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Abstract

Provisioning satisfying Quality of Service (QoS) is a challenge when operating
large-scale software systems. Performance and availability are important metrics
for QoS, especially for Internet applications. Since these systems are accessed
concurrently, bad performance can manifest itself in slow response time for all users
simultaneously.

Software solutions for monitoring these metrics exist and abnormal behavior
in the performance is often analyzed later for future improvement. However, in
interactive applications, users notice anomalies immediately and reactions require
automatic online detection. This is hard to achieve since large-scale applications
are operated in grown, unique environments. These domains often include a net-
work of subsystems with system-specific measures and characteristics. Thus,
anomaly detection is hard to establish as it requires a custom setup for each
system.

This work approaches these challenges by implementing means for online anomaly
detection based on time series analysis, called ΘPAD. In a monitoring server
different algorithms can be configured and evaluated in order to address system-
specific characteristics.

The software is designed as a plugin for the performance monitoring and dy-
namic analysis framework Kieker. With the use of selected algorithms, it can detect
and signal anomalies online and store them for post-mortem analyses. The social
network system XING served as a case study and the evaluation of ΘPAD in
this production environment shows promising results in terms of robustness and
accuracy.
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Chapter 1

Introduction

1.1 Motivation

Software as a Service (SaaS) has gained much attraction in the past years, espe-
cially since 2006 [Kaplan 2008, p. 1]. By now, many big software vendors invest in
building software that is served from distant data centers. Remarkable is the com-
petition between SAP and Oracle for market share in the field of cloud computing.
Many innovative tech companies already got swallowed by these two big players
[Reuters 2012].

A big challenge for businesses offering services over the Internet is the trust-
worthiness towards users. One technical aspect of trust is the Quality of Service
(QoS). This term can be defined as a combination of the three factors availability ,
reliability , and performance [Becker et al. 2006, p. 8]. Hasselbring [2008] correlates
the user’s trust in Internet-based applications with the availability of their services.
This is verified by a recent survey showing that 23% of the SaaS customers are still
concerned about availability and performance [Kaplan 2008, p. 2].

Situations in which availability or performance are compromised can cause
severe damage to business-customer relationships. In the growing market of SaaS,
competitors can quickly build up competing services and lure unsatisfied customers
away. In extreme cases costly law suits, e.g., for unmatched service level agree-
ments (SLAs) or even the break down of the whole business model can be the
consequence. In order to gain and keep the user’s trust, production systems
have to be under continuous monitoring and actions have to be taken immediately
whenever low availability or bad performance could compromise QoS.

There is a variety of software packages for application-level performance mo-
nitoring. Examples are the commercial products . . . . . . . . . . .New Relic and . . . . . . . . . . . . . .AppDynamics, or
the open source framework . . . . . . .Kieker [van Hoorn et al. 2012, p. 1]. For IT infrastruc-
ture monitoring, . . . . . . .Nagios offers system-level availability monitoring and automatic
alerting.

However, software systems evolve over time and get unique system-specific
performance measures and characteristics. Since these measures are influenced
by a variety of factors, interpretation of behavior requires certain knowledge about
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Chapter 1. Introduction

the performance characteristics such as the distribution of the system’s architec-
ture. This is especially important for detecting abnormal behavior as such [Bechtold
and Heinlein 2004, p. 44]. Apart from the costly and error-prone approach of
analyzing performance graphs manually, the problem is often left unsolved.

This challenge of QoS also exists for systems providing social network services
with their basic purpose being the communication and central data exchange. The
so-called ‘social web’ (or Web 2.0) [O’Reilly 2005, p. 1] began to influence our lives
considerably. Most of the early launched social networks that are still online today
started as business-to-customer (B2C) platforms [Boyd 2007, p. 8]. However, the
high attention of these applications attracted and lead to the development of many
companies that now offer additional services. Hence, social network providers
entered the B2B field as well. The most prominent example, . . . . . . . . . . .Facebook, has an
economic impact of C 15.3 billion according to Deloitte LLP [2012, p. 3].

The social network . . . . . .XING was dedicated to business customers from the begin-
ning and grew to be one of the largest professional social networks and now serves
millions of users [XING AG 2012] internationally. Its large-scale system architecture
is monitored continuously by dedicated software. However, a system for automatic
detection of abnormal behavior in performance has not been implemented yet. To
address this need for online performance anomaly detection, this work develops an
approach and implements it in software. Finally, a practical evaluation is conducted
in a case study for XING’s large-scale software system.

This diploma thesis investigates available performance anomaly detection algo-
rithms based on time series analysis and furthermore the design, implementation,
and evaluation of ΘPAD: an approach dealing with these issues and fulfilling the
requirements. The implementation in software would need to address the needs of
the the case study in practice and be configurable for other environments as well.
The requirements are the following:

• Gathering different system-specific measurements.
• Offering multiple and adjustable anomaly detection approaches based on

time-series analysis.
• Running and testing these approaches simultaneously and permanently.
• Provide robustness and availability for itself.

The implementation of ΘPAD is a server that is built on top of Kieker, a framework
for application performance management and dynamic analysis. ΘPAD offers
different anomaly detection algorithms that can be configured for the particular
domain. For the case study, a particular configuration is found and evaluated in a
long-term-test on real data from the production system described in the remainder
of this section.

Case Study Overview

The global social network XING is the most important platform for business con-
tacts in Europe. It has more than 11.7 million registered users [XING AG 2012]
communicating in 40 thousand forum-like expert groups and every year more than
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180 thousand events where members meet in person [XING AG 2010, p. 7] are
organized in its communities.

XING’s biggest revenue stream comes from the paid membership: In subscrip-
tions, members can get premium features up from C 4.95 per month. As of the
latest investor fact sheet of XING AG [2011, p. 3], the company hosts 779,000 paid
memberships; many of whose businesses depend on the network in different ways.
Since the platform’s most valuable asset is its user base, over 100 engineers (out
of 420 employees in total) maintain and operate this large-scale software system.1

When XING started as openBC in November 2003 the platform’s software was
written in . . . . .Perl. In the course of openBC’s lifetime, the user base grew and a solid
architecture hosted in a data center in Hamburg was built. After the rebranding
to XING the software evolved further and new technologies such as . . . . . . . . . . . . . . .Ruby on Rails
and data base sharding [Chodorow 2011, p. 5] were introduced.

In summer 2011, XING ran hundreds of physical machines in two data centers.
The architecture comprises monitoring for the hardware and software and uses
Nagios as an automatic notification system in case of system failures. Furthermore,
a dedicated performance monitoring software was developed for system-level and
application-level monitoring. This software, called . . . . . . . .Logjam, co-authored by Stefan
Kaes, provided online data that is being observed by system administrators. When
supervising Logjam, they can react to abnormal behavior immediately. However,
a form of automatic detection does not exist. Apart from business hours, nobody
would notice, when the XING platform would respond slowly or behave strangely.

This diploma thesis aims at developing a solution to this problem. Existing
research done by the chair of Software Engineering at the University of Kiel is
added to the existing monitoring system, Kieker, and be configured, installed, and
evaluated at the case-study environment.

1.2 Goals

The goals of this thesis, as defined in a proposal submitted in July 2011, are as
following:

B T1: Design of an Online Performance Anomaly Detection Concept

The first goal is to work toward the idea of detecting anomalies in the performance
of large-scale software systems. Since the detection will be online, the abbreviation
ΘPAD (online performance anomaly detection) will be used for the approach and
the later implementation. It will also address the motivation described in Sec-
tion 1.1. The concept will include research-based evidence as well as a proof-of-
concept implemented in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .‘R Project for Statistical Computing’ [R Development Core
Team 2011] that calculates anomaly scores from sample data. In order to achieve
this, algorithms will be designed, implemented, and tested with various sample
data. This basis will be used in the plugin (T2) later on.

1According to a personal conversation with XING’s CTO Jens Pape on February 3rd, 2012
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B T2: ΘPAD Implementation as a Kieker Plugin

In order to create software that detects anomalies and is usable in production
environments, the existing Kieker Framework [van Hoorn et al. 2012] will be used
and extended. Kieker is a mature framework with a plugin architecture, which
makes it easy to extend. Since Kieker can serve as a platform for “specific project
contexts” [van Hoorn et al. 2009, p. 1]. ΘPAD will be implemented as a plugin for
this framework.

B T3: ΘPAD Integration with Case-study System

This goal is to determine the integration of the ΘPAD Kieker plugin into the case-
study system. It has to adapt to the log format produced by its application servers
of the case study. Eventually it will send the measurements combined with the
calculated anomaly score to an alerting facility.

B T4: Evaluation

The anomaly detection results can vary in terms of accuracy and precision. It is not
yet clear if they will be as effective as a person detecting anomalies manually. Fur-
thermore, the underlying forecast model has to be evaluated if the calculated data
match the real online data. A long-term test will tell if the approach is practicable
to detect anomalies in a system’s performance automatically and how the different
factors, such as varying workload intensity, can be causes for anomalies.

1.3 Document Organization

Formalia

The following typographical conventions are used throughout this thesis:

Definitions and Special words
First occurrences of definitions appear in italic. Subsequent use of these
terms appear in normal font. Additionally, words with special meanings are
indicated in the same way.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Software Libraries and Products
referenced in the text appear . . . . . . . . . . . . .emphasized. Further resources to these names
are provided in the same-named glossary on page 117. Descriptions are
taken from either the sections or referenced URLs in the glossary and are
therefore not cited directly.

Programmatic Terms
use the typewriter font to indicate parts of the source code or library
names.

4
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URLs
appear in typewriter font with constant width and are linked in the PDF.
They are listed in footnotes and bibliography only.

[References]
are cited with details wherever possible. [Herbst 2012, p. 15], for instance,
refers to a statement on page 15. On web pages without page numbering,
sections are indicated: [van Kesteren 2012, Section 4.7].

Logos
are represented graphically. They might deviate from official corporate iden-
tity in order to present them in a more readable format.
XING refers to the XING AG and its product, R to the equally-named pro-
gramming language, and ΘPAD refers to the approach developed in this
thesis and the corresponding implementation in software.

Document Structure

The remainder of this thesis is structured into the following:

• The upcoming Chapter, 2, states the mathematical foundations of anomaly
detection and introduces commonly used web technologies of the Web 2.0.
Additionally, it describes, which technology stack is used for the implementa-
tion and in the XING case study environment.

• Chapter 3 introduces the ΘPAD approach for online performance anomaly
detection. In that chapter, activity diagrams, as specified in the Unified Mod-
elling Language (UML) [Rupp et al. 2007, p. 267], that are used in practice
for functional specification, describe the approach formally.

• The succeeding Chapter 4 explains, how this formal specification is designed
and implemented in a software prototype. This documentation uses UML
class diagrams to explain the transformation from data types and abstract
concepts into software components. Furthermore, the development of ΘPAD
as a Kieker plugin is described alongside structure diagrams and software
engineering methods.

• Chapter 5 describes the configuration and adaption of ΘPAD in the case-
study environment. Observed anomalies are compared against the online
detection with the software. Metrics for detection efficiency are used to demon-
strate the applicability of the approach in practice.

• Finally, Chapter 6 gives a summary and a critical overview of the lessons
learned throughout the evaluation. It also points to possible future usage in
other environments.

5
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Chapter 2

Foundations

The introduction motivated the problem field of abnormal behavior in the perfor-
mance of software systems. Developing a solution capable of detecting these
performance anomalies can be supported by certain terms and concepts which
are described in this chapter.

First, fundamental terms like performance are defined (Section 2.1), followed
by the mathematical operations on time series. Forecasting of performance mea-
sures is explained in Section 2.2 alongside the most important algorithms. These
algorithms are required to facilitate anomaly detection as described in Section 2.3.
Throughout these first sections an example time series with invented values is
constructed to support the mathematics. Section 2.4 introduces the technology
that the ΘPAD implementation is built upon. Furthermore, that section explains
important technologies in the field of web applications and large architectures.
Some of them gained popularity with the rise of the Web 2.0 in the last years.
The description of the monitoring framework Kieker is followed by am overview of
the case-study environment.

2.1 Performance Metrics

Performance, according to Smith and Williams [2002, p. 4], is the degree to which
a system meets its timeliness. Another definition is given by Koziolek [2008, Sec-
tion 17.1] as the “time behavior and resource efficiency" and is equivalent to effi-
ciency . That term is used by the ISO/IEC 9126 standard for internal and external
quality [ISO/IEC 2001, p. 41].

Following are basic definitions and metrics of system performance analysis.

• Measurand : Object, which gets values assigned in the measuring process.
• Measure: An algorithm producing measurements from measurands.
• Measurement : A comparable value produced by a measure. Informally, it is

also used as the ‘process of measuring’. We define a raw measurement as
coming from the monitored system (see Section 2.2.2).

7
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Browser responds to 
'click', sends data

System receives request System completed output

Result presented in 
browser

Time

Response time
Processing time

Transmission time spans

Figure 2.1: According to Jain [1991, p. 37], these time spans can
be measured within the interaction between the user’s browser and a
system.

These terms are part of the Structured Metrics Metamodel as defined by OMG
[2012, p. 2]. This terminology will be used throughout this thesis to reason about
system performance.

Metrics, which correlate to the normal behavior of a system, can define a
so-called reference model (see Section 2.3.2). Comparing the reference model
with the actual measurements is one approach in anomaly detection. Thus it is
crucial to use appropriate metrics for reasoning about the performance of a system
[Jain 1991, p.4] and performing anomaly detection.

2.1.1 Response Time and Processing Time

The term response time applies to the time period between user interaction and
the system presenting a result [Shneiderman 1984, p. 267]. Possible examples
are pressing a button on an user interface (UI) or an application programming
interface (API) call [Fowler 2003, p. 7]. Figure 2.1 illustrates high-level steps in
the interaction with web application systems. For a user working with a browser ,
this example shows the click on a link and the subsequent rendering of a web page.
This response was generated by the web application and is encoded in Hypertext
Markup Language (HTML), as drafted by Hickson [2012]. We refer to the time a
systems needs to generate the response as processing time.

The term server is used in context of dedicated hardware or software that re-
sponds to service requests [Fielding et al. 1999, p. 9]. From the user’s perspective,
responses from large-scale software systems appear similar to those generated by
single servers. Thus, the diagram in Figure 2.1 use the terms ‘server’ and ‘system’
synonymously. This example takes only the HTML output into account and leaves
out images, stylesheets and other resources that are commonly used for rendering
web pages in modern Web 2.0 applications. The request transmission time span
ends when the system has read all incoming data. Correspondingly, the output time
span begins when the system starts sending data to the client. The model stated
here is derived from the more complex interaction model of Jain [1991, p. 37].

This interaction is shown from the browser in Figure 2.2. The example web
page contained 3.78 KB and was requested via the Hypertext Transfer Protocol

8
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1

Figure 2.2: Request from the browser’s view point. Shown is
a screenshot of the Chrome Browser version 16 requesting the
web page http://forkosh.com/pstex/latexcommands.
htm. The waiting time at 1 is equivalent to the processing time in 2.1.

GET method [Fielding et al. 1999, p. 53]. The ‘waiting’ time is the time that the sys-
tem needs to process the request. Transmission time spans are low in comparison
to the network and protocol overhead summed up under the ‘Connecting’ label.

2.1.2 Metrics for Web Application Systems

Systems offering software that is used by an Internet browser are commonly known
as web applications. The response time includes all steps necessary for the user to
continue working, but also involves the network latency and the browser’s rendering
time. How long this time may be until the user gets disappointed or distracted
by side tasks is a matter of ongoing research without simple answer [Shneider-
man 1984, p. 274] (However, studies have shown that users abandon web sites
responding slower than seven to eight seconds [Seow 2008, p. 58]).

Modern Web 2.0 technologies try to address latency problems by offering back-
ground processing. For instance, Asynchronous JavaScript and XML (Ajax) [Hold-
ener 2008] can be used to send computation-heavy processes to the server while
letting the user continue browsing the page [van Kesteren 2012, Section 4.7]. Other
means are caching or offline data storage, which is a novel approach included in
the HTML5 standard [Hickson 2012, Section 5.6.2].

However, the response time is influenced by the uncertainty of network latency
and browser rendering time. Measuring the processing time only, takes the ob-
servations to the system domain. Since all latencies between the incoming request
and outgoing response are influenced by the system and its architecture, this metric
is easier to use and promises more accurate results.

2.1.3 Availability and Reliability

Sommerville [2007, p. 51] defines the availability of software as the successful
functioning in time point t. In other words, a system is available at t if it has not
failed till that point.

9
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The IEEE [1990, p. 32] provides the underlying terminology: failure are mo-
ments when the system cannot deliver the desired results due to a fault in a
software’s state. Faults are incorrect steps in the computer processes or data that
can be caused by error . Examples for faults are incorrect process instructions, bugs
introduced by programmers or just erroneous human interaction with the system.

The earlier described availability is primarily used for repairable systems. It can
be calculated based on the system’s up time and down time indicating the states of
successful and unsuccessful functioning. The formula given by Pham [2000, p. 32]
is as follows:

Availability =
System up time

System up time + System down time
. (2.1)

Reliability is given when a system does not fail in the entire time of a mission
according to Pham [2000, p. 32]. For centrally used and administered web appli-
cations, this measure is less relevant since they are normally repairable. In case a
request failed, users wait and retry by hitting the reload button on the web browser .
After transitioning out of a faulty state, the web application will continue to service
the request successfully.

2.2 Time Series Analysis

Every measure in a system’s performance is influenced by the current usage as
well as the preceding behavior. Box and Jenkins [1990, Preface] hence define time
series analysis as techniques to analyze dependent observations.

2.2.1 Basic Definitions

A time series X is a discrete function that represents real-valued measurements
xi ∈ R for every time point ti in an equally spaced set of n time points t = t1, t2, ..., tn
as described by Mitsa [2009, p. 22]:

X = {x1, x2, ..., xn} .

The duration of a time series is defined by the distance between the first and the
last point: DX = tn − t1. Further on, we define the distance between every pair of
subsequent time points as the step size. For a time series X it is denoted as ∆X. It
equals to the quotient of window length and the number of time points as follows:

∆X = ti+1 − ti =
Dx

n
.

For every ti, the time series has a corresponding value of xi ∈ Rd with d being
the number of dimensions [Mitsa 2009, p. 47]. If d = 1 the time series is called
univariate and multivariate if d > 1. In this document the set of univariate time
series is used and denoted TS.

A time series W = {w1, ..., wm} can be a window of time series X = {x1, ..., xn}.
For this window W ⊆ X the following assertions are:
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1. Both step sizes are equal: ∆X = ∆W .
2. The values of the window have to correspond to the values in the longer time

series: ∃ h ∈N, ∀i ∈ 1, .., m : xh+i = wi.

One of the statistical measures that define time series is the mean value defined
as follows:

µ =
1
n

n

∑
i=1

xi . (2.2)

Figure 2.3 shows the basic properties of time series and the mean calculated over
the whole series in an example. This will be used throughout this chapter to explain
the different means of forecasting and anomaly detection.

4 4
6

3 3

∆X

μ

1 2 3 4 5

Measure
Mean
Step Size

t

Figure 2.3: Time series with mean µ = 4 and step size ∆X = 1

Time series are characterized by certain features. Within one of the most significant
features stated by Wang et al. [2008, p. 4] is the seasonality which defines the
length of a period of recurring patterns of the mean value. Trend is a feature to
define the long-term change of the mean in a time series. In combination, trend
and seasonality can be used to model the course of a time series, as depicted in
Figure 2.4.

1
4

2

5 6

1 5

Seasonality

7
Trend

t

Figure 2.4: The features trend and seasonality can be used to
describe a time series

2.2.2 Temporal Data Discretization

All forecasting algorithms used in this context take time series as input. As defined
in Section 2.2.1 subsequent data points are equidistant. Although measurements
of performance can be gathered discretely, they are not obliged to occur on these
defined time points.

A series of measurements with same measurand M is a temporal sequence
as defined by OMG [2012, p. 2] (see Section 2.1). In consequence, time series are
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temporal sequences with equidistant measurements. We define a sequence of n
raw measurements {r1, ..., rn} between two time points tstart and tend as follows:

EStstart ,tend ,M = {ri = (ti,M, mi) | 0 ≤ i < n, tstart ≤ ti < tend}. (2.3)

This stream of raw measurements has to be preprocessed in order to yield time se-
ries usable for analysis. This preprocessing is also called discretization. Figure 2.5
shows how a continuous, temporal sequence get discretized with function f into
time series X.

1
∆X

2 3 4

2
5

8

1211
42

}}}
f f f

}

Time Series X

Event on ES}

f Discretization Function

Current Time

0 10 20 30

67 8
5

Continuous Time

Discrete Time Series

Figure 2.5: A univariate time series X = {x1, x2, x3} for the
measurand total_time with ∆X = 10 is constructed from a
temporal sequence by the function f . The input data of this process
is a temporal sequence ES0,34,total_time, which is also called “basic
window” by Shasha and Zhu [2004, p. 107]. The red line shows the
current time as 34 and indicates a possibly ongoing preprocessing in
future.

Every discrete point xi of time ti in the extracted univariate time series X yields
a real value calculated by a preprocessing function f : ES → R. There are
many preprocessing functions possible, such as the earlier described mean or
trivial maximum or minimum functions. When it is required to construct absolutely
comparable values the sum (or aggregation function in this context) is appropriate:

f (ES) = ∑
ri=(ti ,M,mi) ∈ ES

mi . (2.4)

2.2.3 Time Series Forecasting

Forecasting algorithms are applied to time series in order to calculate the values
that are most likely to occur next. The calculation is based on past data only and
does not include anticipated values or suggestions from outside.

