

tr
ik

es

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
20

4:
..c

A
m

or
tiz

er
C

al
ib

ra
tio

nS
tr

ik
es

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
94

:..
cS

w
ap

tio
nP

ric
in

gA
na

ly
tic

5

16

4

8

4

8

60
18

8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
97

:..
cS

w
ap

tio
nP

ric
in

gR
es

ul
t

84

62
2

27
1

16
61

8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
20

5:
..c

R
ep

lic
at

io
nM

od
el

P
V

01

85

91
8

24
3

25
2

35
0

96

43
2

2

4

4

3

37
9

16
7

49
44 2

4

4

8

42

2

36

12
0

49
44

49
44

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

4:
..c

S
ec

ur
ity

P
ric

in
gP

ar
am

sB
S

O
P

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

5:
..c

P
ric

in
gP

ar
am

sB
S

O
P

9

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

6:
..c

F
lo

w
C

on
tr

ol

79

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

7:
..c

F
lo

w
C

on
tr

ol
L

is
t

7

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

8:
..c

C
as

hF
lo

w
D

et
ai

ls
B

S
O

P

30

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
10

9:
..c

L
eg

D
et

ai
ls

B
S

O
P

9

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
11

0:
..c

S
ec

ur
ity

D
et

ai
ls

B
S

O
P

11

3

1

56

47

18

20

23

14

2

42

73

18

29

9

9

18

56

4

47

3 30
2

10

6

83

42
8

10
6

1

6

19

2

24

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

3:
..c

C
ap

le
tC

al
ib

ra
tio

n

5

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

7:
..c

S
A

B
R

C
al

ib
ra

tio
nF

ac
to

ry
1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

9:
..c

S
ho

rt
R

at
eV

ol
C

al
ib

ra
tio

n

2 1

13

1

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

8:
..c

S
A

B
R

F
ix

B
et

aF
ro

m
C

ub
eC

al
ib

ra
tio

n

1

2

68
9

10

8 20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

5:
..c

V
ol

at
ili

ty
C

ub
eC

ha
ng

eQ
uo

te
T

yp
eC

al
ib

ra
tio

n

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

6:
..c

V
ol

at
ili

ty
C

ub
eC

ha
ng

eQ
uo

te
T

yp
eC

al
ib

ra
tio

n+
cV

ol
C

ub
eT

ab
D

es
cr

ip
tio

n

2

2

1

1011

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

9:
..c

V
ol

at
ili

ty
C

ub
eS

et
A

T
M

V
ol

C
al

ib
ra

tio
n

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

0:
..c

S
A

B
R

V
ol

C
al

ib
ra

tio
nU

til
ity

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

5:
..c

S
A

B
R

F
ix

B
et

aC
al

ib
ra

tio
nR

es
ul

t

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

7:
..c

S
A

B
R

F
ix

B
et

aF
ro

m
C

ub
eC

al
ib

ra
tio

nV
ol

at
ili

ty

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
12

8:
..c

A
T

M
C

ub
eV

ol
at

ili
ty

S
ur

fa
ce

25

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

2:
..c

F
or

w
ar

dR
at

eC
ur

ve
s

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

3:
..c

S
A

B
R

F
ix

B
et

aC
al

ib
ra

to
r

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
13

4:
..c

S
A

B
R

V
ol

T
em

pl
at

e
<

<
as

se
m

bl
y

co
m

po
ne

nt
>

>
@

13
6:

..c
S

A
B

R
F

ix
B

et
aC

al
ib

ra
tio

n
257525

33
5

1

1

1

4

1

1

2

2

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

0:
..c

S
w

ap
tio

nE
xp

iry
C

om
pa

re
r

22

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

1:
..c

S
ho

rt
R

at
eV

ol
C

al
ib

ra
tio

nP
ar

am
s

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

6:
..c

C
ap

le
tC

al
ib

ra
tio

nC
on

tr
ol

10

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

7:
..c

S
w

ap
tio

nC
al

ib
ra

tio
nC

on
tr

ol

25

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

8:
..c

C
on

er
D

at
eC

al
ib

ra
tio

nC
on

tr
ol

E
xp

iry
C

om
pa

re
r

25

6

6

6

6

6 25

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

2:
..c

S
w

ap
D

es
cr

ip
to

rC
on

ta
in

er

6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

3:
..c

S
w

ap
D

es
cr

ip
to

r

6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

5:
..c

S
w

ap
tio

nD
es

cr
ip

to
r

6

14
5

33
8

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
14

4:
..c

S
w

ap
tio

nS
ho

rt
R

at
eD

es
cr

ip
to

r
6

3

2

2

5

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

1:
..c

Ja
rr

ow
Y

ild
iri

m
M

od
el

P
ar

am
et

er
s

2

2

8

7

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

5:
..c

Ja
rr

ow
Y

ild
iri

m
G

en
er

ic
N

um
er

ai
re

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
15

6:
..c

Ja
rr

ow
Y

ild
iri

m
T

er
m

in
al

N
um

er
ai

re

1

1

2

2

2

3

32

1

84
2

1

98
6

3

41
9

16

15

1

2

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

0:
..c

H
is

to
ric

al
V

al
ue

A
tR

is
k+

cS
ce

no
rio

N
am

eG
en

er
at

or
2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

3:
..c

H
is

to
ric

al
V

aR
R

es
ul

t

3

54

36

18
24

24

6

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

7:
..c

In
de

xO
pt

io
nM

od
el

T
re

e

3

8

1

20

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

8:
..c

In
de

xO
pt

io
nM

ar
ke

tD
at

aF
X

10

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
16

9:
..I

In
de

xO
pt

io
nM

ar
ke

tD
at

a

5

5

18 10 5

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

1:
..c

In
de

xO
pt

io
nM

od
el

A
na

ly
tic

9

1

1

2

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

9:
..c

Ja
rr

ow
Y

ild
iri

m
A

na
ly

tic
P

ric
in

gM
od

el
1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

3:
..c

A
na

ly
tic

C
ol

la
re

dF
lo

at
in

gR
at

eC
al

cu
la

tio
n

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

4:
..c

A
na

ly
tic

S
im

pl
eP

la
in

V
an

ill
aC

ou
po

nF
ac

to
ry

61

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

5:
..c

Ja
rr

ow
Y

ild
iri

m
A

na
ly

tic
P

ric
in

gP
ar

am
s

97
6

36
6

12
2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

7:
..c

Ja
rr

ow
Y

ild
iri

m
C

ap
le

tF
lo

or
le

t

24
4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

6:
..c

A
na

ly
tic

P
er

fo
rm

an
ce

C
al

cu
la

tio
n

12
61

61

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
17

8:
..c

A
na

ly
tic

C
ol

la
re

dF
lo

at
in

gR
at

eC
al

cu
la

tio
n+

cI
nf

la
tio

nL
in

ke
dR

at
e

12
2

61

1

2

67

13
4

26
5

67

1

6813
4 6

6

67
67 61

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

0:
..c

A
na

ly
tic

F
ix

ed
R

at
eC

al
cu

la
tio

n

6

21
53

6

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

2:
..c

Is
In

de
xM

C
P

ric
ea

bl
e

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

3:
..c

M
ul

tiF
ac

to
rM

C
P

ric
in

g

1

3

1

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
18

4:
..c

S
am

pl
eD

at
es

B
ui

ld
er

3

3

1

1

2

1

1

3

3

1

99

1

3

12

2

4

1

4

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

2:
..c

S
ec

ur
ity

C
he

ck
M

et
ho

ds

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

3:
..c

C
P

R
S

pe
ci

al
M

od
el

F
ac

to
ry

1

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

5:
..c

C
ou

nt
er

P
ar

ty
R

is
kS

pe
ci

al
M

od
el

s

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

7:
..c

C
ou

nt
er

P
ar

ty
R

is
kA

na
ly

tic

1

1

2

1

3

2

11

5

2

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

4:
..c

C
P

R
F

X
T

re
e

4

1

2

1

2

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
19

6:
..c

C
P

R
A

na
ly

tic
P

F
E

C
as

hf
lo

w

25

29
52

63
0

50

63
0

63
0

1

2

11

1

1

4

2 112

3

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
20

2:
..c

A
m

or
tiz

er
C

al
iA

T
M

S
tr

ik
es

1

<
<

as
se

m
bl

y
co

m
po

ne
nt

>
>

@
20

3:
..c

C
al

ib
ra

te
dS

w
ap

tio
nD

at
a

1

11

21
04

17
15

3

17
08

5

Figure 7.8.: Assembly component dependency graph of the monitored execution of
Nordic Analytics evaluating the complete benchmark (Jobs 1 to 29).

81

7. Case Study

7.5. Overhead Analysis

Aside from testing the model extraction capabilities of Kieker.NET, we also seized the
opportunity to conduct a comprehensive macro-benchmark using the Nordic Analytics
benchmark introduced in the previous sections. For that, we applied the same exper-
iment design we used for the micro-benchmark to our overhead analysis with Nordic
Analytics.

7.5.1. Experimental Setting

The test system was a Lenovo Thinkpad T61 with an Intel Core 2 Duo T7300 dual core
processor with 2.0 GHz, 2 GB memory, and Windows XP Professional SP3 as operating
system. The development environment where we could actually edit the source code of
Nordic Analytics (which was not really necessary for monitoring with the final version
of Kieker.NET, though) was Visual Studio 2005 with the .NET 2.0 framework. We used
Java version 1.6.0_03-b05 (to host Kieker 1.4-dev-SNAPSHOT), JNBridge version 5.1,
and Postsharp 2.1.3.3. The version of the analyzed Nordic Analytics build was 2.0.50.

7.5.2. Results

As in the micro-benchmark, the macro-benchmark consisted of multiple runs, one initial-
ization run and five live runs each, of a sequential (batch) execution of the evaluation of
the 29 jobs introduced above, were each individual execution time as well as the overall
execution times were measured.
The chart in Figure 7.9 and Table 6.2 show the combined results of our analysis,

whereas the data contained in Figure 7.10 gives detailed insight into all measured runs
in all stages.
The benchmark results support our findings of Chapter 6. Postsharp (Stage II) has a

clear (but probably negligible) performance impact, and the two calls through JNBridge
made in Stage III (again, one in OnEntry() and one in OnExit()) take the benchmark’s
execution time to a higher order of magnitude.
As soon as the OperationExecutionAspect is fully applied (and Kieker monitoring is

enabled), the performance of the monitored application again suffers almost exponen-
tially.

82

7.5. Overhead Analysis

11.86

13.39

149.24

353.72

2223.79

2212.92

11.83

13.42

149.41

353.72

2223.56

2209.08

0 500 1000 1500 2000 2500

I

II

III

III*

IV

V

Execution time (μs)

Mean Median

Figure 7.9.: Nordic Analytics macro-benchmark overall performance analysis results (the
row marked with (*) is Stage IIITCP).

Stage I II III IIItcp IV V
Mean 11.86 13.39 149.24 353.72 2,223.79 2,212.92

Median 11.83 13.42 149.41 353.72 2,223.56 2,209.08
Std. dev. 0.08 0.06 0.26 1.06 2.94 13.35

Ratio 1.00 1.13 12.58 29.83 187.52 186.60

Table 7.3.: Nordic Analytics macro-benchmark overall performance analysis results. All
values in microseconds, ratio values are with respect to Stage I for all Stages.

∆ II III IIItcp IV V Σ
Mean 1.53 135.85 (340.33) 2,074.55 -10.87 2,201.06

Median 1.59 135.99 (340.30) 2,074.15 14.48 2,226.21

Table 7.4.: Nordic Analytics macro-benchmark overhead results. All values in micro-
seconds.

