INSTITUT FUR INFORMATIK
UND PRAKTISCHE MATHEMATIK

Content Warehouses

Gunar Fiedler, Andreas Czerniak, Dirk Fleischer,
Heye Rumohr, Michael Spindler, Bernhard
Thalheim

Bericht Nr. 0605
March 2006

CHRISTIAN-ALBRECHTS-UNIVERSITAT
KIEL

Institut fiir Informatik und Praktische Mathematik der
Christian-Albrechts-Universitit zu Kiel
Olshausenstr. 40
D - 24098 Kiel

Content Warehouses

Gunar Fiedler, Andreas Czerniak, Dirk Fleischer, Heye
Rumohr, Michael Spindler, Bernhard Thalheim

Bericht Nr. 0605
March 2006

e-mail: {fiedler,thalheim }@is.informatik.uni-kiel.de,
acz@informatik.uni-kiel.de,
{dfleischer,mspindler }@ipoe.uni-kiel.de,
hrumohr@ifm-geomar.de

Dieser Bericht ist als personliche Mitteilung aufzufassen.

Abstract

Nowadays, content management systems are an established technology. Based on
the experiences from several application scenarios we discuss the points of contact
between content management systems and other disciplines of information systems
engineering like data warehouses, data mining, and data integration. We derive
a system architecture called “content warehouse” that integrates these technologies
and defines a more general and more sophisticated view on content management. As
an example, a system for the collection, maintenance, and evaluation of biological
content like survey data or multimedia resources is shown as a case study.

Contents

(1__Introductionl 4
(1.1 Case Study: A Bio-Ecological Intormation System| 4
1.2 From Content Management Systems to Content Warehouses| 10
(L3 Related Workl oo 10

[1.3.1 Content Management Systems| 10
(.3.2 Data Warehouses| oo 13
(1.3.3 Data Mining|. 17
[1.4 Logical Foundations of Content Warehouses| 18
[1.4.1 Separation of Syntax, Semantics, and Pragmatics 18
1.4.2 The Content Worldl 19
[1.4.3 Concepts as Small Logical Units[. 21
(1.4.4 The Topic World 24

[2° Data Management| 25

2.1 Component Based Modeling| 25
[2.1.1 Database Components| 26
[2.1.2 Conceptual Components| 27
[2.1.3 Relating Conceptual Components and Database Components|. 29
[2.1.4 Component Schema Construction| 30

[2.2 Application Scenario|o 31
[2.2.1 Development of Graphical User Interfaces) 31
[2.2.2 Component Based Design| 31

[3 Users and Rule Management] 33
[3.1 Agents, Actors, Roles, and Groups| 33
[3.2 Task Obligations and Access Rights| 34

[3.2.1 Prerequisites for Execution| 35
[3.2.2 Deriving Permissions for Execution| 36
[3.2.3 Permitted and Forbidden Operations| 37
[3.2.4 Logic of Actual Obligation: Dynamic Permissions| 37

[3.3 Implementing Access Control Lists| 41
B.3.1 Static Permissiond 41
[3.3.2 Dynamic Permisssions| 43

4 Data Exchange| 45

4.1 Data Integration in General| 45
[4.1.1 Database Cooperation| 48
[4.1.2 Application ot Cooperation to Multi Database Systems| 50
[4.1.3 Application ot Cooperation to Incremental Database Systems| 51
[4.1.4 Database Collaboration in the Washer Approachl. 52

4.2 Transformationl 54
[4.2.1 Development of the Content Warehouse Kernel| 56
[4.2.2 Derivation of Requirements for Wrappers|. Y
“2.3 Collaboration Warehousesl 58

4.3 Presentation as Data Exchangel 59

b Interactionl 60

[5.1 Storyboarding: Modeling Interaction| 60

[>.2 Interaction Prototyping|. 61
[5.2.1 Executable Specifications and Rapid Prototypingl 63
[5.2.2 Using SiteLang tor Code Generation| 63

1 Introduction

1.1 Case Study: A Bio-Ecological Information System

Modern ecological research attempts to measure and explain global dependencies
and changes and therefore needs to access and evaluate scientific data just in time.
Nowadays, biological data is raised in an increasing number of experiments and
surveys. A single biological experiment generates about 1.000 records while modern
instruments and methods enhance quality of data.

Biological surveys are usually descriptive procedures. In a certain area of interest ge-
ographical referenced samples are taken, analyzed by a number of different methods,
and probably compared with former surveys. In addition to invasive methods visual
survey procedures were established in the last decades. Research projects that de-
scribed regional communities of species produced large sets of so called survey data
throughout the years.

Geographical referenced data sets facilitate the production of dissemination maps
of species or higher taxa. Using the recorded data enables stock estimations. Hy-
potheses based on descriptive survey data need statistical foundations based on
experimental data. Experiments are necessary to substantiate or reject a priori
hypotheses.

Unfortunately, there is no general infrastructure for a free and uncomplicated ex-
change of data between researches as well as for public access to results of biological
research. Publications in scientific journals suffer from multiple diseases. Published
results do not include raw data, so it is necessary to get directly in contact with
the author. The public is excluded, so scientific instiutions have to make additional
efforts for public relations.

Beside the newly created data there are many historical sources. These data sets
are often not available to the public in an electronic way. Many research projects
as well as diploma or doctoral theses spend a lot of time (and money) to raise new
data or to digitize historical data. Most of these projects are limited in time, the
results are usually forgotten after a couple of years.

These problems are known since several years. To enhance availablitity and dura-
bility of biological data researchers are asked to store their results in the Publish-
ing Network for Geoscientific & Environmental Data (PANGAEA, see [PANOG]).
PANGAEA is a library of already published data. Unfortunately, diploma theses
and other student work is not considered as publishable data anf therefore ignored.
Additionally, transfering data into PANGAEA is a challenge for research projects.
PANGAEA does not consider evaluation or presentation of data sets.

Some other projects try to address the topics mentioned above for restricted areas
of interest:

e Fishbase (http://www.fishbase.org) is an information system with key facts
about fish species.

e ReefBase (http://www.reefbase.org) is an online information system with
facts about coral reefs.

e AlgaeBase (http://www.algaebase.org) is a taxonomic information system.
The project supplies pictures of different algae.

e [ntegrated Taxonomic Information System (ITIS) (www.itis.usda.gov) is a
database with taxonomic information of terrestrial and marine habitats.

o SeaMountsOnline (seamounts.sdsc.gov) transfers capabilities from informa-
tion systems for terrestrial ecology to systems for marine ecology.

e Ocean Biogeographic Information System (www.iobis.org) is a component
of “Census of Marine Life”; a network of institutions from 45 countries that
investigates different parameters of marine organisms.

o Meeresumwelt Datenbank (MUDAB)
(www.bsh.de/de/Meeresdaten/Umweltschutz/MUDAB-Datenbank/index. jsp)
is the central database for environmental data from the North Sea as well as
the Baltic Sea.

Analyzing the situation of modern biological research the need for a generalized
repository for storing biological data sets emerges. The following observations can
be made:

e The system should support different types of biological data with a focus on
surveys and experimental data. Although there is a widely accepted aggree-
ment on the general structure of data, the system should be flexible enough
to facilitate different facets of different topics in biological research.

e Data sets have to be syntactically and semantically annotated and docu-
mented. Documentation of failed experiments is as important as the publi-
cation of successful experiments to facilitate collective learning. Usage of raw
data should be traceable: Who used the data? Which publications are based
on these data sets? Which experiments are correlated with a certain survey?

e The system should be able to supply a browseable (e.g. via a taxonomy) and
searchable archive of multimedia data such as pictures and video sequences,
e.g. as a surplus value for public relation management of biological research.

http://www.fishbase.org
http://www.reefbase.org
http://www.algaebase.org
www.itis.usda.gov
seamounts.sdsc.gov
www.iobis.org
www.bsh.de/de/Meeresdaten/Umweltschutz/MUDAB-Datenbank/index.jsp

Researchers Project Controller Public Users

Data Provider

istributi roject resumes
data distribution research results proj

evaluation data export just in time popular scientific data

Bio-Ecological Information System

Survey Data
Pictures and Videos
Taxonomy

Experimental Data

Database

Figure 1.1: The Four Columns of a Bio-Ecological Information System

e There are a number of standard evaluation and visualization methods. The
repository should enable data providers (researches who provide data sets
within the system) to use these evaluation and visualization techniques.

e The repository acts as a proxy for other biological information systems (e.g.
PANGAEA). Data sets within the repository can be transfered to PANGAEA
in a (semi-)automated way which makes it easier for the researcher to publish
scientific results.

Figure[I.T]shows the four columns of a bio-ecological data repository: management of
survey data, management of experimental data, management of multimedia elements
and management of taxonomical information. Different user groups with different
needs can be identified:

e Data providers, supplying data sets for the repository are interested in eval-
uating and visualizing these data sets according to standard methods. Addi-
tionally, the data providers are disburdened of the responsibility for long-term
storage of their data sets. This enables data sharing within globally distributed
virtual working groups because every participant can access the data of the
working group from everywhere at every time.

e Reseachers are interested in finding data sets for comparative studies. To
prevent uncontrolled access and misuse of data the system has to implement

Frontend

Import / Export Integrated Inter%cthn
Converters Evaluation Stories
Procedures
User Management
— | (Persons, Working Groups,
Raw Data Virtual Groups,
Metadata Profiles, Portfolios)

Rule Management
Complex
Integrity Constraints

Rule Management
Data Access

— Logging
and
Notification

Figure 1.2: System Components

the “rules for a good scientific practice”, e.g. a retention period for newly raised
data sets and a notification of the data owner if sets are exported.

e Project Controllers are able to participate in the project’s evolvement from
the beginning. Statistical resumes can be derived from the data within the
repository.

e Public users are supplied with popular scientific reports, such as pictures, video
clips, visualized statistics, annotated maps, resumes of research projects, or
selected publications.

Figure [1.2] shows the main components of a bio-ecological information system from
a technical point of view:

e Survey data and experimental data is stored within a central database. Each
raw data item can be annotated with metadata such as authors, creation date,
geographical reference, descriptions, citations, resumes, links to publications.

(a) Picture from a video clip (ground of the Baltic Sea, Kiel Bay)

(b) Detailed picture from Cumace Diastylis (left) and Lagis koreni (right)

Figure 1.3: Multimedia Data

Additionally, pictures and video clips are stored together with taxonomic infor-
mation, figure [1.3| shows examples. The schema of the central data repository
has to be flexible enough to cope with special facets of different surveys or
experimental methods. At the same time the schema has to carry enough
information to represent the data’s semantics in an appropriate manner. To
ensure a certain quality level complex integrity constraints have to be de-
fineable. Semantics of these rules should be represented in the repository, not
only in the application’s code to ensure understandable and changeable import
policies. Constructing flexible structured schemas is discussed more deeply in
chapter [2|

To support virtual working groups the information systems needs powerful
user management facilities. Definition of real and virtual groups is necessary as
well as the explicit definition of persons, user profiles (the user’s characteristic
properties which can be used to deduct needs, wishes, and possibilities of
users) and portfolios (tasks and plans of the user). It must be possible to
dynamically define access permissions based on groups, profiles and portfolios
as well as scientific rules (e.g. retention periods or the publication state of
certain results). Chapter 3| discusses this topic.

Access to raw data has to be logged because of security reasons. To prevent
misuse of data each data provider has the right to be notified in a configurable
way if its data sets are exported. The information system produces statistical
evaluations on the usage of data sets, e.g. for project resumes.

An important part of the bio-ecological information system is the integration
of standard evaluation methods such as Bray-Curtis Similarity Matrices, the
Simpson Index, the Margalef Index, the Shannon-Weaver Index, Pielou Even-
ness, Taxonomic Distinctness, AMBI, BQI, ANOVA, ANOSIM, or statistical
significance tests. Results are visualized, figure shows an example.

Each user group (e.g. researcher, data provider, public user) has certain needs
and wishes according to the personal profile. Adaptable user interfaces allow
an ergonomic usage of the system’s functionality. Chapter [5|discusses the topic
of modeling user interfaces.

Data providers import and export data sets. The repository has to support
different data exchange formats. Additionally, the repository should support
data exchange with existing biological archives like PANGAEA. The mapping
between different schemata and formats (both on a syntactical and semantical
level) and cooperation between information systems is covered in chapter .

Artenzahl an Station

120
100 —
a0]
G0 1

e e

FFSELHLIF LSS

Lahr

Artereahl

Figure 1.4: Example of Data Visualization: number of species over a longer period
of time

1.2 From Content Management Systems to Content
Warehouses

The architecture of an bio-ecological information system discloses many points of
contact to different research topics in information system engineering, such as con-
tent management systems, data mining technologies, semantic databases, and mod-
eling issues. It is typical for a whole family of information systems with a broad
variety of application areas. We will call these kind of information system Content
Warehouse. The detected requirements can be generalized and applied to differ-
ent areas of interest. The following sections and chapters provide an overview over
related technologies and actual research directions.

1.3 Related Work

1.3.1 Content Management Systems

Content Management Systems (CMS) support administration and maintenance of
sharing “content” within an organization. The term “content” denotes some piece
of information. Usually, there is no clear separation between “content” and “infor-
mation”, but “content” is used in a more technical way as a piece of eletronically
provided structured, semistructured, or unstructured data that is viewed by users,
changed by editors, or shared between users or organizations. Many (Web) con-
tent management systems (WCMS) restrict “content” to the contents of web pages
with reusable static or dynamic chunks of data (called assets), e.g. text fragments,
pictures, movie clips, links, data from databases, or applets.

10

An important design principle of content management systems is the separation be-
tween assets (raw data), structure, and presentation. Assets are combined with meta
data (information about author, creation date, keywords, usage context, versions,
access rights, payment status, etc.). Editors create (semi-)structured documents by
assembling assets, usually by using a structural template. Structural templates are
associated with visual templates (e.g. JSPs or PHP scripts) that manage visualiza-
tion of content documents. It is possible to manage different visualization templates
for structural ones to facilitate different output channels (e.g. HTML pages, WML
output for WAP enabled cellphones, PDF for print media, or VoiceXML for voice
based interaction.)

The main goal of content management is the automation of processing reusable
content. For that reason the whole content life cycle is supported:

e (Content creation and content import: assets are managed according to defin-
able design rules. Editors can use document templates for creating structured
documents. Usually, there exist converter modules for importing content from
external sources based on standard exchange formats.

e (Content maintenance: content is associated with metadata, such as author
information, usage context, or keywords. This supports editors in finding
content for reuse. Versioning of content is usually supported.

e Content distribution: content can be distributed in two different ways: struc-
tured for reuse in other contexts or rendered for presentation. Exchange and
linkage of content between organizations (or between different web sites) is
called content syndication, e.g. on the basis of RSS, NITF[L or legacy formats.

e (Content monitoring: access to certain content is restricted to the user’s profile
and portfolio. Which tasks the user has to or wants to fulfill? Is the content
classified as internal content or public content? Is there any need to pay for
accessing the content? Is the content actually under processing in a certain
workflow?

There are three different types of content management systems:

e Document oriented systems are designed to manage unstructured or weakly
structured bulk documents, e.g. articles or books in an electronic library.
These systems usually supply information retrieval methods and conversion
between different formats such as PDF or PostScript.

o Workflow oriented systems focus on workflows or document flows. The main
goal is the support of business rules and business processes together with
personal views on processes and data. Workflow oriented systems are widely
used in B2B applications E| or distributed information systems.