Let W = {w1, ..., wm} be a time series with step size ∆W and length DW = m.
W is a so-called sliding window (as used by Shasha and Zhu [2004, p. 107] and
the later introduced software . . . . . .Esper), that always resides at the end of another time
series.
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2.2. Time Series Analysis

W is a window of X with the same step size ∆W = ∆X but with a smaller or
equal length DW ≤ DX. A forecasting algorithm λ f c ∈ Λ can be applied on W
which produces the output time series F = { f1, ..., fl}. Its length, DF = l, is called
lead time. This parameter is described by Box and Jenkins [1990, p. 1] and is
passed to λ f c as following:

F = λ f c(W, l) . (2.5)

The remainder of this section lists several forecasting algorithms in the following
paragraphs. They were chosen by variation and simplicity and got explained in
detail and compared in the bachelor’s thesis of Frotscher [2011]. All algorithms are
available as packages of the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .‘R Project for Statistical Computing’ as stated later in
Section 2.4.3.

Moving Average

Let W = {w1, ..., wm} be a sliding window of an underlying time series X. Mitsa
[2009] state that the window size DW has to be chosen carefully in order to track
the original series closely and discard small unimportant outliers at the same time.

Figure 2.6 shows the mean forecaster that uses a sliding window. The statistical
mean is applied to predict the next value.

4 4
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t

Forecasted Value
Forecast Algorithm
Forecast Window

∆W

5

1 2 3 4 5 6

Figure 2.6: Forecasting by the statistical mean of a sliding window
with size DW = 2. The forecast at time point t6 is marked with a
shaded bar in this example.

In R the filter method can be applied on the whole time series:

1 series <- c(4,3,3,4,6)
2 filter(series, sides=1, rep(1,2)/2)

Listing 2.1: Calling the filter method in R. The variable series
holds values corresponding to the sample data depicted in Figure 2.6.

Listing 2.1 gives the parameter sides=1 indicating the result on the right side of
the window. The output time series is NA 3.5 3.0 3.5 5.0, with an average
of t5 = 4.0 corresponding to the forecast shown in Figure 2.6.
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ARIMA

For time series without stability over a period of time, called nonstationary , Box
and Jenkins [1990, p. 85] developed ARIMA models. These forecasting algorithms
depend on the selected model using three as steps in the processing:

• AR Autoregression: Performing the forecast with a regression operator (see
[Box and Jenkins 1990, p. 88]), which weighs time points according to their
recency, as depicted Figure 2.7.

• I Integration: An optional summation in the MA process.

• MA Moving Average: Building the average over a sliding window as de-
scribed in Figure 2.6. This step is used to “smooth out short-term fluctua-
tions” [Mitsa 2009, p. 24].

For nonstationary time series, ARIMA is a solution that requires the selection of a
transformation model. ForR projects, the . . . . . . .CRAN lists a package called forecast,
which offers a configurable set of ARIMA forecasting algorithms [Hyndman and
Khandakar 2008, p. 8]. This package for forecasting in R includes selectable
ARIMA models based on a given differentiation parameter (order). These pa-
rameters denote the components as (p, d, q), with p being the order of the AR
process, d whether integrated or not, and q the order of the MA process. Listing 2.2
gives an example.

1 Arima(c(4,3,3,4,6), c(1,0,1))
2 # output:
3 Series: c(4, 3, 3, 4, 6)
4 ARIMA(1,0,1) with non-zero mean

Listing 2.2: The ARIMA method with given (1, 0, 1) order in R

Hyndman and Khandakar [2008], the authors of the R forecast package, state
the necessity of model selection by “a common obstacle”. Thus, an automatic se-
lection is possible. An example of the according method call of the ARIMA function
in R is given in Listing 2.3 showing the selection of the Arima000 forecaster.

1 auto.arima(c(4,3,3,4,6))
2 # output:
3 auto.arima(c(4,3,3,4,6))
4 Series: c(4, 3, 3, 4, 6)
5 ARIMA(0,0,0) with non-zero mean

Listing 2.3: On the example time series, the forecast package of
R automatically chooses the ARIMA000 process.

Further reading of the underlying mathematics can be taken from Box and Jenk-
ins [1990, p. 85], a practial comparison amongst other algorithms was made by
Frotscher [2011].
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SES Autoregression

A special case of ARIMA [Box and Jenkins 1990, p. 93] configured with (p, d, q) =
(0, 1, 1) is single exponential smoothing (SES). This model assumes that recent
observations are more relevant. Thus, it weighs the observations based on their
distance to the latest time point. Equation 2.6 shows the formula by Mitsa [2009].
Let X = {x1, ..., xn} be a time series and 0 < α < 1 the smoothing constant .
The next value fn+1 of the forecasted time series F = { fn+1, ..., fn+l} is hence
defined as follows:

fn+1 = αxt + α(1− α)2xt−1 + α(1− α)3xt−2 + ... . (2.6)

Figure 2.7 exemplifies the above mentioned smoothing constant by showing in-
creasing circles towards the latest measurement. With given values of X = {3, 3, 4, 6}
and α = 0.9 the resulting f5 = 5.7897. R uses Hyndman’s implementation
[Makridakis et al. 1978] as demonstrated in Listing 2.4 with h=1 being the number
of forecasting steps.
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Figure 2.7: Single Exponential Smoothing (SES). The circles indicate
an increasing weight for the forecasted value in t5.

1 forecast(ets(c(3,3,4,6), alpha=0.9), h=1)

Listing 2.4: SES forecast method in R

Forecast by Observation

This method takes the measurement of the beginning of the forecasting window of
the input time series as shown in Figure 2.8. The next predicted value is hence
fn+1 = xn−DW .

If the input time series has a strong trend, there has to be a preceding step of de-
trending that eliminates this deviation. Another, more practical approach, is to take
the mean or median of the last known pattern.

Oftentimes, this forecasting method relies on detecting the seasonality first.
This requires certain domain knowledge, e.g. holidays or usage patterns of a
system.
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Figure 2.8: Forecasted steps based on the last observations in DW .

2.3 Anomaly Detection

Anomaly detection is the research on data in order to find behavior that does not
appear normal [Chandola et al. 2009, p, 1]. The preceding step is finding behavior
or data that is accepted to be normal. Abnormal data can be distinguished by
creating a reference model as described in Section 2.3.2. Based on this reference,
the distance can be a measure of abnormality. If the distance exceeds a certain
point, the test data is declared as abnormal.

This section describes the basic definitions in the following section, the creation
of a reference model and finally Sections 2.3.3 and 2.3.4 introduce the anomaly
score concept that defines this level of abnormality.

2.3.1 Taxonomy

Anomaly detection can be classified in respect to the anomaly types and the meth-
ods, which are used. Figure 2.9 shows the hierarchy used by Banerjee et al. [2008,
p. 27] to classify approaches in this field.

Anomaly Detection 

Contextual Anomaly 
Detection 

Collective Anomaly 
Detection 

Online Anomaly 
Detection 

Distributed Anomaly 
Detection 

Point Anomaly Detection 

Classification Based 
Rule Based 
Neural Networks Based 
SVM Based 

Nearest Neighbor Based 
Density Based 
Distance Based 

Statistical 
Parametric 
Non-parametric 

Clustering Based Others 
Information Theory Based 
Spectral Decomposition Based 
Visualization Based 1

4

2

3

Figure 2.9: The taxonomy classifies the approaches in the problem
field “Anomaly Detection” and the relations amongst them. This
hierarchy from Banerjee et al. [2008, p. 27] is based on a related
technical report [Chandola et al. 2007, p. 7]. 1 , 2 , 3 , and 4 show
the fields addressed by ΘPAD.
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p1
p3 p4 p5

p2

Figure 2.10: A two-dimensional data set with contextual anomalies
based on [Chandola et al. 2009, p. 7]. p1 and p2 are collective
anomalies p3-p5. p4 appears normal in the context of p3 and p5.

2.3.2 Basic Definitions

Anomalies are patterns in data that do not conform to expected behavior. The
detection of anomalies refers to the problem of finding these patterns [Chandola
et al. 2009, p. 1].

Outliers, i.e., points or sets of anomalous measures can either deviate from the
context, described as contextual anomalies by Chandola et al. [2009, p. 7]. Or
they are classified as collective anomalies, not conforming to the whole data set.
In the 2-dimensional marker chart shown in Figure 2.10 the points p1 and p2 are
contextual outliers deviating from the other sets shown as black dots while the set
p3..4 is a collective anomaly deviating from the whole data set.

Reference Model

Anomaly Detection relies on comparing a measured behavior with a reference
model which describes the normal behavior of a system (see Yao et al. [2010,
p. 3]). For instance, intrusion detection systems have reference models defined by
attack-free training sets [Chan et al. 2003, p. ].

Apart from employing the right metrics as a data basis, a big challenge is to
find the right behavior of this model, which can be described as being normal. As
stated in Section 1.1, anomaly detection is hard to be solved generically. This is
mainly due to the fact that every system induces own parameters and behavior that
define the reference model.

Every reference model is based on a chosen metric. In this context, this is per-
formance, for instance measured by the response time or the count of concurrent
requests of a system. Ongoing from that, the normal behavior has to be analyzed,
so that patterns can be found. Two typical examples of SaaS applications are:

• The concurrent user count shows a seasonality pattern repeating every day
due to the business hours. Especially for business applications, weekends
could additionally induce some differences in the usage.

• The response time, as well as the usage, should not differ much from the
last measured point. Bad performance would show a rapid increase in the
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response time. Thus, one approach for the reference model is assuming that
the last measured performance is a good reference for the next values. This
approach deals with contextual anomalies as classified by the taxonomy in
Figure 2.9. Another benefit of this simple model is the automatic adjustment:
Every time a new measurement gets appended, the reference model is up-
dated to fit the real system behavior.

Anomalies are deviations from these reference models. The following Section 2.3.3
introduces distance measures to quantify the deviations.

2.3.3 Metrics

Since anomalies are deviations from the reference model, it can be determined
how big the deviation is, respectively how ‘far away’ a non-conforming point is.
Distance measures can be used with any d-dimensional points x = x1, ..., xd and
y = y1, ..., yd in a data set with points in Rd. For time series with equal length, the
euclidean distance is defined as follows:

Deukl(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + ... + (xd − yd)2 (2.7)

=

√√√√ d

∑
i=1

(xi − yi)2 . (2.8)

Assuming that y is a reference point (see Section 2.3.2) that is perceived of being
normal at time point ti. With a distance measure D the so-called anomaly score
can be normalized determined for every xi as follows

A(xi, yi) =
∣∣∣D(xi ,yi)

xi+yi

∣∣∣ . (2.9)

2.3.4 Anomalies in Univariate Time Series

As defined in Section 2.3.2 contextual and collective anomalies can be distin-
guished. The same can be applied for univariate time series. Figure 2.11 shows
this distinction in the example we use throughout this chapter.

Anomaly Score Calculation

In order to apply anomaly metrics on data points in a univariate time series, the
reference model of the data has to be determined first. Since univariate time series
have only one variable changing over time, the reference model can be defined as
a univariate time series as well.

Detecting anomalies can be broken down to comparing two univariate time
series against each other. This can be achieved by applying the euclidean distance
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Figure 2.11: In the time series X t3 and [t8, ..., t10] exemplify the two
types of anomalies. t9 is not a contextual anomaly since its neighbors
have the same value.
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Figure 2.12: Time Series X and Y = {4, 4, 4, 4, 4} are compared in
every point with distance measure D. The line chart above the bars
is the normalized distance as anomaly score.

(Equation 2.8) to every corresponding two real values in these time series. Let X =
{x1, x2, ..., xk} and Y = {y1, y2, ..., yk} be two time series of same length k. Since
values in univariate time series are in R the dimensionality d (see equation 2.7) is
simply 1.

Di(xi, yi) =

√√√√ d

∑
i=1

(xi − yi)2 =
√
(xi − yi)2 (2.10)

= |xi − yi| (2.11)

Figure 2.12 shows the absolute distance of every time point of two time series
denoted as the colored bars. The graphs in this thesis follow the SUCCESS
principles by Hichert [2011], defining several best practices for data visualization.

The previously defined distance between two or more time series is not abso-
lute. In order to compare multiple deviations, this distance can be normalized. Let
AD : R×R → R be a normalization function, X the base time series and Y the
time series of forecasts as used throughout this chapter. The resulting time series
of anomaly scores Ψ = {ψ1, ..., ψn} with ∆Ψ = ∆X is hence defined as follows:

Ψi = AD(xi, yi) . (2.12)
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Figure 2.13: The Anomaly Score calculated with function AD be-
tween two univariate time series X and Y with an assumed maximum
of max(X) = 6. At time point t6 the distance reaches its maximum
and causes the anomlay score to increase to 1.

As an example, we define AD : R×R→ R as the relative distance to a fixed time
series maximum in Equation 2.13. The resulting time series yields values from 0 to
1 and is depicted in Figure 2.13:

AD =
D(xi, yi)

max(X)
. (2.13)

Classification and Alerting

Chan et al. [2003, p. 2] suggest that anomaly detectors try to describe the anomaly
as precisely as possible. A known approach is the previously defined anomaly
score as a description of how abnormal the current observation is. In order to
determine whether this behavior can be classified as an anomaly, a human has to
interpret it with knowledge of the attached measurand and the reference model.

When the reference model is known, a threshold can be used that is dependent
on the measure. If the anomaly score exceeds a certain value, the measurement
is classified as abnormal. The setting of the threshold is attached to the choice of
the reference model and accordingly the forecasting algorithm done by humans.
As hinted by Oliner et al. [2012, p. 4], setting the threshold is difficult with respect
of finding the right balance of true positivess and false alarms.

Figure 2.14 shows the detection of anomalies based on the anomaly score time
series A = {a1, ..., an} and a given threshold θ. For every θ > ai the behavior
is classified as abnormal. Hence, for every threshold a particular number of true
positives and false negatives can be generated according to Figure 2.15.

In the classification model of Salfner et al. [2010, p. 8], a detection is also called
‘positive’, whereas no detection accordingly is defined as ‘negative’. If it is known if
the behavior is actually normal or abnormal, these detection states can be proven.
Hence, there are true and false positives and true and false negatives as shown in
Figure 2.15.

20



2.3. Anomaly Detection

Anomaly Detected

Normal Score

0

1
0.5 Anomaly Threshold

Abnormal Score

1 2 3 4 51 2 3 4 5 6

Figure 2.14: The anomaly score time series A is compared with
threshold θ = 0.4. When the score exceeds the threshold for the
first time in t = 5, an anomaly is detected.
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Figure 2.15: Grid of detection cases following the model of Salfner
et al. [2010, p. 8]. TP and TN sum up to the real failures F, the number
of non-failures (NF) and the total of all decisions N.

Detection Performance Comparison

As stated in the previous section, an anomaly detection algorithm produces true
and false positives in the detection process. Compared with the real world, these
results can be accumulated to form measures, which gives clues on the quality of
the algorithm.

Henceforth we use two important metrics according to Salfner et al. [2010, p. 8]:
The True Positive Rate (TPR) and the FPR, defined as follows.

True Positive Rate, the sensitivity of the algorithm. This number does not nec-
essarily lead to a better algorithm since it can still produce a high number of false
positives.

TPR =
TP

TP + FN
=

TP
F

(2.14)

False Positive Rate, The ratio of anomalies the algorithms detected incorrectly.

FPR =
FP

FP + TN
=

FP
NF

(2.15)

For every evaluation of an anomaly detection algorithm or a particular configu-
ration of a detector, the FPR and the TPR can be calculated. As of [Maxion
and Roberts 2004, p. 2], receiver operating characteristic (ROC) curves display
these metrics in a two-dimensional chart. Figure 2.16 shows the resulting model.
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Figure 2.16: The model of the Receiver Operating Characteristic
(ROC) curve compares algorithms and visualizes the tradeoff be-
tween the detection rates of false and true positives. It helps making
the tradeoff between how many false alarms shall be accepted, so
that a certain detection rate is attained.

One example execution of algorithm 1 never detected false positives.
2 resides on the dashed line indicating a random detection. 3 is
misleading since it produced more false positives than true positives.

Every point in the chart is one instance of a detection algorithm. Better algorithms
cumulate above the diagonal axis.

Bechtold and Heinlein [2004, p. 44] confirms the important of ROC curves
since false negatives are especially bad for detection algorithms, especially in the
intrusion detection field. In ROC curves, TPR and TPR are used together. This can
also be expressed in the following two metrics.

Precision, indicating how many anomalies got detected out of all actual observed
anomalies:

PREC =
TP

POS
=

TP
TP + FP

. (2.16)

Accuracy , indicating the ratio of correct detections to all observations. In ROC
curves, algorithms with high accuracy reside at the top of the chart:

ACC =
TP + TN

N
=

TP + TN
TP +FP +FN +TN

. (2.17)
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Figure 2.17: Object definition in JSON from http://www.json.
org

In Figure 2.16, the perfect algorithm at point E1 never detects incorrectly, thus
FPR = FP

FP+TN = 0 and it’s accuracy is ACC = TP+TN
TP +FP +FN +TN = TP+TN

TP + 0 + 0 + TN = 1.

2.4 Technology Stack

This section introduces the main protocols and technologies used for modern web
applications. Without concrete definition, this term is used in the HTML standard
since version 5 by Hickson [2012, abstract]. This document aims to standardize
modern web technologies like offline storage and enhanced browser APIs (Applica-
tion Programming Interface) and is still heavily influenced by big software vendors.

The standard protocol for transporting HTML content is Hypertext Transfer Pro-
tocol. The underlying layer usually is TCP/IP with the standard port being 80
[Fielding et al. 1999, p. 13]. For the following formats all use these bases as
underlying layers of transportation or transmission.

2.4.1 Protocols, Formats, and Concepts

Some new data storage and transmission concepts that came up in the recent
years rely on new data formats that are both human-readable and processable
by machines, such as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Javascript Object Notation (JSON). The following sections
define these formats and protocols so that the technical characteristics of ΘPAD
as well as the case study environment can be interpreted.

JSON and BSON

. . . . . . . . . . . . . . . . . . . . . . .Binary JSON (BSON) is a standard which defines a binary encoding for serialized
objects. The serialization relies on the JSON, which is, amongst other implemen-
tations, interpretable by Javascript parsers through the eval() method.

Apart from the compatibility to Javascript1, JSON has a small syntactical over-
head but does not offer sophisticated schema definitions or transformation stan-
dards. These attributes made it popular for use cases involving web browsers and
high performance environments as found in modern web applications.

Figure 2.17 shows the definition of an arbitrary JSON object which can be
nested as value inside other objects [IETF 2006, p. 7]. JSON’s syntax is character-

1Which, amongst others, helped defining the ECMA script standard [Fulman and Wilmer 1999, p. 2]
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1 timeseries:
2 deltat: 2000
3 start: 1329552143 # Comment: This is Sa 18 Feb 2012 09:02:23 CET
4 values: [3,3,5,5,4]
5 nextprediction: 3.5

Figure 2.18: The time series example in YAML syntax

based and thus human-readable [Holdener 2008, p. 92]. The format is schema-less
and therefore any JSON encoded data is freely extensible. An example of a JSON
formatted object is shown in Figure 2.6.

YAML

The . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .YAML Ain’t Markup Language (YAML) markup was designed with the assump-
tion that any data structure can be broken down to scalars and lists. The latter can
be either ordered or associative. The first specification was in 2001 and described
it as a ‘Minimal XML language’. Since then, YAML evolved into a subset to JSON
as the latest draft by Ben-Kiki et al. [2009, Status] explains.

As the code in Figure 2.18 demonstrates, the YAML markup is designed to be
human-readable [Ben-Kiki et al. 2009, Section 10.3.]. For machines however, it
takes more effort to generate and parse. Thus, it is often used for configuration
files2 that have to be written by humans and processed by machines on system
startup time.

AMQP

The . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Advanced Messaging Protocol (AMQP) is an open protocol standard defining
message-queuing communications. It defines message producers sending mes-
sages of arbitrary formats to brokers which then asynchronously provide clients
with the messages they subscribed to. Brokers themselves employ message queues
and exchanges that define how the message get routed from producers to clients.

Figure 2.19 uses the AMQP notation which is used throughout this thesis for
message queueing. Depicted is the message flow through these different actors:

• Producers send messages to previously defined exchanges.
• Exchanges route messages to zero or multiple queues depending on the

type of the exchange and the configured bindings.
• Queues hold the messages and forward them to subscribed clients in a First

In First Out (FIFO) manner.
• Consumers subscribe to message queues and receive messages whenever

possible.
• Consumers and Producers are called Clients that can define exchanges,

queues and bindings according to their privileges.

2A search for config and YAML on github shows 157, 696 results on February 18, 2012:
https://github.com/search?language=YAML&q=config

24

https://github.com/search?language=YAML&q=config


2.4. Technology Stack

CP

P

P

X

X C

Producers Exchanges

Queues

Consumers

Clients ClientsServer ("Broker")

Figure 2.19: Actors defined by AMQP

One common pattern, proposed by Frank Schmuck [Birman 2010, p. 9] is called
Pub/Sub: Producers publish messages onto a queuing server and subscribed con-
sumers only get the messages if they declare a demand. Messages are discarded
if there is no consumer subscribed.

AMQP is vendor-neutral, i.e., it can be implemented by any queuing software
confirming to the specified standard and that the interoperability across multiple
software vendors is encouraged. Implementations are . . . . . . . . . .StormMQ, . . . . . . . . . . . . .Apache Qpid and

. . . . . . . . . . .RabbitMQ, which is currently used by XING.

AMQP works on top of the network layer , i.e., the TCP/IP protocol. Thus,
AMQP conforming queues define one or more endpoints that are addressable via
IP addresses. Through the queues binary data can be sent which makes it open to
carry any data format.

Document Store Databases

This subgroup of . . . . . . . .NoSQL databases is a ‘relatively new breed’ of databases that
has no concept of tables, SQL or rows [Membrey et al. 2010, p. 3]. Data is
stored in entities called documents that hold encoded data. The storage usually
relies on standard formats such as the previously described YAML, JSON or even
binary formats that are colloquially considered as documents such as PDF. Since
documents are schema-less, they can be altered and extended without the need to
migrate existing data.