83

7. Case Study

M
ac

ro
-B

en
ch

m
ar

k
(N

o
rd

ic
 A

n
al

yt
ic

s)

St
ag

e
R

u
n

T N
A

Δ
Σ 1

-2
9

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9

0
1
3
.2
5

4
6
.3
%

6
.1
3

0
.5
2

0
.0
3

0
.3
0

0
.3
3

0
.0
2

0
.0
3

0
.0
0

0
.2
2

0
.2
5

0
.0
2

0
.3
3

0
.3
9

0
.1
4

0
.0
0

0
.1
4

1
.1
1

0
.0
8

0
.1
6

0
.5
2

0
.1
2

0
.0
3

0
.0
5

0
.5
3

0
.2
7

0
.2
7

0
.1
4

0
.0
0

0
.0
5

0
.0
8

1
1
1
.8
3

4
4
.0
%

5
.2
1

0
.5
8

0
.0
3

0
.3
0

0
.3
1

0
.0
2

0
.0
3

0
.0
2

0
.2
2

0
.2
5

0
.0
0

0
.2
8

0
.3
8

0
.1
4

0
.0
0

0
.1
4

0
.2
8

0
.0
9

0
.1
4

0
.5
2

0
.1
4

0
.0
3

0
.0
5

0
.5
2

0
.2
5

0
.2
7

0
.1
2

0
.0
0

0
.0
5

0
.0
5

2
1
1
.8
3

4
4
.0
%

5
.2
1

0
.5
3

0
.0
3

0
.3
0

0
.3
0

0
.0
2

0
.0
3

0
.0
2

0
.2
3

0
.2
7

0
.0
2

0
.2
8

0
.3
8

0
.1
4

0
.0
2

0
.1
4

0
.3
0

0
.0
8

0
.1
6

0
.5
2

0
.1
2

0
.0
3

0
.0
5

0
.5
0

0
.2
5

0
.2
7

0
.1
4

0
.0
0

0
.0
5

0
.0
3

3
1
1
.7
5

4
4
.9
%

5
.2
8

0
.5
5

0
.0
2

0
.3
1

0
.3
1

0
.0
2

0
.0
3

0
.0
2

0
.2
2

0
.2
7

0
.0
2

0
.2
8

0
.3
8

0
.1
4

0
.0
2

0
.1
6

0
.2
7

0
.0
9

0
.1
6

0
.5
2

0
.1
2

0
.0
3

0
.0
5

0
.5
3

0
.2
5

0
.2
7

0
.1
4

0
.0
2

0
.0
3

0
.0
5

4
1
1
.9
5

4
3
.4
%

5
.1
9

0
.5
5

0
.0
3

0
.3
1

0
.3
0

0
.0
0

0
.0
3

0
.0
0

0
.2
2

0
.2
7

0
.0
0

0
.3
0

0
.3
6

0
.1
4

0
.0
2

0
.1
4

0
.3
0

0
.0
8

0
.1
6

0
.5
3

0
.1
2

0
.0
2

0
.0
5

0
.5
2

0
.2
7

0
.2
7

0
.1
4

0
.0
0

0
.0
3

0
.0
3

5
1
1
.9
4

4
3
.2
%

5
.1
6

0
.5
3

0
.0
3

0
.3
0

0
.3
0

0
.0
2

0
.0
3

0
.0
0

0
.2
2

0
.2
7

0
.0
0

0
.2
8

0
.3
6

0
.1
4

0
.0
0

0
.1
4

0
.3
3

0
.0
8

0
.1
6

0
.5
2

0
.1
2

0
.0
2

0
.0
5

0
.5
2

0
.2
7

0
.2
7

0
.1
2

0
.0
0

0
.0
3

0
.0
5

M
e

an
1
1
.8
6

4
3
.9
%

5
.2
1

0
.5
5

0
.0
3

0
.3
0

0
.3
0

0
.0
2

0
.0
3

0
.0
1

0
.2
2

0
.2
7

0
.0
1

0
.2
8

0
.3
7

0
.1
4

0
.0
1

0
.1
4

0
.3
0

0
.0
8

0
.1
6

0
.5
2

0
.1
2

0
.0
3

0
.0
5

0
.5
2

0
.2
6

0
.2
7

0
.1
3

0
.0
0

0
.0
4

0
.0
4

Q
.5

1
1
.8
3

4
4
.0
%

5
.2
1

0
.5
5

0
.0
3

0
.3
0

0
.3
0

0
.0
2

0
.0
3

0
.0
2

0
.2
2

0
.2
7

0
.0
0

0
.2
8

0
.3
8

0
.1
4

0
.0
2

0
.1
4

0
.3
0

0
.0
8

0
.1
6

0
.5
2

0
.1
2

0
.0
3

0
.0
5

0
.5
2

0
.2
5

0
.2
7

0
.1
4

0
.0
0

0
.0
3

0
.0
5

SD
0
.0
8

0
.0
1

0
.0
4

0
.0
2

0
.0
0

0
.0
0

0
.0
0

0
.0
1

0
.0
0

0
.0
1

0
.0
0

0
.0
1

0
.0
1

0
.0
1

0
.0
1

0
.0
0

0
.0
1

0
.0
1

0
.0
2

0
.0
0

0
.0
1

0
.0
0

0
.0
1

0
.0
0

0
.0
0

0
.0
1

0
.0
1

0
.0
0

0
.0
1

0
.0
1

0
.0
1

0
.0
1

0
1
4
.3
9

4
3
.9
%

6
.3
2

0
.7
5

0
.0
3

0
.3
8

0
.4
8

0
.0
2

0
.0
5

0
.0
2

0
.2
5

0
.2
7

0
.0
2

0
.3
6

0
.3
8

0
.1
9

0
.0
0

0
.1
7

0
.3
6

0
.1
4

0
.2
3

0
.5
6

0
.1
4

0
.0
3

0
.0
9

0
.5
6

0
.2
5

0
.3
1

0
.1
7

0
.0
0

0
.0
5

0
.0
6

1
1
3
.4
2

4
6
.7
%

6
.2
7

0
.7
2

0
.0
5

0
.3
9

0
.4
4

0
.0
2

0
.0
5

0
.0
2

0
.2
7

0
.2
8

0
.0
2

0
.3
6

0
.3
9

0
.1
9

0
.0
0

0
.1
7

0
.3
3

0
.1
4

0
.2
3

0
.5
6

0
.1
4

0
.0
5

0
.0
8

0
.5
5

0
.2
3

0
.3
1

0
.1
7

0
.0
0

0
.0
5

0
.0
6

2
1
3
.3
8

4
6
.9
%

6
.2
7

0
.6
7

0
.0
5

0
.3
8

0
.4
8

0
.0
2

0
.0
5

0
.0
0

0
.2
7

0
.3
0

0
.0
2

0
.3
6

0
.3
9

0
.1
9

0
.0
2

0
.1
7

0
.3
0

0
.1
6

0
.2
3

0
.5
8

0
.1
4

0
.0
3

0
.0
8

0
.5
5

0
.2
5

0
.3
1

0
.1
6

0
.0
0

0
.0
5

0
.0
6

3
1
3
.4
5

4
6
.8
%

6
.2
9

0
.7
0

0
.0
5

0
.3
8

0
.4
5

0
.0
2

0
.0
6

0
.0
0

0
.2
7

0
.2
7

0
.0
2

0
.3
4

0
.3
9

0
.1
9

0
.0
2

0
.1
7

0
.3
6

0
.1
6

0
.2
2

0
.5
6

0
.1
4

0
.0
3

0
.0
8

0
.5
6

0
.2
5

0
.3
1

0
.1
6

0
.0
0

0
.0
5

0
.0
8

4
1
3
.4
4

4
7
.2
%

6
.3
4

0
.7
5

0
.0
5

0
.3
8

0
.4
7

0
.0
2

0
.0
5

0
.0
0

0
.2
7

0
.2
7

0
.0
2

0
.3
6

0
.3
9

0
.1
7

0
.0
0

0
.1
7

0
.3
6

0
.1
7

0
.2
3

0
.5
6

0
.1
4

0
.0
3

0
.0
8

0
.5
6

0
.2
5

0
.3
1

0
.1
7

0
.0
0

0
.0
5

0
.0
6

5
1
3
.2
8

4
6
.8
%

6
.2
2

0
.6
9

0
.0
5

0
.3
8

0
.4
5

0
.0
2

0
.0
6

0
.0
0

0
.2
5

0
.2
8

0
.0
0

0
.3
6

0
.3
9

0
.1
7

0
.0
2

0
.1
6

0
.3
4

0
.1
7

0
.2
2

0
.5
6

0
.1
4

0
.0
3

0
.0
9

0
.5
6

0
.2
5

0
.3
1

0
.1
6

0
.0
0

0
.0
5

0
.0
6

M
e

an
1
3
.3
9

4
6
.9
%

6
.2
8

0
.7
1

0
.0
5

0
.3
8

0
.4
6

0
.0
2

0
.0
5

0
.0
0

0
.2
7

0
.2
8

0
.0
2

0
.3
6

0
.3
9

0
.1
8

0
.0
1

0
.1
7

0
.3
4

0
.1
6

0
.2
3

0
.5
6

0
.1
4

0
.0
3

0
.0
8

0
.5
6

0
.2
5

0
.3
1

0
.1
6

0
.0
0

0
.0
5

0
.0
6

Q
.5

1
3
.4
2

4
6
.8
%

6
.2
7

0
.7
0

0
.0
5

0
.3
8

0
.4
5

0
.0
2

0
.0
5

0
.0
0

0
.2
7

0
.2
8

0
.0
2

0
.3
6

0
.3
9

0
.1
9

0
.0
2

0
.1
7

0
.3
4

0
.1
6

0
.2
3

0
.5
6

0
.1
4

0
.0
3

0
.0
8

0
.5
6

0
.2
5

0
.3
1

0
.1
6

0
.0
0

0
.0
5

0
.0
6

SD
0
.0
6

0
.2
%

0
.0
4

0
.0
3

0
.0
0

0
.0
0

0
.0
1

0
.0
0

0
.0
0

0
.0
1

0
.0
1

0
.0
1

0
.0
1

0
.0
1

0
.0
0

0
.0
1

0
.0
1

0
.0
0

0
.0
2

0
.0
1

0
.0
0

0
.0
1

0
.0
0

0
.0
1

0
.0
0

0
.0
0

0
.0
1

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
1

R
II

:I
1
.1
3

1
.0
6
7

1
.2
0

1
.2
9

1
.7
9

1
.2
6

1
.5
1

1
.2
5

1
.8
0

0
.3
3

1
.2
0

1
.0
5

2
.0
0

1
.2
5

1
.0
5

1
.3
0

1
.0
0

1
.1
7

1
.1
4

1
.9
0

1
.4
5

1
.0
8

1
.1
3

1
.3
1

1
.6
4

1
.0
7

0
.9
5

1
.1
5

1
.2
4

0
.0
0

1
.3
2

1
.5
2

0
1
4
6
.1
4

5
7
.7
%

8
4
.3
6

1
.1
4

0
.6
2

2
6
.1
1

6
.7
7

0
.2
2

0
.0
9

0
.0
5

1
.2
0

0
.6
2

0
.2
3

4
.8
8

3
.4
5

0
.3
9

0
.0
5

0
.4
4

1
.6
1

0
.3
4

2
1
.4
2

3
.3
8

0
.1
7

0
.0
6

1
.1
7

4
.9
4

0
.3
0

2
.9
2

0
.2
5

0
.0
6

1
.3
1

0
.1
7

1
1
4
9
.5
0

5
7
.9
%

8
6
.5
0

1
.1
1

0
.6
6

2
6
.4
8

6
.9
5

0
.2
2

0
.0
9

0
.0
3

1
.2
2

0
.6
6

0
.2
5

5
.0
2

3
.5
6

0
.3
8

0
.0
5

0
.4
4

1
.6
7

0
.3
4

2
2
.1
7

3
.5
0

0
.1
7

0
.0
8

1
.2
2

5
.0
8

0
.3
0

3
.0
3

0
.2
5

0
.0
6

1
.3
4

0
.1
7

2
1
4
8
.8
1

5
8
.0
%

8
6
.3
0

1
.1
7

0
.6
6

2
6
.4
1