'News Industry Text Format
2business to business applications

11

preview
Webserver ‘Webserver

editing

Workflow
Component
Content, Content
Server Server
Importer

Exporter

Content Repository Content Repository

(Master Database) (Live Database)

Figure 1.5: Architecture of Content Management Systems

e Fditorial systems are used for creating newspapers or websites. Reuse of pro-
duced or purchased content in different contexts and on different medias is
supported. Typical workflows known from the editorial business (such as “four-
eye-publication” and others) are usually supported but often not in a generic
way.

A typical system architecture of a content management system is depicted in figure
[I.5l For security and performance reasons the system is typically divided into two
parts: the master system and the live system. The master system (also called
“backend system”) is used by the editors to create and maintain content. It is usually
accessible within the intranet of the organization and protected against access from
the extranet. Content is stored in a repository which is usually a relational database
or a collection of files in a file system. The content application server is the central
component of the content management system controlling the access to the content
within the repository. Optionally, the system includes a workflow component for
controlling the state of content objects within business processes. Content is created
and maintained by editoral and administrative applications. These are either Web
based interfaces or proprietary applications. For supporting content syndication
or changing content in external applications (e.g. editing pictures in professional
graphic software) content import and export modules are usually present.

The second part of a content management system is the live system (also called
“frontend system”). It supports the efficient retrieval of content. It is also backed by
a content repository. This repository contains a subset of the data from the master
content repository, namely the published content. The process of transfering data

12

from the master system to the live system is called publication. Publication takes
place when an editor triggers the publication process or at regular times to prevent
unauthorized modifications of live content from outside.

1.3.2 Data Warehouses
Introduction

Operational data in enterprises is often distributed over several specialized and prob-
ably isolated applications. Every Application stores relevant data in a locally opti-
mized way. Even if there is only one application, data is usually not structured for
analysis. This often prevents or complicates a global view on the data as a base for
sound management decisions or recognition of dependencies and coherences.

The concept of data warehouses deals with this situation. A data warehouse is a
central database which collects data (so called micro data) from different sources.
Micro data is transformed, integrated and supplied for evaluation. In difference to
specialized applications, a data warehouse facilitates a global, rectified, and cleaned
view on the collected data of the whole enterprise.

Data warehouse systems consist of a complex network of cooperating components.
The core of a data warehouse is a central database. The separation of operational
data and data evaluation is one of the central aspects of data warehousing because
applications are not influenced in terms of performance. On the other side, evalua-
tion tools with complex and long-running queries need a completely different data
organization. Because of the historical dimension data warehouses store significantly
more data than necessary for the actual work.

Data from local applications is periodically (or even just in time) loaded into the
data warehouse. This procedure separates data warehouses from logically integrated
federated database systems. Federated databases also allow a global view on a
network of databases as well as global processing, but queries are delegated to the
local systems.

Beside data storage the loading process is a challenge for data warehouses. Different
data sources supply data with different granularity and quality. The data warehouse
has to transform and to integrate this mix of data. It has to complete missing data
in a meaningful way, recognize overlapping data, resolve conflicts and errors, filter
irrelevant data, and calculate derived information from the raw data. Data sources
deliver data in different formats, e.g. data from relational databases, hierarchical or
network-based databases, XML documents, or legacy files.

The surplus value of a data warehouse for end-users is determined by available evalu-
ation and transformation tools. There are report generators for generical summaries
of data. Many statistical tools enable the verification of hypotheses. OLAPf| ap-
plications support the classification and evaluation of data defined over multiple
dimensions. Data mining tools enable the user to formulate forecasts based on the
data from the past and the present, e.g. the generation of hidden association rules.

30nline Analytical Processing

13

time
fy

area

species

Figure 1.6: A data cube for biological surveys with three dimensions: time, area,
and species. Each cell contains the corresponding number of individuals,
denoted by different colors.

Other possible tools are data filters for personalized data (e.g. conversions between
units), agents informing the user of certain events and constellations, visualization
tools, or decision support systems. Most of these applications are restricted to
predefined analysis scenarios but they are usable with only few initial training.

Online Analytical Processing

In OLAP applications data within a data warehouse is usually visualized as a multi-
dimensional cube. Each cell within the cube contains the measures of interest.
Consider the following scenario: on regular surveys the number of individuals of
certain species in certain areas is measured. We have three dimensions: time, areaEI,
and species. Each cell within this three-dimensional cube contains the number of
individuals of the corresponding species those were found at this point of time on
this coordinates. Figure [I.0] depicts this scenario.

For each dimension categories can be introduced, e.g. days, months, years, and
decades for the time dimension, regions for the area dimension, or a taxonomy for
species. Figure shows an example.

The data cube supports summarization with groupings based on categories (or, more
general, properties), e.g. the average number of individuals of a certain species over
the last decade. Data cubes implement specialized operations for interactive data
analysis, e.g.:

e drill down: the cube’s cells are replaced (in a visual sense) by cells with a finer
granularity (e.g. cells containing the number of vertebrates are replaced by
cells containing the number of fishes, amphibia, reptiles, birds, and mammals.)

4Area is actually two-dimensional (longitude and latitude).

14

North Sea

area,

Baltic Sea

Danzig Bay

time

3
2002 v L

Jan o

2000 - 2
1

Jan o 1

A species

Kiel Bay. Fish Amphibia Reptilia Birds Mammals

Vertebrates Invertebrates

Figure 1.7: Categories for Cube Dimensions

15

Species

Species
Genus
Family
Order
Class
Phylum

Area Individuals Time
Longitude Number Day
Latitude Month
Land_Sea Year
Region Decade
Continent Season

Figure 1.8: Star Schema

o drill up: cells are summarized (e.g. cells containing the average numbers of
individuals in certain months are replaced by a cell containing the average
number of individuals over the year. The operation roll up creates summaries
on different levels of abstraction.

e slice and dice: sub cubes are created by applying filters (e. g. the user is only
interested in data from the year 2004 recorded in the Baltic Sea concerning
fishes.)

Data cubes are implemented using either multi-dimensional arrays (MOLAP) or re-
lational structures (ROLAP). ROLAP databases usually consist of dimension tables
and fact tables, containing the measured data and foreign keys to all dimension ta-
bles. Fact tables and dimension tables form a star-like schema as depicted in figure
[L.8 If dimension tables are normalized or connected to other tables the star schema
is called “snowflake schema”.

Although traditional database systems can handle typical ROLAP queries, it is a
matter of performance to represent the data cube in an appropriate way. A cube
can be defined as a set of cube views over a relational (star or snowflake) schema S.
In principle, there are three different ways to handle cube queries:

e Each query is rewritten according to the view definition of the current cube
configuration and is executed on the base relations. This approach is storage-
efficient (only the base data has to be stored) but it is very time consuming.

e Cube views are completely materialized, all queries to a certain cube configura-
tion is processed using these materialized cube views. Using this configuration
the best query performance can be achieved but a lot of disk space is needed
to hold the materialized views.

16

e Cube views are only partially materialized. Views that are not materialized
are calculated using materialized views. This approach is a trade-off between
space and time consumption.

1.3.3 Data Mining

Data Mining is the process of automatically discovering useful information in large
data repositories ([T'SK06]) and is a part of knowledge discovery. Data Mining tasks
can be divided into two categories:

e Prediction: Dependent attributes are predicted based on a set of given at-
tributes.

e Description: Descriptive procedures derive patterns that summarize hidden
relationships in data.

Data mining processes usually consider data objects with attributes. An attribute
corresponds to a property or characteristic of an object. Attributes may vary from
object to object or over time. Attributes are associated with a (discrete or continous)
domain of possible values. There are different kinds of domains:

e nominal attributes: sets of distinguishable elements, e.g. color or gender

e ordinal attributes: sets of distinguishable elements with an ordering relation,
e.g. grades ({good, better, best})

e interval attributes: there is a unit of measurement so differences between ele-
ments are meaningful, e.g. dates, temperatures

e ratio attributes: both differences and ratios are meaningful, e.g. length, mass

Based on values of attributes different techniques can be applied:

Classification assigns objects to predefined categories. Given a set A of attributes
a classification model has to be established that maps objects with certain values
for attributes from A to classes.

The input for the classification algorithm is a set of objects over the attribute set A’ =
AU {c}. where ¢ is the target attribute, also called “class label”. The classification
algorithm employs a learing algorithm that identifies a classification model that
best fits the underlying relationships between the attributes. Possible classification
techniques include classification based on decision trees, rules, neural networks, or
support vector machines.

Association analysis try to discover hidden association rules. An association rule
is an implication of the form A — B where A and B are disjoint sets of values.
A typical application is the “market basket” scenario: which products were bought
together?

17

Clustering divides a set of objects to several groups. Usually, the clusters should
capture some natural structure of the data. Dividing the world in conceptually
meaningful clusters is used as a starting point for other purposes like data summa-
rizations.

1.4 Logical Foundations of Content Warehouses

1.4.1 Separation of Syntax, Semantics, and Pragmatics

Content managed in content management systems as seen in section is char-
acterized by three dimensions:

e raw data combined with meta data stored in a data repository,

e structuring and relationships of data fragments based on a predefined content
object model, and

e presentation instructions, usually consisting of stylesheet suites.

These dimensions can be found in any slightly generic CMS while the implementa-
tions differ from one system to another. Although the need for separation between
these dimensions is very present, available systems lack of a conceptual and compu-
tational support for more sophisticated tasks. Structuring as well as presentation of
content strongly depends on the content’s usage; it depends on the user’s profile and
task portfolio. Different users need different “information units” to perform their as-
sociated tasks. These information units may have different or multiple structurings
because they may be stored in or delivered by different independent sources. All
this can be done using a traditional CMS by coding the logic to the view suite or
to the presentation templates. But following the tradition of database management
systems this functionality should be provided by the CMS in a more generic way.
Additionally to the management of structures we need a management of logical de-
scriptions to handle the content’s semantics behind the data and a management of
topics to deal with the pragmatic use of data.

Dealing with logical extensions to database systems is not new. Deductive databases
(see [Min88]) combine logic programming and databases. The asset approach of
content management systems ([Seh03} [SS04]) uses conceptual containers (assets)
for a subject-oriented access. “Semantic Web” technologies and languages such as
the OWL Web Ontology Language deal with similar issues. Reasoning support for
description logics based approaches is available (see e.g. [Sys; [Hor9g]).

By generalizing current approaches, we identify three different perspectives of a con-
tent management system, depicted in figure The main difference is the strict
separation between the notion “information” and the notion “content”. Information
is data that is perceived or noticed, it is selected and organized by its receiver with

18

Syntax
Content

data worlds
representation worlds

Information
Semantics Pragmatics
Concepts Topics
theory worlds user worlds

modeling worlds

Figure 1.9: Semiotic Separation of Content, Concepts, and Topics

respect to his/her subjective interests and integrated in his/her recallable knowl-
edge. That’s why information is more than content: it is content combined with its
interpretation and the understanding of its users.

As shown in figure [L.9| we use the term content in this restricted form: content means
elements of business data. The notion “concept” is used for small logical theories
describing the semantics. Different users may have their own specific terminology
to denote content and concepts. We use the notion of “topics” for these denotations.
So we can distinguish between three different worlds:

e Looking at the content world we concentrate our attention to data, data struc-
turing, and data representation.

e Considering the concept world we investigate the logical foundations of the
content world as well as the topic world.

e Looking at the topic world we are interested in the terminologies or ontologies
of users and in their common understanding.

1.4.2 The Content World

The content world deals with content object suites. Content objects may be struc-
tured, semi-structured or unstructured. A suite is a set of objects combined with an
integration or association schema and the obligations required for maintaining these
associations. Content objects are based on a type system describing the structuring
and the functionality of these objects. Associations are expressed by relationship
types and constraints. The functionality of content objects is specified by a retrieval
expression, a maintenance policy and a set of functions supporting the utilization
of the content object and the content object suite. The notion used here extends
modern approaches ([SS03]) and combines them with the theory of media objects

19

([FKST00]). Classically, (simple) views are defined as singleton types collecting data
from the database by some query.

create view name (projection variables)

select projection expression
from database sub-schema
where selection condition

group by expression for grouping
having selection among groups

order by order within the view

Simple examples of view suites are already discussed in [ThaO0] where view suites
are ER schemata. The integration is given by the schema. Obligations are based
on the master-slave paradigm, i.e., the state of the view suite classes is changed
whenever an appropriate part of the database is changed.

We generalize the view specification frame used in relational databases by the frame:

generate MAPPING :
VARS — OUTPUT STRUCTURE from DATABASE TYPES
where SELECTION CONDITION
represent using GENERAL PRESENTATION STYLE
& ABSTRACTION (GRANULARITY,
MEASURE, PRECISION)
& ORDERS WITHIN THE PRESENTATION
& HIERARCHICAL REPRESENTATIONS
& POINTS OF VIEW
& SEPARATION
browsing definition CONDITION
& NAVIGATION
functions SEARCH FUNCTIONS
& EXPORT FUNCTIONS
& INPUT FUNCTIONS
& SESSION FUNCTIONS
& MARKING FUNCTIONS

A content schema ® on a database schema § is given by a view schema ©,, a
defining query ¢, transforming databases over § into databases over ®,, and a set
of functions defined on the algebra 24(®) on the content schema. The defining query
¢, may be expressed in any suitable query language, e.g. query algebra or SQL.
Looking at views in the common definition some concepts are missing, e.g. the
concept of links. This can be achieved by introducing some kind of "objectification”
of values in the query language. We should talk about query languages with create-
facility.

20

Pragmatical Context (situational, physical environment)

Website Context

Explicit Context (Story Space)

Syntactic Extra-Syntactic
verbal context auxiliary correlates

Actors profile,

media type suite
payment, ...

meta information

potential environment, information system, scenes. tasks, roles

intention, theme, occasion, mission, purpose

current scenario, history, current environment, goals

Figure 1.10: Wrappers for Content Types

Additionally, we want to integrate auxiliary content ([LRLIS|) getting eztended con-
tent types with a name D%, a content schema D, a defining query gox with create-
facility and a binding between ® and ggpx.

The representation of content types and auxiliary content types depends on the
users profile, the task portfolio, units of measures, presentation types, the order of
presentation, and the container for delivery ([ST01]). Therefore content types have

to be wrapped for representation to be adaptable to users and the environment, as
depicted in figure [I.10]

1.4.3 Concepts as Small Logical Units
Objects, Properties, and Relationships

In the concept world we generalize the structure given in the content world and
speak about objects. Let O be a set of abstract objects.

We define relationships between objects. Let R be a set of roles. A relationship b
between objects is a total function that maps roles r from a set {ry,...,r,} € R to
objects o from O: b: {ry,...,r,} — O.

Further, let P be a set of abstract properties. Each property p € P is associated
with a type from a set of types 7, denoted as type(p), e.g. base types, tuples, sets,
bags, or lists. Definition of types can be found e.g. in [ThaO0]. Because types
are more an issue in the content world we do not deepen the notion of types here.
Typical properties of objects on the conceptual level are properties with a base type
like boolean values, numbers, or strings.

Objects 0 € O can be described by a set of properties. The function prop maps each
object o to a set of pairs (p,v) where p is a property from P and v is a value from

dom(type(p)).