Like Key/Value data stores, which provide high availability due to replication
[DeCandia et al. 2007, p. 205], documents are accessible via unique identifiers, so-
called indexes. The distinct feature of document store databases is the possibility to
query the stored values, in this case: documents. To achieve that functionality, this
type of database has to interpret the stored documents Weber [2010, Section 4.1].

With the increasing number of implementations and approaches, this type of
database gained popularity the last years. A comparison lists more than eleven
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2

1

3

Figure 2.20: The Kieker architecture is designed with layers that deal
with different levels of complexity. Measurements are gathered by
probes at application level and are passed down to the monitoring
stream at 2 . This lowest layer can be configured to use a variety of
technologies. At the analysis side (3 ), plugins can be loaded and
executed [Ehmke et al. 2011, p. 3].

implementations for different formats and use cases.3 Many of them are production-
ready and under an open source license.

2.4.2 Kieker Monitoring Framework

Kieker is an extensible framework for continuous monitoring of distributed software
systems [van Hoorn et al. 2012]. Its open source code base is maintained and
enhanced by the Software Engineering Group of the University of Kiel.4 It supports
injecting so-called probes into the monitored system to analyze and visualize archi-
tectural characteristics regarding structure and behavior. This instrumentation can
be done either manually or in an Aspect-Oriented Programming (AOP) fashion.
The configurability of Kieker allows offline analysis as well as the use in online
production systems. For the online monitoring, it is designed to induce only a small
overhead into the system under monitoring.

Additionally, its plugin architecture allows the usage of different analysis plugins
as shown in Figure 2.20. In general, a plugin architecture allows implementations
for different use cases to be configured and run centrally [Fowler 2003, p. 500].

The benefit of using Kieker in production systems, is the possible capacity
planning, which makes it especially interesting for SaaS. It is tested, run in industry,
and proven to be stable. Since it is open to measure any kind of metric implemented
in the class Monitoring Probe (Figure 2.20), it is also imaginable to gather
performance attributes that correlate with faulty behavior.

3http://nosql-database.org
4http://www.se.informatik.uni-kiel.de
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1 series <- ets{c(3,4,5,7), alpha=0.99)
2 fc <- forecast(ts)

Listing 2.5: R forecast method

2.4.3 R Project for Statistical Computing

In 1992 normal programming languages were used to perform statistical comput-
ing. For businesses, computing statistical data normally involved programmers
writing custom software. Bell Labs5 provided a solution called S, which was more
accessible for statisticians. However, that software was proprietary and expensive.

R evolved as a project of the University Auckland and is a runtime environment
with its own S-like syntax. It is part of . . . . . .GNU, licensed open source under GPL,
and continuously is improved by a large community that contributed many software
packages.

These software packages are collectively held in a register called CRAN. One
popular contribution, the forecast package for time series analysis is introduced
in the following section.

The R forecast package

Business often need forecasts for large data sets as Hyndman et al. [2012, p. 1]
state. For this broad use they created the forecast package available in the
CRAN. Amongst an abundance of forecasting algorithms for univariate time series
analysis it holds 90 data sets which can be used to test algorithms.

This forecast called package includes varieties of exponential smoothing
and ARIMA models that were described previously. For ARIMA they also included
automatic model selection [Hyndman et al. 2012, p. 8] supporting the difficult se-
lection process.

The interface of forecasting follows the delegation pattern that encapsulates
different means in the following function call on a timeseries object and selects
the parameters according to the input data. Listing 2.5 shows the call on an
univariate input series of type ets with the alpha parameter given as documented
in Hyndman et al. [2012, p. 20].

All forecasting methods introduced in Section 2.2.3 are included in this package
and can support the implementation of anomaly detection. Further benefits can be
seen in the automatic model selection.

2.4.4 Case-Study Environment

XING’s platform, xing.com with its over 11.7 million registered users evolved over
a period of nine years [XING AG 2011, p. 3]. There are hundreds of servers in-

5http://www.alcatel-lucent.com/wps/portal/BellLabs
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volved, which handle the high traffic this user base produces. Apart from this traffic,
the technological diversity amongst the internal services is a constant challenge.

Application servers use standard frameworks and libraries such as Ruby on
Rails and intercommunicate via Representational State Transfer (REST)ful inter-
faces. Additionally, the architecture is separated and information is channelled
through AMQP queues. An own logging software, Logjam, was built to give ad-
ministrative control.

In the following sections, details on the technologies are given, which allow
XING to innovate continuously and remain stable for a high volume of requests at
the same time.

Ruby on Rails

Ruby on Rails is the prominent web development framework of the programming
language Ruby. It provides all important layers of web applications including a
template engine and a database mapper. Is is open source and has a large
community that contributed many freely available software packages.

Internally, it employs the MVC pattern [Raymond 2007] that separates the view
from the model and controller logic. This clean separation leads to better under-
standable and testable code. Amongst these advantages, Ruby on Rails serves
as a standard, which helps learning from existing applications. The key point
for businesses is the fast incorporation of new employees and the richness of
compatible open source packages for this framework.

Architecture

Apart from using Ruby on Rails for application servers, XING still uses Perl for large
parts of the code base and many database servers running MySQL. The architec-
ture is spread over many servers running Debian Linux with individual tasks. The
servers communicate internally over AMQP (asynchronously) and HTTP REST for
synchronous calls. The following is a list of services provided internally:

• Application Servers in Ruby on Rails and Perl handling the user interaction.
• SQL servers storing about 11 million registered users [XING AG 2011, p. 3]

and their attached network, messages, events and groups.
• A . . . . . . .Neo4J graph database that caches the connections amongst users.
• Servers with RabbitMQ offering the AMQP queues.
• Background server for sending newsletters, cleaning tasks, statistics and

billing
• Servers for the Xing Web Services (XWS), to let mobile and external applica-

tions access the platform.
• Monitoring servers (see next section).

Internally, XING follows the page controller pattern [Fowler 2003, p. 333] that struc-
tures the Hypertext Transfer Protocol calls on different controllers, in this case
called pages. Hence, every application only services the assigned pages. The re-
sults are cleaner debugging and separation of concerns [Starke and Hruschka 2011].
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Monitoring Systems

XING basically uses five different software products to monitor its behavior:

1. Logjam: open source software written by Stefan Kaes to aggregate perfor-
mance logs of every production server.

2. A server for detailed log inspection and filtering running . . . . . . . . . .Graylog2. This open
source software is written by Lennard Koopmann and sponsored by XING.

3. . . . . . . .Munin for IT infrastructure and resource monitoring.
4. Nagios for alerting system failures and down times.
5. . . . . . . . . . .Omniture to measure the platform’s performance from different computers

worldwide.

All servers in the architecture write log lines onto a message queue. A dedicated
server aggregates them into several importer queues to reduce the data processing
amount. For instance, application servers publish their logs into a queue which
is identified by the page name. This identifier comes from XING’s separation of
the request to certain ‘page’ called controllers. From a mathematical perspective
as defined in Section 2.2.2, every log line is a raw measurement in a temporal
sequence. These entities carry measurements and are attributed with a measurand
which is the page name from the origin application server.

Logjam

When XING’s app grew from one Perl server to a sophisticated architecture dis-
tributed over several application and database servers, the logs produced by the
Ruby on Rails and Perl web servers exceeded the size to be monitored per server
individually.

To address this, the software architects channelled the log lines into AMQP
queues that could be read and aggregated by one single server. This so-called
importer consumes every log line and writes the aggregates of every minute into
a . . . . . . . . . . .MongoDB instance. With this approach, logs provided a level of granularity that
was still good enough for debugging but also solved the problem of too much data
being produced by the servers altogether.

Additionally, every server employs certain measures to monitor each instance’s
performance. Important measures are response time and counters for the count of
certain calls such as database queries, . . . . . . . . . . . .memcache calls and template renderings.
Furthermore, some system data like memory allocation and heap size is gathered
and published to the queue. This information is encoded in JSON and also propa-
gated to the importer. A sample message is given in Listing 2.6.

Logjam is the web front end written by Stefan Kaes and used by XING to dis-
playing the log aggregates from the MongoDB historically and continuously every
second from the importer queue. The screenshot in Figure 2.21 shows Logjam’s
web-based dashboard. The front end comes with a live view displaying the incom-
ing messages from the queue directly and the possibility of browsing to older dates.
The graphs are built with . . .D3 [Bostock et al. 2011] and the server that produces the
HTML output is a Ruby on Rails application.
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1 {
2 "count": 5204.903527993169,
3 "memcache_time": 6505.196318140181,
4 "api_time": 2207.0271495891297,
5 "db_time": 5004.8727338680155,
6 ...
7 "view_time": 3936.1623304929153,
8 "total_time": 1586.8188192888886,
9 "api_calls": 5546.250545491678

10 }

Listing 2.6: AMQP message produced by the logjam importer

Figure 2.21: The Logjam web front end showing the measurements
of one day till 5pm.

In 2011, XING’s server produced several hundreds of millions log lines per day.
Logjam is used by all development teams for monitoring and post-mortem analyses
in case of software faults.

MongoDB

MongoDB is a highly scalable document store database (see Section 2.4.1). The
storage and querying format is BSON, which makes it compatible to Javascript
interpreters. One use case is for instance using it as a backend for simple web
applications, without the need of an intermediate web server translating request
from and to SQL. Queries can be sent via Ajax [Holdener 2008] to the MongoDB
and directly interpret the response data as Javascript objects.

XING uses MongoDB to store the aggregates of logs. The main reason for that
decision was the adaptability to new log formats while still offering complex data
queries. Thus, new sources can be added without migrating old logging data into a
new format.
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Servers

Importer

App (Rails)

App (Perl)

XWS (API)

DB

Background
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Log Database

1

Figure 2.22: All application, database and supporting servers log into
the importer at 1 that aggregates all logs and writes them into the log
database every second. From there, Logjam accesses and displays
the data in a web front end.

Furthermore, the large-scale software system of XING’s produces a huge amount
of logging data which requires upscaling and high availability of the logging servers.
Since MongoDB was designed as a high-performance database it fits the demands
of the XING’s system architecture.
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Chapter 3

The ΘPAD Approach

This chapter refers to the the previously introduced foundations and explains the
approach taken by ΘPAD in an abstract way. It shows activity diagrams from the
Unified Modelling Language (UML) as they are the means to specify and document
complex processes [Rupp et al. 2007, p. 267]. A mathematical model of ΘPAD is
defined and will be used for the upcoming implementation in Chapter 4.

Two types of activities are performed in the ΘPAD workflow. An offline activity
for configuring the measures and three offline activities that are taken by ΘPAD to
measure performance characteristics and process the values online. Section 3.2
gives an overview of the activities, which are described in detail in the subsequent
Sections 3.3 to 3.6.

3.1 Naming

Nissanke [1999] declares Θ as a symbol defining real time, hence the theta in
the name of ΘPAD. This term is often used for programs directly interfaced with
some physical equipment [Burns and Wellings 2009]. Other examples are video
rendering or streaming applications that require the processing to be completed
in limited time defined by the environment. In context of monitoring and anomaly
detection, the term online provides a greater description. As Shasha and Zhu
[2004, p. 119] put it, “even if the data come in forever, I can compute the statistics
of the data with a fixed delay from their occurrence”, the focus lies more on the
continuity of the data. Since anomaly detection calculates on an infinite stream of
measurements of a running system, online defines the name of this approach.

3.2 Activities

As the title Online Performance Anomaly Detection indicates, ΘPAD addresses the
main concerns of detecting unusual performance of software systems online, i.e.,
while they are running in their production environments. The activities performed
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Figure 3.1: 1 In the offline activity A, aspects get configured
according to the performance measures. After startup, 2 three online
activities are processes on every received raw measurement.

through configuration, startup and runtime of an ΘPAD instance are depicted in
Figure 3.1 and sketched in the following Sections 3.2.1 - 3.2.4. A detailed descrip-
tion of these activities is provided in Sections 3.3 - 3.6.

3.2.1 A: Configuration

As learned from related research on time series analysis [Chan et al. 2003, p. 2],
anomaly detection often depends on the specific environment it is used in. ΘPAD
therefore introduces the concept of aspects, which are separated units of measure
and analysis.

For instance, one aspect can measure the response time of a web application.
The aspect holds all parameters required to perform anomaly detection. After
startup, an ΘPAD instance gathers measurements for all configured aspects. Per-
formance anomaly detection based on multiple characteristics and parameters can
therefore be performed simultaneously.

3.2.2 B: Time Series Extraction

ΘPAD uses forecasting as one step of its anomaly detection and gathers data from
a continuous stream of measurements. Since most forecasting algorithms calculate
upon time series, this temporal sequence has to be discretized (see Section 2.2.2).
The discretization is done by first dispatching measurements to their according
aspect and subsequently aggregating them on discrete time points.

For instance, measurements of users logging in can be send to ΘPAD every
time a login happens. For an aspect that expects hourly logins as input, this
steps aggregates all these raw measurements (see Section 2.1) and delivers a
time series to the aspect.
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3.2.3 C: Anomaly Score Calculation

The anomaly detection is broken down into two simpler steps: i) forecasting the
next probable value based on historic values and ii) comparing it with the measured
values. The comparison is defined by anomaly detection algorithms that calculate
the anomaly score. This score is passed to the next activity for interpretation.

ΘPAD’s set of forecasting and anomaly detection algorithms is extensible. Ben-
efits of research in this field can be ported to existing deployments.

3.2.4 D: Interpretation and Action

In this activity, ΘPAD takes action based on every new anomaly score calculated
by the previous step. First, each score is stored into a time series database for
later post-mortem analyses. Second, the anomaly score is compared with the
aspect’s threshold, which was configured in activity A. If the calculated anomaly
score exceeds the threshold, alerts are reported.

Additionally, time series data can be retrieved from the time series database
in parallel to ΘPAD’s runtime. This helps refining the aspects and enables post-
mortem analyses.

3.3 A: Configuration

In order to apply ΘPAD generically to software systems, the concept has to be
configurable. This configuration step is done with knowledge of the system prior
to the runtime. The configuration is influenced by the system’s characteristics that
can be grouped into the following:

1. Measures of the system such as total response time, as described in Sec-
tion 2.1.

2. The timeliness and magnitude of the measurements gathered from the mea-
sures

Different monitored systems can have the same measures and metrics but deviate
in the time of measuring. For instance, it is likely that the hourly page visits of
an advertisement website produce different time series than the usage of a billing
web application system, which is used during normal office hours. Thus, anomaly
detection should be optimized to address the characteristics of the system under
monitoring.

The ΘPAD approach bundles configuration for these characteristics in entities
called aspects. Every aspect is identified with a unique key to be used as a
reference for later post-mortem analysis and as an index for the persistent time
series storage (see Section 3.6). Table 3.1 shows the symbols used for the aspect
configuration entity and all its configuration properties.

In the following, the underlying mathematical model is defined. Further on, the
dispatching process is described, which assigns incoming measurements to the
responsible aspect.
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Basic terms

Name Symbol Type Example

Key K P(s∗) string
Measurand M K response time sum
Measurement M M×R (ttime, 2.3)
Measure M M×N→ M response time
Algorithm Λ Statistical mean
Aspect A A ‘AD on ttime’

ΘPAD instance ΘPAD := (A, Λ f c, Λad)

Name Symbol Type Example

Configured aspects A aspects.yaml
Available forecasters Λ f c Λ {MEAN, SES,... }
Avail. anomaly detectors Λad Λ {Dnorm, ... }

Aspect configuration A := (id, a, ∆t, λ f c, D f c, λad, θ)

Name Symbol Type Example

Identifier id K mean.D1h.L1d
Measure a M all_pages
Step size ∆t N 60 ∗ 60
Forecasting algorithm λ f c Λad MEAN
Forecasting window size D f c N 60 ∗ 60 ∗ 24 ∗ 7
Anomaly detection alg. λad Λad Dnorm
Detection threshold θ R 0.28

Aspect at runtime α := (asp, hist, f c, ψc)

Name Symbol Type Example

Aspect configuration asp A mean.D1h.L1d
Measurement time series hist TS {3, 4, 3.3, 4.4, 9.9}
Forecasting time series f c TS {3.3, 4.4, 9.9}
Current anomaly score ψc R 0.9

Measurement record R := (t, m1, ..., mc) ∈N×Mc

Name Symbol Type Example

Measurement m = (k, v) M (vtime, 2.3)
Measure k K ttime
Measurement Value v R 2.3

Table 3.1: Symbols used for the mathematical models of ΘPAD
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3.3.1 Mathematical Model

In the following, the mathematical model is developed. Table 3.1 gives an overview
of the term definitions. With the same ordering, details are given in the following
sections.

Basic Terms

• K ∈ P(s∗), with s∗ being a sequence of alphanumeric characters s. K is the
set of keys or ‘strings with a meaning’ defined by the environment. Keys are
used to identify aspects, measurands, or time series stored in the database.

• Λ as any form of algorithm.

• Point in time are natural numbers (N), also called timestamps, that are the
number of seconds since a particular date.1

• ∆ ∈N defines a time span by the milliseconds between two time points.

• SMM’s Measurand, measurement and measure as defined in Section 2.1.

ΘPAD Instance

To give a notion of how ΘPAD is configured, the subsequent definitions follow a top-
down approach starting with the coarse-grained definitions as follows. Additionally
given is a set of aspects A, a set of forecasting algorithms Λ f c, and anomaly
detection algorithms Λad. With these types an installation of the system can be
defined as following:

ΘPAD = (A, Λ f c, Λad) . (3.1)

Aspect Configuration

From these definitions the aspect type A can be deduced. Let a ∈ K be an
attribute measured by the system. The threshold 0 < θ < 1 separates normal
from abnormal behavior. Reference in the time series storage is made by setting
the identifier id ∈ K:

A = (id, a, ∆t, λ f c, D f c, λad, θ) . (3.2)

λ f c ∈ Λ f c and λad ∈ Λac are the forecasting and anomaly detection algorithms
defined in the aspect’s configuration. They will be used at runtime of the aspect as
ecplained in the following section.

1In UNIX operating systems, the 1 January 1970 at 0:00 is used as a reference point [Leach
et al. 2005, p. 28]
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Aspect at runtime

At runtime, an aspect loads its assigned configuration and instantiates the following
objects:

• asp, the reference to the aspect configuration.
• The time series hist, which holds all values previously received by the aspect

asp. These values were discretized by using the aggregation function (see
Figure 2.5) with the step size ∆t configured in asp.

• The forecasting time series f c is sliding window of hist. This time series
window moves to the end of hist every time a value gets appended to hist.
f c is used as the input for λ f c.

• ψc, the current anomaly score calculated by activity C. ψ = 0 if the anomaly
detection algorithm was not executed yet.

As defined in Table 3.1, the aspect at runtime is defined as following:

α := (asp, hist, f c, ψc) . (3.3)

Measurement Record

Measurements put into ΘPAD are called measurement records:

R = (t, m1, m2, ..., mc) ∈N×Mc . (3.4)

R has c raw measurement which each having a key denoting a measurand of
the system under monitoring, for instance (256220100, (vtime, 2.3), (db, 1.5), ...).
These records are continuously received from a temporal sequences as introduced
in Section 2.2.2.

For all mi = (ki, vi), mj = (k j, vj) with i 6= j we additionally require ki 6= k j, that
is: components m1, m2, ..., mc of R have distinct keys. Hence, R defines a function

fR : {k1, ..., kc} → R, ki 7→ vi, (3.5)

mapping the keys to the values.

3.3.2 Aspect Lifecycle

Configured

Before ΘPAD accepts input data, aspects have to be configured and instantiated
in order to collect data according to their attribute. In the instantiation process, time
series hist and f c get created with the according configuration properties.

Running

In this state, an aspect accepts measurements with the key according to the at-
tribute it was configured for. Every time ΘPAD dispatches a new measurement
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Figure 3.2: The aspect lifecycle corresponds with the activities of
ΘPAD. On startup (1 ), the aspect configuration gets instantiated
into running aspects. 2 indicate ways in which the ΘPAD instance
accesses the aspects in the process of anomaly detection. The type
TSRecord 3 is defined in Section 3.6.

to the aspect, it gets appended to the time series hist, the forecasting window f c
gets moved and subsequently the anomaly detection is executed. This process is
described in detail in Section 3.4.

Persisted

When shutting down, the time series database holds all time series points. The
aspect only resides as a configuration entity in ΘPAD. When starting up again, the
time series hist gets filled from possibly previous data and the time series f c gets
created as a sliding window with the configured length DW .

3.4 B: Time Series Extraction

The steps taken to extract time series are described as discretization (see Sec-
tion 2.2.2) of a temporal sequence of measurements. As an overview of this
chapter, Figure 3.3 shows the steps of this activity.

B.1 Dispatching

The activity of processing measure records is called dispatching. The approach de-
fines one point which receives the data from the continuous monitoring. This point
has to inspect those incoming measure records and sort them to the according
aspects configured in the system.
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Figure 3.3: Steps taken to extract time series from the received
temporal data

This step extracts the measurements m = (k, v) out of each measure record R
and assigns them to the aspects matching the measurement’s measurand k to the
aspect’s measure a.

fdispatch : A× R → α , (3.6)

(A, R) 7→ fdispatch(A, R) (3.7)

with

fdispatch(A, R) =
{

A : fR(a) undefined
(a, hist⊕ fR(a), f c⊕ fR(a), λ f c, λad) : fR(a) defined.

We assume hist⊕ fR(a) to append the measure value v = fR(a) to the time series
hist. For every incoming measure record r ∈ R, the dispatching process applies
the according fdispatch method to all configured aspects, as depicted in Figure 3.4.

Measurements received from ΘPAD can be of arbitrary size and information.
They can be gathered continuously and are not required to appear at discrete time
points. As introduced in Section 2.2.1, the data model of continuous series of
events is called a temporal sequence.

Yet forecasting algorithms rely on time series in order to compute the next
values based on past data. To address this requirement, ΘPAD uses aggregation
as a special form of discretization as described in Section 2.2.2.
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Figure 3.4: The dispatching process assigns incoming measure-
ments rk ∈ R 1 to the aspect Ai ∈ A 2 , which are configured
for the measurements.