6
.9
1

0
.2
2

0
.0
9

0
.0
5

1
.2
0

0
.6
6

0
.2
5

4
.9
5

3
.5
5

0
.3
6

0
.0
6

0
.4
4

1
.6
6

0
.3
6

2
2
.1
1

3
.4
7

0
.1
9

0
.0
6

1
.2
0

5
.0
8

0
.3
0

3
.0
3

0
.2
3

0
.0
8

1
.3
6

0
.1
9

3
1
4
9
.4
4

5
7
.9
%

8
6
.5
8

1
.1
2

0
.6
6

2
6
.6
2

6
.9
1

0
.2
2

0
.0
9

0
.0
5

1
.2
0

0
.6
4

0
.2
3

4
.9
8

3
.5
6

0
.4
1

0
.0
6

0
.4
4

1
.6
4

0
.3
4

2
2
.2
0

3
.4
8

0
.1
7

0
.0
6

1
.2
3

5
.1
2

0
.3
0

3
.0
3

0
.2
5

0
.0
6

1
.3
4

0
.1
7

4
1
4
9
.4
1

5
7
.9
%

8
6
.5
8

1
.1
2

0
.6
6

2
6
.5
8

6
.9
4

0
.2
2

0
.0
9

0
.0
5

1
.2
2

0
.6
6

0
.2
5

5
.0
0

3
.5
5

0
.3
6

0
.0
6

0
.4
4

1
.6
6

0
.3
4

2
2
.1
4

3
.5
3

0
.1
7

0
.0
6

1
.2
2

5
.0
5

0
.3
0

3
.0
5

0
.2
5

0
.0
8

1
.3
4

0
.1
9

5
1
4
9
.0
6

5
7
.9
%

8
6
.2
9

1
.1
4

0
.6
6

2
6
.4
8

6
.9
1

0
.2
2

0
.0
9

0
.0
5

1
.2
2

0
.6
4

0
.2
3

5
.0
0

3
.5
5

0
.3
8

0
.0
5

0
.4
4

1
.6
6

0
.3
4

2
2
.0
8

3
.4
8

0
.1
7

0
.0
6

1
.2
0

5
.0
8

0
.3
0

3
.0
0

0
.2
5

0
.0
8

1
.3
4

0
.1
9

M
e

an
1
4
9
.2
4

5
7
.9
%

8
6
.4
5

1
.1
3

0
.6
6

2
6
.5
1

6
.9
2

0
.2
2

0
.0
9

0
.0
5

1
.2
1

0
.6
5

0
.2
4

4
.9
9

3
.5
5

0
.3
8

0
.0
6

0
.4
4

1
.6
6

0
.3
4

2
2
.1
4

3
.4
9

0
.1
7

0
.0
6

1
.2
1

5
.0
8

0
.3
0

3
.0
3

0
.2
5

0
.0
7

1
.3
4

0
.1
8

Q
.5

1
4
9
.4
1

5
7
.9
%

8
6
.5
0

1
.1
2

0
.6
6

2
6
.4
8

6
.9
1

0
.2
2

0
.0
9

0
.0
5

1
.2
2

0
.6
6

0
.2
5

5
.0
0

3
.5
5

0
.3
8

0
.0
6

0
.4
4

1
.6
6

0
.3
4

2
2
.1
4

3
.4
8

0
.1
7

0
.0
6

1
.2
2

5
.0
8

0
.3
0

3
.0
3

0
.2
5

0
.0
8

1
.3
4

0
.1
9

SD
0
.2
6

0
.0
%

0
.1
3

0
.0
2

0
.0
0

0
.0
8

0
.0
2

0
.0
0

0
.0
0

0
.0
1

0
.0
1

0
.0
1

0
.0
1

0
.0
2

0
.0
0

0
.0
2

0
.0
0

0
.0
0

0
.0
1

0
.0
1

0
.0
4

0
.0
2

0
.0
1

0
.0
1

0
.0
1

0
.0
2

0
.0
0

0
.0
2

0
.0
1

0
.0
1

0
.0
1

0
.0
1

R
II

I:
I

1
2
.5
8

1
.3
1
8

1
6
.5
9

2
.0
7

2
3
.5
7

8
7
.2
2

2
2
.7
8

1
3
.7
5

3
.0
0

3
.8
3

5
.4
6

2
.4
5

3
0
.2
5

1
7
.5
7

9
.5
5

2
.7
0

4
.6
7

3
.0
6

5
.6
0

4
.1
0

1
4
1
.9
2

6
.6
9

1
.4
0

2
.4
6

2
4
.2
8

9
.8
1

1
.1
6

1
1
.2
1

1
.8
6

1
8
.0
0

3
5
.3
7

4
.3
3

0
3
5
5
.4
2

5
8
.4
%

2
0
7
.6
4

1
.8
4

1
.5
8

6
6
.1
7

1
6
.7
5

0
.5
2

0
.1
6

0
.1
1

2
.6
4

1
.2
2

0
.6
1

1
1
.8
6

8
.3
9

0
.6
7

0
.1
2

0
.8
6

3
.3
6

0
.6
4

5
5
.3
9

7
.9
2

0
.2
3

0
.1
2

2
.8
8

1
1
.9
2

0
.3
9

7
.0
8

0
.3
6

0
.1
7

3
.3
4

0
.3
4

1
3
5
4
.7
8

5
8
.5
%

2
0
7
.5
1

1
.6
7

1
.5
9

6
6
.3
1

1
6
.7
5

0
.5
2

0
.1
6

0
.1
1

2
.6
4

1
.2
2

0
.5
9

1
1
.8
9

8
.4
1

0
.6
4

0
.1
2

0
.8
6

3
.3
8

0
.6
1

5
5
.3
9

7
.8
8

0
.2
3

0
.1
2

2
.8
8

1
1
.9
1

0
.3
8

7
.0
9

0
.3
3

0
.1
6

3
.3
3

0
.3
4

2
3
5
2
.6
6

5
8
.6
%

2
0
6
.5
3

1
.6
9

1
.5
9

6
5
.7
8

1
6
.7
8

0
.5
2

0
.1
6

0
.1
1

2
.6
4

1
.2
2

0
.6
1

1
1
.9
4

8
.4
2

0
.6
4

0
.1
4

0
.8
6

3
.3
8

0
.6
1

5
5
.0
3

7
.8
3

0
.2
3

0
.1
2

2
.8
6

1
1
.8
0

0
.3
8

7
.0
5

0
.3
3

0
.1
6

3
.3
1

0
.3
4

M
e

an
3
5
3
.7
2

5
8
.5
%

2
0
7
.0
2

1
.6
8

1
.5
9

6
6
.0
5

1
6
.7
7

0
.5
2

0
.1
6

0
.1
1

2
.6
4

1
.2
2

0
.6
0

1
1
.9
2

8
.4
2

0
.6
4

0
.1
3

0
.8
6

3
.3
8

0
.6
1

5
5
.2
1

7
.8
6

0
.2
3

0
.1
2

2
.8
7

1
1
.8
6

0
.3
8

7
.0
7

0
.3
3

0
.1
6

3
.3
2

0
.3
4

Q
.5

3
5
3
.7
2

5
8
.5
%

2
0
7
.0
2

1
.6
8

1
.5
9

6
6
.0
5

1
6
.7
7

0
.5
2

0
.1
6

0
.1
1

2
.6
4

1
.2
2

0
.6
0

1
1
.9
2

8
.4
2

0
.6
4

0
.1
3

0
.8
6

3
.3
8

0
.6
1

5
5
.2
1

7
.8
6

0
.2
3

0
.1
2

2
.8
7

1
1
.8
6

0
.3
8

7
.0
7

0
.3
3

0
.1
6

3
.3
2

0
.3
4

SD
1
.0
6

0
.0
%

0
.4
9

0
.0
1

0
.0
0

0
.2
7

0
.0
2

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
1

0
.0
2

0
.0
0

0
.0
0

0
.0
1

0
.0
0

0
.0
0

0
.0
0

0
.1
8

0
.0
2

0
.0
0

0
.0
0

0
.0
1

0
.0
5

0
.0
0

0
.0
2

0
.0
0

0
.0
0

0
.0
1

0
.0
0

R
II

It
cp

:I
2
9
.8
3

1
.3
3

3
9
.7
4

3
.0
7

5
6
.7
9

2
1
7
.2
5

5
5
.1
5

3
2
.5
0

5
.3
3

9
.1
7

1
1
.8
9

4
.5
9

7
5
.0
0

4
1
.9
5

2
2
.6
2

4
.5
7

1
0
.8
3

5
.9
7

1
1
.4
2

7
.2
6

3
5
3
.9
1

1
5
.0
5

1
.8
5

4
.6
2

5
7
.4
0

2
2
.8
9

1
.4
7

2
6
.1
9

2
.5
0

4
0
.0
0

8
7
.3
7

8
.1
0

0
2
2
2
7
.3
6

5
9
.5
%

1
3
2
5
.0
8

7
.0
6

1
0
.0
6

4
3
3
.1
7

1
0
7
.4
1

3
.2
2

0
.6
6

0
.6
4

1
5
.5
0

6
.1
9

3
.7
3

7
5
.5
5

5
2
.9
4

3
.1
2

0
.8
0

4
.4
1

2
1
.9
7

3
.1
7

3
6
3
.1
9

4
7
.7
2

0
.6
9

0
.5
3

1
8
.2
0

7
4
.7
5

1
.0
2

4
3
.8
6

1
.2
2

1
.0
0

2
1
.4
1

1
.8
9

1
2
2
2
5
.1
4

5
9
.6
%

1
3
2
5
.1
3

7
.0
9

1
0
.0
2

4
3
2
.7
3

1
0
7
.3
0

3
.2
8

0
.6
4

0
.7
0

1
5
.5
0

6
.2
5

3
.7
3

7
5
.7
8

5
2
.9
5

3
.0
8

0
.8
4

4
.3
6

2
2
.0
5

3
.1
9

3
6
3
.2
3

4
7
.8
0

0
.7
2

0
.6
1

1
8
.2
0

7
4
.8
0

1
.0
8

4
3
.8
1

1
.2
0

1
.0
3

2
1
.2
8

1
.8
8

2
2
2
2
3
.5
6

5
9
.5
%

1
3
2
3
.8
9

7
.1
2

1
0
.0
2

4
3
2
.8
6

1
0
7
.0
6

3
.2
3

0
.7
0

0
.6
7

1
5
.4
4

6
.1
6

3
.7
0

7
5
.5
9

5
2
.9
1

3
.1
2

0
.7
7

4
.4
1

2
1
.9
7

3
.2
0

3
6
3
.0
3

4
7
.7
2

0
.7
0

0
.5
5

1
8
.2
3

7
4
.6
7

1
.0
2

4
3
.6
4

1
.1
9

1
.0
6

2
1
.3
1

1
.8
4

3
2
2
2
8
.3
1

5
9
.6
%

1
3
2
7
.0
4

7
.0
6

1
0
.0
9

4
3
3
.4
8

1
0
7
.5
8

3
.2
0

0
.6
7

0
.6
6

1
5
.5
3

6
.2
2

3
.7
5

7
5
.7
2

5
3
.1
6

3
.2
0

0
.7
7

4
.4
4

2
2
.1
1

3
.2
0

3
6
3
.6
6

4
7
.8
0

0
.7
3

0
.5
9

1
8
.2
5

7
4
.8
4

0
.9
8

4
3
.7
5

1
.2
0

1
.0
5

2
1
.4
7

1
.8
8

4
2
2
2
2
.5
3

5
9
.6
%

1
3
2
3
.6
2

7
.0
9

1
0
.0
0

4
3
2
.9
4

1
0
7
.1
9

3
.2
2

0
.6
7

0
.6
7

1
5
.4
4

6
.2
5

3
.7
2

7
5
.4
7

5
2
.9
7

3
.1
2

0
.7
8

4
.4
1

2
1
.9
5

3
.2
7

3
6
2
.4
5

4
7
.7
2

0
.6
7

0
.5
2

1
8
.2
2

7
4
.6
9

1
.0
9

4
3
.6
2

1
.2
0

1
.0
2

2
1
.3
8

1
.8
8

5
2
2
1
9
.3
9

5
9
.5
%

1
3
2
0
.0
2

6
.9
4

1
0
.0
2

4
3
2
.1
4

1
0
6
.9
1

3
.2
3

0
.6
6

0
.6
1

1
5
.3
9

6
.1
4

3
.7
2

7
5
.3
4

5
2
.7
0

3
.1