21

Concepts

In general, a concept is a tuple (m, int, ext) where ext (the concept’s extension) is a
set of objects, int (the concept’s intension) is a logical formula describing the objects
in the concept’s extension by using propositions over the the object’s properties, and
m is a function associating the concept with descriptive meta data such as a name.
If meta data is not of interest, m is omitted.

Let IC be a set of abstract concepts. An extension function £ is a function £ —
O which associates a set of objects to a concept. An intension is a function 7 :
K — L that associates each concept with a formula in a given language £. As an
abbreviation, we use £(y) with a formula ¢ to denote the extension of the concept
with the intension ¢ as well as Z(A) with a set of object A to denote the intension
of the concept with the extension A.

Concepts can be categorized:

e Faxtensional concepts are defined by explicitly specifying the concept’s exten-
sion. The concept’s intension is derived.

o Intensional concepts are defined by specifying the concept’s intension. The
concept’s extension is derived.

e Mixed concepts are defined by specifying intension and extension. The inten-
sion can be seen as a set of constraints that have to be fulfilled by all objects
in the concept’s extension. The concept’s extension is partially defined. These
explicit specifications are called assertions.

An inference machine within a conceptual content management system supports
evaluation methods, e.g.

e Is concept €; subsumed by concept €, (€; C €5)7

e Which concepts subsumes a concept €7

Are two concepts €4, &, equivalent (or disjoint)?

Is concept € satisfiable?

Is object o instance of concept €7

Which objects are instances of concept €?

Applying techniques from Artifical Intelligence, additional functionality can be ex-
posed, e.g.

e Generate a concept lattice for a given set of objects.

e Learn an intension for given sets of objects (learning set, verification set).

22

The conceptual world of content management systems can grow very fast. Even
under the restriction of simple languages (e.g. description logic, see [BCMT03;
HMWO05]) efficient computational support can become a nightmare. To limit the
number of relevant concepts and objects within a computation should be the first
goal. In typical content management applications the concepts present in the reposi-
tory are not completely connected to each other. There are clusters of concepts with
strong relationships while these clusters are only loosly coupled. A concept & from
a cluster C has only weak (or even no) influence on calculations on concepts Rg, K3
from cluster Cy. For example, consider a CMS containing content for employees
of a company. Concepts denoting spare time activities (members of the company’s
sailing team, etc.) are not relevant while querying organizational structures (e.g. all
members of a certain department). On the other side, in some situations it can be
meaningful to combine both concepts. Additionally, it is useful to allow different
languages to express concepts in certain situations, e.g. description logic, temporal
logic, epistemic logic, or others. These concepts should be compatible, but it is not
a promising approach to integrate all languages in a common “super language”.

To support these requirements the notion of world views is introduced. A world view
Vis a tuple (LY .Uy ,BY ,CY ,prop¥ , IV ,EY) with

e [V is the language within this world view. For example, using SHZQ de-
scripion logic provides expressiveness known from “Semantic Web” inference
machines for the OWL Web Ontology Language, see e.g. [McAQ0; [Sys; Hor9g].

e U} is the world view’s universe of objects (all abstract objects residing within
this world view). UY is a subset of O. There are different possibilities to
construct UY:

— UY is determined by the extensions of all concepts within V:
0 €Uy = (Fc)(o € EY(c))

— UY is a finite set of objects. The objects within the concept’s extensions
have to be a member of Y, but it is possible that there are additional
objects not included in any extension. U} can be fixed or dynamic with
respect to updates.

— UY is potentially infinite. This restricts possible operations within this
world view to prevent unsafe queries.

e BY is the set of relationships between objects in UY.

CY is the set of concepts within this world view.

e prop” is a function that assigns properties to objects.

e 7V is the intension function.

23

e £V is the extension function.

Within a world view reasoning takes place under the possibilities and restrictions
of the chosen language. World views can be related to each other. A world view
exposes a set of concepts while each concept € is represented by a predicate C(0)
which is true if the given object is an element of €’s extension.

The notion of properties can also be applied to concepts. For a concept € we can
express

e which properties an object in the concept’s extension must have,
e which properties an object in the concept’s extension can have,

e which properties an object in the concept’s extension must not have.

Additionally, default or fixed values for properties can be provided by the concept.
In terms of the world view’s interface the concept acts as a prototype of its objects.
In a similar way we can attach relationships to concepts; and we can define con-
cepts over relationships, concepts of word views, and concept templates (concepts
depending on a number of parameters which are fixed at evaluation time).

1.4.4 The Topic World

Our topic notion generalizes and formalizes the notion of topics [Pe01] commonly
used for topic maps and implemented in [Ont]. Topic maps are based on conceptual
structures [Sow(00]. Our notion integrates these proposals with the Pawlak informa-
tion model [Paw73] and concept lattices [GW98|. A topic T can be described by its
user characterization, its topic description and its topic population.

For example, the topic of address specifies addresses by means of geographical ad-
dresses or contact addresses. Typical specific addresses are living address, mailing
address, and delivery address. The address topic does neither cover diplomatic ad-
dresses nor memory locations.

24

2 Data Management

Database applications tend to be large, unsurveyable, incomprehensible, and par-
tially inconsistent due to the applications, the database development life cycle and
due to the number of team members involved at different time intervals. Thus, con-
sistency management of the database schema might become a nightmare and may
lead to legacy problems. The size of the schemata may be very large, e.g. the size
of the SAP R/3 schema consisting of more than 21.000 tables. In contrast, [MooO1]
discovered that diagrams quickly become unreadable once the number of entity and
relationship types exceeds about twenty.

This chapter discusses modular schema design that supports schema evolution and
schema adaptation by structuring and decoupling facets of the schema. Surveyability
is enhanced by encapsulation and information hiding. Modular schema design is
based on schema components: reusable and intermountable parts of the schema
wraping certain facets. The discussion extends the approach in [Tha05].

2.1 Component Based Modeling

Large database schemata can be drastically simplified if techniques of modular mod-
eling such as design by units ([Tha00]) are used. Modular modeling is an abstraction
technique based on principles of hiding and encapsulation. Design by units allows
to consider parts of the schema in a separate fashion.

The term “component” is widely used in different engineering disciplines. Software
engineering ([HCO1]) defines a software component as a piece of software conform-
ing to a component model that can be combined with other elements according to
a composition standard without any change. Various component models for dif-
ferent application areas have been developed throughout the years, e.g. JavaBeans,
OLE, COM, OpenDoc. Additionally, it is often claimed that a component should be
reusable in different application contexts and therefore it should be parameterizable.
Components implementing the same “semantics” are claimed to be intermountable.
To achieve these goals design pattern where defined (see e.g. |[GHIV95]). Compo-
nents are often organized in component libraries.

Similar approaches can be found in electrical engineering for “intellectual property
libraries” defining reusable hardware components in a black-box style. Each compo-
nent is specified by (input and output) ports, a behavioral description in a certain
language (e.g. VHDL) and secondary meta data describing requirements for the
component’s context. This interface specification can be associated with different
implementations which are hidden for the component’s user.

25

2.1.1 Database Components

The approach in [Tha05] uses the extended ER model HERM defined in [Tha00] for
representing structure and behavior. A database type S = (5,0, X)) is given by

e a structure S defined by a type expression over the set of basic types B, a set
of labels L and the constructors product (tuple), set, and bag,

e a set of operations defined in the ER algebra and limited to S, and

e a set of (static or dynamic) integrity constraints defined in the hierarchical
predicate logic with the base predicate Pgs.

The set of S-structured objects that fulfill the integrity constrains is called S¢.
A database schema D = (Sy,...,S,, X¢) is defined by a list Sy, ..., S, of different
database types and a set of global integrity constraints. Based on a database schema
views V = (V,Oy) can be defined using the HERM algebra to construct a parame-
terized expression V' and a set of operations Oy applicable to V. Based on retrieval
and modification operations in Oy we can derive an input view I¥ and an output
view OV,

A database component is a database scheme that has an import an an export in-
terface for connecting it to other components by standardized interface techniques.
It consists of input elements, output elements, and a database structuring. Compo-
nents may be considered as input-output machines that are extended by the set of
all states S with a set of corresponding input views IV and a set of corresponding
output views OV.

Input and output of components is based on channels. The structure of a channel K
is described by the function type : C' — V. Association of components is restricted
to domain-compatible input/output schemata which are free of name conflicts. An
output view O} and an input view I are domain-compatible if dom(type(O})) C
dom(type(1y)).

The star schema is the main component schema used for construction. A star schema
for a database type Cj is defined by

e the full (HERM) schema & = (Cy, CY, ..., C,,) covering all types on which Cy
has been defined,

e the subset of strong types (1, ..., Cy forming a set of keys Ky, ..., K for Cy,
ie. Uf:1 K;, = {Cy,...,C¢} and K; — Cy,Cy — K;, for 1 < i < s and
card(Cy,Cy) = (1,n) for 1 <1 <k,

e the extension types Cyy1, ..., Cy, satisfying the (general) cardinality constraint
card(Cy, C;) = (0,1) for (k+1) <i < n.

26

The extension types may form their own (0, 1) specialization tree (hierarchical in-
clusion set). The cardinality constraints for extension types are partial functional
dependencies.

There are various variants for representation of a star schema, e.g. an entity type
with specializations forming a specialization tree, or a relationship type with com-
ponents (', ..., Cy, with attributes and a specialization tree.

A star component schema is usually characterized by a kernel entity type used for
storing basic data and by a number of dimensions, usually based on subtypes of
the kernel entity type, subtypes expressing additional properties, the life cycle, or
categorization.

Star schemata may be extended to snowflake schemata. A snowflake schema is a

e star schema S on Cj extended or changed by

— variations Sx* of the star schema (with renaming)

— with strong 1 — n-composition by association types Ag/ associating the
star schema with another star schema S’ either with full composition
restricted by the cardinality constraint card(AS , S) = (1,1) or with wealk,
referencing composition restricted by card(Ag , S) = (0, 1),

e which structure is potentially Cy-acyclic

A schema S with a ‘central’ type Cj is called potentially Cy-acyclic if all paths p, p’
from the central type to any other type C}, are

e cither entirely different on the database, i.e., the exclusion dependency
p[Co, Ci]||P'[Co, Cy] is valid in the schema,

e or completely identical, i.e. the pairing inclusion constraints p[Cy, Cy] C
P’ [Co, Cx] and p[Cy, Ci] D p'[Cy, Ck| are valid.

2.1.2 Conceptual Components

The framework for using database components can be adapted for content manage-
ment systems. Database components defined in [Tha05] deal with the structural
part of information. A similar framework is needed for the semantical part.

In a general discussion we assume a set O of objects and a set R of n-ary relations
between objects. Conceptual components express the semantics of relating objects
in a certain manner.

An object an be characterized by a set of properties that hold for that object as
defined in section [[.4.3]

We can restrict connecting objects via relations by expressing integrity constraints
formulated over the object’s properties. If a relationship between objects is valid
in terms of the application, the objects may expose new properties. Additionally,

27

properties for the whole compound can be derived. As shown in section we can

cluster sets of objects with similar properties in concepts.

The definition of a conceptual component is divided into two parts: the component’s

interface and the component’s realization. The interface is given by the tuple (N, O):

e N is a set of “named ports”. A named port is characterized by a name n
unique within the component and a concept " describing the requirements
that must be satisfied by another component to connect to the port n.

e The concept O describes the properties of the component that are exposed to
the environment. There are two different types of component properties:

— properties that hold independently from connected components

— properties that are derived from connected components

A conceptual component C; = (N, 91) can connect to port n of component Cy =

(NQ,DQ), n €Ny if O, C BE.

Conceptual components can be designed in three different ways: black-boxed, white-
boxed or glass-boxed. A black-boxed component’s realization defines the describing
concept © in a hidden way. A white-boxed realization is given by a formula ¢
in a language L, e.g. first order predicate logic. A possible representation is the
following:

e For every named port a variable is defined denoting a component that is con-
nected to this port or a special value undef if there is no such connection.

e There exist variables x1, ..., x, bound by quantors that act as unnamed ports.

e For every property p € P a function p(x) is defined for port variables z and do-
main specific predicates such as equality. The function’s value corresponds to
the value of the property of the component that is connected to this component
through port x.

e Based on these definitions first order predicate logic formulas can be build in
the usual way.

Glass-boxed components expose the structure of their realization by aggregating
other components to derive a certain concept. The realization of a glass-boxed
component contains a set of component instances and a set of internal relations
that map component instances to ports of other component instances, as well as
to external ports (ports of the constructed component). A component instance is
a component associated with a name that is unique within the upper component.
Additional to the definition of the characterizing concept £ in the white-box case,
concepts of aggregated component instances can be taken into account.

28

2.1.3 Relating Conceptual Components and Database
Components

By now, we assume a component library. Each component is associated with a con-
ceptual component describing the component’s semantics and at least one database
component definition describing the structural part. A conceptual component can
be associated with more than one database component with the restriction that ev-
ery associated database component meets the component’s semantics but possibly
under different circumstances or “soft requirements” (e.g. performance according to
a defined performance measure). These “circumstances” can be clustered according
to their “soft requirements” and can be treated as concepts. We call such concepts
“architectures”.

By using conceptual components the design process of database schema units ex-
tends:

1. A concept fR is created that represents the properties derived from the require-
ments analysis phase.

2. A component CJ is constructed with R as the characterizing concept.

3. The component is refined to a component in a glass-boxed way by introducing
sub components that represent parts of the specification. This step is done
iterativly. At any stage it can be checked whether the created unit satisfies the
requirements specification (R E O; and O; C R). Proofs of local properties
can be made, too. ' '

4. If a component C’ij derived in step i can be represented by components C¥
from the library (¢ T ¢% and ¢¥ C @), then the designer might decide
to place €% into the schema unit. The refinement process stops when every
conceptual component within the component compound can be found within
the component library.

5. In the next step the designer chooses an appropriate architecture and replaces
the conceptual components by their structural counterparts.

6. The database components have to be connected on the structural level. Con-
nections and ports on the conceptual level are replaced by channels. In the
case of non-compatible views converter elements (see chapter {4)) have to be
introduced.

Using conceptual components allows a preselection of database components in large
component libraries on an abstract level. Detailed features irrelevant for mounting
components are hidden to the designer so the design becomes more understandable.
Additionally, formal proofs of general system properties derived from the require-
ments analysis can be made on a smaller set of data which increases productivity.

29

2.1.4 Component Schema Construction

Composition of component based schemata usually follows certain design principles.
The following methodologies are typical:

Constructor-Based Composition: Star and snowflake schemata may be composed
by composition operators such as product, nest, disjoint union, difference, and set
operators. These operators allow to construct any schema of interest since they are
complete for sets. More natural approaches can be prefered, too: all constructors
known for database schemata may be applied to schema construction.

Bulk Composition: Types used in schemata in a very similar way can be clustered
together on the basis of a classification.

Architecture Composition: Categorization-based composition has been widely
used for complex structuring. Architecture composition enables in associating through
categorization and compartmentalization. This constructor is especially useful dur-
ing modeling of distributed systems with local components and with local behavior.
There are specific solutions for interface management, replication, encapsulation,
and inheritance. The cell construction is the main constructor in component applica-
tions and in data warehouse applications. Therefore, composition by categorization
is the main composition approach.