B.2 Discretization

3.4.1 Amount of Collected Data

As defined in Equation 3.5 the function fR maps its keys to the measured values.
The previously defined dispatcher has to go through the whole set but discards all
those measurements that have no corresponding aspect.

The amount of data being collected depends on the number of measurements,
their according measures and the configuration of the ΘPAD service (see Sec-
tion 3.1). Assuming every measurement yields values for every aspect’s attribute,
the aggregated number of discrete time series points SIZE can be calculated for a
given time span ∆runtime as following:

SIZE(Θ, ∆runtime) = ∑
a∈A

∆runtime
∆ta

. (3.8)

Every time a value is appended to the aspect’s time series hist, ΘPAD performs the
anomaly detection. The time spans between these processing steps depend on the
step size ∆t. Hence, the computation needed for an ΘPAD instance is influenced
by all step sizes defined in the aspects’s configuration properties.

B.3 Move Sliding Window

Forecasting algorithms used by anomaly detection as described in the foundations
(Section 2.2), give different weights on input data. For example, the SES weighs
the values of the forecasting window exponentially (see Equation 2.6). Thus, mod-
ifications of the aspect’s window size ∆W ∈ N affect the output of the forecasting
algorithm. Since ∆W can be set for every aspect, the anomaly detection can be
refined further.
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Figure 3.5: C.1 Anomaly score calculation is achieved by forecast-
ing the next value with the configured forecasting algorithm. C.2
compares and normalizes the values and builds the anomaly score
0 < ψc < 1 to indicate the level of abnormality .

3.5 C: Anomaly Score Calculation

The basic idea of ΘPAD’s anomaly detection is based on the intermediate step
of calculating a level of ‘abnormality’. This so-called anomaly score is a metric
indicating the deviation of the current measure from the reference model. We
assume the forecast fitting the reference model, this is the normal behavior of
the performance characteristic. The input of the actual course is given every time
activity B delivers a new value, as described in Section 3.4. In combination, both
values can be used to calculate the anomaly score.

Reasons to split the anomaly score calculation are to keep the algorithms sim-
ple and exchangeable. For the forecasting algorithms, simplicity means only need-
ing one forecasting value. Thereafter, the succeeding score calculation can be
achieved by distance calculation based on only two values. The resulting algorithm
signatures follow the divide and conquer principle and allow the configuration and
evaluation of other algorithms.

In the foundations, the mathematics of forecasting (see Section 2.2.3) and
anomaly score calculation (see Section 2.3) were defined. The following sections
put these formulas into an algorithmic context.

C.1 Next Value Forecast

The anomaly detection of ΘPAD is online and relies on the current measure as an
input parameter. Since there is only one current value to compare to, the lead time
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of any applied forecasting algorithm is 1. This leads to a better algorithm run time
and only one value (F1 ∈ R) to calculate:

F1 = λ f c( f c) . (3.9)

C.1 Anomaly Score Calculation

In this approach of online anomaly score calculation, an incrementally sliding fore-
casting window is used as shown in Section 2.3.4. Every time a value is appended,
one old time point gets discarded. Thus, the window always contains the newest
values.

Accordingly, anomaly detection can be based on the newest value as well. This
gives the advantage of updating the reference model on every update and simplifies
the anomaly score calculation.

Due to this simplification, the anomaly score is a normalized distance measure
with only two inputs. At every current time point c, the anomaly score can be
calculated by an algorithm λad. It calculates the current anomaly score ψ based
on the time series input X = {x1, ..., xc}, the forecasting algorithm λ f c and a
forecasting window W = {xi−DW , .., xc−1} with ∆W = ∆X:

ψc = λad(λ f c(W), xc) . (3.10)

This activity puts out anomaly scores consistent throughout the time the system is
monitored. These scores are given to the last activity to enable the interpretation
of behavior.

3.6 D: Interpretation and Action

This activity receives the current data points of all three relevant time series as
input. These hold the measurements, forecasts and anomaly scores at discrete
time points. The previous activities held this data in a volatile runtime context. In
this activity the time series get persisted (D.1 ), anomaly scores are interpreted
and in case of abnormal behavior, reported.

Furthermore, this step interprets the data by comparing the anomaly score with
the configured threshold (D.2 ) and alerts the surrounding system in case this
threshold is exceeded (D.3 ). Figure 3.6 puts these steps into context of the overall
ΘPAD process.

D.1 Persistent Score Storage

This step receives all three time series as input. Combined with the aspect, the
following data get inserted in the time series storage on every new input.

• Measurements from the measure defined in the aspect
• Forecasts for every time point
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Figure 3.6: Activity details of step D.3 . Calculated anomaly scores
get stored into the database and alerts are propagated whenever they
exceed a certain threshold.

• Anomaly scores as calculated by the anomaly detection algorithm
• The aspect’s identifier to refer to the data origin

Since the time series all have the current timestamp in common, one record stored
into the database can be defined as a tuple:

TSRecord := N×K×R×R×R . (3.11)

To clarify, Equation 3.12 gives an example for a record at time t42 for an aspect with
id = aBest as following:

TSRecord42 = (t42, id, X42, F42, Ψ42) (3.12)

= (459819300, aBest, 300042.24, 270042, 0.4). (3.13)

This storage format is compatible with common formats and databases as de-
scribed in Section 2.4.1. Apart from the algorithms, the persistent data storage
can be changed as well.

As an output, this activity propagates the anomaly scores to the score interpre-
tation (D.2 ) as depicted in Figure 3.7.

D.2 Score Interpretation

In this step, the threshold θ, as defined in the aspect (see Section 3.3), is compared
to the anomaly score 0 < ψ < 1. If the score exceeds (ψ > θ) the threshold, the
behavior is assumed to be abnormal, hence ψ is delivered to the next step D.3 . If
not, the activity is terminated after this point.
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Figure 3.7: ΘPAD interpreting the anomaly score and offering post-
mortem analyses based on the origin of the calculations. The AMQP
actors (see Figure 2.19) are used for the alerting queue.

D.3 Action

This step receives anomaly scores that are higher than the threshold. Whenever
an input is received, the score gets published onto a queue that follows the FIFO
principle: Subscribers get the first published value ahead of the later propagated
scores.

An alerting facility can therefore subscribe to the queue and trigger alerts when-
ever a message is published. As additional information, the transferred value is sent
along, thus serving as a degree of abnormality to counteract more effectively.

Furthermore, additional characteristics of the monitored system can be config-
ured outside of ΘPAD. For instance, a collective anomaly that gets alerted could be
directly followed by a large contextual anomaly as described in Section 2.3.4. An
alerting facility could address that by keeping the alert switched on until appropriate
action is taken.

Post-Mortem Analyses

Since every calculated anomaly score gets stored in the persistent database along-
side with the data origin, the algorithm input of every score is known. In combination
with the aspect configuration, the origin of alerts are stored for future inspection.
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This enables post-mortem analyses in order to gather information on the rea-
sons of occurring anomalies and correlations amongst the aspects. Additionally,
scenarios can be replayed in order to test other aspect configuration properties.
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Chapter 4

Design and Implementation of
the ΘPAD System

This chapter takes the ΘPAD approach of the previous chapter and concretizes it
in software modeling and design. To define the design decisions, structural UML
diagrams, such as component, deployment and class diagrams are used. For
details and definition of the used standard we refer to Rupp et al. [2007].

The following Section 4.1 uses the ΘPAD activities and the previously described
technology stack (see Section 2.4) to form the requirements of the software imple-
mentation. Section 4.2 lists the supporting software packages and Section 4.5 goes
into detail on how ΘPAD controls R to do the calculation. Since the software runs
as a Kieker plugin, Section 4.4 explains how the interfaces are used and how ΘPAD
is started up in this context. Finally, the anomaly score output and interpretation
and alerting technologies are described in Section 4.6.

4.1 Requirements

In order to employ a solution for the formal specification of the approach in Chap-
ter 3, a software solution has to be implemented, which fulfills that approach.
Throughout the following sections, the requirements classification of Schwinn [2011,
p. 22] is borrowed.

Functional requirements assure that ΘPAD addresses the problems, which
were motivated in Section 1.1. All necessities are listed, which are mission-critical
for providing a solution for the given problem field.

To apply a solution on software systems, the surrounding framework conditions
have to be met. These requirements serve to assure that ΘPAD works on the
technology stack of the case-study environment. Furthermore, non-functional re-
quirements describe how the implementation addresses certain quality needs.
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4.1.1 Functional Requirements

The functional requirements (FRs) correspond directly to the activities depicted in
Figure 3.1.

FR1: Environment Configuration

ΘPAD has to be deployed in varying environments, which measure performance
by different attributes. The approach introduces the aspect model, which provides
this configurability. In order to have multiple aspects in one ΘPAD installation, a
configuration register is needed, which can be equipped with the aspects fitting the
environment.

FR2: Time Series Extraction

Forecasting and consequently anomaly detection algorithms require equidistant
time series data as input. The process described in Figure 2.5 extracts discrete
time series points from a temporal sequence using a discretization function. ΘPAD
uses the aggregation function and requires the parameter step size to define the
discrete time series points. Hence, every aspect has to be configurable in order to
build its internal time series.

FR3: Anomaly Score Calculation

The two-step anomaly detection described in Section 3.5 is crucial to the function-
ality of ΘPAD. One instance of the system, as defined in Equation 3.1, is called
installation in this context. The ΘPAD called type defines sets of attributes as
input parameters, which define the available algorithms for forecasting and anomaly
detection. To address system-specific characteristics, these algorithms have to be
configurable and exchangeable.

FR4: Interpretation and Action

One possibility ΘPAD offers is post-mortem analysis as described in Section 3.5.
The complete history of anomaly scores has to be stored in a database. To gain
knowledge from this, data has to be accessible and displayed in an appropriate
way. For complete post-mortem analysis, we additionally require ΘPAD to store all
previously measured data and the forecasted valued calculated in between.

In a final step (see Figure 3.7), anomalies have to be propagated to alerting
facilities. As of Section 3.6, the approach is to use queueing as a connection to
alerting facilities defined by the surrounding system.
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4.1.2 Framework Conditions

FC1: Case-Study Environment Compliance

The case study for ΘPAD will be the large-scale software system at XING AG,
Hamburg (see Section 1.1). The functional requirements FR1 to FC4 already
address the approach that was designed to fit the problem space in general. This
requirement set the necessity of the implementation to be adaptable to the case
study environment previously described in Section 2.4.4.

4.1.3 Non-Functional Requirements

NFR1: Quality

Software is never free of errors and every additional line of code introduces a cer-
tain probability of programmer’s errors, so-called bugs. The development process
needs to address this with the use of certain paradigms and tools. Furthermore,
the implementation has to be evaluated on production data of the case-study envi-
ronment, thus requiring it to be stable in terms of robustness.

NFR2: Graceful Restarting

Since ΘPAD is expected to measure performance online, it may never get shut
down. However, restarts can be required when reconfiguring the setup or migrating
to different hardware. Another motivation, as described by Huang et al. [1995,
p. 2], is software rejuvenation: restarting is used to clear stale run time data, which
clogged up the server. Thus, ΘPAD is required to store the work data persistently
and be able to regain the old status when restarting.

NFR3: Big Data Processing

Neither the number of aspects configured in ΘPAD nor the detail of the aggregated
data (denoted as ∆ in Section 2.2.1) should be limited. Multiple aspects can be
tried out in order to find the parameters that fit the surrounding domain best. This
adds the requirement of storing big amounts of time series data and have them
accessible fast.

NFR4: Reusability

Historically grown software systems are often customized to a high degree. Hence,
the environment configuration (FR1), has to be supported by an architecture that
can be be modified and easily extended. Additionally, a modular structure gives the
chance of porting and reusing parts of ΘPAD in other software.
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4.2 Supporting Software and Libraries

The ΘPAD approach is implemented with the support of third-party and own li-
braries that comply with its open-source license. Benefits are reduced development
time, code quality and encapsulation. In the following, the included libraries and its
purposes are listed:

• Section 4.2.1: . . . . . . .Esper Complex Event Processing for time series extraction
• Section 4.2.2: . . . . . . . . . . .MongoDB, storing the time series
• Section 4.2.3: . . . . . . . .Rserve to connect Java to an R server
• Section 4.3: TSLib, ΘPAD’s own time series library outsourced into an own

open source library

4.2.1 Esper Complex Event Processing Platform

Esper by Espertech is an open source event processing library licensed under the
General Public License (GPL). It can be packaged with other open source software,
but also offers an enterprise license for commercial redistribution. Gualtieri et al.
[2009, p. 6] compared nine Complex Event Processing (CEP) engines and refers
to EsperTech as the leading open source provider for CEP. It offers processing
for temporal sequences, which can be accumulated, correlated, and queried. The
ΘPAD system uses Esper to perform time series extraction and aggregation of
temporal sequences of measurements as described in the approach, Section 3.4.

Esper has its own SQL-like syntax the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Event Processing Language (EPL) that
includes aggregation of time series. Listing 4.1 states the syntax for an aspect with
aggregation time series X and a step size ∆X = 1000 milliseconds.

1 select sum(value) as aggregation
2 from MeasureEvent.win:time_batch( 1000 msec )

Listing 4.1: Esper syntax (EPL) describing the aggregation to time
points every 1000 milliseconds

Since Esper provides a strong feature set and is embeddable in Java applications
[Gualtieri et al. 2009, p. 8], it matches the programming language of ΘPAD and can
run in the same context as Kieker.

4.2.2 MongoDB

As of requirement NFR2, the implementation has to store the data persistently,
To achieve that, ΘPAD uses a document store database as introduced in the
foundations, Chapter 2.4.4. The architecture decision to use this kind of database
came from the already existing knowledge gathered with Logjam. An additional
advantage of MongoDB is the ability to process large amount of data (NFR3). Due
to the simple data model, concepts like relations or sophisticated SQL queries are
not needed.

The case-study environment already offers MongoDB, as described in Sec-
tion 2.4.4. This open source database comes with standalone server and many
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driver implementations. Since . . . . .Java and Ruby are supported, MongoDB can be
used for ΘPAD without huge development effort.

Figure 4.7 shows the class MeasureSeries, which implements the listener
interface IDataBeat and hence listens on AggregationDataBeat. Thus, it
receives the aggregated values from Esper at every discrete time point accord-
ing to the aspect. Every time a new value is appended, forecast and anomaly
score is calculated and added to the record in MeasureSeries. Subsequently,
MongoDataBeat uses the same approach to chain itself to MeasureSeries. It
receives complete aggregates combined with the output of the aspect’s algorithms.

4.2.3 Rserve

The default behavior of R is providing a command line interface. With certain
functions, libraries and code can be loaded and executed from the file system.
Since ΘPAD is required to process large amounts of data (NFR3), a dedicated R
server can provide scalability.

Rserve is a library that is loaded into R and opens a port for remote control.
Authorized clients can connect and thereafter execute commands on the running
R instance. . . . . . . . . .JRclient is a Java library complying to the protocol offered by Rserve.
It provides classes to translate the communication between Java and R.

4.3 TSLib Component

The Java library TSLib is a part of ΘPAD that got outsourced in order to be used
in other projects dealing with time series analysis and forecasting (see Section 5.5).
As the date of this thesis, there was no third-party library available that provided the
desired feature set. This component makes ΘPAD reusable and hence addresses
NFR4. The main attributes of TSLib are as follows:

• Common definition: The foundations state the definition of time series used
throughout literature (Section 2.2). The Java code reflects that definition.

• Forecasting algorithm interfaces: The algorithms used by the ΘPAD ap-
proach (Section 3.5) implement a common interface. Thus, later extension is
possible without breaking code that uses TSLib.

• Outsourcing calculation to R: In order to move computation-heavy pro-
cesses to other servers and to utilize existing algorithm definitions, a connec-
tion to R is provided.

The internal structure of TSLib is depicted as an UML class diagram in Figure 4.1.
Details of the classes and a runtime example are given in the following sections.

TimeSpan

The TimeSpan class defines the step size ∆ (see Section 3.3.1), which is used to
determine the distance between time points of time series. This class does not exist
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1   delta points 1

*data
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+ toMilliseconds() : long
+ subtractFrom(date)

- value : long
- unit : TimeUnit

TimeSpan
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+ getter + setters

- time : long
- value : double

TimeSeriesPoint+ append(value)
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«interface»
ITimeSeries

«interface»
ITimeSeriesPoint

1

+ append(value)
+ getPoints() : 
TimeseriesPoint[]

- startTime : long
- delta : TimeSpan

TimeSeries

Figure 4.1: The classes provided by TSLib are arranged around the
TimeSeries class, which uses a circular buffer. This data structure
discards old time series points when exceeding a certain capacity 1 .

in this form in the Java standard library but is a meaningful wrapper for calculations
amongst time distances in time series.

For instance, the aspect approach of Section 3.3 defines this in the configu-
ration. The TimeSpan class is this representation in Java code provided by the
TSLib. It uses Java’s TimeUnit enum for defining the the unit of the specified
time. Since this also reflects to the attributes specified in the aspect configuration,
the YAML configuration is easy to maintain. The following example is one aspect
taken from ΘPAD’s configuration file:

1 - !aspect
2 delta: 15
3 deltaUnit: MINUTES
4 ...
5 lengthValue: 1
6 lengthUnit: HOURS

Listing 4.2: The aspect configuration uses YAML syntax and makes
defining timespans understandable by accepting time points as tuples
of integers and TimeUnits.

Time Series

Throughout this work, time series with a certain length DX (for a time series X)
are used. Section 2.6 shows an example using a sliding window, which is used
for forecasting. The Java class TimeSeries is the implementation of this model
and can be instantiated with a capacity parameter that restricts the instance to
a particular count of TimeSeriesPoint: When appending new time points the
buffer discards old values that are above its capacity.
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- date: 2012-03-04 17:52
- value: 3

: TimeSeriesPoint
- date: 2012-03-04 17:47
- value: 3

: TimeSeriesPoint

X : TimeSeries

- value : 5
- unit : Minute

∆x : TimeSpan

- capacity : 12
- size :  3

: CircularFifoBuffer
- date: 2012-03-04 17:42
- value: 4

: TimeSeriesPoint
4 3 3

∆   = 5 min.X

1 2 3

March 4, 2012 17:42

delta

points

Figure 4.2: Example of a time series with three points instantiated in
TSLib. The CircularFifoBuffer will discard value 4 of t = 1
after inserting the 13th value at March 4 2012 18:47, which exceeds
the capacity of 20.

Figure 4.2 shows an object diagram of a time series instance with three time points
in a CircularFifoBuffer attached to an instance of TimeSeries. At run
time, the buffer is used to encapsulate the memory management for time series
restricted to a certain step size.

4.4 ΘPAD Kieker Plugin

The context, in which ΘPAD runs, is provided by Kieker, the performance mo-
nitoring and dynamic analysis framework described in Section 2.4.2. To benefit
from Kieker’s existing implementation base, ΘPAD is implemented as a plugin and
follows the interfaces required by Kieker’s plugin container.

Messaging Server
«AMQP»

«AMQP»

ΘPAD Server

Importer Queue

Alerting Queue

ΘPAD Plugin

«AMQP

«Rserve»

«Mongo 
Wire 

Protocol»

TSLib

«device»
Support 
Server

Time Series
Storage

R Environment

«device» 
Production  Servers

Figure 4.3: Deployment of ΘPAD in a Kieker server with two optional
servers for infrastructure and support.

Figure 4.3 shows an example deployment setup with distributed systems for infras-
tructure, monitoring, and support. For a large-scale software system, this high
degree of distribution is common. However, all systems could be run on one
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machine and communicate locally as well. For this implementation, Kieker is used
as a base only without additional analysis means. However, it is possible to deploy
ΘPAD alongside other performance analysis plugins.

Following are the previously introduced libraries and technologies woven to-
gether in Kieker (Section 4.4.1). The plugin’s internal structure is described in Sec-
tion 4.4.2. Ultimately, Section 4.4.3 explains how good code quality was achieved
in the development process.

4.4.1 Integration into Kieker

ΘPAD uses the Kieker monitoring framework written in Java as a base for its
implementation. The connection to the anomaly detection code is made by a
plugin container Kieker offers. The plugin pattern is used when certain behavior is
based on different implementations that have to be configured in a central runtime
environment [Fowler 2003, p. 500]. To start ΘPAD in a Kieker environment, all
necessary depending libraries, the kieker.jar and the plugin code have to be
accessible in the same class path.

ΘPAD gets instantiated at startup of the Kieker server. Both main architectural
components of Kieker, Monitoring and Analysis are used to route the measure-
ments to the plugin. The data flow from input to output is illustrated in Figure 4.4.

Java Pipe Time Series 
Storage

«artifact»

Monitoring

«artifact»

Analysis
«component»
ΘPAD Plugin
P

XAlerting Queue

«Adapter»
AMQPBridge

C

Measurement Queue

Figure 4.4: The coarse-grained architecture follows the linear data
flow of the approach (see Chapter 3). The AMQPBridge adapter
translates the monitored system’s measurements to Kieker records
and therefore makes ΘPAD reusable in other environments (NFR4).
This graphic uses the AMQP notation of Figure 2.19.

Raw measurements, encoded as JSON strings, are sent to the measurement queue
by the system under monitoring in a temporal sequence fashion as described in
Section 3.4. The Kieker Monitoring component, then deserializes these strings and
transforms them into measurement records as defined in Equation 3.4. Subse-
quently, these records are put into a Java Pipe forwards data in memory according
to the FIFO principle. Figure 4.5 shows the corresponding class instantiation.

54



4.4. ΘPAD Kieker Plugin

+ getLoggingTimestamp : long
+ toArray() : Object[]
+ getValueTypes() : Class[]      , ...