1

0
.7
8

4
.4
5

2
1
.9
1

3
.1
4

3
6
1
.1
4

4
7
.5
9

0
.6
7

0
.5
3

1
8
.2
7

7
4
.5
6

1
.0
9

4
3
.6
4

1
.2
0

1
.0
2

2
1
.2
3

1
.8
9

M
e

an
2
2
2
3
.7
9

5
9
.5
%

1
3
2
3
.9
4

7
.0
6

1
0
.0
3

4
3
2
.8
3

1
0
7
.2
1

3
.2
3

0
.6
7

0
.6
6

1
5
.4
6

6
.2
0

3
.7
2

7
5
.5
8

5
2
.9
4

3
.1
3

0
.7
9

4
.4
1

2
2
.0
0

3
.2
0

3
6
2
.7
0

4
7
.7
3

0
.7
0

0
.5
6

1
8
.2
3

7
4
.7
1

1
.0
5

4
3
.6
9

1
.2
0

1
.0
4

2
1
.3
3

1
.8
7

Q
.5

2
2
2
3
.5
6

5
9
.6
%

1
3
2
3
.8
9

7
.0
9

1
0
.0
2

4
3
2
.8
6

1
0
7
.1
9

3
.2
3

0
.6
7

0
.6
7

1
5
.4
4

6
.2
2

3
.7
2

7
5
.5
9

5
2
.9
5

3
.1
2

0
.7
8

4
.4
1

2
1
.9
7

3
.2
0

3
6
3
.0
3

4
7
.7
2

0
.7
0

0
.5
5

1
8
.2
3

7
4
.6
9

1
.0
8

4
3
.6
4

1
.2
0

1
.0
3

2
1
.3
1

1
.8
8

SD
2
.9
4

0
.0
%

2
.3
0

0
.0
6

0
.0
3

0
.4
3

0
.2
3

0
.0
3

0
.0
2

0
.0
3

0
.0
5

0
.0
5

0
.0
2

0
.1
6

0
.1
5

0
.0
4

0
.0
3

0
.0
3

0
.0
7

0
.0
4

0
.8
7

0
.0
8

0
.0
2

0
.0
3

0
.0
2

0
.1
0

0
.0
4

0
.0
7

0
.0
0

0
.0
2

0
.0
8

0
.0
2

R
IV

:I
1
8
7
.5
2

1
.3
5
5

2
5
4
.1
2

1
2
.8
8

3
5
8
.2
1

1
4
2
3
.8

3
5
2
.6
6

2
0
2
.0
0

2
2
.2
7

5
5
.1
7

6
9
.6
4

2
3
.3
2

4
6
5
.5
0

2
6
6
.1
3

1
4
2
.3
1

2
2
.3
3

6
5
.6
7

3
0
.6
5

7
4
.3
2

3
8
.1
0

2
3
2
5
.0

9
1
.4
3

5
.6
3

2
1
.5
4

3
6
4
.6
8

1
4
4
.2
3

4
.0
8

1
6
1
.8
2

9
.0
8

2
5
9
.0
0

5
6
1
.4
2

4
4
.6
2

0
2
2
5
9
.6
3

5
9
.4
%

1
3
4
2
.9
0

7
.2
0

1
0
.1
9

4
3
9
.5
2

1
0
8
.8
0

3
.2
5

0
.6
9

0
.6
9

1
5
.5
3

6
.3
0

3
.8
1

7
6
.9
5

5
3
.9
4

3
.2
5

0
.7
5

4
.5
0

2
2
.4
1

3
.2
3

3
6
7
.1
2

4
8
.1
1

0
.6
6

0
.5
8

1
8
.3
4

7
6
.1
9

0
.9
8

4
4
.3
6

1
.2
3

1
.0
3

2
1
.4
1

1
.8
8

1
2
2
0
2
.4
7

5
9
.4
%

1
3
0
8
.8
7

7
.0
6

9
.9
4

4
2
8
.4
8

1
0
5
.8
6

3
.2
0

0
.6
9

0
.6
4

1
5
.2
0

6
.0
9

3
.6
9

7
4
.3
0

5
2
.1
4

2
.9
8

0
.8
1

4
.3
9

2
1
.6
4

3
.1
1

3
5
9
.2
0

4
7
.2
0

0
.6
9

0
.5
5

1
7
.8
8

7
3
.4
1

1
.0
2

4
3
.4
4

1
.2
2

1
.0
6

2
1
.1
2

1
.8
6

2
2
2
2
6
.1
4

5
9
.6
%

1
3
2
6
.0
5

6
.9
7

1
0
.0
8

4
3
3
.7
7

1
0
7
.6
1

3
.2
8

0
.7
0

0
.6
4

1
5
.5
2

6
.2
2

3
.7
3

7
5
.8
1

5
3
.0
6

3
.0
6

0
.8
6

4
.3
8

2
1
.8
3

3
.1
9

3
6
3
.1
2

4
7
.6
9

0
.7
0

0
.5
5

1
8
.2
5

7
4
.8
1

1
.0
8

4
3
.7
0

1
.1
9

1
.0
9

2
1
.2
8

1
.8
8

3
2
1
9
6
.2
7

5
9
.7
%

1
3
1
0
.1
4

6
.8
6

9
.9
5

4
2
6
.8
1

1
0
5
.9
8

3
.2
5

0
.7
0

0
.6
2

1
5
.3
4

6
.1
4

3
.6
6

7
4
.7
3

5
2
.4
2

3
.0
2

0
.8
0

4
.3
8

2
1
.4
8

3
.1
4

3
6
1
.2
2

4
7
.2
2

0
.7
3

0
.5
6

1
7
.9
5

7
3
.8
3

1
.0
6

4
3
.1
6

1
.2
0

1
.0
9

2
0
.9
8

1
.8
6

4
2
2
3
0
.6
6

5
9
.6
%

1
3
2
8
.9
4

6
.9
7

1
0
.0
2

4
3
3
.9
1

1
0
7
.6
7

3
.3
0

0
.7
3

0
.6
6

1
5
.4
8

6
.2
0

3
.7
3

7
6
.0
0

5
3
.3
6

3
.1
4

0
.7
8

4
.4
8

2
1
.8
1

3
.1
7

3
6
4
.7
7

4
7
.8
6

0
.6
7

0
.5
5

1
8
.2
2

7
5
.1
1

1
.0
5

4
3
.8
3

1
.1
7

1
.0
8

2
1
.3
3

1
.8
9

5
2
2
0
9
.0
8

5
9
.5
%

1
3
1
5
.1
5

6
.8
9

9
.9
8

4
2
7
.9
7

1
0
6
.7
7

3
.2
2

0
.6
6

0
.6
9

1
5
.3
4

6
.1
9

3
.7
2

7
5
.4
5

5
2
.7
2

3
.1
4

0
.8
0

4
.4
4

2
1
.5
8

3
.1
6

3
6
1
.2
3

4
7
.6
2

0
.6
7

0
.5
8

1
8
.1
7

7
4
.3
4

1
.0
5

4
3
.5
3

1
.2
0

0
.9
8

2
1
.2
2

1
.8
4

M
e

an
2
2
1
2
.9
2

5
9
.6
%

1
3
1
7
.8
3

6
.9
5

9
.9
9

4
3
0
.1
9

1
0
6
.7
8

3
.2
5

0
.7
0

0
.6
5

1
5
.3
8

6
.1
7

3
.7
1

7
5
.2
6

5
2
.7
4

3
.0
7

0
.8
1

4
.4
1

2
1
.6
7

3
.1
5

3
6
1
.9
1

4
7
.5
2

0
.6
9

0
.5
6

1
8
.0
9

7
4
.3
0

1
.0
5

4
3
.5
3

1
.2
0

1
.0
6

2
1
.1
9

1
.8
7

Q
.5

2
2
0
9
.0
8

5
9
.6
%

1
3
1
5
.1
5

6
.9
7

9
.9
8

4
2
8
.4
8

1
0
6
.7
7

3
.2
5

0
.7
0

0
.6
4

1
5
.3
4

6
.1
9

3
.7
2

7
5
.4
5

5
2
.7
2

3
.0
6

0
.8
0

4
.3
9

2
1
.6
4

3
.1
6

3
6
1
.2
3

4
7
.6
2

0
.6
9

0
.5
5

1
8
.1
7

7
4
.3
4

1
.0
5

4
3
.5
3

1
.2
0

1
.0
8

2
1
.2
2

1
.8
6

SD
1
3
.3
5

0
.1
%

8
.2
2

0
.0
7

0
.0
5

3
.0
3

0
.7
7

0
.0
4

0
.0
2

0
.0
2

0
.1
1

0
.0
5

0
.0
3

0
.6
5

0
.4
4

0
.0
6

0
.0
3

0
.0
4

0
.1
3

0
.0
3

1
.8
9

0
.2
6

0
.0
2

0
.0
1

0
.1
5

0
.6
2

0
.0
2

0
.2
3

0
.0
2

0
.0
4

0
.1
2

0
.0
2

R
V

:I
1
8
6
.6
0

1
.3
5
5

2
5
2
.9
4

1
2
.6
8

3
5
6
.9
3

1
4
1
5
.1

3
5
1
.2
4

2
0
3
.1
3

2
3
.2
0

5
4
.1
7

6
9
.2
6

2
3
.1
9

4
6
3
.2
5

2
6
4
.9
9

1
4
1
.7
7

2
1
.9
1

6
7
.5
0

3
0
.6
5

7
3
.2
0

3
7
.5
5

2
3
1
9
.9

9
1
.0
3

5
.5
8

2
1
.4
6

3
6
1
.8
8

1
4
3
.4
4

4
.0
8

1
6
1
.2
3

9
.0
6

2
6
5
.0
0

5
5
7
.5
3

4
4
.4
3

Jo
b

 E
va

lu
at

io
n

 (
in

 s
e

co
n

d
s)

I VII II
I

IVII
I T

C
P

Figure 7.10.: Detailed Nordic Analytics performance analysis results.

84

7.5. Overhead Analysis

One interesting detail is the difference between the standard deviation of Stages IV
and V. It is obvious, that—even though Mean and Median do not significantly differ
from each other—the hard disk access of Stage V has an influence on the deviation of
execution times.
The per-Job results of Figure 7.10 show that some Jobs have a relatively small impact

on the execution time increase from one stage to another, whereas other Jobs have a
much more significant part in it. Jobs 18 and 24 are an example for that, particularly
noticeable by the difference of their ratio values. Job 18 has a huge performance impact
ratio of RIV :I = 2, 325, whereas Job 24 affects the execution time of Stage IV compared
to Stage I only with a ratio of RIV :I = 4.08. This is somewhat related to the sheer
amount of operations each Job “produces”. For our example, Job 18 consist of 230,099
operation executions (i.e., monitored method calls) and Job 24 of 44,574. But this alone
is not the reason for the difference, as other Jobs have far less operation executions,
but a greater ratio. A deeper analysis of the nature of those Jobs would be required to
understand the exact reasons for this behavior.