Lifespan Composition: Evolution of things in applications is an orthogonal di-
mension that must be represented in the schema from one side but which should
not be mixed with constructors of the other side. We observe a number of lifespan
compositions:

e Fuvolution composition records the stages of the life of things and is closely
related to workflows.

o (Chrculation composition displays the phases in the lifespan of things.

e Incremental composition allows to record the development and the enhance-
ment of objects as well as their aging.

e Loop composition supports changing and scaling to different perspectives of
objects during their evolution.

e Network composition allows flexible treatment of objects during their evolution.

30

2.2 Application Scenario

Consider a library for graphical components (“Widgets’]]} produced by graphical de-
signers that are enhanced by behavioral aspects. This section analyzes requirements
for such a kind of content warehouse and discusses database schema modeling for
this case from the perspecitive of a component based design.

2.2.1 Development of Graphical User Interfaces

Graphical User Interfaces (GUI) are often specified, designed, implemented, and
tested in interdisciplinary, separated teams. These teams usually use special tools
to achieve the development goals. To guarantee a seamless communication and data
transfer between these teams a tool independent infrastructure is necessary.

The specification and implementation process is divided into several steps. In a first
step general design guidelines are specified. According to these design guidelines
the interface is designed in a pure graphical way. Later, these graphical prototypes
are enhanced by adding functionality (the interface’s behavior) to derive a logical
prototype. In the last steps the logical prototype is transfered to a physical one by
mapping the logical prototype to a desired framework.

Each step within this process needs specialized tools, e.g. graphic tools for designing
the graphical prototype and tools for modeling state charts for the specification of
the interface’s behavior. The data used by single tools can be partially reused within
other tools by transforming the data structures.

A designer should be able to reuse widgets based on a former design. Possibly, the
designer is interested in little variations on the widget’s representation.

2.2.2 Component Based Design

Looking at these requirements (a complete survey can be found in [KBET05]) we
identify the following facets from the perspective of a component based approach:

e The entities of central interest are “widgets”. Widgets should be reuseable and
versionable.

e Widgets are characterized by 5 dimensions:

— Graphics: each widget has a graphical representation based on a composi-
tion of graphical primitives such as (filled) rectangles, polygons, (sp)lines,
paths, text, etc.

— Behavior: the behavior of a widget can be e.g. expressed by a state based
approach such as state charts or simple FSMs, or event based, e.g. by
event-condition-action (ECA) rules.

1A widget (window gadget) is a component visible on some kind of screen that has a certain
behavior during the interaction with the user.

31

/Gnic/ /Grie/
Z/ et e 7 et o s
[eatny” [sty

A /Betuior
Senantics,” Senantics”

/ Guaptic / Guaptic
L) it L7 L vemionS Vi L7
St Y vantay” A N

variation dimension

Figure 2.1: The Warehouse Structure for Graphical Components.

— Structure: a more complex widget can be composed of simpler ones.

— Semantics: a widget exposes properties and fits in certain application
areas.

— Metadata: widgets are created and edited by certain authors, follow cer-
tain design rules, etc.

For every tool envolved in the development chain there is a view on this general
definition of a “widget”. Tools support own data structures that are not shared with
other tools and not interpretable except for the tool. For that reason the definition
of a widget should be “open”: extensions should be allowed as long as the minimal
requirements are satisfied.

For this reason the notion of “attractor types” is introduced: an attractor type is a
kernel entity type that provides central properties such as identification. In terms
of schema composition the attractor is used as the central type for a star schema.
The attractor type defines sets O, P, F of types:

e For every type in O there must be an according dimension in the star schema
(obligory types).

e For every type in P there can be an according dimension in the star schema
(permitted types).

e For every type in F' there must not be an according dimension in the star
schema (forbidden types).

The condition for obligory types may be weakend according to a lifespan compo-
sition, e.g. according to the development chain in the example. Variations and
versions can be derived by adding a new dimension on the whole attractor com-
pound. Variations and versions differ in the way that there is a strict ordering
assumed between versions. Figure 2.1 shows the general structure of the component
construction.

32

3 Users and Rule Management

Every information system is embedded in an environment. External agents within
this environment issue service requests to the information system. From the system’s
point of view it is not relevant whether an particular agent is a human being or an
artifical one, e.g. another information system. Every agent is characterized by a
set of needs. The Agent tries to fulfil these needs by triggering actions which are
partially visible to other agents (and so to our system). Some of these actions may
cause a service request to our information system. The agents’s general plan for life
is usually hidden to any other agent, but the information system can interpret the
agent’s actions and published properties on the base of its “knowledge” to extrapolate
a model of the agent itself. These models can be used by the system to synchronize
the needs of any interacting partner.

3.1 Agents, Actors, Roles, and Groups

We assume that any participating agent is known to and identifiable by the system.
Usually, some kind of authentication and authorization facilitiy is used to accomplish
this. If an agent is not able to authenticate itself or if the authentication process is
not yet finished, the agent is usually identified as a guest agent. It is up to the system
to allow guests or not. In the following we will assume a finite set A = {ay, ..., a,}
of distinguishable agents. Further on, we will assume that two agents a;,a; are
representations of different real world agents, even if a particular real world agent
acts under two different identities.

Every agent a; is associated with a partial property function p,, : P — D mapping
properties py, ..., p,, from a finite set P of properties to values from the corresponding
domain dom(p;) C D. Additionally, agents are related to other agents to accomplish
common goals. This is expressed by a set R of n-ary relations over A, These proper-
ties and relations are the base for the system’s imagination of the agent’s plan for life.
In the following discussion we assume dom(p;) = ... = dom(p,,) = D = {true, false}
for two constants true and false. If any property p; is not a boolean one it can
be replaced by a set {p},...pF} of boolean properties p! using an appropriate scaling
function or by introducing predicates over the domains such as the equality relation.
A discussion of scaling multivalued properties can be found in [GW9S].

Every agent is an individual with its own properties. From the point of view of
the system the individual status is not very important. The system clusters agents
with an estimated equivalent plan for life and treats them equally. That’s why we

33

introduce the notion of actors: an actor 2 is a concept (o, G) where o is a formula (of
a language £%) called role, G C A is a set of agents called group with £(¢) = G and
Z(G) = p. Depending on the system’s capabilities an appropriate language £ has to
be defined to express roles. First order predicate logic is usually sufficient. Like any
other concept actors can be defined either intensionally by supplying the role formula
o or extensionally by listing the actors’s group. In the following, we use the predicate
A(x) which is true for all objects x in the extension of A: A(z) < (z € £(A)).

3.2 Task Obligations and Access Rights

An agent interacts with the system by requesting operations on the system’s objects.
We define system objects in a general way. A system object can be any component of
the system an actor can operate with. System objects may be related to other system
objects, e.g. part-of relationships. Operations may subsume other operations.
Like agents can be conceptually treated as actors, objects and operations can be
treated by appropriate concepts. We will denote the set of objects with O and
the set of operations with M. C is the set of all predicates involving actors, object
concepts, and operation concepts as well as combinations of them (like isPart(oy, 07)
or worksOn(a, 0)).

Given a triple (a,0,m) of an agent a, an object o and an operation m, the central
question for the system are

1. “Is it an obligation for agent a to execute operation o on object 0?”

2. “Is the agent a permitted to execute operation m on object 0o?”

The general assumption is that the system will allow any operation that has to be
executed by an agent, but it will not allow any operation that is not necessary in
any situation.

Permission to execute a certain operation is granted temporary based on the re-
lationships between agents and objects. We can define a universe of executions
containing all triples (a, 0, m) that are considered to be possible:

UT = {(a,o0,m)|there is a possible situation, where a executes m on o}
Dually, we can define the universe of all forbidden executions:
U = {(a,o,m)|there will never be a valid situation, where a executes m on o}

Usually, one universe is defined and the other one is derived by applying one of the
rules

e Everything is forbidden that is not permitted.

e Everything if permitted that is not forbidden.

34

Obligations and permissions can be defined either statically or dynamically. Static
permission definitions do not consider the actual execution context to determine
whether access has to be granted or not. Dynamic behavior is usually derived by
applying the operations grant and revoke to update the current set of obligations
and permissions over time.

A simple static permission definition can be seen as a matrix associating actors and
objects to granted permissions on operations. For example, consider a document
server serving documents for editing and publishing. Registered users have to au-
thenticate, so the user’s relevant properties are known. We assume the following
operations on documents:

read - show the content of the document

update - change the content of the document

branch - create a new document that is initialized with the current content
review - check whether the document is ready for publication or not
publish - make the document accessible by the world

The following matrix shows a sample configuration for access rights: editors are
allowed to read documents and to create a new copies, the owner of a document is
allowed to update the document and to publish a reviewed document, a reviewer
is allowed to check the content of the document and everybody is allowed to read
a published document. We assume that the underlying infrastructure supplies the
predicates visible in the first column. To keep the matrix compact we omit type
checking and denote actors with a and documents (objects) with o.

read wupdate branch review publish

Editor(a) X X

Owner(a, o) X X

Reviewer(a) X X
Owner(a,o0) A reviewed(o) % X
published(o) X

A x marker within the matrix denotes that the corresponding operation is allowed.
We can associate different semantics with this matrix.

3.2.1 Prerequisites for Execution

We define a predicate exec(a, 0, m) which denotes “actor a executes operation m on
object 0”. We derive a formula in first order predicate logic from the matrix: for
every operation m; we consider the prerequisites that are necessary to execute the
operation:

35

4

Editor(a) V Owner(a,0) V Reviewer(a)V
(Owner(a, o) A reviewed(0)) V published(o))
(exec(a,0,update) = Owner(a,o))

(exec(a,o,branch) = Editor(a))

(exec(a,o,review) = Reviewer(a))

(exec(a, 0, publish) = Owner(a, o) A reviewed(o))

Fy = (exec(a, 0, read)

> > > >

Given a requested operation execution (a’, o', m’) € UF and an interpretation Z with
(a',0',m") € E(exec) access is granted if there exists a valuation o that assigns a to
the value of @/, o to the value of o’,and m to the value of m’ such that =7, F}.

3.2.2 Deriving Permissions for Execution

Expressing prerequisites for executions is efficient for checking whether operations
can be executed or not: given an execution request (a’, o', m') you search for the right
implication to check. There is no need to completely construct exec’s extension or
the complete valuation o. Unfortunately, all prerequisites of every operation have
to be completely unfolded, dependenices between operations are not considered.
Additionally, it is not possible to derive all permissions for an agent efficiently.

If we consider permissions instead of prerequisites we are able to handle these disad-
vantages. We define a predicate grant(a, o, m) which denotes “agent a is permitted
to execute operation m on object 0”. Now we can write down the rows of the given
matrix. Because the rows are no access restriction we have to add the execution
prerequisites:

Fy = (Editor(a) = grant(a,o,read) A grant(a,o,branch)) A
(Owner(a,0) = grant(a,o,read) A grant(a, o, update)) A
(Reviewer(a) = grant(a,o,read) A grant(a, o, review)) A

(Owner(a) A reviewed(o) = grant(a,o,read) A grant(a, o, publish) A

(published(o) = grant(a,o,read) A

(grant(a,o,read) = Editor(a) V Owner(a,o0) V Reviewer(a)V

(Owner(a, o) A reviewed(o)) V published(o)) A

(grant(a,o,update) = Owner(a,o)) A

(grant(a,o,branch) = Editor(a)) A

(grant(a,o,review) = Reviewer(a)) A
(grant(a,o,publish) = Owner(a,o) A reviewed(o))

Given a requested operation execution (a’, o', m’) € UF and an interpretation Z with
(a',0',m’) € E(grant) access is granted if there exists a valuation o that assigns a
to the value of @/, o to the value of o/,and m to the value of m’ such that =7, Fb.
Additionally, we can conclude all permissions for an actor or an object.

36

Relationships between operations can also be taken into account. Assume, that it is
necessary to read a document before you can create a new branch, review or publish
it. The permission matrix simplifies:

read wupdate branch review publish

Editor(a) X

Owner(a, o) X X

Reviewer(a) X
Owner(a, o) A reviewed(o) X
published(o) X

We can express these dependencies by adding new implications to our formular:

F3s = FoA\ (grant(a,o,branch) = grant(a,o,read))
(grant(a,o,review) = grant(a,o,read))
(grant(a,o,publish) = grant(a,o,read))

A
A

In a similar way static dependencies between actors or objects (e.g. part-of relation-
ships) can be handled.

3.2.3 Permitted and Forbidden Operations

To calculate permissions and restrictions efficiently it is important to keep the pre-
requisites as simple as possible. Conjunctions or disjunctions of simple predicates
can be evaluated very quickly while expressions with quantors can be very costly.
In many cases it is more elegant to explicitly separate permitted and forbidden
operations. Therefore, two predicates grant and revoke are defined.

Given such a formula F', a requested operation execution (a’,0’,m’) € UF and an
interpretation Z with (a’, o', m’) € E(grant), (a’,0',m’) ¢ E(revoke) access is granted
if there exists a valuation o which assigns a to the value of d’, o to the value of o’,and
m to the value of m’ such that =z, F. Depending on the system’s requirements
weaker conditions like (a/,0',m’) € E(grant) or (a',0o',m') ¢ E(revoke) may be
appropriate, too.

Typically, calculation of permitted and forbidden operations is separated into two
steps: first, it is determined whether the operation is permitted or not. If the
operation is permitted, a second calculation against another access specification is
made to determine whether the operation is forbidden or not. This procedure is
efficient if you have a lot of permissions and only specific restrictions. You can swap
the calculations in the case where access is usually forbidden but allowed under
certain conditions. Access is granted if the execution triple passes both tests.

3.2.4 Logic of Actual Obligation: Dynamic Permissions

Dynamic definitions grant or revoke access rights depending on “circumstances”
based on the system’s state and history. Dynamic permission definitions subsume

37

static ones because every static permission applies under any “circumstance”.

We follow the logic of actual obligation (LAO) to express executions, obligations,
and permissions. LAO combines temporal and deontic aspects under consideration
of actions.

Logic of Actual Obligation

This section shortly introduces LAO . For further information see [Voo89].

The basis of LAO is a set of possible worlds u, v, w, ... with a partial order <. < is
assumed to be transitive, irreflexive, tree-like, and serial where v < w means that w
is a possible future world of v. At each world actions can be done:

e a,b, c,... are elementary actions
e U and @ are special actions: U is the universal action, @ is the empty action.
e if a and b are actions, then the following constructs are actions, too:

— —a is the action “not a”, denoting that a will never be done
— /a is the action a — complement, denoting “not doing a”

— a; b is the sequential composition of a and b (first a is done, then b is
done)

— a || b is the parallel execution (with the restriction that the result of
doing a does not conflict with the result of doing b)

— a+ b is the choice (either a, or b, or both)

e Nothing else is an action.

Constructs like a ® b (either a or b, but not both), || {a,b,c,...}, +{a,b,c,...}, or
®{a,b,c,...} can be defined.

In every world v there is a pre-ordering <, between actions with the properties
a<,bAb<,c=>a<,canda <,cand b<,c=a+b<,c a<,bhas the
intended meaning that “action b is at least as good as a”.