<<interface>>
IMonitoringRecord

+ getFields() : Map
+ initFromArray(Object[])
+ toArray() : Object[]

- fields : HashMap

MultiFieldRecord

...
- loggingTimestamp : long

AbstractMonitoringRecord

Figure 4.5: The MeasurementRecord class is used as a wrapper
for the incoming JSON data corresponding to the type measurement
record defined in Table 3.1

The Kieker Analysis component consumes these deserialized Java objects and
forwards them to the ΘPAD plugin, which takes care of extracting time series,
performing the anomaly detection and publishing anomaly scores to the according
queue in case of a detection. The plugin internally loads aspects configuration
files holding n aspects with the mathematical type {A1, ..., An},Ai ∈ A as defined
in Section 3.3.1 and instantiates them (see Section 3.3.1). The resulting runtime
aspects {α1, ..., αn} each hold time series hist and f c in memory. In periods
configured by the step size, updates to these time series are stored in the MongoDB
for post-mortem analyses.

In order to implement ΘPAD as a Kieker plugin, it has to offer a class imple-
menting the IAnalysisPlugin. This class gets instantiated and called with the
init() method when Kieker loads its plugins. Accordingly, the terminate()
method unloads the plugins. This has the advantage of giving the startup and
shutdown responsibility to the surrounding framework. Additionally, a plugin in
Kieker offers itself for the analysis of certain measures. The resulting pattern is
close to the chain of responsibility [Gamma et al. 1995, p. 223] and gives the
possibility of using multiple plugins in one Kieker server.

4.4.2 Architecture

Architecture describes the structure, interfaces, and the cooperation of components
of a system [Starke and Hruschka 2011, p. 24]. The Architecture of ΘPAD is
derived from the linear data flow of the system. Internally, this linearity is proceeded
by a custom class structure which developed in ΘPAD and was called named ‘Data
Beat’ pattern. Figure 4.4 shows the coarse-grained chain of processing.

The observed system puts measures on the importer queue. The Kieker Mo-
nitoring component acts as an AMQP consumer, denoted with the blue circle.
The bridge between Monitoring and Analysis components is achieved by config-
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uring Kieker to work with a Java Pipe1. This in-memory pipe is enabled in the
kieker.properties by setting the following configuration:

1 kieker.monitoring.writer=
2 kieker.monitoring.writer.namedRecordPipe.PipeWriter

Listing 4.3: Kieker can be configured to use a Java pipe to transfer
measurements from the monitoring to the analysis component

Measurements then are routed to the ΘPAD plugin as shown in Figure 4.4. There-
after, the anomaly detection algorithms are executed. Periodically, as determined
by the configuration property ∆ (see Section 3.3.1), aggregated measures and
anomaly scores are written into the time series storage. In case anomalies are
detected, they get published via AMQP. Therefore, ΘPAD also acts as a publisher,
which puts anomalies on the anomaly queue. The surrounding system can sub-
scribe to that queue in order to trigger alerts. Details of this output are described in
Section 4.6.1.

Figure 4.6 shows the libraries described previously and the coarse-grained
internal structure as a UML component diagram. The dashed arrows are use
relationships. Their direction corresponds to the data flow of Figure 4.4.

Data Beat Pattern

Esper Runtime

+ start ()
+ sendData(time, measure)

- deltaMillis : long
- beatListener
- esperRuntime

AggregationDataBeat

MeasureSeries

+ beat(time, payload)

«interface»
IBeatListener

+ start()

«observable»
IDataBeat

MongoDataBeat

*

*

AnomalyAlert
Alerting QueueTime Series

Storage

Figure 4.7: Class diagram of the DataBeat Pattern

In the normal program flow, time series objects undergo many different operations
such as aggregation, forecasting, anomaly score calculation, and storage. To deal
with this complexity, we created an own pattern that uses separation of concerns
as suggested by Starke and Hruschka [2011]. This pattern is called DataBeat

1A concept similar to UNIX pipes: http://www.linuxjournal.com/article/2156
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«component»
ΘPAD Plugin

«component»
AspectGrid
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Aspect

«artifact»
Aspect
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Time Series
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Forecast
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Time Series 

Storage
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Anomaly 
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Alerting
Queue

Measure Queue

«component»
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Time Series
Storage

«component»
Alerting

1

Figure 4.6: The components of the ΘPAD plugin architecture use
several supporting software and libraries outside its own code base.
This diagram reflects the data flow described in the approach in
Chapter 3. TSLib (1 ), a part of ΘPAD, was outsourced to an
external library for reusability in other work.
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pushMeasure

forecast
nextValue
calculate
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score

notifyUpdate
:Anomaly

Alert

:Time
Series

:Aggregation
DataBeat:Aspect :Mongo

DataBeat

alert

«component»
TSLib

Legend
call message
return message

notifyUpdate

Figure 4.8: This call sequence that gets processed every time a new
measurement record is received. It follows the steps of activity B of
the approach as depicted in Figure 3.7.

since it involves different objects reacting to periodic changes in time series data.
As depicted in Figure 4.7, it includes the observer pattern as proposed by Gamma
et al. [1995, p. 293] which notifies objects when the Observable class is changed.
AggregationDataBeat is the key class, which converts a temporal sequence
to time series with equidistant time points as described in Section 3.4. Hence, all
declared listeners can operate on time series data with equidistant time points.

At runtime, the classes following this pattern communicate sequentially as il-
lustrated in Figure 4.8. The concept of the data beat pattern is influenced by the
Decorator introduced by Gamma et al. [1995, p. 175].

4.4.3 Unit and Integration Tests

In order to achieve a high software quality as required by NFR1, the Java code was
written with test-first programming. ‘Code Complete’, the programmer’s standard
literature by McConnell [2004, p. 504] refers to this practice as being the most
beneficial of the recent years. The importance is also proven by its inclusion in
new project management principles like Extreme Programming (XP) [Beck and
Andres 2004, p. 51].

This methodology is particularly known for good quality due to extensive use of
tests and also called Test-Driven Development (TDD). A strict TDD approach be-
comes even more important since the core of ΘPAD was written without a second
programmer. Thus, it helped writing high quality code without daily supervision.

In the resulting implementation, every important class has a corresponding test
class conforming to the structure of the test framework . . . . . .JUnit. Periodically, all de-
pendent tests are run to ensure the change did not compromise other functionality.
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Additionally, the continuous integration server . . . . . . . .Jenkins was set up to run the test
suite after every push to the . . .git repository.

4.5 R Algorithms

The functional requirement FR3 defines the core functionality of ΘPAD being ano-
maly detection. As of the approach, detection is achieved by forecast and com-
parison. Additionally, ΘPAD is required to be configurable for the environment’s
characteristics (FR1) and be deployed in the case study system (FC1). Therefore,
this implementation in software has to include configurable and extendable algo-
rithms for both steps in the detection process.

Additionally, it is required, that ΘPAD provides a basic set of algorithms, which
are used to prove the functioning of its approach. To support a fast development
process and to be extensible in future, ΘPAD has to rely on existing implemen-
tations of algorithms.

Java libraries for forecasting exist such as . . . . . . . . . . . . . . .OpenForecast. However, R, as
introduced in Section 2.4.3, offers an abundance of mathematical methods of all
fields with a large expert community. R is said to be the prominent open source
statistic language and environment. Section 4.2 will introduce the package Rserve,
which is used to move the computation of algorithms in R to a dedicated server in
order to deal with big data as demanded by NFR3.

This distributed approach has to deal with the drawback of depending on a
remote server. Although Fowler [2003, p. 91] states separation of vendor differ-
ences as one reason when to distribute logic to outside processes, it is often less
stable than direct method calls. ΘPAD aims at addressing this concern by using
the remote server for calculation only and not storing session data on it.

Connection to R

As described in Section 4.2, Rserve is used to connect to R. The Java library
JRclient wraps this connection and lets ΘPAD deal with Java classes. It trans-
forms methods to direct calls on R through the offered interfaces. However, since
forecasting algorithms have different parameters, there is an additional layer of
abstraction needed.

To address that, TSLib employs a strategy pattern [Gamma et al. 1995, p. 315]
that includes an interface for forecasting: IForecaster. The main purpose is the
method forecast that returns an object of interface type IForecastResult.
Figure 4.9 shows how the inheritance in UML.

With this structure, forecasting algorithms only have to implement the interface
IForecaster and be declared in the enum ForecastMethod as shown in
Figure 4.12. Hence, they are configurable in the aspect’s YAML file and can be
used for anomaly detection inside ΘPAD. Figure 4.10 visualizes the calls made to
use forecasting algorithms in an UML sequence diagram, Figure 4.11 shows the
process in more detail.
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+ forecsat(timeSeries) : IForecastResult

«interface»
IForecaster

- originalTimeSeries : TS

AbstractForecaster

- rConnection : JRClientInstance

AbstractRForecaster

+ getForecast( l ) : TS

«interface»
IForecastResult

+ assign(value) : void
+ call(method, var) : String
+ get(var) : Object

- RServeConnection

RBridge

1

Figure 4.9: IForecaster and IForecastResult are interfaces used
for applications using TSLib. The AbstractRForecaster is a
wrapper with convenience methods to call forecasting packages inR.
1 is the abbreviation of the type TimeSeries.

loop

:Aspect :TimeSeries «comp.»
TSLib

append(value)

nextValue

new(start, delta)

forecast(timeseries)

score
calcAnomaly(timeseries)

store(time point)

updatePoint(fc, score))

1

Figure 4.10: A coarse-grained view of the Aspect class using time
series objects and the forecasting provided by TSLib. After every
anomaly score calculation, the result gets persisted. The marker at
1 refers to a more detailed view in Figure 4.11
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:Aspect :AbstractRForecaster

forecast(time series)

nextValue

assign(points)
assign(parameters)

execute(forecastMethod, var)

get(var)
result

Figure 4.11: The abstract class AbstractRForecaster wraps
the call to the JRclient components and thus performs algorithm calls
on the Rserve instance.

Algorithms used

ΘPAD needs a selection of forecasting algorithms predefined to address the ano-
maly detection of the case study FC1. If this selection fits that particular environ-
ment, it can be assumed that ΘPAD serves for other software as well having related
performance characteristics.

Frotscher [2011, p. 7] evaluated several forecasting algorithms and compared
them in the field of performance monitoring. ΘPAD uses these recommendations
to serve prepackaged forecasting algorithms that are most likely to be needed.
Most algorithms used in ΘPAD work toward detecting contextual anomalies, as
classified in Section 2.3.1. The mathematic foundations were described previously
in Section 2.2.3.

- originalTimeSeries

Abstract
Forecaster

- rConnection

AbstractR
Forecaster

SESForecaster

SeasonForecaster

MeanForecaster

MeanRForecaster

Arima101Forecaster

ETSForecaster + get(name) : 
IForecaster

- [SeasonForecaster, 
MeanForecaster, 
SESForecater, ...]

«enum»
ForecastMethod«create»

Figure 4.12: The available forecast methods of ΘPAD inherit from
different abstract forecasters depending on whether they use R.
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The name of every algorithm is declared in the enumeration ForecastMethod.
Thus, the instantiation of the configured algorithm is done automatically according
to the aspect’s YAML configuration. Figure 4.12 lists the available algorithms and
shows the class inheritance.

MeanForecaster

The mean of a sliding window is calculated on every update of the time series.
The green line chart denotes the forecasted values as an overlay on the real
measurements denoted with the gray bars (Figure 4.13).

MeanForecaster

Measurements

Forecast 

time

Figure 4.13: MeanForecaster example output for time series X with
∆X = 1h and a forecasting window W with DW = 3h in an observed
time span of 5h.

SeasonForecaster

Figure 4.14 illustrates how the SeasonForecaster needs a complete forecasting
window of DW = 24h to produce any output. As the next forecasted value, it takes
the value that was measured 24h ago at the same hour. Due to this simplicity, this
algorithm is directly implemented in Java.

SeasonForecaster

Measurements

Forecast 

time

Figure 4.14: SeasonForecaster example output for time series X with
∆X = 1h and a forecasting window W with DW = 24h in a course of
4.5 days.
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ETSForecaster

Figure 4.15 shows the output of the ETSForecaster with the corresponding call
of the forecast function in R in Listing 4.4.

1 forecast(ets(input, alpha=0.9), h=1)

Listing 4.4: SES forecast method in R

ETSForecaster

Measurements

Forecast 

time

Figure 4.15: ETSForecaster example output for time series X
with ∆X = 1h and a forecasting window W with DW = 3h in an
observed time span of 2h.

SESForecaster

Figure 4.16 shows the output of the SES forecaster with the according R code
given in Listing 4.5.

1 ses <- HoltWinters(points, beta = FALSE, gamma = FALSE)

Listing 4.5: SES forecast method in R

SESForecaster

Measurements

Forecast 

time

Figure 4.16: SESForecaster example output for time series X with
∆X = 1min and a forecasting window W with DW = 15min in an
observed time span of 10min.
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ARIMAForecaster

Figure 4.17 shows the output of the ARIMA(1,0,1) algorithm as defined in Sec-
tion 2.2.3.

SESForecasterARIMA101Forecaster

1

Measurements

Forecast 

time

Figure 4.17: ARIMAForecaster example output for time series X with
∆X = 1min. It uses a forecasting window W with DW = 1h in an
observed time span of 2h and applies the automatic model detection
of the forecast package. At some points, for instance at 1 , a
model could not be detected automatically, thus yielding null values.

Anomaly Score Calculation Methods

The anomaly detection is based on the euclidean distance function described in
Section 2.3.4. To keep it even simpler, the difference is divided by the sum of
actual value and forecast. A snippet of the Java code is given in Listing 4.6.

1 double difference = nextpredicted - measuredValue;
2 double sum = nextpredicted + measuredValue;
3
4 double score = Math.abs( difference / sum );

Listing 4.6: Java code to calculate anomaly scores

4.6 Anomaly Score Interpretation

This section addresses the functional requirements FR4 ‘Interpretation and Action’
and corresponds to activity D of the ΘPAD approach (see Section 3.6) that defines
how anomaly scores are processed. Section 4.6.1 explains the usage of message
queues for this purpose.

Further on, Section 4.6.2 gives details on the persistent storage of the extracted
time series and how they are accessed and evaluated graphically (Section 4.6.3).

4.6.1 Anomaly Score Queue

Requirement FR4 defines the necessity of dealing with anomaly scores, which
exceed the defined threshold. At the time of detection, immediate action has to be
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Anomaly Detected

Normal Score

0

1

0.5 Anomaly Threshold

Abnormal Score

1 2 3 4 51 2 3 4 5 6

2 3 4 51 2 3 4 5 6

Alerting Queue

0.4, 0.8, ... empty

Anomaly Time Series

Figure 4.18: From time point 1 to 4 the alerting queue is empty.
The first value was produced when the anomaly score exceeded the
threshold of 0.4. From this point on, anomaly scores are propagated
to the anomaly queue depicted in AMQP notation.

taken in order to fix the problem that has caused the anomaly to occur. Numerous
alerting means exist such as Short Message Service (SMS) gateways, automatic
emails, or phone calls. As of requirement FR4, ΘPAD has to be configurable, with
the first setup being in the case-study environment (FC1).

To address all these demands, the implementation does not include a special
kind of alerting, it rather uses AMQP as a standard to report alerts. So, the
environment can employ its own alerting by connecting a consumer to the anomaly
queue.

For normal behavior, nothing is published. Whenever the behavior is classified
as abnormal, the anomaly score is put on to the queue. For instance, a connected
SMS gateway could wake up administrators at night and provide the anomaly score
in the alerting text message. Figure 4.18 shows an anomaly time series with the
according messages on the anomaly queue.

4.6.2 Time Series Storage

To enable startup and shutdown processes (NFR2), ΘPAD persists its internal state
to preserve it after shutdown. When starting the server, it loads the previous data
and builds up the time series objects in memory.

As of Section 4.2, MongoDB is required by the server running ΘPAD. This
document store database is used to hold values for each time point. In addition
to the anomaly score, the calculation’s basis, the measurement and the forecasted
value are stored. This helps discussions about the origin of anomalies and is a
requirement for the anomaly visualization described in the next section.

Since the storage format of MongoDB is related to the human-readable JSON
(see Section 2.4.1), an example time point can be simplified listed in plain text in
Listing 4.7. The key anomaly denotes the anomaly score calculated based on
the forecasted value and the current measurement in a time series. Additionally,
the aspect’s identifier is included, specifying the aspect it was calculated
from. This string was specified offline, at configuration time (see Section 3.3), for
instance, by an administrator. It concatenates human-readable information such as
the controller (page for the case study), the aggregation step size and the length of
the forecasting window.
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1 {
2 "_id" : ObjectId( "4f09a7ee0364755651e4d9ba" ),
3 "time" : Date( 459819300000 ),
4 "measure" : 1245.434,
5 "forecast" : 1249.112,
6 "anomaly" : 0.00195,
7 "identifier" : "root_page.D1min.L1h"
8 }

Listing 4.7: Time point stored as BSON in MongoDB

4.6.3 Graphical Evaluation

Post-mortem analysis and adjustments of the configuration are one requirement of
the ΘPAD implementation. Good configuration of the aspects is crucial in order
to define the best threshold at which anomalies are detected as such. Plots of
measurement time series can support discussions about the reasons of anomalies.
This method was classified as visualization based anomaly detection Section 2.3.1.
Accordingly, visualized anomaly scores can help finding the best threshold and
forecasting algorithm.

Plotting time series can be achieved by a variety of spreadsheet applications,
statistical software and libraries including R’s PDF output. However, navigating
through time is rarely offered and there is2 no software plotting the data of the time
series storage (see Section 4.6.2) in an acceptable way.

To address this need, ΘPAD includes a web front end that accesses the time
series storage, lets users navigate through time and displays the measurements
alongside the forecasted values and calculated anomaly scores. Figure 4.19 shows
a screenshot of how the . . . . . . . . . . . . . .Safari rowser displays the graph with HTML5 technologies.
On the server side, the software can be installed directly on the monitoring system
(see the UML deployment diagram in Figure 4.3) and administrators with access
can inspect the visualization via web browsers.

The front end is built with the lightweight . . . . . . . .Sinatra web-framework [Günther 2010,
p. 2]. The D3 library for graphical grammar written by Bostock et al. [2011, p. 8]
helps rendering the custom time series data into an image using the portable
[Eisenberg 2002, p. 6] SVG format. With this library, even a long time span with
many measurements can be navigated performant. The user can choose the
display time frame and the configured aspects freely, which makes navigation and
evaluation of different aspects is possible. At every change, new data is loaded
from MongoDB and rendered in the browser via Ajax without reloading the page.

2As of the implementation period in 2011
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1

2

3

4

Figure 4.19: Screenshot of the web frontend provided for post-
mortem analyses. The HTML5-capable Safari rowser is used to
access the interface and draw the time series on a canvas element
holding an SVG [Hickson 2012, Section 4.8.11]. The bars at 1
visualize aggregated measurements, 2 the forecast, and 3 depicts
the calculated anomaly score. A control panel at 4 offers navigation
through time and selection of the database and aspect.
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Chapter 5

Evaluation

The thesis proposal of 2011 stated four goals that defined the design of ‘Online
Performance Anomaly Detection’ and its setup for a case study. T4, the thesis’
evaluation goal stated in Section 1.2, informally lists the research questions that
should be covered in an evaluation phase as follows:

• RQ1: Can anomalies be detected automatically?
• RQ2: How good does automatic detection compare against manual detec-

tion?
• RQ3: Is the software implementation usable in a long-term test in practice?
• RQ4: Which factors can cause anomalies?

These questions can be refined and be directed to goals. Subsequently, metrics are
needed to answer the goals reliably and to determine the way, how the measures of
an experiment have to be quantified. The Goal Question Metric Paradigm (GQM)
is a framework for “defining measurable goals” suggested by the inventors [Basili
et al. 1994, p. 528]. Its approach defines the contents of the following Section 5.1
and is as follows:

1. Define goals on the objects being researched.
2. Pose questions that support reaching the goals.
3. Set metrics to answer the questions subjectively or objectively.

In order to answer the research questions, a long-term test is set up in the case-
study environment (Section 5.2). The gathered data and observations are de-
scribed in Section 5.3. Finally, Section 5.4 analyzes the observations with respect
to the metrics. According to the GQM, the results are hence used to quantify how
far the goals were reached.

5.1 Evaluation Goals

As the acronym indicates, GQM defines three essential entities that have to be
specified in order to conduct and interpret engineering phenomena: Goal, Question
and Metric. Figure 5.1 depicts the steps of this evaluation phase following the GQM
hierarchy.
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For goals, Basili et al. [1994, p. 528] state three objects ob measurement:
process, product or resource. The goals G1, G2 and G3 adhere to this definition
and are also defined on distinguished objects. A goal is based on four dimensions:
purpose, issue, object and viewpoint. The following Tables (5.1 to 5.3) adhere to
the GQM standard. As the hierarchy of Figure 5.1 illustrates, some questions share
the same metrics and are purposely combined.

G1: Assess Practicality of Approach

The process of online performance anomaly detection is the central use case of
the ΘPAD implementation. This goal addresses the evaluation of how the anomaly
detection can be achieved in general.

Goal G1
Purpose Assess
Issue the practicability of
Object (process) performance anomaly detection
Viewpoint on an online, automatic basis

Question Q1.1 Is ΘPAD’s server stable?
Metrics M1 server uptime

M2 CPU utilization

Questions Q1.2 How precise is the detection?
Q1.3 How accurate is the detection?

Metrics M3 Number of true positives
M4 Number of false negatives
M5 Number of actual anomalies

Table 5.1: Definition of G1: “Assess the practicability of performance
anomaly detection on an online, automatic basis”

G2: Find ΘPAD Configuration for XING

This goal is defined on ΘPAD as a product and directly influences T3 “ΘPAD
Integration with Case-Study System”. If this goal is reached, a fitting configuration
is found that collects the performance data from the case-study system’s architec-
ture. However, this does not tell if the anomaly detection itself can compete against
manual detection.
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Goal G2
Purpose Find the best
Issue configuration setup of
Object (product) ΘPAD
Viewpoint for the case study

Questions Q2.1 Which algorithms to choose?
Q2.2 Which thresholds detect best?