85

8. Conclusion

With the results presented in this thesis it is now possible to conduct comprehensive mon-
itoring and dynamic analysis of applications developed with and targeting the Microsoft
.NET Framework by employing the Java-based Kieker framework [Software Engineering
Group, University of Kiel 2011].
In Section 8.1 we summarize our work by outlining the contents of the individual

chapters of this thesis. The overall results are discussed in Section 8.2, including some
final thoughts about the applicability of the presented techniques in real-world software
environments.

8.1. Summary
Extending Kieker with its dynamic analysis capabilities to target the Microsoft .NET
framework required us to go through several development stages, including some initial
technological decisions.

.NET Integration of Kieker
After giving a brief introduction to some basic terms and foundations to the field of our
work in Chapter 2, we focused on finding answers to the question of how the integration
of Kieker into the .NET framework can be accomplished (Chapter 3). We presented
three possible approaches and subsequently, based on a short evaluation, our solution—
an implementation based on JNBridge [JNBridge LLC. 2011a].

Dynamic Analysis with Kieker.NET
The outcome of that first development stage was a .NET-compatible function library
(KiekerProxy.dll) that enabled us to directly use and call the exposed Kieker Java classes
and their methods, respectively, in .NET. Running examples using a sample application
throughout Chapter 4 proved that our solution was already capable of allowing basic
code instrumentation and dynamic analysis after that first stage.

87

8. Conclusion

AOP-Based Monitoring with Kieker.NET
The next step was finding a way to employ techniques based on the ideas of aspect-
oriented programming to the newly developed Kieker.NET framework. In Chapter 5
we provide a detailed description on how we implemented non-intrusive instrumentation
techniques using Postsharp [SharpCrafters s.r.o. 2011a]. With the post-compile-time
aspect weaver of Postsharp, our solution supports different options for weaving the
cross-cutting concern (i.e., the monitoring probes) into a software system.

Overhead Evaluation
A comprehensive evaluation of our solution was the closing development stage. Chapter 6
provided an overhead evaluation in which we introduced a micro-benchmark to find out
to what extend monitoring with Kieker.NET impacts the performance of a system under
observation.

Case Study: Nordic Analytics
Finally, we applied Kieker.NET to our case study system Nordic Analytics by HSH
Nordbank AG and presented our findings in Chapter 7. This helped proving the practi-
cality and robustness of our solution. We also conducted the same overhead evaluation
we developed for the micro-benchmark mentioned above with a Nordic Analytics test
suite that was also provided to us by HSH Nordbank AG.
During first examinations of the Kieker.NET-generated component and operation de-

pendency models presented in Chapter 7 in cooperation with some of the developers
of Nordic Analytics, we already identified spots where—according the HSH team—far
too many calls to some specific components were obviously made and recorded by our
monitoring framework. We take this as a proof-of-concept and are confident that the
extended models we extracted, and which we will provide to the HSH team shortly, will
contribute to further increasing the maturity, robustness, and performance of Nordic
Analytics.
Thus, the first, second, and fourth goal of our work can be considered accomplished.

For accomplishing the first goal, we provided technical instrumentation of .NET appli-
cation, as presented in Chapters 3 to 5. Towards reaching the second goal, we extracted
several system models out of monitoring data obtained by dynamic analysis of both our
bookstore sample application as well as the case study system Nordic Analytics. With
that, we also successfully evaluated our methodologies and therefore accomplished the
fourth goal.

88

8.2. Discussion

Test Generation
Because the case study system Nordic Analytics already had an elaborated and complete
test suite, we shifted our focus in the later stages of our work towards comprehensive
overhead analysis and model extraction presented in Chapters 6 and 7. Therefore,
we could not reach our third goal, and did not provide any new methodologies for
(automated) test generation.

8.2. Discussion

Technological Choices
In hindsight, the employment of JNBridge might not have been the ideal solution for the
integration of Kieker into .NET. JNBridge is a mature .NET/Java intercommunication
utility that can easily be used and held up well to most of the promises that are made
on its product website and the comprehensive users’ guide [JNBridge LLC. 2011b]. But
our overhead evaluation showed, with both the micro- and the macro-benchmark having
similar results, that the performance impact of our OperationExecutionAspect is quite
significant. This is primarily caused by the calls to the Java-side through JNBridge.
Comparing our overhead analysis results with the findings made by van Hoorn et al.
[2009] makes it clear that a Java-side monitoring controller is definitely not the cause for
such overhead. Their reported overhead is only about 2.5 microseconds per monitored
operation, opposed to the 1.5 milliseconds we determined for Kieker.NET.
The employment of Postsharp was convenient and no real drawbacks can be mentioned

in that context. In our opinion, the only downside of Postsharp is that it does not support
load-time aspect weaving, but that is probably more a fundamental characteristic of the
approach taken by Postsharp than a yet unimplemented feature.

Finding the “Right” Monitoring Points
For most instrumented methods, applying a rather complex aspect like the Operation-

ExecutionAspect increases the amount of code to be executed by large. When instru-
menting, for example, a simple “getter”, it suddenly becomes a multi-line operation
with several components involved. In our case, even proxy methods may be called via
the TCP/binary mechanism of JNBridge when configured this way. This fact points
to the main struggle we had when trying to apply our lab-tested methodologies to the
complex case study system Nordic Analytics. It literally took weeks of suffering from

89

8. Conclusion

disk space shortages and repeatedly crashing tools for graph generation caused by the
massive overflow of monitored operation execution data before we managed to elaborate
a decent instrumentation.
Dynamic analysis should be taken into account in the earliest development stages of

any software system. This could be done by defining layers for monitoring points, so that
it is easier to differentiate between pure calculations and architecture- and component-
wide calls. Monitoring of both categories most certainly has its use, but probably often
not at the same time. During the refining process of the set of monitoring points for
our case study system Nordic Analytics, it was obvious that a clearer line between pure
calculations and “infrastructure” would have made dynamic analysis of this system much
easier.

8.3. Future Work

Future work on the topics of this thesis could consist of the following points.

8.3.1. Kieker.NET

• Integrating Kieker.NET into the Kieker distribution and build process.

• Combining JNBridge configuration files with Kieker’s properties file by adding
some new entries to the latter. Likewise, configuration of the Java-side could
be done programmatically. For this, a small Java client could be implemented
that replaces start-kieker-jvm.bat and starts the Java-side with all needed classes
(JNBridge, Kieker) on the Java classpath.

• Adding support for other probes, records, etc. to Kieker.NET. All Java types can
be bridged with JNBridge.

• Finding a way to support load-time aspect weaving in .NET as AspectJ does in
Java.

• Adding support for other .NET technologies like the Spring framework.

• Re-implementation of Records and MonitoringControllers would probably make
sense due to large overhead caused by JNBridge communication.

90

8.3. Future Work

• Re-ordering of calls to the Java-side in OnEntry() and OnExit() could also mini-
mize communication overhead. The same holds for evaluating alternative ways to
measure a methods execution time, as Kieker.NET makes a Java call for that in
its current state.

8.3.2. Model Extraction

It was originally intended to add support for other model types to Kieker’s analysis
component. Envisioned for this thesis were:

• Use Case Maps.

• UML Timing Diagrams.

• UML Sequence Diagrams annotated with timing information.

8.3.3. Test Generation

As we made no further research into this topic, hardly any advice for future work can
be given.

91

A. Kieker.NET Visual Studio Solution

A.1. The Bookstore Projects

Kieker.NET/
Bookstore/

Properties/
AssemblyInfo.cs . Project specific build options

Bookstore.cs
Bookstore.csproj . VS Project file
BookstoreStarter.cs
Catalog.cs
CRM.cs

BookstoreAnnotated/
BookstoreInstrumented/
Kieker/
Kieker.NET.sln . Kieker.NET VS solution file

Figure A.1.: Bookstore Visual Studio project structure.

A.1.1. Project Configuration

All Bookstore sample applications are plain .NET 4.0 C# console applications with no
further customization.

A.1.2. References

There are no references other than the System library of .NET needed for the un-
instrumented Bookstore sample application. For manual instrumentation (BookstoreIn-
strumented), we need our generated KiekerProxy.dll as well as JNBridge’s JNBShare.dll
and JNBSharedMem.dll to access the Kieker Java types. When using Postsharp aspects

93

A. Kieker.NET Visual Studio Solution

in our annotated Bookstore example (BookstoreAnnotated), we also need a reference to
the Postsharp.dll library.

A.1.3. Classes

See the attached CD-ROM for the Visual Studio projects containing the different .NET-
based Bookstore sample application classes.

A.2. The Kieker Project

Kieker.NET/
Bookstore/
BookstoreAnnotated/
BookstoreInstrumented/
Kieker/

Monitoring/
Core/

Controller/
MonitoringControllerWrapper.cs

Registry/
ControlflowRegistry.cs

Probe/
Postsharp/

OperationExecution/
OperationExecutionAspect.cs
OperationExecutionAspectProvider.cs

Properties/
AssemblyInfo.cs . Project specific build options

Kieker.csproj . Kieker VS project file
Kieker.NET.sln . Kieker.NET VS solution file

Figure A.2.: Visual Studio project structure of the .NET-based Kieker.

A.2.1. Project Configuration

In Figure A.3 we present the basic configuration for our Kieker.NET project. On the
left side are the project related settings, and the Solution Explorer on the right side

94

A.2. The Kieker Project

Figure A.3.: Kieker.NET Visual Studio configuration.

shows our project references (i.e., third party libraries, see Section A.2.2) and the classes
Kieker.NET consists of (Section A.2.3).
Kieker.NET targets .NET Framework 3.5, as our major case study system, Nordic

Analytics by HSH Nordbank AG, is a .NET 2.0 application. These .NET versions are
compatible.
The desired output type of our .NET project is just a class library, as we do not need

an application. All other settings are default for our Kieker.NET Visual Studio project.

A.2.2. References

JNBShare.dll is the runtime library of JNBridge that needs to be referenced in order to
allow the referencing project to call Java methods through the proxy class. This
library is needed for TCP/Binary or HTTP/SOAP based communication.

JNBSharedMem.dll is needed if JNBridge is configured to communicate with the Java-
side via shared memory, i.e., the .NET side and Java side are running on the same
machine.

95

A. Kieker.NET Visual Studio Solution

KiekerProxy.dll is the proxy library generated with the JNBProxy proxy generation
tool. This library basically contains all exposed Java methods and therefore pro-
vides those to the .NET side to be called by any .NET project that references this
library.

Postsharp.dll comes as part of the Postsharp distribution and is needed for creating
aspects out of attributes as well as compile-time aspect weaving.

A.2.3. Classes

All classes shown here can also be found in the Visual Studio project and solution folders
on the attached CD-ROM.

OperationExecutionAspect

1 using System;
2 using System.Reflection;
3 using System.Text;
4 using kieker.common.record; // Bridged Java class.
5 using kieker.monitoring.core.controller; // Bridged Java class.
6 using Kieker.Monitoring.Core.Controller;
7 using Kieker.Monitoring.Core.Registry;
8 using PostSharp.Aspects;
9
10 namespace Kieker.Monitoring.Probe.Postsharp.OperationExecution
11 {
12 [Serializable]
13 public class OperationExecutionAspect : OnMethodBoundaryAspect
14 {
15 // According to the Postsharp documentation , fields that are only
16 // needed at runtime , and are unknown at compile -time , should be
17 // marked with the [NonSerialized] attribute.
18 [NonSerialized]
19 private static IMonitoringController _ctrlInst;
20 [NonSerialized]
21 private static ControlFlowRegistry _cfRegistry;
22
23 private string _componentName;
24 private string _method;
25
26 /// <summary >
27 /// Compile -time initialization of component name , method name ,
28 /// and parameter types of the method to which the current aspect
29 /// instance has been applied.