LAO defines assertions as follows:

e Every propositional atom is an assertion.

o If p 4 are assertions, then —p, p A, p VU, ¢ = ¥, ¢ < P, Oy, Op, and
«— are assertions.

e If a and b are actions, then a — b, a = b,a < b, Oa, Qa, D(a), O(a), O'(a),
O*(a), O x (D(a)), O%(a), P%(a) are assertions.

e If i is a positive integer, a is an action, and ¢ is an assertion, then [y, <% ¢,
D'(a) are assertions.

38

e If p is an assertion and a is an action, then [a]p is an assertion.

e If p(a) is an assertion with a free variable a (denoting actions), then (Va)(p(a))
and (Ja)(p(a)) are assertions.

The intended meanings of some assertions are
e a— b (Yw)(v<,w=v<,w))
ea=ba—bandb—a
e — . has been the case somewhere in the past.

e ! p: ¢ was the case in the possible world immediate before this one.
PR PPN DI

e D(a): a has been done.

e [lyp: In all immediate successors of this world ¢ is the case.
Oty & Oy

e [a]p if a will be done, then ¢ will be the case

e O'(a) denotes an acute duty: O(a) requires no immediate action. If not doing
a under obligation O(a) implies doing —a then a must be done immediately:

0'(a) & (I)(OB) A [/BD(=b) Ab — a)

e O*(a) denotes an actual obligation:
O*(a) := (A)(O'(b)Ab<aA(Vc)(c>b=c— a))

S(a) and P°(a) are strong obligations and strong permissions:
O%(a) :& O*(a) A (Vb)(O*(b) = a — b)
P*(a) = =0*(/a)

A LAO -model M is a tuple (K, <, E, N,IF) where K is a set of possible worlds, <
is a transitive irreflexive tree-like serial partial ordering on K, F is the set of atomic
actions. An action is interpreted as a relation over K x K. N is a set of formulas of
the form ¢ = O(a) for an action a and an assertion ¢ that does not contain < or
the O operator. N has to satisfy the condition, that there is no obligation for doing
an action that prevents another obligation.

I is a forcing relation:

e vlFa<b:ea<,b
e vlFa—b:e (Yw)(v<,w=v<,w)
e vl Oy e (Yw > v)(wlF ¢)

e v |- 'y :& for all direct successors w: w IF

39

viF— p e (Fw < v)(w ik @)

v IF+=! ¢ & there exists a direct predecessor w: w IF ¢

vl [ale & (Yw >, v)(w - @)

vIF D(a) :< there exists a w <, v

v I D'(a) :&there exists a direct predecessorw <, v
o vl (Va)(p(a)) & for all actions b v IF p(al|b)

e vl (3a)(p(a)) & there exists an action b so that v I ¢(alb)

vk O(a) :< vk =0-D(a) and for some ¢: v IF ¢ and ¢ = O(a) € N

Applying LAO to Access Permissions

In the following we consider runs of the system. A run is a sequence of executed
operationd!] from ¢” and can be seen as an isolated transaction. We assume, that
there are no causal dependencies between different runs within the system except
that they share the same underlying infrastructure.

The set of possible atomic actions is given by . Given a moment in time ¢
the tuple (¢,7;) with a finite run r, can be seen as a possible world in terms of
LAO. The relation v < w between two runs is defined as follows: ¢, < ¢, and
e, = append(ry,,a) (with an executed operation a) or ry, = ry,.

As usual, we define the permission operator P(a) = —O(/a) (it is permitted to
execute a if there is no obligation for not executing a.)

The system of norms N contains the actual access rights definitions in the form
@ = P(a) or ¢ = O(a). For our document server the following norms apply:

Editor(a) = P(a,o,read) A P(a,o,branch)

Owner(a,0) = P(a,o,read) N\ P(a,o,update)

Reviewer(a) = P(a,o,read) A\ P(a, o, review)

Owner(a,o0) A released(o) = P(a,o0,read) A P(a, o, publish)
published(o) = P(a,o0,read)

Given a model M = (K, <,U”, N,IF), a requested action (a,o0,m), and a run r
representing the current partial run there are two possibilities to define access per-
missions:

e Task centered: access is granted if there is an obligation to do some ac-
tion (M, 7 = O(a,o0,m)). This is sufficient for closed systems defining strict
workflows.

Tn the case of real parallelism it is a sequence of sets of operations.

40

e Filtering: access is granted if there is an obligation or a permission to do
some action (M, r = P(a,0,m)).

The following example shows the ability to express access permissions depending on
actions that took place in the past. Assume the following scenario from a library:

Registered users (predicate user) are permitted to borrow available books (predicates
book and availableﬂ for 30 days. After this period the user has to bring back the
book. The deadline can be extended twice.

We identify three operations: borrow, bringBack, and extend. The partial pre-
ordering <, between actions is defined as (a,o, extend) <, (a,o,bringBack) for
every world v and arbitrary values a and o. We construct N by introducing the
following norms (assuming a timing resolution]] of 1 day.):

e Registered users are permitted to borrow books:

user(a) A book(o) A available(o) = P(a, o, borrow)

o After 30 days the user has to bring back the book or has to extend the deadline:

D'(a, 0, borrow) = O™ ((a, 0, bringBack) + (a, 0, extend))

e The deadline can be extended twice:

" («>! (D(a, 0, extend)) A D*(a, 0, extend)) = O (D(a, o, bringBack))

3.3 Implementing Access Control Lists

Checking access is the most important operation in user management because it
has to take place every time an execution request occurs. In this section we will
discuss how the specifications from the last sections can be supported by a content
management system using techniques from query processing in databases.

3.3.1 Static Permissions

A static permission definition contains implications that map associations of actors
and objects to granted operations. We assume that the number of possible operations

2Please note: we defined runs as isolated transactions without any causal dependencies between
runs. To express “another user borrowed the book somewhere in the past” needs to integrate all
user transaction in one big system transaction. This makes expressing the norms more difficult
and counterintuitive. These problem can be faced by introducing hubs between runs: selected
properties of the set of runs are exposed to the runs in terms of predicates.

3Timing is usually unspecified in LAO. In this example we assume a one-to-one mapping between
a logical timing unit and a real-time period of 1 day

41

is rather small, while the number of actors and (especially) objects can be large. An
implication as defined above follows the structure

grant(a,o,m) = @1 V ...V @,

Operations depending on others (defined by formulas grant(a, 0, my) = grant(a, o, ms))
can be unfolded by adding the prerequisites for executing m; to the prerequisites
for executing me.

Following the lazy evaluation approach the formula ¢; V ...¢, evaluates to true iff
we find a ¢; that evaluates to true.

A formula ¢; can be of some structure. In many cases, it is a conjunction or dis-
junction of formulas ¢; ;, but we do not depend on it. A conjunction ¢; of formulas
is evaluated to true iff we do not find any formula ¢; ; that evaluates to false.

To reduce evaluation time we reorder the formulas ¢; such that we can expect to skip
as many formulas (; as possible. Each formula ¢; can be associated with a proximity
P, of evaluating the formula ¢; to true. During evaluation the system has to pay
certain costs, e.g. hard disk access or CPU time. In the following discussion these
costs will be denoted by C!, in the case of successful evaluation (to true) and by
C’f;i otherwise.

With (g1, ..., p,) we denote a list of formulas in evaluation order. ; is evaluated
first. If ¢y does not evaluate to true, we evaluate o and so on. We can calculate
the expectation value of the total costs of evaluating ¢:

Ct = P¢1'C;1+(1_P‘,01)'(C£1+Ct)

P1y-Pn $P2,--¥n

n
! — !
C‘Plv-w@n - Z C i
=1

This cost estimation does not consider subsumption of formulas ¢; and ¢;. A similar
discussion can be made for conjunctions and other language constructs.

There are n! possibilities to construct evaluation orders for n formulas. Because it is
not possible to enumerate these possibilities efficiently (and because the proximities
and costs are only estimations, too) we have to prune the decision space.

We assume that it is possible to categorize formulas in the following way:

1. formulas with a high proximity to evaluate to true and with low costs
2. formulas with a high proximity to evaluate to true but with high costs
3. formulas with a low proximity to evaluate to true and with low costs

4. formulas with a low proximity to evaluate to true and with high costs

Formulas of the first category should be evaluated first while formulas from the last
category should be evaluated at the end. Within a category we order the formulas
with increasing costs.

42

Proximities are estimated by relative frequencies % where |p| is the (estimated)
size of ¢’s extension and |U] is the size of the universdﬂ. Costs and proximities are

calculated following the syntactical rules:

e If pis an extensional predicate (a predicate backed by e.g. a database relation),
C’; and Cj; depend on the physical organisation of the predicate’s extension
within the database, e.g. if the extension is organized (or indexed) as a dy-
namic hashtable 2 disk reads are necessary while a heap-like organisation is
more expensive (see [HRO1]).

° C'ﬂp:cw,Pﬁw:l—P@

o C,ny and Cuyy as defined above,
PSD/\?# < min(P@, Pw)
P,y > maz(P,, Py)

o C(32)(p): a pessimistic estimation: [U| - C,,
o Clva)(p): a pessimistic estimation: |U| - C,

e If there is some cycle (recursive defined predicates) we assume maximum costs
and lowest proximity:.

These values are estimations at the time the access rights were defined. During
the system’s run the execution plan can be adapted to the current behavior. Every
condition ¢; is associated with a number (“hits”) that counts the evaluations where
o; triggered the decision (where ¢; was the first condition in the chain that was
evaulated to true.) After a certain period of time the evaluation plan is reinvesti-
gated: if ;1 has more hits than ¢; (plus some threshold value to prevent trashing)
both conditions are swapped. Better approximations of the predicate’s extensions
can be taken into account, too. The strategy can be improved by applying mate-
rialization: if (a,0,m) was once evaluated to true, the system can remember this
decision as long as the underlying predicates are not updated.

3.3.2 Dynamic Permisssions

There is an axiomatization of LAO so reasoning is supported. For access check-
ing this is not sufficient. There are two possible strategies for handling dynamic
permissions:

e There exists a mapping between a state transition description (e.g. a workflow
language) and LAO formulas. Access checking can be made by evaluating the
workflow while LAQO is used to reason about general system properties.

e Allowed language constructs are limited syntactically.

4We can assume a finite universe — which is potentially evolving

43

For many cases permission and obligation definition can be written in the following
form:

Pf(i1,...,in)(a)

oA =T (oA P2 (pop P8 (L I) () = { O (i1-nin) ()

@; are assertions containing first order predicate logic formulas and D clauses. The
intensional meaning is: if certain actions were done in the past, there arises an
obligation/permission in the future. Detecting relevant situations may be still very
cost intensive, but if a classification for situations exists, an online string matching
algorithm (see e.g. [Koz00]) can be used to detect relevant situation sequences. If
such a sequence occurs, obligations and permisssions are queued and can be used
for access determination.

44

4 Data Exchange

Data stored in a content warehouse is queried by external applications or other
content management systems. These systems have their own specifications of data
structuring and semantics. This chapter discusses architectures that cope with data
integration issues first and derives a converter architecture for connecting content
warehouses to external content.

4.1 Data Integration in General

Database integration is currently solved only for the case of simple structures. Se-
mantics is mainly neglected. It is known but often neglected that database integra-
tion cannot be automated. System integration is far more difficult. Both integrations
can only be performed if a number of assumptions can be made for the integrated
system. Instead of integrating systems entirely cooperation or collaboration of sys-
tems can be developed and used.

The difficulty of database integration is caused by

e the heterogeneity of data both at the intensional and extensional level,
e limitations to access the source data,

e the decision what data should be materialized and what should be left to local
databases,

e data extraction, cleansing and reconciliation within the database set,
e strategies for data modification processing,

e strategies for quality management of querying, especially statements on whether
the data in the query answer is complete and sound,

e automatic transformation of queries posted to the database set, and

e expressiveness of modeling languages aiming at representing the local databases
and the integrated databases.

A main problem to be solved in designing such integrated systems lies in informa-
tion integration, i.e., the activity by which different input information sources are
merged into a global system describing the whole information set available for query
and functionality purposes. Abstraction amounts to clustering types belonging to

45

the schema [BM99] into homogeneous subsets and producing an abstracted schema
obtained by substituting each subset S with a single abstract type 7.

Already structural integration (e.g. |[CP98; BR0O1:; [ACM9T7; MCGEF99; [CSS99]) may
become a nightmare. The designer has to clearly understand the semantics of in-
volved database types. In such system re-engineering problems, the design emphasis
is on integration of pre-existing information components. A key problem is deriv-
ing associations holding among types in the pre-existing schemas. Most of research
has been carried out to solve the problem of detection and treatment of interscheme
properties that relate types belonging to different schemas. The integration of struc-
tures and functions [TH02] is far more difficult.

Structural integration problems [Tha00] such as structural mismatches (key differ-
ences, abstraction grain, attribute domain, temporal basis, missing parts) seman-
tic mismatches (scope difference, value semantics, domain semantics), operational
mismatches, and application domain mismatches may be either treated by full inte-
gration, integration by merging, or integration by generalization. In the literature,
many “manual” methods [Tha00] for deriving interschema properties have been pro-
posed. A major limit of manual methods relies in the difficulty of carrying them out
to large applications since, in such contexts, it is needed to face integration problems
often involving hundreds of types.

Since an automatic support to integration of systems cannot be developed, semi-
automatic methods and tools have been developed or proposed to face the difficulties.
Systems such as Autoplex, automatch, Clio, COMA, Cupid, Delta, DIKE, EJX,
GLUE, LSD, MOMIS, ARTEMIS, SemInt, SKAT, Similarity Flooding (SF), and
TranScm mainly have emerged from specific applications. A very few approaches
(Clio, COMA, Cupid, and SF) try to address the schema matching problem in a
generic way. All of them are, however, only treating simple structural concepts and
none of them treats functionality.

Integration of several information resources requires, however, knowledge describing
their contents in a logical formalism and using the same vocabulary. This provides
shared access to multiple information sources and preserves at the same time the
autonomy of each source. This approach is known as the mediator approach [Wie95;
CDSS98; [PV99; LG99]. Mediators play the role of an interface between the user
and the sources and between the sources giving the illusion of querying a central
and homogeneous system.

Potential database integration depends on early modeling assumptions and is thus
dependent on a number of implicit assumptions made during the development pro-
cess:

e Database development is ruled by a number of implicit points of view. De-
pending on what has been the main target and scope, basic structures and
domains are chosen.

e Development of database structuring is often ruled by the intentions for the
utilization of the database. These intentions are based on main functionality of

46

the database. Normalization and later denormalization shows that functional
requirements may be conflicting.

e Discretization of data or conversion of continuous data to discrete data will lead
to different behavior and different query facilities of databases. Discretization
may be based on time, space and other abstractions which may vary depending
on the point of view the specific application is considered at the time of the
development.

e Database developers make their assumption on the name space to be used.
Name spaces depend on the concepts used in the application area.

e The chosen modeling language imposes a number of restrictions to structuring
of the database. Some of these restrictions are unnatural, do not apply to the
implementation platform, and lead to introduction of artificial types that do
not have a meaning in the application area.

e The scope of data representation is often concentrated on the scope of the user
at the business user level. This restriction takes to representation of macro-
data which are comprehensions of micro-data that must have been used in the
database.

e Data abstractions are often used instead of basic data. Since abstractions ease
querying, systems are faster. At the same time, modification might be very
complex. If abstractions are used then the application has to be remodeled to
basic data structuring supported by view processing for computation of data
abstractions.

e Optimization of structuring to performance and tuning uses normalization
techniques. Since the same set of constraints might take to different normalized
structures, optimization decisions must be made explicit.