Metrics M3 Number of true positives
M4 Number of false negatives
M5 Number of actual anomalies

Question Q2.3 Which performance attributes matter?
Metrics M6 Correlation between anomaly and at-

tribute
M7 Cause of anomaly
M8 Duration of anomaly
M9 Anomaly classes

Table 5.2: Definition of G2: “Find the best configuration setup of
ΘPAD for the case study”

G3: Performance Anomaly Research

Since this thesis addresses the detection of performance anomalies, the collected
data can be used to research the performance behavior of large-scale software
systems such as in the case study. Thus, this goal is defined on the resource
software system and poses questions about the occurred anomalies, their duration
and the reasons as such.

Goal G3
Purpose Learn which
Issue anomalies occur with
Object (product) software system
Viewpoint in large-scale architectures

Questions Q3.1 Which types of real anomalies occurred?
Metrics M7 Causes of anomalies

M8 Duration of anomalies
M9 Anomaly classes

Table 5.3: Definition of G3: “Learn which anomalies occur with
software system in large-scale architectures”

Metrics

Hayden [2010, p. 38] suggests, that research should only consider metrics support-
ing goals. The goal definitions in the previous section referred to certain metrics,
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which will be defined in this section. According to GQM, objective and subjective
metrics are distinguished as following:

Objective Metrics

This type includes all metrics that yields results when looking at the object under
research only.

M1: Server uptime. For the specified runtime of the experiment, the uptime of the
ΘPAD server is determined by the number of gap entries in the time series storage.

M2: CPU utilization. When all aspects are loaded, the CPU utilization is deter-
mined by using Unix’s top command. This is done in a random test after all aspects
were loaded.

M3: Number of true positives. According to Salfner et al. [2010, p. 8], every algo-
rithm has to be checked against real observations. Subsequently, the classification
as depicted in Figure 2.15 can be applied to count the true positives (TP).

M4: Number of false negatives. Similar to M1, the number false negatives (FN)
is part of the output of a particular anomaly detection algorithm that got configured
with a threshold and run on a time series with knowledge of the actual anomalies.

Subjective Metrics

This type is influenced by the measured object and the viewpoint. In order to
gather data on these metrics, qualified interviews are held and manual detection of
anomalies was performed in a post-mortem way:

1. The post-mortem analysis graph of Section 4.6.3 serves as a means to find
anomalies in a certain time period.

2. For every anomaly found the duration is read by using the time picker pro-
vided by the tool. In case an anomaly grows steadily, the first point of increase
is taken.

3. The reasons for the specific anomaly is discussed in a qualified interview with
an software architect and an administrator responsible for the IT infrastruc-
ture.

For every anomaly the start and end times are captured along with the reasons
and any other system information that can be gathered such as the Munin graphs.
Following this schema, these metrics can be extracted from the human observation
of performance graphs:

• M5: Number of actual anomalies
• M7: Duration of anomalies
• M8: Causes of anomalies

Based on the findings, two more metrics could be defined by further processing
and correlating the results as follows:

M6: Correlation between anomaly and attribute. After finding the anomalies,
multiple attributes can be taken into account for finding possible correlations of the
anomalies.
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M9: Anomaly Classes. Distinguishing properties amongst anomaly observations
are searched in order to perform clustering.

5.2 Experiment Setup

Before the evaluation phase, the software implementation of Chapter 4 had to
be tested in order to ensure the detection phase was stable and uninterrupted.
Subsequently, the aspects configuration of the case study’s environment (see Sec-
tion 2.4.4) had to defined. Following the GQM approach used for the evaluation,
the setup has to be done focused on specific goals [Basili et al. 1994, p. 1]. These
decisions are explained in Section 5.2.1.

Running the detection phase itself required a time frame as long as possible after
having finished and tested the ΘPAD implementation in the preceding step. Shortly
after the software tests, the evaluation phase was planned and production data was
gathered in the following time frame:

Began: December 18, 2011 10:00pm Ended: December 30, 2011 10:55pm

These 12 day were good fit since they included the Christmas holidays 2011 as
well as 10 business days. We expected a high number of offices closing between
Christmas and New Years, leading users to access XING for both private and
business purposes. Thus it was likely that we would observe the platform to be
under lower but varying workload intensity than in normal months.

For the server running ΘPAD, XING contributed a dedicated MacbookPro (2GHz
Intel Core i7, 4GB 1333 MHz DDR3 RAM) and gave authorization to the importer
queue. In order to set the right attributes as measures, an interview with Stefan
Kaes was done prior to the evaluation phase. This step set up the basic configu-
ration of ΘPAD in order to focus on the evaluation’s goals. The following section
gives insight on the decisions made in this interview.

After this time frame a simulated post-mortem analysis was planned in order to
conduct the manual anomaly detection. This interview required a person with
deeper knowledge of the architecture, preferably an administrator or architect main-
taining the case study’s system. Ergo, mainly data of the subjective data would be
gathered by manual anomaly detection. Anticipated was the finding of significant
anomalies (M5), their duration (M7) and possibly the causes (M8).

5.2.1 Setup Interview

The Aspects, ΘPAD’s basic setup entities, have to be declared in the software.
XING’s importer delivers a continuous stream of measurements aggregated from
different sources of the architecture described in Section 2.4.4. Since every queued
event gives a JSON object of various measured attributes (Figure 2.6) this phase
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had to decide on which attribute to focus and how to configure the aspects accord-
ingly.

Together with Stefan Kaes the performance data of Logjam in November and
December 2011 was analyzed. Based on the discovered anomalies the following
decisions about the configuration for the evaluation phase were made:

• Page: As described in Section 2.4.4, pages separate XING’s architecture. In
order to gather data of all parts of the application Logjam’s catch-all identifier
all_pages was selected to use.

• Attribute: Variations in performance could be seen best in the aggregation
of all measures. Additionally, the focus on only one attribute promised a
better comparison after the evaluation. So, for every aspect the attribute
total_time was chosen.

• Step size (∆): 5 minutes to 1 hour, depending on the forecasting algorithm.
• Forecasting algorithms: The ΘPAD software provided 5 different algo-

rithms that all had to be tested: SeasonForecaster, MeanForecaster,
SESForecaster, ETSForecaster, Arima101Forecaster.

• Forecasting windows: 1 hour to 7 days, depending on the forecasting
algorithm.

• Anomaly score calculation: The SimpleAnomalyCalculator follow-
ing Equation 2.13 was chosen in order to provide comparable anomaly scores.

5.2.2 Configuration

These decisions predefined the principles of the precise configuration. However, for
step size, forecasting algorithm and window, only ranges were defined. Therefore,
the aspect configuration was set as a meaningful combination of these variables in
order to evaluate a significant number of possible anomaly detection settings. The
threshold was left open and evaluated later. This was possible since this number
could be changed iteratively while replaying the data (see the concept of time series
storage in Section 3.6) to conduct qualitative analysis to find the values that fit best.

Table 5.4 shows the configuration with abbreviated names. Let all::tt be
the measure total_time of page all_pages. Time spans are denoted by min
(minute), h (hour), and d (day). The identifier in the last column is used to store the
aspect’s reference in the time series storage according to Section 4.6.2.

5.2.3 Evaluation Procedure

As stated in the previous section, the threshold was left undefined since there was
no experience to choose any particular value beforehand. So, the time series data
was gathered in the MongoDB to be replayed by an evaluation script in order to
test out the best threshold. Since some metrics depend on the threshold, they had
to be evaluated later. In order to build a coherent evaluation procedure, the metric
quantification and data refinement was planned in steps as shown in Figure 5.2.
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Measure ∆ λ f c DW Identifier

all::tt 5min Mean 1h aptt.Fmean.D5min.L1h
all::tt 15min Mean 1h aptt.Fmean.D15min.L1h
all::tt 1min Mean 1h aptt.Fmean.D1min.L1h
all::tt 30min Mean 3h aptt.Fmean.D30min.L3h
all::tt 1h Mean 3h aptt.Fmean.D1h.L3h
all::tt 20min Mean 2h aptt.Fmean.D20min.L2h
all::tt 1min – 1h aptt.Fnone.D1min.L1h 1
all::tt 1min ETS 1h aptt.Fets.D1min.L1h
all::tt 1min Arima101 1h aptt.Farima101.D1min.L1h
all::tt 1min SES 15min aptt.Fses.D1min.L15min
all::tt 1min SES 1h aptt.Fses.D1min.L1h
all::tt 1h WS 24h aptt.Fses.D1h.L24h 2
all::tt 1h WS 24h aptt.Fws.D1h.L24h
all::tt 15min WS 24h aptt.Fws.D15min.L24h
all::tt 15min WS 7d aptt.Fws.D15min.L7d

Table 5.4: This configuration table lists all 13 aspects used in the
experiment. The aspect at 1 does not use a forecaster and is
used to replay the data only. ‘WS’, at 2 is an abbreviation of the
SeasonForecaster as in Figure 4.14.

#4 Choose best 
algorithm

#3 Run evaluation 
script and generate 
ROC curves

#2 Manual 
Detection of 
anomalies

#1 Execute ΘPAD 
with Experiment 
Configuration

#5 Find best 
Threshold

#6 Determine TP,  
FN, PREC, ACC

5.3 Observations 5.4 Analysis

M1 M2

Q1.1

M5 - M9
Q2.1

M3 M4

Q2.2

Q1.2 Q1.3

1

2

Figure 5.2: The activities performed throughout Section 5.3 and 5.4.
1 denotes the metrics M1 and M2 being quantified after step #1.
2 hints to the question that can be answered after the attached step.
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5.3 Observations

As defined in the evaluation plan (see Figure 5.2), the observations include running
the experiment (#1) and gathering statistics of the produced data. Subsequently,
the manual detection (#2) is performed in an interview. Additionally, this interview
is expected to reveal the causes of the anomalies that occurred in the experiment
period.

#1: Execute ΘPAD with Experiment Configuration (M1, M2, Q2.1)

Section 5.2 defined the setup of the experiment, which was conducted on a dedi-
cated OSX machine. This ΘPAD server gathers data from the Logjam importer.
All output was stored as time series in a local MongoDB that grew up to several
megabytes. In detail, the statistics of this experiment run were as following.

• Time series storage: Following statistic were drawn from the MongoDB:
– count: 27942 entries, as described mathematically in Equation 3.8.
– size: 3,460 KB (3,386 KB BSON database dump file)
– avgObjSize 0.1238 KB

• Server uptime (M1): ΘPAD’s uptime was 100% since the server never restarted
and no gaps in the time series storage were found.

• CPU utilization (M2): The output of the UNIX top command yielded nearly
constant values after loading all aspects and listening on the Logjam importer
queue:

– Rserv-bin.so: 0.0% - 0.5%
– java: 7.0% - 9.0%
– mongod: 0.8% - 1.2%

These statistics lead to the answer of Q1.1 attributing the ΘPAD implementation
as a server stable enough for this aspect configuration gathering production data.

#2: Manual Detection of Anomalies (M5 - M9)

According to the experiment setup, the post-mortem interview was made with Ste-
fan Kaes and Mike Adolphs, an administrator, in separate sessions. In these in-
terviews, the causes of anomalies and their correlation to other measure attributes
were discussed. The attributes taken into account for correlation were as follows.

• db_time: Response time of the database servers.
• api_time: Response time of the servers working on the databases and

providing APIs for application servers.
• count: The number of page request. Whenever this metric is 0, it is possible

for the network to be detached from Logjam.
• view_time: Time needed to produce HTML on the application server.

In these sessions, eight anomalies became clearly visible, thus quantifying M5.
The time, duration and possible correlation (M7) were listed in Table 5.5. Based on
other measures from Logjam and Munin, the possible reasons were discussed and
the subjective metric M7 quantified. Using the attribute total_time for anomaly
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# Begin End Duration Correlated attribute Fig.

A1 Dec. 19 14:05 Dec. 19 14:46 00:41 count 5.3
A2 Dec. 21 13:47 Dec. 21 15:09 01:22 db_time 5.4
A3 Dec. 21 23:08 Dec. 21 23:20 00:12 count 5.4
A4 Dec. 22 09:33 Dec. 22 09:35 00:02 db_time 5.5
A5 Dec. 23 13:04 Dec. 23 13:06 00:02 view_time 5.6
A6 Dec. 27 09:45 Dec. 27 10:15 00:30 count 5.7
A7 Dec. 29 15:08 Dec. 29 15:31 00:23 api_time 5.8
A8 Dec. 30 01:48 Dec. 30 02:09 00:21 db+api_time 5.9

Table 5.5: Anomalies detected manually by the administrators.

API time Memcache time Other time DB Time View time

Figure 5.3: A1: Dec. 19 14:05 - Dec. 19 14:46
Due to a local network outtage, Logjam was disconnected from the
data center.

detection is an answer to Q2.3 since all causes affected the response time the
users being an aggregation of all internal response times.

M6: Correlation between anomaly and attribute. After finding the anomalies,
multiple attributes can be taken into account for finding possible correlations to the
anomalies. Every time reasons of and, the correlation to a certain attribute could
be made, as listed in Table 5.5. Figure 5.9 shows the most significant example of
the database that was accessed by the application servers through the REST API.
The correlation db_time to api_time could be made.

M9: Anomaly classes. Distinguishing properties amongst the findings are searched
in order to perform clustering. Essentially, these types could be distinguished
qualitatively.

• Complete disconnection of the live network from the network that hold the
Logjam server: A1, A6, A3

• Rapid increase of the total_time attribute caused by a software or a
server fault. The effect is users waiting for the page to load: A2, A4

• Increased page load time due to software errors or instructions with worse
runtime than before: A7

• Background tasks that appeared as anomalies but were actually planned: A8
• Miscellaneous or unknown reasons: A5

This makes it possible to answer Q3.1: Five types of anomalies occurred with most
of them being caused by offline monitoring. However, eight anomalies were too few
to run a clustering approach like the k -means [Wang et al. 2008, p. 3].
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API time Memcache time Other time DB Time View time

Figure 5.4: A2: Dec. 21 13:47 - Dec. 21 15:09
Erroneous code was deployed and immediately fixed by a live patch.
A3: Dec. 21 23:08 - Dec. 21 23:20
XING switched the cable company providing the bandwith between
the data centers in Hamburg and Frankfurt. This caused some
dependent API calls to respond slower. Correlation to attribute:
api_time.

API time Memcache time Other time DB Time View time

Figure 5.5: A4: Dec. 22 09:33 - Dec. 22 09:35
The hard disk of one database server crashed due to the consump-
tion of too much memory.

API time Memcache time Other time DB Time View time

Figure 5.6: A5: Dec. 23 13:04 - Dec. 23 13:06
Reasons could not be determined.
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API time Memcache time Other time DB Time View time

Figure 5.7: A6: Dec. 27 09:45 - Dec. 27 10:15
Logjam could not access the online system since the network of
XING’s office in Hamburg was offline.

API time Memcache time Other time DB Time View time

Figure 5.8: A7: Dec. 29 15:08 - Dec. 29 15:31
A Live patch in the Rails code caused the overall performance to
decrease. Another live patch solved the problem.

API time Memcache time Other time DB Time View time

API time Memcache time Other time DB Time View time

Figure 5.9: A8: Dec. 30 01:48 - Dec. 30 02:09
One backup server was down due to a scheduled backup. The lower
graph shows the Perl backend slowing down due to this server down
time. The db server’s API response time, indicated by the red bars,
rose to infinity when the server crashed.
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aptt.Fmean.D5min.L1h

aptt.Fmean.D5min.L1h

aptt.Fets.D1min.L1h

aptt.Fses.D1min.L15min

aptt.Fses.D1min.L1h

aptt.Farima101.D1min.L1h

1

2

10:05 December 19, 2011 18:49

Figure 5.10: Anomaly Score Graphs of December 19, 2011. 1
shows the sliding window of the MeanForecaster. 2 is the
ARIMA101 algorithm that partly delivered null values. Since the
forecast model is automatically determined at every discrete time
point, it is sometimes unable to determine the configuration.
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Aspect identifier Data points max(Ψ)

aptt.Fmean.D15min.L1h 1155 0.4
aptt.Fmean.D5min.L1h 3467 0.68
aptt.Fmean.D1min.L1h 17335 0.92
aptt.Fmean.D30min.L3h 581 0.49
aptt.Fmean.D1h.L3h 290 0.41
aptt.Fmean.D20min.L2h 869 0.45
aptt.Fets.D1min.L1h 271 0.24
aptt.Farima101.D1min.L1h 271 0.17
aptt.Fses.D1min.L15min 271 0.17
aptt.Fses.D1min.L1h 271 0.13
aptt.Fses.D1ws.L24h 290 1.0
aptt.Fws.D1h.L24h 290 1.0
aptt.Fws.D15min.L24h 1155 1.0
aptt.Fws.D15min.L7d 1155 1.0

Table 5.6: Observed statistics of the measured data mapped to
every aspect. max(Ψ) indicates the maximum of all anomaly scores
calculated in order to preselect a fitting threshold θ.

5.4 Analysis

#3: Run Evaluation Script (M3, M4)

Since the threshold was left undefined in order to find the best value in this analysis
step, an Ruby script was build that replayed several scenarios with different thresh-
olds configured on every aspect used in the experiment. Figure 5.11 demonstrates
how the algorithms starts with a threshold of 0 and increases its value up to 1 and
performs the anomaly detection at every step.

This evaluation script was run on every aspect defined in the setup interview
(see Section 5.2.1). Results hence got stored in spreadsheet files with Microsoft
Excel1 for comparison.

#4: Selecting the Best Aspect (Q2.1)

The data in the spreadsheets produced by the evaluation script were visualized in
ROC curves. The most significant results are compared in Figure 5.12. Aspects
using the SeasonForecaster were excluded in the first place due to results
promised to be “misleading” [Box and Jenkins 1990, p. 301].

Aspect aptt.Fmean.D1min.L1h shows the greatest deviation from the line
of random guess (see Figure 2.16 in Section 2.3.4). This aspect has the attribute
total_time with a step size of ∆ = 1min and uses the MeanForecaster with
a sliding window of DW = 1h as shown in Table 5.4. Question Q2.1, “Which

1http://www.microsoft.com/mac/excel
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0 1

TP TN

Analysis Evaluation Run
Threshold θ

Detection

Accuracy = (TP + TN) / N

N

1

0
Precision = TP / POS

Figure 5.11: Execution of the analysis script that iterates over the
range of thresholds θ in discrete steps.

θ 0.0 0.1 0.2 0.3 0.4 0.5 ... 0.9 1.0
TP 221 104 70 41 14 0 ... 0 0
FN 0 117 151 180 207 221 ... 221 221
PREC 0.01 0.02 0.08 0.15 0.11 0.0 ... 0.0 NaN
ACC 0.02 0.67 0.94 0.98 0.98 0.98 ... 0.99 0.99

Table 5.7: Results of the evaluation script for identifier testing 11
values for the selected aspect aptt.Fmean.D1min.L1h

.

algorithms to choose?” can now be answered with MeanForecaster. In the next
step, #5, possible for this algorithm are searched in order to answer Q2.2.

#5: Finding Thresholds for the Best Aspect (M3, M4, Q2.2)

Depending on the threshold, every aspect yields a range of true positives and false
negatives. From these values, the metrics accuracy (ACC) and precision (PREC)
can be calculated with the formulas defined in Section 2.3.4. These three dimen-
sions (threshold, TPR, FNR) are listed in Table 5.7 and are plotted in Figure 5.14.

Based on this visualization, a tradeoff has to be made between following targets:

• High precision: A high ratio of the the actual anomalies were detected
correctly.

• High accuracy: The algorithm often classifies correctly, either anomaly or
normal behavior.

The decision on the preference of either value is influenced by various factors such
as business goals, alerting infrastructure or administration guide lines. For this
evaluation, the median of both peaks is taken to determine the threshold: θ = 0.23
and according values of precision and accuracy.
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Figure 5.12: The comparison of all ROC curves show a preference
on the aptt.Fmean.D1min.L1h aspect (1 ). The two examples
at the bottom (e.g. 3 ) points to the ARIMA101 forecaster, which
is unable to automatically detect the forecast model. Figure 5.10
showed that this correlates with the occurrence of anomalies, but
is impractical to be evaluated with ROC curves. 2 indicates an
improvement which would produce to a high false positive rate in
general with one exceptional peak. That leads to the impression,
that the behavior of the system under monitoring has to be well
known in order to configure the aspects correctly. In this figure
the keys identifying the previously defined aspects are shortened for
readability by omitting the string aptt.F.
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Figure 5.13: ROC curve of aspect aptt.Fmean.D1min.L1h
tested on all eight anomalies in the experiment. 1 The threshold
of 0.34 has the best tradeoff between TPR and FNR.
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Goal G1 Assess Practicality of Approach

Question Q1.1 Is ΘPAD’s server stable?

Answer Yes, stable for production data. The server is proven to
provide robustness over the experiment period.

Question Q1.2 How is the detection accuracy?
Answer High, above 0.9 after a threshold of 0.1

Question Q1.3 How is the detection precision?
Answer Low, 0.14 at best

Table 5.8: Results of G1: “Assess the practicability of performance
anomaly detection on an online, automatic basis”

#6: Determine TP, FN, PREC, ACC (Q1.2, Q1.3)

The choice of the best algorithm and threshold leads to answering of two ques-
tions of goal G1 that indicate the practicability of the ΘPAD approach in general:
Questions Q1.2: “How precise is the detection?” and Q1.3 “How accurate is the
detection?” are answered based on the formula of Salfner et al. [2010, p. 9] and
the data of M3, M4 and M5.

The spreadsheet data yielded finer-grained values than Table 5.7. For the given
threshold of θ = 0.23 38 true positives, 231 false positives, 16, 883 true negatives
and 183 false negatives were recorded. This lead to the calculation of PREC =
0.14 and ACC = 0.97 by the formula of Salfner et al. [2010, p. 9].