96

A.2. The Kieker Project

30 /// </summary >
31 /// <remarks >
32 /// This improves runtime performance , as it avoids use of
33 /// <c>System.Reflection </c> as well as string building at
34 /// runtime.
35 /// </remarks >
36 /// <param name=" method">
37 /// Method to which the current aspect instance has been applied.
38 /// </param >
39 public override void CompileTimeInitialize(MethodBase method ,

AspectInfo aspectInfo)
40 {
41 _componentName = FormatType(method.DeclaringType.FullName);
42 _method = FormatMethodName(method.Name) + FormatParameters(

method.GetParameters ());
43 }
44
45 /// <summary >
46 /// Initializes the current aspect at run time.
47 /// </summary >
48 /// <param name=" method">
49 /// Method to which the current aspect is applied.
50 /// </param >
51 public override void RuntimeInitialize(MethodBase method)
52 {
53 _ctrlInst = MonitoringControllerWrapper.MonitoringController;
54 _cfRegistry = ControlFlowRegistry.Instance;
55 }
56
57 /// <summary >
58 /// Method executed before the body of methods to which
59 /// this aspect is applied.
60 /// </summary >
61 /// <param name="args">
62 /// Event arguments specifying which method is being executed ,
63 /// which are its arguments , etc.
64 /// </param >
65 public override void OnEntry(MethodExecutionArgs args)
66 {
67 if (! _ctrlInst.isMonitoringEnabled ())
68 {
69 return;
70 }
71 OperationExecutionRecord execData = InitExecutionData ();
72 int eoi = 0; // execution order index
73 int ess = 0; // execution stack size
74 if (execData.isEntryPoint)
75 {
76 _cfRegistry.StoreThreadLocalEoi (0);
77 _cfRegistry.StoreThreadLocalEss (1);

97

A. Kieker.NET Visual Studio Solution

78 }
79 else
80 {
81 eoi = _cfRegistry.IncrementAndRecallThreadLocalEoi ();
82 ess = _cfRegistry.RecallAndIncrementThreadLocalEss ();
83 }
84 if ((eoi == -1) || (ess == -1))
85 {
86 Console.WriteLine("eoi and/or ess have invalid values:" +

" eoi == " + eoi + " ess == " + ess);
87 _ctrlInst.terminateMonitoring ();
88 }
89 execData.eoi = eoi;
90 execData.ess = ess;
91 // Time when monitored method begins execution.
92 execData.tin = _ctrlInst.getTimeSource ().getTime ();
93 // Store execData for use in OnExit ().
94 args.MethodExecutionTag = execData;
95 }
96
97
98 /// <summary >
99 /// Method executed after the body of methods to which this
100 /// aspect is applied , even when the method exits with an
101 /// exception (this method is invoked from the <c>finally </c>
102 /// block).
103 /// </summary >
104 /// <param name="args">
105 /// Event arguments specifying which method is being executed and
106 /// which are its arguments.
107 /// </param >
108 public override void OnExit(MethodExecutionArgs args)
109 {
110 if (! _ctrlInst.isMonitoringEnabled ())
111 {
112 return;
113 }
114
115 // Restore execData.
116 OperationExecutionRecord execData = (OperationExecutionRecord)

args.MethodExecutionTag;
117
118 // Time the monitored method is finished.
119 execData.tout = _ctrlInst.getTimeSource ().getTime ();
120 if (execData.isEntryPoint)
121 {
122 _cfRegistry.UnsetThreadLocalTraceId ();
123 }
124
125 // Create a new monitoring record with the measured data.

98

A.2. The Kieker Project

126 _ctrlInst.newMonitoringRecord(execData);
127 if (execData.isEntryPoint)
128 {
129 _cfRegistry.UnsetThreadLocalEoi ();
130 _cfRegistry.UnsetThreadLocalEss ();
131 }
132 else
133 {
134 _cfRegistry.StoreThreadLocalEss(execData.ess);
135 }
136 }
137
138 /// <summary >
139 /// Initializes all relevant data for monitoring.
140 /// </summary >
141 /// <returns >
142 /// The <c>OperationExecutionRecord </c> for this monitoring
143 /// session.
144 /// </returns >
145 private OperationExecutionRecord InitExecutionData ()
146 {
147 long traceId = _cfRegistry.RecallThreadLocalTraceId ();
148 OperationExecutionRecord execData = new

OperationExecutionRecord(_componentName , _method , traceId);
149 execData.isEntryPoint = false;
150 if (execData.traceId == -1)
151 {
152 execData.traceId = _cfRegistry.

GetAndStoreUniqueThreadLocalTraceId ();
153 execData.isEntryPoint = true;
154 }
155 execData.hostName = _ctrlInst.getHostName ();
156 execData.experimentId = _ctrlInst.getExperimentId ();
157 return execData;
158 }
159
160 /// <summary >
161 /// Can be used to cut the names of generic types that contain the
162 /// string " ‘1[...]".
163 /// </summary >
164 /// <param name="name">
165 /// The type name as string to be formatted.
166 /// </param >
167 /// <returns >The formatted type name as string.</returns >
168 private static string FormatType(string name)
169 {
170 if (name != null && name.Contains("‘"))
171 {
172 string [] names = name.Split(new char[] {’‘’});
173 name = names [0];

99

A. Kieker.NET Visual Studio Solution

174 }
175 return name;
176 }
177
178
179 /// <summary >
180 /// For some reason , <code >args.Method.Name </code > is ".ctor" for
181 /// constructors , whereas there is no "." for all other methods.
182 /// </summary >
183 /// <param name="name">The string to be formatted.</param >
184 /// <returns >The formatted string withoud a leading ".".</ returns >
185 private static string FormatMethodName(string name)
186 {
187 if (name.IndexOf(’.’) == 0)
188 {
189 name = name.Substring (1);
190 }
191 return name;
192 }
193
194 /// <summary >
195 /// Creates a string that contains the parameter types.
196 /// </summary >
197 /// <param name=" parameters">
198 /// A method ’s list of parameters.
199 /// </param >
200 /// <returns >
201 /// The formatted parameter list as string , e.g.
202 /// <c>(System.Int32 , System.String)</c>.
203 /// </returns >
204 private static string FormatParameters(ParameterInfo [] parameters)
205 {
206 StringBuilder formattedParameters = new StringBuilder("(");
207 for (int i = 0; i < parameters.Length; i++)
208 {
209 formattedParameters.Append(FormatType(parameters[i].

ParameterType.FullName));
210 if (parameters.Length > 1 && i < parameters.Length - 1)
211 {
212 formattedParameters.Append(", ");
213 }
214 }
215 formattedParameters.Append(")");
216 return formattedParameters.ToString ();
217 }
218 }
219 }

Listing A.1: OperationExecutionAspect class.

100

A.2. The Kieker Project

OperationExecutionAspectProvider

1 using System;
2 using System.Collections.Generic;
3 using System.Reflection;
4 using PostSharp.Aspects;
5
6 namespace Kieker.Monitoring.Probe.Postsharp.OperationExecution
7 {
8 /// <summary >
9 /// This class allows build -independent aspect application to
10 /// 3rd-party libraries where no source code is available.
11 /// </summary >
12 public class OperationExecutionAspectProvider : IAspectProvider
13 {
14 readonly OperationExecutionAspect _aspectToApply = new

OperationExecutionAspect ();
15
16 public IEnumerable <AspectInstance > ProvideAspects(object

targetElement)
17 {
18 Assembly assembly = (Assembly)targetElement;
19 List <AspectInstance > instances = new List <AspectInstance >();
20 foreach (Type type in assembly.GetTypes ())
21 {
22 ProcessType(type , instances);
23 }
24 return instances;
25 }
26
27 private void ProcessType(Type type , List <AspectInstance > instances

)
28 {
29 foreach (MethodInfo targetMethod in type.GetMethods(

BindingFlags.Instance | BindingFlags.Public | BindingFlags.
DeclaredOnly))

30 {
31 instances.Add(new AspectInstance(targetMethod ,

_aspectToApply));
32 }
33
34 foreach (Type nestedType in type.GetNestedTypes ())
35 {
36 ProcessType(nestedType , instances);
37 }
38 }
39 }
40 }

Listing A.2: OperationExecutionAspectProvider class.

101

A. Kieker.NET Visual Studio Solution

MonitoringControllerWrapper.cs

1 using System;
2 using kieker.monitoring.core.configuration; // Bridged Java class.
3 using kieker.monitoring.core.controller; // Bridged Java class.
4
5 namespace Kieker.Monitoring.Core.Controller
6 {
7 /// <summary >
8 /// This class wraps the Java MonitoringController object.
9 /// </summary >
10 internal class MonitoringControllerWrapper
11 {
12 private static readonly object SyncRoot = new Object ();
13 private static IMonitoringController _monitoringController;
14
15 internal static IMonitoringController MonitoringController
16 {
17 get
18 {
19 if (_monitoringController == null)
20 {
21 lock (SyncRoot)
22 {
23 if (_monitoringController == null)
24 _monitoringController = kieker.monitoring.core

.controller.MonitoringController.
createInstance(Configuration.
createSingletonConfiguration ());

25 AppDomain.CurrentDomain.ProcessExit +=
CurrentDomainProcessExit;

26 }
27 }
28 return _monitoringController;
29 }
30 }
31
32 private static void CurrentDomainProcessExit(object sender ,

EventArgs e)
33 {
34 if (_monitoringController != null)
35 {
36 _monitoringController.terminateMonitoring ();
37 }
38 }
39
40 }
41 }

Listing A.3: MonitoringControllerWrapper class.