One kind of difficulties of the database integration problem is caused by the devel-
opment culture which does not force these implicit assumptions to be accessible.
Database integration has been discussed over a long period of time. A negative
result that is often neglected in research and applications is the following ([Con80]):
The problem whether databases can be integrated is undecidable.

However, it is an observation often made in applications that these application
databases can be integrated.

Databases to be integrated can be considered as views of the integrated database.
Therefore, the integrated database should support the entire application. In the
past, three approaches [CGLT98; [ThaO0] have been worked out to treat integrated
databases:

e Global-as-view integration (GAV): The integrated database is virtual. In real-
ity, the local databases are still running on their own. There are no common

47

functions or queries. GAV supports a client-driven integration and bottom-
up development and extension of local source systems. The GAV approach
reduces query processing to view processing.

e Local-as-view integration (LAV): [Len02] The database integration allows us
to build a data warehouse containing all data of the local application. The
data of the local application corresponds to virtual or materialized views of
the global database. Some change of the local data is harmonized with the
global data if the change is going to be supported. LAV supports source-driven
integration of applications and top-down design of applications by incremental
addition of new sources. The global integration of all local databases supports
consistency of all data and rejects wrong modifications of the database in a
very early stage. The integration effort is, however, rather high. LAV often
forces a reconsideration of the local schema. Some of the local applications
must be redeveloped and reimplemented.

e View cooperation: [ThaO0] Database cooperation is supported by exploiting
the import /export facilities of the local databases. Each of the local database
systems provides a number of views to the other databases. These views
are either export views or import views of the collaborating databases. The
schema of an importing view of the importing system contains the schema
of an exporting view of the exporting system. View cooperation combines
the local-as-view and the global-as-view approaches while maintaining their
advantages. The mapping of the databases is similar to LAV mappings.

The view cooperation approach is at the same time the most general approach.
We may immediately derive the following corollary: Local-as-view integration
and global-as-view integration can be expressed through view cooperation ex-
PTESSIONS.

Often full integration is not the aim. The aim is to achieve consistency. In this
case the views should be (pair-wise) consistent via some translation mechanism:
databases cooperate. This database cooperation mechanism is based on the con-
struction of functions mapping parts of the view instances on parts of the other
view instances. The next generalization step is to build the interface mechanism as
a whole.

4.1.1 Database Cooperation

The integration methods discussed above use inheritance of IsA-relationship types:
all attributes and operations of a metaclass are propagated to their subclasses unless
overridden explicitly by a subclass. Explicit definition of the cooperation functions
is more general. We say that one view A dominates the view B if a set of formulas
exists such that the types of the view A can be embedded into B . Thus the view
integration problem determines whether a minimal schema exists for a collection of
views such that the schema dominates each of the views.

48

dbl db2

h

b

Figure 4.1: View Cooperation in Databases

We say that the views A, B cooperate via the (partial) functions fa, fp defined on
SAT(A), SAT(B)

fa @ SAT(A) —e-SAT(B)

fs : SAT(B) —-e=SAT(A)

if for each vy € SAT(A), vp € SAT(B) the functions fa(va), f5(fa(va)), fB(vs),
fa(fs(vp)) are defined and fg(fa(va)) =va, fa(fs(vs))=vp.

The functions for view cooperation can be composed of functions in different parts
of the view. Generally speaking, views cannot be completely mapped onto each
other. Therefore, to decide whether two views cooperate we need to complete the
following tasks:

1. 1. Find parts of the two views which are candidates for cooperation.
2. 2. For these candidates find the corresponding cooperation functions.
3. 3. Compose the view cooperation functions.

In order to establish whether parts of a view cooperate with other parts we use
semantic information about the views.

The question whether views can be integrated or can cooperate can be answered if
semantics of the views are well-defined. Integrity constraints can be used for this
purpose. If one of the subset relationships is valid then the corresponding types
can be embedded into their supertypes. This approach can be extended to view
cooperation as displayed in Figure

Assume schemata S7, .S, and selectors sely, sel, defined on Sy, Ss. The views Vi, V5
can be defined by the given selectors. Furthermore, take two (S, Sa, sely, sels)
functions

fi o SAT (V1) —-SAT(V3)

fo o SAT(Vy) —-SAT(V4)

We notice that SAT(V;) = sel;(SAT(S;)) for i =1, 2.

For given databases dby,dby, on Si,S>, selectors sely, sely and the corresponding
views, two functions fi, fo match if

49

fi(sel(dby)) Ug, dby € SAT(Ss) and fa(sel(dbs)) Ug, dby € SAT(S)).
Two (51, Sa, sely, sely) functions fi, fo are view cooperation functions if the functions
match with regard to all (dby, dby) € (SAT(S1), SAT(S2)).

The problem concerning whether (57, Ss, sely, sely) functions exist is a generalization
of the view updateability problem for S; = S, and sel; = sels. In this case, the
function f; is an embedding function.

The global view cooperation problem determines whether view cooperation

(54, Sa, sely, sely) functions exist. The restricted view cooperation problem deter-
mines whether there exist restricted view cooperation (Si,Ss, sely, sely)-functions
id,id, i.e. for all (dby,dby) € (SAT(Sy), SAT(Ss)) with sel;(db;) = (sel;(db;)) and
i,j €{1,2},i #j.

Two views defined on S, S5, sely, sely are said to be consistent if view cooperation
functions exist.

View cooperation and integration can be based on the construction of subtype /
supertype hierarchies, e.g., for the integration of conceptual graphs. This approach
is based on strong semantics for cardinality constraints. The theory of extended
entity-relationship models can be used to derive conditions for view cooperations.
It is well known [ThaQ0] that the subtype/supertype hierarchy has to be consistent
with the view cooperation schema.

4.1.2 Application of Cooperation to Multi Database Systems

Distributed database systems are based on local database systems and follow a
certain integration strategy. Integration is based on total integration of the local
conceptual schemata into a global distribution schema.

Open multi-database systems are a variant of distributed systems with a distribu-
tion schema that does not integrate the local systems but supports an identification
of the database systems and their data. Database system integration has been tack-
led on the basis of federated database systems. Their architecture is similar to the
one in Figure [£.2] The container systems do not contain any additional programs.
The global communication and farming system is a simple transfer system in this
case. Federated database systems are distributed database systems which use local
database systems for support of global applications. Federated database systems
have not yet succeeded in practical applications. The main reason is the techni-
cal difficulty. Federated systems have to be supported by sophisticated integrity
maintenance, powerful communication and transaction protocols and by systems for
automatic decomposition and generation of functionality.

Database farms [YTST99| are generalizing and extending these approaches. Their
architecture is displayed in Figure Farms are based on the codesign approach
[ThaO3] and the information unit and container paradigm:

e Information units are generalized views. Views are generated on the basis

of the database. Units are views extended by functionality necessary for the
utilization of view data. We distinguish between retrieval information units

20

Local users of A Global users Local user of B

System A User System B
interface
User User
interface interface
Farm Farm
container Global container
system communications system
Local and farming Local
applications ‘ system ‘ applications
Filter and Filter and
trants.for— trants,for—
mation mation
Local system system Local
DBS DBS

Figure 4.2: Database Systems Farm

and modification information units. The first ones are used for data injection.
The later ones allow to modify the local database.

e (Containers support the export and the import of data by bundling information
units. Units are composed to containers that can be loaded and unloaded in
a specific way.

e The global communication and farming system provides the exchange proto-
cols, has facilities for loading and unloading containers and for updates of
modification information units.

We do not want to integrate entirely the local databases but provide only cooperating
vIews.

Database farms are more complex to design. The computational support is entirely
based on classical database technology. Therefore, if we are able to design such
integrated system farms the management is feasible.

4.1.3 Application of Cooperation to Incremental Database
Systems

Integration of systems can be based on hub points at which systems may plug and
have the same behavior. Information-lossy integration could be based on abstraction,
if the information loss is restricted to those data that is not of interest in the other
application or which may be computed by the other application.

The theory of hub types supports incremental evolution of database systems [Raa0l]
which is a specific form of database system evolution. Facility management systems
are typical application systems for which incremental evolution could be the ultimate
solution. Typical for such applications is the long lifespan of some of the objects.
Those objects have a long history of change. We use auziliary databases for support

51

Coordination
by profile dba

° Wash Cw(fi(v 7)) |
o b - v asher e | w(fi(v1)) |

| w(falos). | & w(fs)

Figure 4.3: The Washer Approach to Collaboration of Databases

of the facility management system. Such data provide help information, information
on regulations, information on customers, information on suppliers, etc.
Incremental evolution is thus supported by:

e [njection forms enable to inject data into another database. The forms are
supported by views and view cooperation approaches. Data injected into an-
other database cannot be changed by the importing database system. The
structuring (8¢ ¥5) of the views of the exporting database system is en-
tirely embedded into the structuring (S, Xs/) of the importing database sys-
tem. The functionality (O™ ¥,) of the views of the exporting database
system is partially embedded into the functionality (O, Z¢/) of the importing
database system by removing all modification operations on the injected data.
These data can only be used for retrieval purposes.

e [nsertion forms enable in insertion data from the exporting database into the
importing database. These data can be modified. The structuring (S, ¥s)
and the functionality (O™ Y1) of the views of the exporting database sys-
tem are entirely embedded into the structuring (S, /) and the functionality
(O, Yor) of the importing database system.

4.1.4 Database Collaboration in the Washer Approach

The Cottbus database and information systems research group developed in one of
its industry projects [RT99] a specific extension of the view cooperation approach:
The Washeﬂ approach is based on view cooperation and explicit modeling of co-
ordination among several databases. The general architecture is depicted in figure
[4.3] The washer is a tool that manages the collaboration based on the the coor-
dination profile. The coordination profile is specified by a coordination contract,
a coordination workspace, synchronization profile, coordination workflow, and task
distribution.

Coordination is based on a coordination contract. The contract consists of

LA washer is a ring of metal between a nut and a bolt, or between two pipes to make a better
and tighter joint.

52

e the coordination party characterization, their roles, rights and relations,

e the organization frames of coordination specifying the time and schema, the
synchronization frame, the coordination workflow frame, and the task distri-
bution frame,

e the context of coordination, and

e the quality requirements (ubiquity, security, interpretability, consistency, view
consistency, scalability, durability, robustness, performance) for coordination.

We distinguish between the frame for coordination and the actual coordination. Any
actual coordination is an instance of the frame. Additionally, it uses an infrastruc-
ture. The contract specifies the general properties of coordination. Several variants
of coordination may be proposed. The formation of a coordination may be based
on a specific infrastructure. For instance, the washer may provide a workspace and
additional functionality to the collaborating partners.

Collaboration is based on communication, cooperation, and coordination. Cooper-
ation specification follows a similar approach. It is restricted by the cooperation
contract that specifies

e the services provided, i.e., informational processes consisting of views of the
source databases, the services manager supporting functionality and quality
of services, and the competence of a service manifested in the set of tasks that
may be performed, and

e requirements for quality of service.

Communication contracts specify the collaboration architecture and the style of ex-
change. Typical collaboration architectures are for example proxy collaboration,
broker-customer, or publisher-subscriber collaboration. The exchange frame gener-
alizes protocols and is defined by

e collaboration style specifying the supporting programs, the style of collabora-
tion and the collaboration facilities, and

e collaboration pattern specifying the roles of the partners, their responsibilities,
their rights and the protocols they may rely on.

In a similar fashion we could specify the communication profile and the cooperation
profile. The project has led to an integration of SAP R/3, of several Oracle databases
and of OLAP functionality of SAS.

93

4.2 Transformation

The last section described database integration and collaboration strategies in gen-
eral. Using database collaboration we can define an architecture of converters for
collaborating content warehouses that support transformation between similar (but
different in detail) schemata.

The transformation is based on the extraction of a logic theory supporting reasoning
on name spaces between the types of the schemata under consideration. Name
spaces of the schemata under consideration may be compared by their “similarity”
on the basis of synonym and homonym equalities and inequalities. Equalities and
inequalities are enriched by plausibility coefficients that measure the confidence of
the actual equality or inequality. The confidence measure obeys properties of t-
norms used for Fuzzy logics. Additionally we may use contezt for the confidence
measure. The logical theory uses a number of comparison predicates:

e Synonyms S = T specify that two names in schemata under consideration have
the same meaning or semantics. Synonyms may also be based on identification
expressions. Identification of things could be different in different applications
although objects relate to the same thing of the reality, e.g., student number
and student identification data.

Synonym associations can also be developed for query expressions defined on
two schemata. Typically, such synonym expressions are semantic conversions
for domains, e.g., converting fuel consumption data used in Germany to fuel
consumption data used in the US.

Synonym expressions may be generalized to data integration mediators. These
can be stored in a database that extends the current database by integrating
mediators. We use a similar mechanism on the basis of extended identification.

Synonym associations may be combined with a preference rule stating what
type name is going to be used if the two synonyms are mapped to one type in
the integrated schema.

e Homonyms S () T describe structural equivalence combined at the same time
with different meaning and semantics. Homonyms may be simply seen as the
negation or inversion of synonymy. Since the confidence level may be different
we prefer to use homonyms as well.

e Hyponyms and hypernyms S < T hint on subtype associations among types
under consideration. The type T can be considered to be a more general
type than S and the integration of the two types leads to an explicit subtype
association in the integrated schema.

3
e Querlappings and compatibilites S W T describe partial similarities. These
similarities can be treated by introduction of generalizing supertypes.

o4

e Faplicit representation conflicts support the application of conflict resolu-
tion strategies such as renaming, homogenizing representations, homogeniz-
ing types, application of extended database operations such as extended join
and other homogenizing operations. Representation conflicts could lead to
integration obligations for interactive resolution of those conflicts.

e Abstraction similiarities & ~ ¥| support the development of name space trans-
formations. Sub-schemata could be abstracted into abstract types. Abstract
types of different schemata could be associated. We may explicitly use this
meta-similarity or meta-heterogeneity for association or separation of sub-
schemata.

Additionally, we may require that the equality logic is invariant with the structuring
given in the schemata. The metrics can be structurally based. The deduction system
in [Tha00] for inclusion and exclusion constraints may easily be generalized to a
deduction system for reasoning on synonyms, homonyms, hyponyms and potential
supertypes. Since the logical system could be become too granular we may use a
threshold logic for more abstract reasoning on potential integrability.

Structural transformation also removes pragmatic assumptions made during database
development. Typical such assumptions are the objectification and the introduction
of entity types, relationship types, cluster types, and attribute types. In one ap-
plication, for instance, it might be useful to use entity types instead of attribute
types because of limitations of the platform. If the modeling methodology uses the
‘dividing range’ then the objectification decision is explicit. Older methodologies
do not use this conception and/or use only atomic attributes. In the latter case,
objectification has to be based on the elicitation of additional knowledge on the
application area.

The structural and semantical information can be used for preintegration and com-
parison of schemata. Preintegration is based on a strategy of the order of integration.
The best order known so far is the inductive order following the order of structural
types, i.e., starting with domains, followed by attribute types, followed by entity
types and then finally by relationship types depending on their order. During com-
parison, naming and structural affinities and conflicts are derived, synonyms are
unified to common names, homonyms are separated based on name extensions (e.g.,
prefixes), hyponyms are used to form hierarchies within the schema, and overlap-
pings are used for developing generalizations.