Based on these calculations, the goal G1 “Assess Practicality of Approach” can
be addressed by answering the two assigned questions:

• Q1.2: “How precise is the detection?” The low value of PREC = 0.14
indicates that every time an anomaly occurs, it is likely for the algorithm to
ignore it.

• Q1.3: “How accurate is the detection?” The high accuracy (ACC = 0.97)
gives confidence to any high anomaly score: Every time the threshold is
reached, it is probably an anomaly.

GQM Result Interpretation

With the metrics being evaluated, the research questions Q1.1 to Q3.1 were
answered with respect to the evaluation’s goals. In the following, the GQM tables of
Section 5.1 are filled with answers to summarize the results of the GQM approach.

Based on this analysis the next chapter will draw conclusions and give an
overview of the lessons learned throughout this evaluation phase. The following
section informally lists related work in research and practice and refers to software
packages addressing related problems.
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Goal G2 Find Configuration for XING

Questions Q2.1 What algorithms to choose?
Answer The MeanForecaster was proven to work best

Questions Q2.2 Which thresholds detect best?
Answer For the selected aspect, θ = 0.23 was a good tradeoff.

Question Q2.3 Which performance attributes matter?
Answer total_time since it aggregates all other attributes.

Table 5.9: Results of G2: “Find the best configuration setup of ΘPAD
for the case study”

Goal G3 Performance Anomaly Research

Questions Q3.1 Which types of real anomalies occurred?

Answer

Most of the times, the monitoring network was dis-
connected from the production system. Apart from
that, other anomaly causes are code faults and server
crashes.

Table 5.10: Results of G3: “Learn which anomalies occur with
software system in large-scale architectures”

5.5 Related Work

In the preceding sections, the ΘPAD approach was evaluated with respect to the
general practicability and the case study. Additionally, anomalies found throughout
the experiment gave insights on performance anomaly research. With these re-
sults, ΘPAD can be compared with other software of this problem field and related
research can lead to further improvement.

To address this notion, related products and research have to be evaluated and
the right questions asked. Figure 5.15 shows these question and the following
metrics as coined by the GQM approach [Basili et al. 1994, p. 528]:

• M10 Cost: Setup and monthly cost
• M11 Assessment: Advantages and Disadvantages, without any comparison
• M12 Classification: The addressed problem field. If possible, the taxonomy

in Figure 2.9 is used
• M13 Prerequisites: Input data for the algorithm and setup requirements
• M14 Algorithms: Any algorithms used for the approach
• M15 Precision: Any results of the approach on real data

5.5.1 Alternative Software Products

Following is a list of software products that also provide solutions in the field of on-
line performance anomaly detection. Links to the according companies or projects
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Figure 5.15: GQM hierarchy for the related work evaluation

are given in the glossary “Software Libraries and Products” on page 117. For
abbreviation, most information is gathered from these according web pages and
are hence not referenced in the bibliography.

Rackspace

. . . . . . . . . . . .Rackspace is a hosting company offering dedicated servers for enterprise. It adver-
tises their services with included anomaly detection: “Our DDoS Mitigation offering
analyzes your server’s traffic patterns to learn about ‘normal’ network behavior”
This normal behavior is then used as a reference model to compare against the
current behavior.

• M10 Cost: Dedicated servers from $769 per month
• M11 Assessment: Monitoring is bound to their servers
• M12 Classification: System-Level anomaly detection
• M13 Prerequisites: Rackspace’s anomaly detection uses metrics on net-

work traffic as well as system-level measures

New Relic

New Relic is a performance monitoring service that performs its calculations on a
centralized platform. This SaaS is able to detect abnormal behavior of large-scale
systems based on application level metrics such as response time. Alerts are also
triggered by comparing usage metrics against certain thresholds.

• M10 Cost: From $24 per month and server
• M11 Assessment: Many other features for applications and system-level

monitoring. Since it is centrally hosted, application measurements are sent
to their servers.

• M12 Classification: Performance and anomaly detection as an external
service
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Ourmon

According to its product page, . . . . . . . . .RRDtool is a system for time series logging and visu-
alization. It is widely used in industry and can be integrated in a variety of scripting
languages to store data in this also-called Round Robin Database. . . . . . . . . .Ourmon is a
anomaly detection system relying in RRDtool. It captures input from system level
and is mainly used for anomalies in network traffic.

• M10 Cost: Free, with an open source license.
• M11 Assessment: It is built to reduce noise in data and also measures data

online.
• M12 Classification: Time Series, Botnet Detection
• M13 Prerequisites: Ethernet packets
• M14 Algorithms: Statistical algorithms
• M15 Precision: No information found

StatStream

Shasha and Zhu [2004, p. 103] used an architecture similar to ΘPAD’s to aggregate
raw data streams and produce time series digests in a system called . . . . . . . . . . . .StatStream.

• M10 Cost: Non-commercial
• M11 Assessment: It computes in near constant time the statistics
• M12 Classification: Time series analysis
• M13 Prerequisites: for multi-stream analysis problems, uses sliding win-

dows like ΘPAD
• M14 Algorithms: Based on thresholds as well
• M15 Precision: No information found

Snort.AD

The Network Instrusion Detection System (NIDS) . . . . . .Snort is capable of running ano-
maly detection on network traffic. This software is signature-based , meaning that
network traffic is matched against abnormal pattern. The anomaly detection of
Snort also requires a proper adjustment on the domain and a learning phase as
Bechtold and Heinlein [2004, p. 44] point out. A recent addition is the . . . . . . . . . .Snort.AD
package providing an anomaly preprocessor.

• M10 Cost: Free, open source
• M11 Assessment: Widely used, - Only for network traffic. No sophisticated

performance measures included
• M12 Classification: Network-Level
• M13 Prerequisites: Measures on system behavior
• M14 Algorithms: Pattern recognition
• M15 Precision: Due to the recent release date, no data was found
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Resin Pro

Resin is a Java application server for enterprises. It can detect anomalies of its web
traffic based on ‘static analysis’. Like ΘPAD every metric can be used as input data
for the detection. However, it is not an external tool and thus bound to the product.

• M10 Cost: One year subscription for enterprise support: $699
• M11 Assessment: Bound to Resin
• M12 Classification: Application Server
• M13 Prerequisites: Only for applications deployed in this server
• M14 Algorithms: Static analysis, like ΘPAD
• M15 Precision: No information found

5.5.2 Alternative Approaches in Research

Conditional Anomaly Detection (CAD)

Gathered measure data often include many attributes that can be used to perform
anomaly detection on. Song et al. [2007, p. 2] found that often measurements
recorded do not correlate with the actual anomalies. Their so-called ‘CAD’ algo-
rithm learns these conditions from user input and excludes the anomalies that do
not correlate with actual abnormal behavior.

• M10 Cost: - (Research)
• M11 Assessment: Detects relevant anomalies, filters anomalies that are

irrelevant due to user input.
• M12 Classification: Interpretation, Data Mining
• M13 Prerequisites: Training with users
• M14 Algorithms: CAD algorithm
• M15 Precision: Not compared to metrics used in this work

PCAD

Rebbapragada et al. [2009, p. 1] state the fallacy in comparing two time series with
each other. If this input data comes from multiple source or starting at time points
that are not synchronized, a “phase-adjustment” has to be applied. Performing
this step manually is costly. PCAD is their approach of using a modified k -means
algorithm performing the preprocessing step.

• M10 Cost: - (Research)
• M11 Assessment: Works on high-dimensional and noisy data
• M12 Classification: Time series
• M13 Prerequisites: Periodic time-series data from multiple sources.
• M14 Algorithms: Pk-means, an improved version of k -means
• M15 Precision: Outperformed other algorithms when testing on astrophysi-

cal phenomena
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Self-Adaptive Performance Monitoring for Component-Based Software Sys-
tems

In his PhD thesis, Ehlers [2012] covers fundamental questions regarding perfor-
mance monitoring. Different anomaly detection approaches were developed, imple-
mented, and evaluated directed towards self-adaption of software systems spread
across components.

1

2

Figure 5.16: The architecture of the Self-Adaptive Performance
Monitoring Approach uses Kieker as the underlying framework for
performance monitoring and dynamic analysis. It is implemented
as an analysis plugin (1 ) like ΘPAD. The monitoring is controlled
via a control feedback cycle between the plugin and the monitoring
component at 2 [Ehlers and Hasselbring 2011, p. 3].

Since large-scale application are grown and normally spread across components,
subsystems and multiple machines, this work matches the problem field. Ehlers
[2012] follows a rule-based approach (employing OCL) that changes the instru-
mentation automatically for the monitoring to adapt to performance characteristics.
It uses the Kieker framework as an implementation base (see Figure 5.16) and
adds a control feedback cycle to control the instrumentation with the learned data
from previously detected anomalies.

• M10 Cost: - (Research)
• M11 Assessment: Satisfying anomaly detection in lab studies without com-

promising monitoring overhead
• M12 Classification: Anomaly Detection
• M13 Prerequisites: Instrumentation of a software system
• M14 Algorithms: Time series based anomaly scoring
• M15 Precision: On experiment data, a high mean precision of 0.86 was

recorded.

Due to the complexity of the feedback cycle, Ehlers [2012] adopted some aspects
of Kieker’s architecture and developed a new independent code base. This im-
plementation was incompatible to Kieker plugins and could therefore not be used
for ΘPAD. Nevertheless, it produced related work in form of a bachelor thesis,
which also helped the development of ΘPAD: Frotscher [2011] investigated, imple-
mented, and evaluated several forecasting algorithms and gave recommendations
in terms of performance forecasting. These recommendations were used as a
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starting point to select the forecasting algorithms for the ΘPAD approach. Due to
also existing algorithms and scalability of R, the remote R server was favored.

Bitmap-Based Online Anomaly Detection

The approach of Wei et al. [2005, p. 2] is claimed to be testable with online data
available on the web. It applies the SAX algorithm used for data mining and hence
applies CGR to generate bitmaps from the discretized measurements. From these
time series bitmaps, anomalies are calculated using manual or automatic anomaly
classification (see Figure 5.17). This can be done without requiring domain knowl-
edge: experts can determine abnormal behavior by selecting suspicious bitmaps
only.

Figure 5.17: A time series get transformed to a bitmap [Wei
et al. 2005, p. 2].

• M10 Cost: - (Research)
• M11 Assessment: Promising results with cardiologists configuring the de-

tection with visualized behavior
• M12 Classification: Anomaly Detection, based on time series
• M13 Prerequisites: Classification of abnormal behavior
• M14 Algorithms: Time series based anomaly scoring
• M15 Precision: No absolute values are given. However, this approach was

published to be tested online

RanCorr - Automatic Failure Diagnosis Support

The thesis of Marwede [2008] addresses the problem of anomaly dependencies
in large-scale software systems. The approach is architecture-centric, meaning,
that anomalies are assigned to the components where they occurred. Dependency
graphs help determining the root cause of system failure. The steps in details are
as following:

1. Model building to define the dependencies of the system in caller-callee
relationships

2. Aggregation of anomaly scores. To every component, an anomaly score is
calculated, which is similar to the concept used in ΘPAD
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3. Correlating the architecture graph to the anomalies. Figure 5.18 shows how
an anomaly in one component affects other parts of the architecture.

4. Visualization of the graph. Calculated anomalies are colored accordingly.

This RanCorr called approach uses Kieker to build the model (step 1). Step 2 ap-
plies mean calculation to build the anomaly scores. The findings in ΘPAD correlate
to the approach of Marwede [2008] to use mean-based anomaly calculation. Since
the main focus of RanCorr is on the correlation and visualization (steps 3 and 4), it
addresses questions complementary to ΘPAD’s. The code used in that thesis was
based on an old version of Kieker and was hence not possible to adopt due to the
development of Kieker in the meantime.

Figure 5.18: An anomaly propagating up the call tree through
subsystems [Marwede et al. 2009, p. 5]

• M10 Cost: - (Research)
• M11 Assessment: A novel approach, which can lead to better examination

of faults
• M12Classification: Anomaly Score Calculation and Correlation, Architecture-

Centric
• M13 Prerequisites: Long-term training data
• M14 Algorithms: Mean calculations
• M15 Precision: Results from lab tests in graphical form, not comparable to

ΘPAD.

Spectral Clustering

Wang et al. [2008, p. 1] use feature-based spectral clustering of video sequences,
which reduces computation time. This preprocessing step takes raw time series
data and transforms it into sets of features. Assuming the input data has similar
characteristics like performance time series, this approach could also be used for
performance anomaly detection.

• M10 Cost: - (Open source experimental R code)
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Figure 5.19: Improved TPR to FNR by pausing the algorithms in
ΘPAD after an detection 1 . This leads to ignoring the high anomaly
scores at 2 , which would alert false positives.

• M11Assessment: Uses much preprocessing, - Approach was not proceeded
further

• M12 Classification: Pattern recognition
• M13 Prerequisites: Feature preprocessing. (As fast as ΘPAD)
• M14 Algorithms: k -means, spectral clustering.
• M15 Precision: Lower than based on original data. The computational cost

was lower due to the preprocessing to features.

Own Attempts to improve Detection Precision of ΘPAD

When the selected anomaly detection algorithm using the MeanForecaster de-
tected an anomaly, the anomaly score decreases while still being in the time span
of the anomaly. This is due to the detected anomalies being contextual as depicted
in Figure 2.11. An example of this behavior is at point 1 of Figure 5.19.

Thus, one improvement is to disable the anomaly detector for a certain time.
It discards subsequent false negatives which improves the accuracy. Additionally,
the second peak when exiting the anomaly is not recognized, hence decreasing the
false positives (2 ). Figure 5.20 shows the results as a ROC curve. In this example,
the accuracy and precision were improved: ACC = 0.202, PREC = 0.962 (M15).

This approach can be used in practice assuming that alerts get triggered at the
beginning of an anomalies. Further alerts are not necessary and can be switched
off. This improvement is hence only an improvement of the evaluation and does not
hamper the real accuracy of the ΘPAD approach.

• M10 Cost: - (Research)
• M11 Assessment: The first alert stays the same, even if nothing was de-

tected
• M12 Classification: Improvement Idea
• M13 Prerequisites: Configuration of the pause duration
• M14 Algorithms: Paused anomaly detection (from ΘPAD)
• M15 Precision: Precision improved from 0.14 to 0.202 with the same fore-

casting algorithm.
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Figure 5.20: Improved TPR to FNR by pausing the detection. An
appropriate threshold is θ = 0, 33 1 . After a certain threshold (2 ) the
precision is not significant higher compared with the random detector.

Three-Step Anomaly Detection

Xu et al. [2009, p. 3] introduce online problem detection with an additional step
to identify anomalies. This could be used for ΘPAD as well. Firstly, the next
value of the reference model is forecasted by means of ΘPAD. Secondly, abnormal
behavior is calculated by comparing the forecast with the current observations. If
the calculated anomaly score is high, the third steps applies pattern detection to
ensure the exclusion of false positives.

• M10 Cost: - (Research)
• M11 Assessment: Further confirmation of the anomaly score
• M12 Classification: Improvement Idea
• M13 Prerequisites: Online measurements of log data
• M14 Algorithms: Additional pattern recognition step after a simple anomaly

detection.
• M15 Precision: Not implemented in combination with ΘPAD. The approach

of Xu et al. [2009, p. 3] alone resulted in a precision of 86.03%.

Dynamic Sliding Window

Shasha and Zhu [2004, p. 170] improve the anomaly detection interpretation by
adjusting the sliding window size dynamically. In combination with ΘPAD, this
would substitute testing out multiple window sizes at a time.

• M10 Cost: - (Research)
• M11 Assessment: Less evaluation effort needed to adjust the forecasting

window size
• M12 Classification: Improvement Idea
• M13 Prerequisites: Adjust the sliding window of forecasting algorithms.
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• M14 Algorithms: Time series analysis
• M15 Precision: - (No comparable metric found)

5.5.3 Questions Q4.1 - Q5.2: Answer Elaboration

In this last step of GQM the following questions are answered by using the rough
data gathered for the according metrics. Most of the evaluated approaches dealt
with anomaly detection of user behavior in order to conduct fraud detection re-
search.

In consequence, a comparison between ΘPAD and the listed alternatives in
nearly impossible since the term ‘anomaly detection’ is rarely used in combination
with performance metrics. Hence, these questions have to be answered with a
strong subjectivity.

Q4.1: “Cost of alternatives?”

• M10 Cost: New Relic, is the only commercial anomaly detection service
found that can be used as a SaaS, priced from $24. Other solutions are open
source and require a custom setup on an own server. Especially Ourmon
looks promising with respect to the adaptability.

Q4.2: “How well do alternatives perform?”

• M11 Assessment: Each algorithm has unique characteristics, a comparison
is hence difficult. The most promising results show open source software
such as Snort and RRDtool that are used as a basis for further approaches.
Especially Snort.AD looks promising and is close to ΘPAD. It works on the
system-level, was published in 2012 an is not widely tested yet. Since every
anomaly detection system requires specific adjustment to the system under
monitoring [Bechtold and Heinlein 2004, p. 44], a product’s performance can
only be compared in context.

Q4.3: “What are the concepts of alternatives?”

• M13 Prerequisites: Most of the approaches work on online time series data
like ΘPAD. However, the measurements that get transported are different
and have to be adjusted to the system under measurement as well. New
Relic offers a ruby gem that can be used with little configuration effort in
existing Ruby on Rails applications. Concepts that rely on graph algorithms
such as Ourmon are not alternatives to the time series based approach of
ΘPAD but could give inspiration for future work in this field.

• M14 Algorithms: The software packages focus more on the pragmatic part
of gathering data and calculating anomalies based on profiles adjusted by
the user. Scientific approaches rather try to apply sophisticated algorithms
on academic data sets.
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Q5.1: “Are there alternative algorithms?”

• M12 Classification: Only the CAD and the spectral clustering seem related
enough in this context.

• M13 Prerequisites: The two possible algorithms need sophisticated steps
for preprocessing and thus are not directly usable in the ΘPAD server.

• M14 Algorithms: No details were given for the commercial products. As far
as the documentations give insight, many approaches are based on statistical
analysis as well. Apart from time series, pattern recognition of time series,
for instance achieved by the application of spectral clustering of Wang et al.
[2008, p. 1], seems to be a viable alternative. Another promising approach is
to combine pattern recognition and simpler approaches in subsequent steps
as done by Xu et al. [2009, p. 3].

Q5.2: “Can the interpretation be improved?”

• M12 Classification: Some academic approaches also work in the field for
online time series data. However, there is no concept dealing with the same
setup like ΘPAD and only ideas and parts of the approaches can be used to
improve ΘPAD.

• M14 Algorithms: ΘPAD is open for new algorithms, but this set of related
work did not include an algorithm that fit into ΘPAD without further modifica-
tions of the implementation.

• M15 Precision: Figure 5.20 shows that simple changes in the interpretation
can lead to improvements in accuracy and/or precision. The work of Ehlers
[2012] can also give hints on how to improve the anomaly score precision.

5.5.4 Goals G1 and G2: Alternatives and Improvement Approaches

Table 5.11 and Table 5.12 summarize the answers on goals according to the GQM
paradigm.
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Goal G4 Find Alternative Approaches

Questions Q4.1 Is Cost of alternatives?
Q4.2 How well do alternatives perform?
Q4.3 What are the concepts of alternatives?

Answer

This goal was not reached to satisfaction. The closest approaches are
open source projects (Q4.1) that can work on the same input data. These
concepts address nearly the same requirements as ΘPAD does (see
Section 4.1), but much work is needed to apply them to the same field
of anomaly detection of online performance data for comparison (Q4.2).
However, Q4.2 did not provide comparable data but can serve as a basis
to start further research in this field.

Table 5.11: Results of G4: “Find Alternative Approaches”

Goal G5 Improve the ΘPAD Detection

Questions Q5.1 Are there alternative algorithms?
Q5.2 Can the interpretation be improved?

Answer

For the anomaly detection step, no anomaly detection algorithms were
found (Q5.1) that can directly be used in ΘPAD. Most alternatives differed
in general approaches and input data. However, these insights can be
used for further improvements of ΘPAD. Other means can be evaluated to
measure system performance or to interpret the calculated anomaly scores.

Combination Possibilities

It is, for instance, possible to combine ΘPAD or a system-level monitoring
product, such as Ourmon or Snort, with other scientific work already made
by the Software Engineering Group of the University of Kiel such as of
Ehlers [2012].

Architecture-based Anomaly Diagnosis and Visualization

RanCorr , the approach of Marwede et al. [2009] enhances the anomaly
detection with automatic diagnosis for localizing root causes of anomalies.
The dependency graphs an visualization could be adopted for ΘPAD to
show anomaly scores at submodules to augment its post-mortem analysis
graphs.

Table 5.12: Results of G5: “Improve the ΘPAD Detection”
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Conclusion

From October 2011 through December 2011, this research covered the planning,
design and implementation of the ΘPAD approach (Chapters 3 and 4). Following
was an evaluation phase including a two week long experiment. In this time, the
anomaly detector was gathering data from the online XING platform. During this
period, eight anomalies were discovered in the production data and subsequently
used to evaluate the practicability of the approach.

This final chapter concludes the findings in Section 6.1 and brings up a discus-
sion about the practicability in Section 6.2. Based on the results, a retrospective
in Section 6.3 explains how the thesis’ goals were reached. Finally, Section 6.4
presents the chances for future improvements and applications of ΘPAD.

6.1 Summary

In Chapter 1 recent trends of Software as a Service (SaaS) introduced the neces-
sity of Quality of Service (QoS) in this field. Amongst other metrics, this term moti-
vated the research on service performance. Issues in this respect were abnormal
behavior that can cause the user to experience bad response times.

The online platform XING is a large-scale software system that has an in-
frastructure for performancy analyses. However, automatic online detection of
anomalies was not supported by this software called Logjam (see Section 2.4.4). In
order to fill this gap, the ΘPAD approach was conceptually described in Chapter 3
and thereafter implemented as a prototype in Java (Chapter 4).