102

A.2. The Kieker Project

ControlFlowRegistry.cs

1 using System;
2
3 namespace Kieker.Monitoring.Core.Registry
4 {
5 /// <summary >
6 /// This class is more ore less a direct copy of the java class.
7 /// </summary >
8 /// <remarks >
9 /// Re-implemented because of the multi -threading capabilities that
10 /// should be handled directly in .NET.
11 /// </remarks >
12 internal class ControlFlowRegistry
13 {
14 private static readonly object SyncRoot = new Object ();
15 private static volatile ControlFlowRegistry _instance;
16
17 private long _lastThreadId;
18
19 [ThreadStatic]
20 private static long _threadLocalTraceId;
21 [ThreadStatic]
22 private static int _threadLocalEoi;
23 [ThreadStatic]
24 private static int _threadLocalEss;
25
26 /// <summary >
27 /// Thread -safe Singelton implementation
28 /// </summary >
29 internal static ControlFlowRegistry Instance
30 {
31 get
32 {
33 if (_instance == null)
34 {
35 lock (SyncRoot)
36 {
37 if (_instance == null)
38 _instance = new ControlFlowRegistry ();
39 }
40 }
41 return _instance;
42 }
43 }
44
45 /// <summary >
46 /// In order to (probabilistically !) avoid that other instances in
47 /// our system (on another node , in another vm, ...) generate the
48 /// same thread ids , we fill the left -most 16 bits of the thread

103

A. Kieker.NET Visual Studio Solution

49 /// id with a uniquely distributed random number
50 /// (0 ,0000152587890625 = 0 ,00152587890625%).
51 /// As a consequence , this constitutes a uniquely distributed
52 /// offset of size 2^(64 -1 -16) = 2^47 = 140737488355328L in the
53 /// worst case. We restrict ourselves to the positive long values
54 /// so far. Of course , negative values may occur (as a result of
55 /// an overflow) -- this does not hurt!
56 /// </summary >
57 private ControlFlowRegistry ()
58 {
59 Random r = new Random ();
60 long baseValue = ((long)r.Next (65536) << (sizeof(long) - 16 -

1));
61 _lastThreadId = baseValue;
62 }
63
64 /// <summary >
65 /// This (thread -safe) method provides a trace id.
66 /// </summary >
67 /// <remarks >
68 /// Since we use -1 as a marker for an invalid trace id, it must
69 /// not be returned! The 0 stands for an uninitialized trace id
70 /// and must also not be returned.
71 /// </remarks >
72 /// <returns >A globally unique trace id.</returns >
73 public long GetUniqueTraceId ()
74 {
75 lock (SyncRoot)
76 {
77 _lastThreadId ++;
78 if (_lastThreadId == -1)
79 {
80 _lastThreadId ++;
81 }
82 if (_lastThreadId == 0)
83 {
84 _lastThreadId ++;
85 }
86 }
87 return _lastThreadId;
88 }
89
90 /// <summary >
91 /// This method returns a thread -local trace id which is globally
92 /// unique and stores it locally for the thread.
93 /// </summary >
94 /// <remarks >
95 /// The thread is responsible for invalidating the stored
96 /// trace id using the method <c>unsetThreadLocalTraceId () </c>!
97 /// </remarks >

104

A.2. The Kieker Project

98 /// <returns >A thread -local trace id </returns >
99 public long GetAndStoreUniqueThreadLocalTraceId ()
100 {
101 _threadLocalTraceId = GetUniqueTraceId ();
102 return _threadLocalTraceId;
103 }
104
105 /// <summary >
106 /// This method stores a thread -local trace id.
107 /// </summary >
108 /// <remarks >
109 /// The thread is responsible for invalidating the stored
110 /// trace id using the method <c>unsetThreadLocalTraceId () </c>!
111 /// </remarks >
112 /// <param name=" traceId">
113 /// The current trace id to be stored.
114 /// </param >
115 public void StoreThreadLocalTraceId(long traceId)
116 {
117 _threadLocalTraceId = traceId;
118 }
119
120 /// <summary >
121 /// This method returns the thread -local trace id previously
122 /// registered.
123 /// </summary >
124 /// <returns >
125 /// The trace id. -1 if no trace id has been registered for this
126 /// thread.
127 /// </returns >
128 public long RecallThreadLocalTraceId ()
129 {
130 if (_threadLocalTraceId == 0)
131 {
132 _threadLocalTraceId = -1;
133 }
134 return _threadLocalTraceId;
135 }
136
137 /// <summary >
138 /// This method unsets a previously registered trace id.
139 /// </summary >
140 public void UnsetThreadLocalTraceId ()
141 {
142 _threadLocalTraceId = -1;
143 }
144
145 /// <summary >
146 /// Used to explicitly register an execution order index (eoi).
147 /// </summary >

105

A. Kieker.NET Visual Studio Solution

148 /// <remarks >
149 /// The thread is responsible for invalidating the stored eoi
150 /// using the method <c>UnsetThreadLocalEoi () </c>!
151 /// </remarks >
152 /// <param name="eoi">
153 /// The execution order index (eoi) to store.
154 /// </param >
155 public void StoreThreadLocalEoi(int eoi)
156 {
157 _threadLocalEoi = eoi;
158 }
159
160 public int IncrementAndRecallThreadLocalEoi ()
161 {
162 int curEoi = _threadLocalEoi;
163 if (curEoi == -1)
164 {
165 return -1;
166 }
167 int newEoi = curEoi + 1;
168 _threadLocalEoi = newEoi;
169 return newEoi;
170 }
171
172
173 /// <summary >
174 /// Returns the thread -local execution order index (eoi)
175 /// previously registered.
176 /// </summary >
177 /// <returns >
178 /// The execution order index (eoi). -1 if no eoi registered.
179 /// </returns >
180 public int RecallThreadLocalEoi ()
181 {
182 return _threadLocalEoi;
183 }
184
185 /// <summary >
186 /// Unsets a previously registered execution order index (eoi).
187 /// </summary >
188 public void UnsetThreadLocalEoi ()
189 {
190 _threadLocalEoi = -1;
191 }
192
193 /// <summary >
194 /// Used to explicitly register an execution stack size (ess).
195 /// </summary >
196 /// <remarks >
197 /// The thread is responsible for invalidating the stored ess

106

A.2. The Kieker Project

198 /// using the method <c>UnsetThreadLocalEss () </c>!
199 /// </remarks >
200 /// <param name="ess">
201 /// The execution stack size (ess) to store.
202 /// </param >
203 public void StoreThreadLocalEss(int ess)
204 {
205 _threadLocalEss = ess;
206 }
207
208 /// <summary >
209 /// Recalls and increments the current thread -local execution
210 /// stack size (ess).
211 /// </summary >
212 /// <returns >The incremented execution stack size (ess)</returns >
213 public int RecallAndIncrementThreadLocalEss ()
214 {
215 int curEss = _threadLocalEss;
216 if (curEss == -1)
217 {
218 return -1;
219 }
220 _threadLocalEss = curEss + 1;
221 return curEss;
222 }
223
224 /// <summary >
225 /// Returns the thread -local execution stack size (ess).
226 /// </summary >
227 /// <returns >
228 /// The thread -local execution stack size (ess). -1 if no ess
229 /// registered.
230 /// </returns >
231 public int RecallThreadLocalEss ()
232 {
233 return _threadLocalEss;
234 }
235
236 /// <summary >
237 /// Unsets a previously registered execution stack size (ess).
238 /// </summary >
239 public void UnsetThreadLocalEss ()
240 {
241 _threadLocalEss = -1;
242 }
243 }
244 }

Listing A.4: ControlFlowRegistry class.

107

B. JNBridge Related Configuration
Files and Scripts

B.1. Kieker Proxy Generation with JNBProxy

1 @ECHO OFF
2 SETLOCAL
3
4 SET JNBRIDGE=C:\Program Files (x86)\JNBridge\JNBridgePro v5.1\
5 SET KIEKER=C:\Kieker
6 SET CLASSPATH=%KIEKER%\dist;%KIEKER%\dist\kieker-1 .4 -dev-SNAPSHOT.jar;

%KIEKER%\lib;%KIEKER%\lib\commons-logging-1 .1.1. jar
7 SET CLASSLIST=C:\Kieker.JNB\KiekerProxy-classList.txt
8 SET DLL_NAME=KiekerProxy
9 SET DLL_VERSION =1.4.0.0
10 SET JAVA=C:\Windows\system32\java.exe
11
12 "%JNBRIDGE%2 .0 -targeted\jnbproxy.exe" /ns /pd n2j /cp "%CLASSPATH%" /f "

%CLASSLIST%" /d . /n %DLL_NAME% /jp "%JNBRIDGE%jnbcore\jnbcore.jar" /bp
"%JNBRIDGE%jnbcore\bcel-5 .1 -jnbridge.jar" /pro b /host localhost /port
8085 /java "%JAVA%" /vn %DLL_VERSION%

Listing B.1: Proxy generation BATCH script.

1 java.lang.Class r
2 java.lang.Object r
3 kieker.common.record.AbstractMonitoringRecord r
4 kieker.common.record.BranchingRecord r
5 kieker.common.record.CPUUtilizationRecord r
6 kieker.common.record.CurrentTimeRecord r
7 kieker.common.record.IMonitoringRecord r
8 kieker.common.record.MemSwapUsageRecord r
9 kieker.common.record.OperationExecutionRecord r
10 kieker.common.record.ResourceUtilizationRecord r
11 kieker.monitoring.core.configuration.Configuration r
12 kieker.monitoring.core.controller.AbstractController r

109

B. JNBridge Related Configuration Files and Scripts

13 kieker.monitoring.core.controller.IMonitoringController r
14 kieker.monitoring.core.controller.MonitoringController r
15 kieker.monitoring.core.sampler.ISampler r
16 kieker.monitoring.core.sampler.ScheduledSamplerJob r
17 kieker.monitoring.timer.ITimeSource r

Listing B.2: Kieker proxy class list text file that defines which Java classes to expose.

B.2. Monitoring Configuration Files

B.2.1. Java-Side

1 @ECHO OFF
2 SETLOCAL
3
4 SET JNBRIDGE=C:\Program Files (x86)\JNBridge\JNBridgePro v5.1
5 SET KIEKER=C:\Kieker
6 SET CLASSPATH=%KIEKER% \; %KIEKER%\dist\kieker-1 .4 -dev-SNAPSHOT.jar;%KIEKER%

\lib\commons-logging-1 .1.1. jar;%JNBRIDGE%\jnbcore\jnbcore.jar;
%JNBRIDGE%\jnbcore\bcel-5 .1 -jnbridge.jar

7
8 START java -cp "%CLASSPATH%" com.jnbridge.jnbcore.JNBMain /props "

%JNBRIDGE%\jnbcore\jnbcore_tcp.properties"

Listing B.3: Batch file to start Kieker JVM.

1 # Java -side (.NET -to-Java) properties
2 javaSide.serverType=tcp
3 javaSide.workers =5
4 javaSide.timeout =10000
5 javaSide.port =8085
6 # .NET -side (Java -to -.NET) properties
7 dotNetSide.serverType=tcp
8 dotNetSide.host=localhost
9 dotNetSide.port =8086

Listing B.4: jnbcore properties file for JNBridge (TCP).

1 # Java -side (.NET -to-Java) properties
2 javaSide.serverType=http
3 javaSide.workers =5
4 javaSide.timeout =10000
5 javaSide.port =8085

110

B.2. Monitoring Configuration Files

6 # .NET -side (Java -to -.NET) properties
7 dotNetSide.serverType=http
8 dotNetSide.host=localhost
9 dotNetSide.port =8086

Listing B.5: jnbcore properties file for JNBridge (HTTP).

1 # .NET -side (Java -to -.NET) properties
2 dotNetSide.serverType=sharedmem
3
4 # edit optional paths to .NET -side assemblies here
5 # IMPORTANT: Use front -slashes (/) in all file paths below
6 dotNetSide.assemblyList .1= path to first .NET -side assembly
7 dotNetSide.assemblyList .2= path to second .NET -side assembly
8 # supply as many .NET -side assemblies as necessary
9
10 # edit path to JNBJavaEntry.dll here
11 # IMPORTANT: Use front -slashes (/) in all file paths below
12 dotNetSide.javaEntry=C:/ Program Files/JNBridge/JNBridgePro v4.1/2.0 -

targeted/JNBJavaEntry.dll
13
14 # edit optional path to .NET -side application configuration file below
15 # IMPORTANT: Use front -slashes (/) in all file paths below
16 # dotNetSide.appConfig=path to .NET -side application configuration file

Listing B.6: jnbcore properties file for JNBridge (shared memory, only needed for Java/
.NET directed communication).