The result of the step is a mediating and separating ontology of types used in the
schemata under consideration. This ontology is associated with queries for extrac-
tion of the corresponding concepts of the databases. It supports the derivation of
mappings for cooperating views.

This mediating ontology can be extended to generation of the global schema G for
the triple J = (G,8, M) , the collection & of local database schemata S (over a
language As), and the mapping between G and &. Given an equality and inequality
theory I' 5. We can derive the weakest similarity relation = expressing that two

~ ’$7

95

types are definitely equal and the strongest similarity relation & expressing that two
types are potentially equal, i.e., there is no objection against their equality. These
two similarity relations may be used for automatic derivation of the

o weakest global integration schema G = (|J6).. and

e strongest global integration schema G~ = (|J6)).
The mappings M. and Mx are constructed in a similar way if a preference relation
for the choice of the integration type is provided.

The intermediate global schema G is usually a schema that is weaker than the
strongest integration schema and stronger than the weakest integration schema. The
decisions which strictness for integration is applied will be derived in the following
steps.

4.2.1 Development of the Content Warehouse Kernel

The general architecture of the content warehouse uses the separation of source
schemata S into

e sub-schemata V(S) that must be integrated and sub-schemata that coexist
together with other sub-schemata of other applications and

e sub-schemata S\ V(S) that are not under consideration for integration.

Content warehouses integrating several applications contain all data of the applica-
tions. The data is separated into data that belongs to one and only one application
and data that belongs to several applications. The relation among the commonly
shared data forms the skeleton of the application. This skeleton may be rather com-
plex. We may simplify the skeleton by developing a general integration kernel and
by associating the integration kernel with the data that are commonly used. In the
simplest case the skeleton forms a star structured content warehouse as pictured
above. The kernel coincides with the data structure of the integrated data structure
of the content warehouse. This simple structure is often not achievable. We may,
however, use a surrogate kernel by introducing a number of artificial types that may
not have a meaning in the application but nicely support integration and consistent
management of data in the content warehouse.

The development of the content warehouse kernel for integrating n tools is based on
a number of steps:

e Development of abstractions within the schemata: Since large schemata are hard
to understand, we simplify the schema by applying schema abstraction and
clustering techniques. Clustering is a recursive procedure that constructs shells
of main types. Depending on the adherence, types of a shell may be clustered
to one type for external representation and collaboration issues.

o6

e Development of a hub meta-structure and simplification of the skeleton: The
skeleton of the integrated schema is reconsidered for detection of generalizable
structures, for transfer of bilateral associations to trilateral, then of trilat-
eral associations to 4-lateral etc. and finally of (n-1)-lateral associations to
n-lateral. If the i-lateral association of source schemata can be easily main-
tained then we do not transfer them to higher laterality. The transfer to higher
associations is based on the introduction of surrogate identifiers that can be
mapped to the identification of types. These surrogate identifiers imply two
surrogate functional dependencies relating the surrogate with the original iden-
tification. The derivation of surrogates is recorded for automatic derivation
of integrity constraint management of the surrogate functional dependencies.
This transformation of the content warehouse schema forms a hub-like skele-
ton. This skeleton has the advantage that changes of data by one tool can
easily mapped to changes of data for other tools.

e Development of a surrogate generation facility: Surrogate identifiers can be
simpler handled if the generation mechanism is well-specified. The genera-
tion mechanism may be used for derivation of indexes, for derivation of direct
search facilities, and for collection of data suites for transfer of data from the
warehouse to the tools.

e Development of version management: Version management becomes a major
obstacle if the local applications are intensively used from time to time. We
can integrate the version mechanism into the surrogate value generation if
versioning is going to be hierarchical. In this case we use an identifier suffix
extension as the version number.

4.2.2 Derivation of Requirements for Wrappers

Finally, requirements for wrappers that support integration, import and export of
data are developed. These wrappers support the following tasks:

o Input/output/modification interfaces: Content in the content warehouse and
data used, modified, and generated by local applications must be constantly
harmonized. The import/export of data from the warehouse to the tools is
based on tool enactment. Whenever an external system requests a data suite
necessary the local tool is either transferred from the warehouse or a new data
suite for the external system is automatically copied to the warehouse.

e (Consistency control for data suites: Data suites are kept together for all active
external systems. Consistency of kernel data common to all applications is
constantly maintained by triggers and monitors observing the state of the
database.

e (Consistent playout of data generated by different external systems: A challenge
to the content warehouse that can only be partially resolved is the consistent

o7

playout of data suites by several external systems. To support this challenge,
special playout wrappers may be developed that show the results of simulations
of several tools. This solution is not a general one but works only under some
restrictions applied to the local applications.

The wrappers thus support the hub-based integration within a content warehouse.
At the same time wrappers may be used to support consistency management.
Consistency management and constraint enforcement are one of the most difficult
database design and database development issues. Integrity enforcement is usually
supported by

e decomposition (normalization) of structures to such structures which allow a
simple integrity enforcement (mainly on the basis of keys, referential integrity
constraints, and domain constraints), or by

e cxtensions of database operations that maintain consistency of the database
while have the same effect as the operation that has been extended, or by

e special programs for integrity emforcement such as triggers, assertions and
stored procedures, or by

e transaction management that rejects all those modifications of the database
that leads to inconsistent states, or by

e application interfaces keeping consistency of those data suites which may be
falsified within a program that uses insert, delete or update operations.

All five approaches have their disadvantages. Decomposition approaches may fail
due to the complexity of the integrity constraint set. Extensions of operations cannot
be computed in all cases. Special programs supporting integrity management must
be combined with control and scheduling facilities in order to avoid avalanches. A
solution for the last problem is not known yet. Transaction management might
be too restrictive and too pessimistic. The last approach to integrity management
is feasible as long as the application is modifying the database only through the
application interfaces and the interfaces are well developed.

4.2.3 Collaboration Warehouses

Objects may be developed by each application on their own. Objects belonging
together to one version of the development process are called an object suite. A
suite consists of a set of elements, an integration or association schema and obli-
gations requiring maintenance of the association. A suite will be accepted by the
collaborating database set

e by transforming the suite into a set of objects within the content warehouse,

e by adding to the identification of objects their object suite identification,

o8

e by extracting the identification tree of the suite identification, and

e by associating the object suite with the application working so far with the
suite.

The identification tree of an object suite is called hub kernel. Through this hub
kernel the object suite can be reestablished.

An external system may either call an existing object suite or insert a new object
suite into the content warehouse. If an application calls an object suite and the
object suite has been developed by another application then the object suite will be
also associated with the new application. Any application may directly change those
parts of the object suite which exclusively belong to the structures and attributes
of this application. If data in an object suite are changed that belong to several
applications then an explicit cooperation function must support the consistency of
the parts of the object suite. The hub kernel may not be changed by any application.
It is only possible to delete the entire object suite if none of the applications is using
one the objects in the suite.

The collaborating database suite is based on an explicit specification of the coop-
eration pattern, of the coordination pattern and of the communication pattern of
object suites. These patterns are composed to a general collaboration contract. This
contract specifies which application may perform which modification of an object
suite under which conditions at which time.

4.3 Presentation as Data Exchange

One special case of data exchange is the export and import of data through user
interfaces (UI). Many applications treat user interfaces different from data exchange
between applications because data structuring requirements are different. This leads
to inconsistencies while comparing UI behavior and application programming inter-
faces and makes Ul interaction hard to automate. The reason for this behavior is a
poor separation between application logic (workflows), communication logic (inter-
action stories), and presentation rendering. A general goal of developing information
systems in general and content warehouses in particular is violated: content should
be available independently from the underlying infrastructure that is used for com-
munication.

From the point of view of the content warehouse both data exchange and user
interaction share a common ground: both processes are dialogs in a linguistic sense.
The partners change their roles between “speaking” and “listening” — in terms of
applications between “sending content” and “receiving content”. So there is no need
for a content warehouse to distinguish between different communication partners on
this conceptual level. External applications as well as the presentation machine for
rendering the user output share a common interface: data suites based on the theory
of media objects (see chapter |5 or [STO01]).

29

5 Interaction

Interaction describes mutual impact between two (or more) partners. In terms
of information systems interaction modeling expresses the way of data transfers
between systems, applications, or human beings.

Application programming interfaces (APIs) of information systems are often orga-
nized in a request-response manner: an external application sends a request to the
information system, the request is processed by the information system and the
result of this processing is transfered to the application.

When modeling user interfaces (UI) the wizard approach is often favored: due to
the limited receptivity of human beings the request is chopped into pieces and com-
munication takes place as a dialog sequence. The “wizard” guides the user through
the dialogs until the request is finished.

There is actually no need to separate between APIs and Uls on a functional level in
modeling interaction. Data transfer between applications can be as dialog sequences,
while offering data to a user is in fact exchange of data suites with a certain structure.
This chapter describes SiteLang ([Tha03]), a modeling language for expressing in-
teraction based on storyboards. It is demonstrated that Sitelang can be used on
different abstraction layers during system development. Additionally, this chapter
introduces a rapid prototyping environment that generates executable code from
SiteLang specifications.

5.1 Storyboarding: Modeling Interaction

According to |exp06] storyboarding is the process of producing sketches of the shots
of a script. It helps to think about how a film is going to look. Storyboarding is
especially useful for complex visual sequences e.g. elaborate shots or special effects
sequences. Sometimes a film only uses storyboards for difficult sequences; other
times the entire film is storyboarded. Pictures within a storyboard contain markers
(such as arrows or frames) to denote movements or camera pannings. Pictures are
connected with transitions. There is no fixed rule what a certain picture should
contain, a scene can be drawn within one picture or within a sequence of pictures.
The methodology of storyboarding can be adapted to interaction modeling. A sto-
ryboard is characterized by:

e A set of actors: actors describe groups of similar users and can be represented
as concepts 2 as described in chapter [3 For each actor exist

— a profile of properties,

60

— a portfolio describing tasks that have to be fulfilled by the actor in cer-
tain situations together with operational parameters (priority, duration
of activities, etc.),

— security profile describing the access rights of the actor, and

— goals to be fulfilled.

Content objects (also called media objects) connect the interaction to the data
within the information system.

A story is a plot of a narrative work and consists of several scenes and transi-
tions between scenes. The storyspace is composed of all stories.

A scene is a part in a story characterized as a sequences of uninterrupted
action. Scenes are the basic composition units of interaction. Each scene is
associated with a set of actors and a set of content objects.

A set of scenarios: stories can be played in different scenarios. A scenario is a
walk through the story. Scenarios are composed by scenes.

The basic unit of interaction are dialogs. Each scene consists of several dialogs.
Transitions between dialogs are made by dialog steps.

A dialog step describes the transition from one dialog to another. Dialog steps
are triggered on certain events. They are guarded by preconditions that must
hold before the dialog step is executed. Postconditions (“accept on”) can be
defined, too. If a postcondition of a dialog step is not fulfilled the actions
that took place during execution of the dialog step are rolled back. During
the execution of a dialog step actions on the content objects depending on
transient data from the dialogs are done.

A walk through a scenario by a set of collaborating agents is called a scenario
instance. The sequence of scenes visited by agents at certains point in time is
called a run of the scenario.

Figure [5.1] shows the graphical representation of a story specification for the process
of applying a business trip. Scene “Application” is refined in figure by dialog

5.2 Interaction Prototyping

Developing interaction components, especially in the case of user interaction is a
challenging task because requirements are often “soft” and cannot be formalized.
Design and implementation of graphical interfaces is very cost intensive and time
consuming so there is a need for early validation of interaction specifications to
reduce the impact of errors and misunderstandings. Because central requirements

61

62

employee secretary bossOfEmployee

Application

Preprocessing Approval

PayOff CashApproval CashingUp
payingAgent secretary / employee

Figure 5.1: Business Trip Application

Application

cancel

storePersonalData

enterPersonalData

reject Application
showTripData
showTripData
showPersonalDat:
showCosts
review Application storeCosts apply

Figure 5.2: Refinement of Scene “Application” with Dialog Steps

are only informal there is no possibility to do this by a formal proof. The interface
has to be simulated and presented to test users. Their comments are taken into
account for improving the interaction model.

5.2.1 Executable Specifications and Rapid Prototyping

Information systems are usually developed using an abstraction layer model. Sim-
ulations have to be made as early as possible. Because the usage context of the
interface directly influences the user’s perception, the simulation has to take place
on the target platform that is used for production. Thus, the specification has to be
made executable. Executable specifications need a formal translation between the
languages on different abstraction levels. Additionally, every translation between
two abstraction layers that is made by hand is lost for documentation purposes and
leads to the construction of legacy systems, because following developers are usually
not able to understand such breaks. A golden rule of system development based on
abstraction layers is: a fact that was modeled in a step ¢ during the development
process must be visible in steps 7 > 1.

Unfortunately, on development process layers higher than the implementation layer,
many specification details necessary for execution are still not present. So, another
facility is needed: a framework for rapid prototyping. During rapid prototyping
missing parts of the executable specification are automatically replaced by defaults
to render a complete interface specification on the implementation level which can
be transfered to the target system.

The resulting development cycle was sketched in [FSBTS04]:

e The development begins with the specification of the use cases that describe
the general requirements for the interface.

e Use cases are replaced by a coarse storyboard describing the general interface
flow.

e In an iterative process the interface is refined until all dialogs are defined. At
each step formal defined properties are validated and simulations are made.

5.2.2 Using SiteLang for Code Generation

SiteLang suits very well for this style of interface specification because it’s general
syntax allows specifications of different granularity. Based on the fixed semantics
of SiteLang transformation for different target platforms can be derived. As an
example, figure [5.3] shows the tool support for generating Java Servlet based Web
applications compiled from SiteLang specifications.

A graphical editor creates SiteLang specifications stored as in a XML file. A com-
plete SiteLang specification consists of

e scenes with dialog steps and actor definitions

63

graphical
Editor

D SiteLang XML

SiteLang Compiler D D
Java Target Plugin ———= D D —> javac [—> D Web application

Java sources

(Servlets / JSPs)
container

template repository

Figure 5.3: Tool Support for Interface Development Based on SiteLang

e dialogs

e scenarios with scene instantiations (A scene instantiation is a renamed scene
specification. Thus, a predefined scene can be used twice in the same scenario.)

e events (An event is a data structure that is passed between the interacting
partners.)

e type definitions for content objects

e Resource definitions that map content objects, actors, dialogs and other facets
to real resources (databases, screen masks, etc.) in the resulting application.

A minimal SiteLang specification the compiler can successfully transfer to a ex-
ecutable specification is a set of scenes with simple dialog steps and a scenario
specification that mounts scene specifications together. All other facets can be re-
placed by defaults and refined later. For example, the rapid prototyping component
creates dialog masks automatically based on available templates (“style guides”).
Input masks for data structures (events) are generated automatically. This makes
dialog masks “look more realistic” during testing even on early stages of interface
development and enhances the acceptance of the interface by the testing users.
During compilation the SiteLang compiler for the Java Servlet application target
platform generates classes for

e the management of stories: the story class manages meta information for
a specified SiteLang story (which scenes, which possible actors, etc). The
extension of the class contains all active story instances. A story instance
contains information which scene instance is currently active, which actor is
currently associated with which user. Additionally, a scene instance contains
local variables as part of the system state.