ΘPAD is a configurable server implemented as a plugin for the Kieker frame-
work for online performance monitoring and dynamic analysis. This plugin offers
performance measures that can be configured for characteristics of the system
under monitoring. It receives measurements in temporal sequences and extracts
time series. After this discretization, time series forecasting can be used to calcu-
late anomaly scores from current measured value. Finally, configurable thresholds
are a means to classify behavior as abnormal and subsequently propagate them to
alerting facilities.
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In Chapter 5, an experiment on production data of the case-study system was
conducted resulting in the discovery of eight anomalies in a period of two weeks.
Based on these findings, the thesis’ research questions were answered using the
GQM paradigm. ΘPAD detected the anomalies with a high accuracy of 0.97 but a
low precision of 0.14. A subsequent evaluation of related work and improvement
approaches revealed several other research and industry approaches and tested
an attempt to improve ΘPAD’s detection precision.

The following section will discuss the discovered results and answer questions
implied by the thesis’ goals.

6.2 Discussion

Based on the GQM evaluation, this section discusses the results with respect to
the issues of anomaly detection. Further on, a description of the lessons learned is
given followed by a retrospective on how well the goals of the thesis were reached.

6.2.1 Issues

The evaluation answered questions directed to results. These answers were sup-
ported by certain metrics as suggested by the GQM paradigm. This section criti-
cally weighs the expectations against the issues.

B Does OPAD detect anomalies satisfyingly?

In the introduction (see Chapter 1), thesis goal T1 aimed at detecting anomalies in
large-scale software systems. Chapter 5 substantiates this with research question
RQ1: “Can anomalies be detected automatically?”

The accuracy/precision curve in Figure 5.14 clearly indicates that ΘPAD detects
anomalies with a precision of PREC = 0.14 using the best algorithm. However, the
accuracy was high, which makes the approach more practical: few false alarms are
reported unnecessarily. This is especially important for online detection since every
false alarm leads to an unnecessary notification of administrators, and that cost
“cannot be amortized” [Song et al. 2007, p. 1]. In order to apply a feasible anomaly
detection, first the best algorithm has to be selected (see Figure 5.12) and second
an appropriate threshold has to be found by making the tradeoff between accuracy
and precision diligently. The necessity of taking both measures into account is also
stated by Oliner et al. [2012, p. 7]: “It is important to investigate techniques that
trade off efficiency, accuracy, and actionability”.

Apart from that, the metrics accuracy and precision do not reason about the
timeliness of the detection. Anomaly score graphs, for instance in Figure 5.19,
show a high anomaly score decreasing fast if the algorithm only detects contextual
anomalies. For global anomalies, the first detection was a true positive and would
lead to a correct alert. However, the subsequent anomaly scores are calculated
low due to the measure being perceived as normal due to a collective anomaly.

100



6.2. Discussion

This can lead to a bad precision reflecting in the ROC curves. To address this,
one improvement approach is modifying the interpretation of anomaly scores. Fig-
ure 5.20 shows that even simple modifications lead to improved presision without
compromising the accuracy.

B Is anomaly detection based on time series analysis practical?

Goal T1 did not predefine details of the approach taken by ΘPAD. Using fore-
casting on time series of measurements rather came from the characteristic of
performance measures that gather records continuously. Moreover, the case study
system already implemented monitoring and offered the measurements on the
importer queue.

In the evaluation phase, all eight manually detected anomalies could be traced
to certain performance measures. From the constructed time series, anomaly
scores were calculated indicating a level of abnormality. The evaluation shows
that time series of performance are a means to perform anomaly detection.

Still, the interpretation of the detection is hard to employ using the rate of true
positives and false negatives: Since anomaly scores can be lagged depending on
the algorithm, an evaluation based on comparing observations appears too simple.
Anomaly detection can be achieved with this approach, but the interpretation has to
be adjusted accordingly using ROC curves and programmatic means. Further re-
search on the interpreation should be made in order to evaluate other interpretation
means.

B Were the problems of the case study solved?

At best, the administrators of the XING software system should be alerted com-
pletely automatically by the ΘPAD server. This demand is still open due to the low
precision and the lack of an adapter that connects ΘPAD to XING’s Nagios alerting
facility.

Although the work needed to connect these systems is assumingly low, ΘPAD
still has to be configured better. Especially the measures can be adjusted finer
in order to gather information from different attributes and subsystems. Since this
requires some further setup and testing effort, this could not be done in the course
of the thesis. However, it is already planned to deliver the solution in practice in one
month succeeding this thesis work. How this succeeding work is planned explains
Section 6.4.3.

B Was the technology usage appropriate?

The introduction, Section 1.1, reckoned a possible solution offering multiple mea-
sures and adjustable anomaly detection approaches. These detection algorithms
had to be configurable and testable on an online production system.

The implementation in software (see Chapter 4) was designed as a plugin of the
Kieker framework and relying on supporting services and libraries such as Esper,

101



Chapter 6. Conclusion

MongoDB, TSLib, and R. This induced a big setup overhead and required a
sophisticated architecture. This complexity becomes visible in structures such as
the DataBeat pattern in Section 4.4.2.

Time series forecasting is a complex field as the R manual [R Development
Core Team 2011] displays. The combination of existing, tested software was a
good approach to deliver the desired functionality in the given time frame. In order
to address software errors, a large test base was written using JUnit and the TDD
paradigm. Moreover, the ΘPAD server is written as a plugin of Kieker that was
proven to introduce low overhead into the monitored system. Answering the GQM
question Q1.1 (“Is ΘPAD’s server stable?”) further assures the robustness of the
implementation.

6.2.2 Lessons Learned

Anomaly detection is possible with ΘPAD when configured properly

The approach taken in by this thesis addresses all requirements stated in the
introduction in Section 1.1. Although metrics do not show a high precision, fu-
ture improvement in configuration and interpretation is promising. Furthermore,
anomaly detection always introduces the trade-off between true positives and false
negatives. ΘPAD’s detection behavior is rather towards high accuracy, meaning a
low tolerance of abnormal behavior.

Further on, we learned that a proper configuration of ΘPAD is crucial in order
to detect anomalies with a certain precision. In the evaluation, Figure 5.12 demon-
strated algorithms, which performed with a FPR being too low for practical use and
only few that performed well. This leads to the conclusion that much care has to be
taken at configuration time in order to find the right algorithm and configuration to
fit the environment’s characteristics well.

The MeanForecaster is the best algorithm in this setup

As shown in the evaluation, the ROC curves in Figure 5.12 clearly show that
the best detection is made by using the mean of a sliding forecasting window.
Interestingly, in informal conversations at XING, this result was assumed before.
Employees familiar with the matter expected behavior of performance normally not
vary much in the short term.

Anomaly detection demands expert knowledge

The related work (see Section 5.5) did not reveal a software product that is capable
of detecting anomalies without custom setup. This necessity was experienced in
the course of the implementation as well. ΘPAD’s Kieker plugin had to be adjusted
to custom measures and communication channels in order to work in the case-
study environment.
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Further on, the configuration of aspects had to be made before running the
experiment. Without this setup (Section 5.2) the environment’s performance mea-
sures would not have been known. The related work of the previous chapter shows
that even anomaly detection based on machine learning or pattern recognition does
not work without human interaction.

Time series visualization supports performance reasoning

Both graphical web front ends, Logjam, and the anomaly score graph described
in Section 4.6.3 helped the post-mortem analysis to find causes for anomalies.
Especially Logjam is in use by all development teams at XING and helps engineers
getting a view on the actual behavior of their online system.

Using open source software gave great benefits

All software packages used by ΘPAD are open source. For instance, without the
algorithms provided by R, ΘPAD could not have been developed in the given
time. The Kieker framework also decreased the development time since it already
provided a basic architecture with the linear data flow used by the ΘPAD plugin.

Alternative software such as Snort and RRDtool demonstrate the more a soft-
ware is used, the more improvements are made. They both offer many additional
tools and components built by the community. ΘPAD also has this potential due
to its reusability (as of NFR4) in Section 4.1 and the affinity to the open source
community of Kieker.

6.3 Retrospective: Goals Reached?

All four thesis goals listed in Section 1.2 were reached. The following list summa-
rizes the reasons.

B T1: Design of an Online Performance Anomaly Detection Concept
An approach was developed in in Chapter 3 based on some mathematical
foundation in Chapter 2. This approach deals with performance data in an
online fashion and detects anomalies based on time series.

B T2: ΘPAD Implementation as a Kieker Plugin
The implementation (Chapter 4) was done by using the Kieker monitoring frame-
work as a basis. ΘPAD was developed as a plugin that runs in it’s context.

B T3: ΘPAD Integration with Case-study System
In the case study, ΘPAD was evaluated in the environment over the course of
two weeks. It was configured to gather selected performance measurements
from the monitoring system at XING. In the course of the evaluation phase, it
detected eight anomalies in production data.

B T4: Evaluation
Chapter 5 used the GQM approach to answer questions implied by the thesis’
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Figure 6.1: The activities of the ΘPAD approach are starting points
for future improvements. The markers 1 to 5 are referred to in
Section 6.4.1.

goals. All important metrics were measured directed to goals relevant for the
reasearch goals.

A main focus was placed on the implementation (T2) due to the engagement of the
advisory in the Kieker framework. It is anticipated that the research of the Software
Engineering Group can be supported by the ΘPAD approach. Possible future work
and improvements of the approach are described in the following section.

6.4 Future Work

6.4.1 ΘPAD Improvements

During implementation and evaluation several approaches came up to improve the
ΘPAD server. Figure 6.1 takes the activities described in Chapter 3 and indicates
the points of improvement. Subsequently, details are given in the following sections.

1 Adapt to Kieker Pipes and Filters

During the period of this thesis, the Kieker framework was enhanced with a pattern
called . . . . . . . . . . . . . . . . . .Pipes and Filters. This makes gathering measurements and subsequent
processing configurable at run time.

With this approach, the ΘPAD plugin could serve as a filter that calculates
anomaly scores and propagates them inside Kieker for further processing and
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Figure 6.2: Simulation Yahoo’s Pipes and Filters editor including
Kieker and ΘPAD. In this demonstration, Yahoo’s editor was modified
with Google Chrome.

analyses. Additionally, the configuration activity can be supported with a graphical
user interface. This interface is planned for 2012 and is similar to the Yahoo Pipes
as demonstrated in Figure 6.2. Interesting setups could be found when coupling
Kieker filters with anomaly scores or post-mortem analyses graphs from ΘPAD.

2 Different Source Aggregation

In the evaluation (Chapter 5), the performance measure total_time prove to
correlate with actual anomalies (Question Q2.3 “Which performance attributes
matter?”). However, the available measures were restricted to the environment’s
own monitoring. Further investigation can be made in finding measures from exter-
nal sources such as network provider performance or even social media activities.

Oliner et al. [2012, p. 7] even suggest using phone-call logs or customer inquiry
metrics for cross correlation. These approaches would benefit from the Pipes and
Filters architecture since many combinations could be tried in parallel.

3 Automatic Choice of Sliding Window

As investigated in the related work in Section 5.5, StatStream, the software written
by Shasha and Zhu [2004, p. 170] uses sliding windows to adjust the algorithm’s
input data dynamically.

Future versions of ΘPAD could adopt this principle and change the size of the
sliding window based on detection metrics such as precision.

4 Algorithm Refinement

As described in detail in the following Section 3.5, the anomaly detection method
is based on forecasting as an intermediate step. Several algorithms were selected
based on the suggestions by Frotscher [2011, p. 17]. Still, other algorithms can
be evaluated and tested on production data. Since the architecture of ΘPAD
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December 20, 2011 02:00 December 30, 2011 06:00

Figure 6.3: The SeasonForecaster plotting the forecast over a
period of 12 days. The gap at �1 shows that not enough data is known
to perform the forecast. Improvement can be done for instance at �2.
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Figure 6.4: Heat Map of excessive XING Users

is designed to allow the addition of algorithms, the evaluation of new anomaly
detection approaches is encouraged.

Another refinement can be made by parameterizing existing algorithms with
knowledge of usage behavior For instance, the SeasonForecaster as shown
in Figure 6.3 could not only calculate the forecast with the season but also with
special events or trends.

6.4.2 Bot Activity Detection

XING had a bot detection mechanism that recorded excessive usage of the plat-
form. The assumption was that those usage patterns come from users that are ‘not
normal’. This abnormal usage could come from bots or machines that automatically
try out password etc. The software tracked all users performing more than 10
requests on xing.com in a certain sliding window.

Figure 6.4 shows the output of the tool with example data. The y axis shows the
suspicious users, the x axis separates the different pages that were requested (see
Section 2.4.4). The heat , as a third dimension, is the aggregation of the individual
user’s request.
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6.4. Future Work

The concept worked for an older version at XING, one, which is not in use
any more because of recent changes of the platform. The usage patterns were
tracked and evaluated online but not supervised outside of business hours. So it is
imaginable to connect ΘPAD to this data source. Online usage anomaly detection
would hence be in reach.

6.4.3 ΘPAD in the Kieker Community

In the course of this thesis, the field of performance anomaly detection was re-
searched and much insight was gained especially due to the requirement for the
detection to be online, on a productive system. Most of the software used to
build ΘPAD and to write this thesis was available as open source. Apart from
the publication of the research, the created software be a basis for future research
and (hopefully) production use.

The further publication of ΘPAD is planned as following:

• TSLib: Available at a github repository1 for easy forking and commenting
• The ΘPAD concept and code at repositories of Kieker2

• A guide for Setup and Configuration of ΘPAD in the Kieker trac3

After the submission, a month’s employment at XING will give the possibility to to
further testing and research on production data.

One future use of TSLib will be in a diploma thesis at the Descartes Research
Group of the Karlsruhe Institute of Technology4 authored by Herbst [2012]. A
heuristic approach will be developed that selects forecasting strategies. Charac-
teristics of time series will be analyzed for improving forecasting quality. Further
on, a case study on IBM’s Tivoli software for managing elastic virtualized systems
is planned.

Additionally, it is planned to summarize the results of this thesis in a research
paper to be submitted to a conference.

1https://github.com/tielefeld/tslib
2http://kieker-monitoring.net/opad/
3https://build.se.informatik.uni-kiel.de/kieker/trac/opad/
4http://descartes.ipd.kit.edu/
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Glossary

Accuracy Ratio of correct detections to all detections. III, 22, 83, 100

AOP Programming paradigm that treats different logical aspects separately. 26

Aspect Unit of configuration in ΘPAD. 34–41, 44–46, 51, 52, 55, 59, 62, 65, 67,
74, 75, 82, 83, 103

Attribute Performance measure on the monitored system. Also used for aspects
to listen on these system measures. 37, 38, 41, 73–75, 78

Availability Property of a system being able to deliver service requests at a given
point in time. III, 1

Efficiency Internal and external quality. 7

Feature Characteristics of time series. 11, 93

FPR Ratio of false positive detections to all points of normal behavior. 21

Importer A process in the XING architecture which aggregates server logs. 29,
31, 55, 74, 77, 101

Measurand Object which gets values assigned in the measuring process. 7, 11,
20, 29, 37, 38, 40

Measure Entity that produces measurements in a specific scope. III, 1, 7, 11,
33–37, 40, 41, 76, 89, 99, 101, 103, 105

Measurement A single measured value. 2, 4, 7, 8, 10–12, 15, 29, 33–35, 37–41,
50, 54, 56, 65–67, 99

Online A system’s state in runtime, able to serve requests. 4, 89

Page Grouping attribute of XING’s web application which assigns application com-
ponents to use cases such as ‘Jobs’, ‘Events’ and ‘Billing’. 28, 29, 65, 75

Performance the degree to which a software system or component meets its
objectives for timeliness. III, 1–3, 7, 10, 17, 29, 34, 75, 99

QoS The combination of availability, reliability, and performance. III, 1, 2, 99
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Raw measurement Measurement from a continuous data stream. 7, 12, 29, 34,
38, 54

Reliability Reliability is given when a system services request according to its
functionality. 1, 10

Response time Time period between user interaction and the system presenting
a result. 8, 9, 17, 18, 29, 34–36, 77, 88

REST Programming paradigm defining constraints in the communication between
client and server. 28

Robustness Property of a system that tolerates incorrect input [Avizienis et al. 2004,
p. 23]. III, 2, 49, 86, 102

Sharding Splitting a large collection of data across several servers . 3

SMM The Structured Metrics Metamodel is a meta-model for representing mea-
surement information specified by the Object Management Group, Inc.. 8,
37

Step size Distance between two succeeding point in a time series. 10–13, 38, 41,
48, 50, 51, 53, 55, 65, 75

Temporal sequence A series of events with a specific scope. 11, 12, 29, 34, 38,
40, 50, 54, 58, 99

Threshold The anomaly score level which separates abnormal from normal be-
havior. 20, 35, 37, 44, 45, 64–66, 73, 75, 82, 83, 86, 88, 99, 100
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Software Libraries and
Products

R Runtime environment and programming language used to execute forecasting
algorithms in ΘPAD, http://www.r-project.org. 3, 13, 14, 27, 51,
59, 102

AMQP Messaging standard ‘Advanced Messaging Protocol’, http://www.amqp.
org/. 24, 25, 28, 29, 55, 56, 65

Apache Qpid Open source messaging, http://qpid.apache.org/. 25

AppDynamics Hosted application performance monitoring service, http://www.
appdynamics.com/ . 1

BSON Extension of the JSON markup with additional binary encoded content. 23,
30

CRAN ‘The Comprehensive R Archive Network’, an online respository for pack-
ages of the R language, http://cran.r-project.org/. 14, 27

D3 ‘Data-Driven Documents’, Javascript library do develop and bind graphical rep-
resentation to data, http://mbostock.github.com/d3/ . 29, 66

EPL Event Processing Language, the query language of the Esper engine. 50

Esper Complex Event Processing (CEP) engine, http://esper.codehaus.
org/, http://www.espertech.com/. 12, 50, 51, 101

Facebook The largest and fastest growing social network with over 845 million
active users, http://facebook.com/. 2

Git Decentralized source code management, http://git-scm.com . 59

GNU An open source UNIX-like operating system, http://www.gnu.org/philosophy/
free-sw.en.html. 27

Graylog2 Open source log management, http://graylog2.org . 29
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Java Language of Kieker and ΘPAD. Version 1.6 for 64bit OSX 10.7 was used,
http://java.com/ . 51, 52, 55, 58, 59, 64, 99

Jenkins Continuous integration server, http://jenkins-ci.org . 59

JRclient Java client library to connect to a running Rserve instance via socket,
http://stats.math.uni-augsburg.de/rserve/dist/JRclient/
JavaDoc/ . 51, 59, 61

JSON Text-based human-readable encoding that can directly be interpreted by
Javascript. 23, 24, 29, 54, 65

JUnit Unit tests for Java, http://junit.org . 58, 102

Kieker Open source performance monitoring and dynamic analysis framework,
http://kieker-monitoring.net/. III, 1–5, 7, 47, 50, 53–56, 91, 93,
99, 101–105, 107

Logjam XING’s logging aggregator and viewer, https://github.com/alpinegizmo/
logjam. 3, 28, 29, 50, 75, 77, 78, 99, 103

Memcache Open source caching system, http://memcached.org/. 29

MongoDB “Humongous data base”, high-performance and availability document
store database, http://www.mongodb.org/. 29–31, 50, 51, 55, 65, 66,
75, 77, 102

Munin System and Resource Monitoring, http://munin-monitoring.org/
. 29

Nagios Industry standard IT infrastructure monitoring system, http://www.nagios.
org/. 1, 3, 29, 101

Neo4J Open source NoSQL graph database, http://neo4j.org. 28

New Relic Service for web monitoring and management, http://newrelic.
com . 1, 88, 96

NoSQL ‘Not only SQL’, databases without the need of schema and relational in-
tegrity. 25

Omniture Web analytics and monitoring tool, http://www.omniture.com/
de . 29

OpenForecast Forecasting library for Java, http://www.stevengould.org/
software/openforecast/index.shtml. 59

Ourmon network monitoring and anomaly detection system, http://ourmon.
sourceforge.net . 89, 96, 98

Perl The majority of XING’s code base is still writtin in this open source program-
ming language, http://www.perl.org/. 3, 29
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Pipes and Filters Architecture pattern that allows the combination of computation
be configured by the user, http://www.eaipatterns.com/PipesAndFilters.
html. Yahoo’s software is available at http://pipes.yahoo.com/ .
104, 105

RabbitMQ The message queuing server used at XING, http://www.rabbitmq.
com/. 25, 28

Rackspace Hosting provider, http://www.rackspace.com/managed_hosting/
services/security/ddosmitigation/ . 88

RRDtool Round Robin Database, http://oss.oetiker.ch/rrdtool/ . 89,
96, 103

Rserve Server offering connection to the R runtime, http://www.rforge.
net/Rserve/files/ . 50, 51, 59, 61

Ruby on Rails Full-Stack web development framework written in the scripting lan-
guage Ruby, http://rubyonrails.org, http://www.ruby-lang.
org/. 3, 28, 29, 96

Safari rowser Apple’s browser based on the Webkit rendering engine, http://
www.apple.com/safari/ . 66, 67

Sinatra Sinatra, http://www.sinatrarb.com/ . 66

Snort Intrusion detection system, http://www.snort.org/ . 89, 96, 98, 103

Snort.AD Preprocessor for Snort to detect anomalies in network traffic, http:
//anomalydetection.info . 89, 96

StatStream http://cs.nyu.edu/cs/faculty/shasha/papers/statstream.
html . 89, 105

StormMQ Message queuing as a service, http://stormmq.com/. 25

TSLib Time Series Library, a part of the ΘPAD approach. 50–52, 57, 59, 102, 107

XING The global social network XING is the most important platform for business
contacts in Europe., http://xing.com/. 2, 3

YAML Human-readable markup language, ‘YAML Ain’t Markup Language’, http:
//yaml.org/ . 24, 52, 59, 62
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