B.2.2. .NET-Side

1 <?xml version="1.0" encoding="utf -8" ?>
2 <configuration >
3 <configSections >
4 <sectionGroup name="jnbridge">
5 <section name="dotNetToJavaConfig"
6 type="System.Configuration.SingleTagSectionHandler ,
7 System , Version =2.0.0.0 ,
8 Culture=neutral , PublicKeyToken=b77a5c561934e089"/>
9 <section name="javaToDotNetConfig"
10 type="System.Configuration.SingleTagSectionHandler ,
11 System , Version =2.0.0.0 ,
12 Culture=neutral , PublicKeyToken=b77a5c561934e089"/>
13 <section name="tcpNoDelay"
14 type="System.Configuration.SingleTagSectionHandler ,
15 System , Version =2.0.0.0 ,
16 Culture=neutral , PublicKeyToken=b77a5c561934e089"/>

111

B. JNBridge Related Configuration Files and Scripts

17 <section name="javaSideDeclarations"
18 type="System.Configuration.NameValueSectionHandler ,
19 System , Version =2.0.0.0 ,
20 Culture=neutral , PublicKeyToken=b77a5c561934e089"/>
21 </sectionGroup >
22 </configSections >
23 <jnbridge >
24 <dotNetToJavaConfig scheme="jtcp"
25 host="localhost"
26 port="8085"
27 useSSL="false" />
28 </jnbridge >
29 </configuration >

Listing B.7: .NET application configuration file for TCP/Binary communication with
JNBridge.

1 <jnbridge >
2 <dotNetToJavaConfig scheme="sharedmem"
3 jvm="%JAVA_HOME %\ server\jvm.dll"
4 jnbcore="%JNBRIDGE %\ jnbcore\jnbcore.jar"
5 bcel="%JNBRIDGE %\ jnbcore\bcel -5.1- jnbridge.jar"
6 classpath="%KIEKER %;
7 %KIEKER %\dist;
8 %KIEKER %\dist\Kieker -1.4. jar;
9 %KIEKER %\lib;
10 %KIEKER %\lib\commons -logging -1.1.1. jar" />
11 </jnbridge >

Listing B.8: .NET application configuration file entry for shared memory communication
with JNBridge.

112

Bibliography

[Bennett 1995] K. Bennett. Legacy systems: Coping with success. IEEE Software, 12:
19–23, January 1995.

[Bisbal et al. 1999] J. Bisbal, D. Lawless, B. Wu, and J. Grimson. Legacy information
systems: issues and directions. Software, IEEE, 16(5):103 –111, September 1999.

[Brodie and Stonebraker 1995] M. Brodie and M. Stonebraker. Migrating legacy sys-
tems: gateways, interfaces & the incremental approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1995.

[Comella-Dorda et al. 2000] S. Comella-Dorda, K. Wallnau, R. Seacord, and J. Robert.
A survey of black-box modernization approaches for information systems. In Software
Maintenance, 2000. Proceedings. International Conference on, pages 173 –183, 2000.

[Cornelissen et al. 2009] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen,
and R. Koschke. A systematic survey of program comprehension through dynamic
analysis. IEEE Transactions on Software Engineering, 35(5):684–702, 2009.

[Desiderata Software 2011] Desiderata Software. EZ JCom version 1.8, May 2011. URL
http://www.ezjcom.com/. Last visited July 12, 2011.

[Ehmke et al. 2011] N. Ehmke, A. van Hoorn, and R. Jung. Kieker 1.4 User Guide,
October 2011. URL http://se.informatik.uni-kiel.de/kieker/documentation/.
Last visited October 13, 2011.

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

113

http://www.ezjcom.com/
http://se.informatik.uni-kiel.de/kieker/documentation/

Bibliography

[Intrinsyc Software International, Inc. 2011] Intrinsyc Software International, Inc. J-
Integra .NET version 2.4, May 2011. URL http://j-integra.intrinsyc.com/net.

asp. Last visited July 12, 2011.

[JNBridge LLC. 2011a] JNBridge LLC. JNBridgePro version 5.1, July 2011a. URL
http://www.jnbridge.com/jnbpro.htm. Last visited September 15, 2011.

[JNBridge LLC. 2011b] JNBridge LLC. JNBridgePro Users’ Guide version 6.0, May
2011b. URL http://www.jnbridge.com/usersguide.pdf. Last visited September 15,
2011.

[JNBridge LLC. 2011c] JNBridge LLC. JNBridgePro Evaluation and Quick Start Guide
version 6.0, April 2011c. URL http://www.jnbridge.com/evaluationguide.pdf.
Last visited September 15, 2011.

[Khusidman 2008] V. Khusidman. ADM Transformation, June 2008. URL http:

//adm.omg.org/.

[Kiczales et al. 1997] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP ’97), pages 220–242,
1997.

[OMG 2009] OMG. Architecture-Driven Modernization (ADM): Software Metrics
Meta-Model (KDM), March 2009. URL http://www.omg.org/spec/SMM/Current.

[OMG 2010] OMG. Architecture-Driven Modernization (ADM): Knowledge Discov-
ery Meta-Model (KDM), December 2010. URL http://www.omg.org/spec/KDM/

Current/.

[SharpCrafters s.r.o. 2011a] SharpCrafters s.r.o. Postsharp version 2.1, September
2011a. URL http://www.sharpcrafters.com.

[SharpCrafters s.r.o. 2011b] SharpCrafters s.r.o. Postsharp reference documentation,
September 2011b. URL http://www.sharpcrafters.com/postsharp/documentation.

[Software Engineering Group, University of Kiel 2011] Software Engineering Group,
University of Kiel. Kieker version 1.4, 2011. URL http://se.informatik.uni-kiel.

de/kieker/. Last visited August 29, 2011.

114

http://j-integra.intrinsyc.com/net.asp
http://j-integra.intrinsyc.com/net.asp
http://www.jnbridge.com/jnbpro.htm
http://www.jnbridge.com/usersguide.pdf
http://www.jnbridge.com/evaluationguide.pdf
http://adm.omg.org/
http://adm.omg.org/
http://www.omg.org/spec/SMM/Current
http://www.omg.org/spec/KDM/Current/
http://www.omg.org/spec/KDM/Current/
http://www.sharpcrafters.com
http://www.sharpcrafters.com/postsharp/documentation
http://se.informatik.uni-kiel.de/kieker/
http://se.informatik.uni-kiel.de/kieker/

Bibliography

[Stahl and Völter 2006] T. Stahl and M. Völter. Model-Driven Software Development:
Technology, Engineering, Management. Wiley, Chichester, UK, 2006.

[Ulrich and Khusidman 2007] W. Ulrich and V. Khusidman. Architecture-Driven Mod-
ernization: Transforming the Enterprise, October 2007. URL http://adm.omg.org/.

[van Hoorn et al. 2009] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers,
S. Frey, and D. Kieselhorst. Continuous monitoring of software services: Design
and application of the Kieker framework. Technical Report TR-0921, Department of
Computer Science, University of Kiel, Germany, November 2009. URL http://www.

informatik.uni-kiel.de/uploads/tx_publication/vanhoorn_tr0921.pdf.

[van Hoorn et al. 2011] A. van Hoorn, S. Frey, W. Goerigk, W. Hasselbring, H. Knoche,
S. Köster, H. Krause, M. Porembski, T. Stahl, M. Steinkamp, and N. Wittmüss. Dy-
naMod project: Dynamic analysis for model-driven software modernization. In Joint
Proceedings of the 1st International Workshop on Model-Driven Software Migration
(MDSM 2011) and the 5th International Workshop on Software Quality and Main-
tainability (SQM 2011), pages 12–13, March 2011.

115

http://adm.omg.org/
http://www.informatik.uni-kiel.de/uploads/tx_publication/vanhoorn_tr0921.pdf
http://www.informatik.uni-kiel.de/uploads/tx_publication/vanhoorn_tr0921.pdf

Acknowledgments

I’d like to thank

• my advisor André van Hoorn for his support and advice.

• HSH Nordbank AG for providing desk space and a laptop with a copy of Nordic
Analytics, and specifically Sönke Köster and Dr. Marcus Steinkamp of the Fi-
nancial Engineering department for all the information and courtesy for the case
study with their risk evaluation system.

• Prof. Dr. Wilhelm Hasselbring for making this diploma thesis possible.

117

Declaration

This thesis is my own work and contains no material that has been submitted for any
degree or examination at any other university.
To the best of my knowledge and belief, this thesis contains no material previously

published by any other person except where due acknowledgment has been made.

Kiel, October 15, 2011

Felix Magedanz

119

120

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.2.1 Technical Instrumentation of .NET
	1.2.2 Extraction of Architectural and Usage Models
	1.2.3 Test Generation
	1.2.4 Evaluation

	1.3 Document Structure

	2 Foundations
	2.1 Dynamic Analysis
	2.2 Kieker Framework
	2.2.1 Kieker Components
	2.2.2 Concept

	2.3 Microsoft .NET Framework
	2.4 Bookstore Sample Application
	2.5 Related Work
	2.5.1 The DynaMod Project
	2.5.2 Architecture-Driven Modernization

	3 .NET Integration of Kieker
	3.1 .NET Integration Solutions for Kieker
	3.1.1 Alternative Approaches
	Re-implementing Kieker in .NET
	Building a Client/Server Architecture
	Employing a Bridging Solution

	3.1.2 Evaluation

	3.2 Bridging Solutions
	3.2.1 Overview of Commercial Bridging Solutions
	EZ JCom
	J-Integra
	JNBridge

	3.2.2 Evaluation

	3.3 .NET Integration with JNBridge
	3.3.1 Download and Installation
	3.3.2 License Activation
	3.3.3 Proxy Generation

	4 Dynamic Analysis With Kieker.NET
	4.1 Monitoring Configuration
	4.1.1 Java-Side Configuration
	4.1.2 .NET-Side Configuration

	4.2 Manual Instrumentation
	4.2.1 Monitoring Probes
	4.2.2 Monitoring Preliminaries

	4.3 Monitoring of the Bookstore Sample Application
	4.3.1 .NET-Side
	4.3.2 Java-Side
	4.3.3 Kieker Monitoring Log

	5 AOP-Based Monitoring With Kieker.NET
	5.1 Aspect-Oriented Programming in .NET
	5.1.1 Postsharp
	5.1.2 Spring.NET
	5.1.3 Castle DynamicProxy

	5.2 Kieker.NET Implementation with Postsharp
	5.2.1 The OperationExecutionAspect Class
	5.2.2 The ControlFlowRegistry Class
	5.2.3 The MonitoringControllerWrapper Class
	5.2.4 The OperationExecutionAspectProvider Class

	5.3 Aspect Application
	5.3.1 Method Level
	5.3.2 Class Level
	5.3.3 Assembly Level
	5.3.4 Build-Independent Aspect Application

	6 Overhead Evaluation
	6.1 Causes of Overhead
	6.2 Experiment Design
	6.2.1 Benchmark
	6.2.2 Staged Benchmark Execution
	Stage I: Reference
	Stage II: Postsharp
	Stage III: JNBridge/Kieker #1
	Stage IV: Kieker #2
	Stage V: HDD Access

	6.3 Experiment Results

	7 Case Study
	7.1 Nordic Analytics
	7.1.1 Code Statistics
	7.1.2 Nordic Analytics Monitoring Environment

	7.2 Code Instrumentation
	7.3 Dynamic Analysis of Nordic Analytics
	7.4 Architecture-Based Model Extraction
	7.5 Overhead Analysis
	7.5.1 Experimental Setting
	7.5.2 Results

	8 Conclusion
	8.1 Summary
	8.2 Discussion
	8.3 Future Work
	8.3.1 Kieker.NET
	8.3.2 Model Extraction
	8.3.3 Test Generation

	A Kieker.NET Visual Studio Solution
	A.1 The Bookstore Projects
	A.1.1 Project Configuration
	A.1.2 References
	A.1.3 Classes

	A.2 The Kieker Project
	A.2.1 Project Configuration
	A.2.2 References
	A.2.3 Classes
	OperationExecutionAspect
	OperationExecutionAspectProvider
	MonitoringControllerWrapper.cs
	ControlFlowRegistry.cs

	B JNBridge Related Configuration Files and Scripts
	B.1 Kieker Proxy Generation with JNBProxy
	B.2 Monitoring Configuration Files
	B.2.1 Java-Side
	B.2.2 .NET-Side

	Bibliography
	Acknowledgments
	Declaration