64

the management of scenes: for each scene a separate class derived from a
common super class is created. These classes provide meta information for
the scene (which dialog steps, which actors, access to the content object class,
links to dialog definitions, ...). The extension of the class contains all active
scene instances of this class. These instances provide the state of the scene,
current actor-to-user mappings, and the content object instance.

the management of dialog steps: dialog steps are represented as members of
scene instances. Events are propagated to the corresponding scene instance.
For this instance the trigger conditions for each dialog step are evaluated and
the dialog step is activated if necessary.

the management of content objects: each content object is translated to a
specific class derived from a common super class. The content object classes
provide meta information about the structure, the functionality, the micro
behavior, and the associations of the corresponding content object. Addition-
ally, the generic database load / store mechanisms are provided. Each class
instance contains the values for a concrete content object instance usable in
dialog step actions.

the management of actors and users: for each defined actor a class derived
from a common super class is defined which implements this actor model. This
class can be used as an oracle that can be asked for certain properties of the
actor. Additionally, this class manages mappings between actors and users.

65

Bibliography

[ACMY7]

[BCM*03]

[BHvATO05]

[BMO9]

[BRO1]

[BvdTO5]

[CDSS98]

[CGL*98]

66

Serge Abiteboul, Sophie Cluet, and Tova Milo. Correspondence and
Translation for Heterogeneous Data. In Foto N. Afrati and Phokion
Kolaitis, editors, Database Theory - ICDT °97, 6th International Con-
ference, Delphi, Greece, January 8-10, 1997, Proceedings, volume 1186
of Lecture Notes in Computer Science, pages 351-363. Springer, 1997.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cambridge University
Press, 2003.

Guido Boella, Joris Hulstijn, and Leendert W. N. van der Torre. Argu-
mentation for Access Control. In AI*IA, pages 86-97, 2005.

Catriel Beeri and Tova Milo. Schemas for Integration and Translation of
Structured and Semi-structured Data. In Catriel Beeri and Peter Bune-
man, editors, Database Theory - ICDT °99, 7th International Confer-
ence, Jerusalem, Israel, January 10-12, 1999, Proceedings, volume 1540
of Lecture Notes in Computer Science, pages 296-313. Springer, 1999.

Phil A. Bernstein and Erhard Rahm. A Survey of Approaches to Auto-
matic Schema Matching. VLDB Journal, 10:334-350, 2001.

Guido Boella and Leendert W. N. van der Torre. Permission and Autho-
rization in Normative Multiagent Systems. In ICAIL, pages 236—237.
ACM, 2005.

Sophie Cluet, Claude Delobel, Jérome Siméon, and Katarzyna Smaga.
Your Mediators Need Data Conversion! In Laura M. Haas and Ashutosh
Tiwary, editors, SIGMOD 1998, Proceedings ACM SIGMOD Interna-
tional Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 177-188. ACM Press, 1998.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele
Nardi, and Riccardo Rosati. Information Integration: Conceptual Mod-
eling and Reasoning Support. In Proceedings of the 3rd IFCIS Interna-
tional Conference on Cooperative Information Systems, New York City,

[Con86]

[CPY8]

[CSS99)]

[exp06]

[Fit91]

[Fit92]

[Fit00a]

[Fit00D]

[FKSTOO]

[FSBTS04]

New York, USA, August 20-22, 1998, Sponsored by IFCIS, The Intn’l
Foundation on Cooperative Information Systems, pages 280-291. IEEE-
CS Press, 1998.

B. Convent. Unsolvable problems related to the view integration ap-
proach. In ICDT’86, volume 243 of Lecture Notes in Computer Science,
pages 141-156. Springer, 1986.

Stefano Spaccapietra Christine Parent. Issues and Approaches of
Database Integration. CACM, 41(5):166-178, 1998.

Stefan Conrad, Gunter Saake, and Kai-Uwe Sattler. Informationfusion
- Herausforderung an die Datenbanktechnologie. In Proc. BTW, pages
307-316. Springer, 1999.

exposure.co.uk. Guide to Film-Making Website.
http://www.exposure.co.uk/eejit /storybd/, March 2006.

Melvin Fitting. Many-valued modal logics. Fundam. Inform., 15(3-
4):235-254, 1991.

Melvin Fitting. Many-Valued Model Logics II. Fundam. Inform., 17(1-
2):55-73, 1992.

Melvin Fitting. Databases and Higher Types. In John W. Lloyd,
Verénica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catus-
cia Palamidessi, Luis Moniz Pereira, Yehoshua Sagiv, and Peter J.
Stuckey, editors, Computational Logic, volume 1861 of Lecture Notes
in Computer Science, pages 41-52. Springer, 2000.

Melvin Fitting. Modality and Databases. In Roy Dyckhoff, editor,
TABLEAUX, volume 1847 of Lecture Notes in Computer Science, pages
19-39. Springer, 2000.

T. Feyer, O. Kao, K.-D. Schewe, and B. Thalheim. Design of data-
intensive web-based information services. In Q. Li, Z. M. Ozsoyoglu,
R. Wagner, Y. Kambayashi, and Y. Zhang, editors, WISE 2000, Pro-
ceedings of the First International Conference on Web Information Sys-
tems Engineering, Volume I (Main Program), Hong Kong, China, Jun
19-21, 2000, pages 462-467. IEEE Computer Society, 2000.

Gunar Fiedler, Thomas Schwanzara-Bennoit, Bernhard Thalheim, and
Peggy Schmidt. State-, HTML-, and Object-Based Dialog Design for
Voice Web Applications. In Maristella Matera and Sara Comai, editors,
Engineering Advanced Web Applications. Rinton Press, 2004.

67

[GBD04]

[GHIV95)

[GWOS]

[HCO01]

[HMWO5]

[Hor9g)

[HRO1]

[HRU96]

[KBF*05]

68

[Koz00]

[Len02]

Georg Gottlob, Andras A. Benczur, and Janos Demetrovics, editors. Ad-
vances in Databases and Information Systems, 8th Fast European Con-
ference, ADBIS 2004, Budapest, Hungary, September 22-25, 2004, Pro-
ceesing, volume 3255 of Lecture Notes in Computer Science. Springer,
2004.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns. Elements of Reusable Object-Oriented Software. Addison
Wesley, 1995.

B. Ganter and R. Wille. Formal concept analysis - Mathematical foun-
dations. Springer, Berlin, 1998.

George T. Heinemann and William T. Councill. Component-Based Soft-
ware Engineering. Addison-Wesley, 2001.

Volker Haarslev, Ralf Méller, and Michael Wessel. Description Logic In-
ference Technology: Lessions Learned in the Trenches. In Ian Horrocks,
Ulrike Sattler, and Frank Wolter, editors, Description Logics, volume
147 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

[an Horrocks. The FaCT System. In Harrie C. M. de Swart, editor,
TABLFEAUX, volume 1397 of Lecture Notes in Computer Science, pages
307-312. Springer, 1998.

Theo Héarder and Erhard Rahm. Datenbanksysteme: Konzepte und
Techniken der Implementierung. Springer Verlag, second edition, 2001.

Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Im-
plementing data cubes efficiently. In Proc. ACM SIGMOD ’96, pages
205-216, Montreal, June 1996.

Tatjana Kruscha, Bjorn Briel, Gunar Fiedler, Kai Jannaschk, Thomas
Raak, and Bernhard Thalheim. Integratives HMI-Warehouse fiir einen
durchgingigen HMI-Entwicklungsprozess. In VDI, editor, Elektronik im
Kraftfahrzeug 2005. 12. Internationaler Kongress Electronic Systems for
Vehicles, number 1907 in VDI-Berichte. VDI, VDI-Verlag, 2005.

Dexter C. Kozen. Automata and Computability. Springer, 2000.

Maurizio Lenzerini. Data integration: a theoretical perspective.
In ACM, editor, Proceedings of the Twenty-First ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems:
PODS 2002: Madison, Wisconsin, June 3-5, 2002, pages 233246, New
York, NY 10036, USA, 2002. ACM Press.

[LG9Y]

[LRLIS]

[McA00]

IMCGF99]

[Minss]

[Moo01]

[Ont]

[PANOG]

[Paw73]

[Pe01]

[PV99]

Bertram Ludéscher and Amarnath Gupta. Modeling Interactive Web
Sources for Information Mediation. In Peter P. Chen, David W. Embley,
Jacques Kouloumdjian, Stephen W. Liddle, and John F. Roddick, edi-
tors, Advances in Conceptual Modeling: ER ’99 Workshops on Evolution
and Change in Data Management, Reverse Engineering in Information
Systems, and the World Wide Web and Conceptual Modeling, Paris,
France, November 15-18, 1999, Proceedings, volume 1727 of Lecture
Notes in Computer Science, pages 225-238. Springer, 1999.

T. W. Ling, S. Ram, and M.-L. Lee, editors. Proc. 17th Int. ER Conf.,
Conceptual Modeling - ER’98, LNCS 1507, Singapore, Nov. 16 - 19,
1998, 1998. Springer, Berlin.

David A. McAllester, editor. Automated Deduction - CADE-17, 17th In-
ternational Conference on Automated Deduction, Pittsburgh, PA, USA,
June 17-20, 2000, Proceedings, volume 1831 of Lecture Notes in Com-
puter Science. Springer, 2000.

M. Catherine McCabe, Abdur Chowdhury, David A. Grossman, and
Ophir Frieder. A Unified Environment for Fusion of Information Re-
trieval Approaches. In Proceedings of the 1999 ACM CIKM Interna-

tional Conference on Information and Knowledge Management, Kansas
City, Missouri, USA, November 2-6, 1999, pages 330-334. ACM, 1999.

J. Minker, editor. Foundations of deductive databases and logic pro-
gramming. Morgan Kaufmann, San Mateo, 1988.

D. L. Moody. Dealing with complexity: A practical method for represent-
ing large entity-relationship models. PhD thesis, Dept. of Information
Systems, University of Melbourne, 2001.

http: //www.ontopia.net /topicmaps/.

PANGAEA. Publishing Network for Geoscientific & Environmental
Data. http://www.pangaea.de, March 2006.

Z. Pawlak. Mathematical foundations of information retrieval. Technical
Report CC PAS Reports 101, Warszawa, 1973.

S. Pepper and G. Moore (eds.). XML topic maps (XTM) 1.0.
http://www.topicmaps.org/xtm/1.0/, 2001. TopicMaps.Org.

Yannis Papakonstantinou and Pavel Velikhov. Enhancing Semistruc-
tured Data Mediators with Document Type Definitions. In Proceedings
of the 15th International Conference on Data Engineering, 23-26 March
1999, Sydney, Austrialia, pages 136-145. IEEE Computer Society, 1999.

69

70

[Raa01]

[RT99]

[Seh03]

[Sow00]

5503]

[SS04]

[STO1]

T. Raak. Database systems architecture for facility management sys-
tems. Master’s thesis, FHL, Civil Engineering Dept., Cottbus, 2001.

S. Radochla and B. Thalheim. Umstrukturierung eines Data-Warehouse
in ein effizientes Decision Support System. In F. Maurer F. Hiisemann,
K. Kiispert, editor, Jenauer Schriften zur Mathematik und Informatik,
volume Math/Inf/99/16, pages 92 — 96, Jena, 1999.

H.W. Sehring. Konzeptorientiertes Content Management: Modell, Sys-
temarchitektur und Prototypen. PhD thesis, Arbeitsbereich Softwaresys-
teme, Technische Universitdt Hamburg-Harburg, 2003.

John F. Sowa. Knowledge Representation, Logical, Philosophical, and
Computational Foundations. Brooks/Cole, a division of Thomson Learn-
ing, Pacific Grove, California, 2000.

J.W. Schmidt and H.-W. Sehring. Conceptual content modeling and
management - The rationale of an asset language. In Proc. PSI’03,
LNCS , Springer, 2003, 2003. Perspectives of System Informatics.

Hans-Werner Sehring and Joachim W. Schmidt. Beyond Databases: An
Asset Language for Conceptual Content Management. In Gottlob et al.
[GBDO04], pages 99-112.

K.-D. Schewe and B. Thalheim. Modeling Interaction and Media Ob-
jects. In M. Bouzeghoub, Z. Kedad, and E. Métais, editors, NLDB.
Natural Language Processing and Information Systems, 5th Int. Conf.
on Applications of Natural Language to Information Systems, NLDB
2000, Versailles, France, Jun 28-30, 2000, Revised Papers, volume 1959
of LNCS, pages 313-324. Springer, 2001.

Peggy Schmidt and Bernhard Thalheim. Component-Based Modeling
of Huge Databases. In Gottlob et al. [GBDO04], pages 113-128.

Racer Systems. Racer Pro. http://www.racer-systems.com.

Klaudia Hergula Theo Hérder. Ankopplung heterogener Anwen-
dungssysteme an Foderierte Datenbanksysteme durch Funktionsintegra-
tion. Informatik - Forschung und Entwicklung, 17:135-148, 2002.

B. Thalheim. FEntity-relationship modeling — Foundations of database
technology. Springer, Berlin, 2000. See also http://www.informatik.tu-
cottbus.de/~thalheim /HERM.htm.

B. Thalheim. Informationssystem-Entwicklung - Die integrierte Ent-
wicklung der Strukturierung, Funktionalitdt, Verteilung und Interak-
tivitdt von groflen Informationssystemen. Preprint 1-2003-15, Cottbus
Tech, Computer Science Institut, BTU Cottbus, 21. 9. 2003 2003.

[Tha05

[TSKO6]

[Voo&9]

[Wie95]

[YTS*99]

Bernhard Thalheim. Component development and construction for
database design. Data Knowl. Eng., 54(1):77-95, 2005.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
Data Mining. Pearson Education, Addison-Wesley, 2006.

Frans Voorbraak. The logic of actual obligation. An alternative approach
to deontic logic. Philosophical Studies, 55, Issue 2:173-194, 1989.

Gio Wiederhold. Modelling and System Maintanance. In Mike P. Pa-
pazoglou, editor, OOFR’95: Object-Oriented and Entity-Relationship
Modelling, 14th International Conference, Gold Coast, Australia, De-
cember 12-15, 1995, Proceedings, volume 1021 of Lecture Notes in Com-
puter Science, pages 1-20. Springer, 1995.

S. Yigitbasi, B. Thalheim, K. Seelig, S. Radochla, and R. Jurk. Entwick-
lung und Bereitstellung einer Forschungs- und Umweltdatenbank fiir das
BTUC Innovationskolleg. In F. Hiittl, D. Klem, and E. Weber, editors,
Rekultivierung von Bergbaufolgelandschaften, pages 269-282. Walter de
Gruyter, Berlin, 1999.

71

	Introduction
	Case Study: A Bio-Ecological Information System
	From Content Management Systems to Content Warehouses
	Related Work
	Content Management Systems
	Data Warehouses
	Data Mining

	Logical Foundations of Content Warehouses
	Separation of Syntax, Semantics, and Pragmatics
	The Content World
	Concepts as Small Logical Units
	The Topic World

	Data Management
	Component Based Modeling
	Database Components
	Conceptual Components
	Relating Conceptual Components and Database Components
	Component Schema Construction

	Application Scenario
	Development of Graphical User Interfaces
	Component Based Design

	Users and Rule Management
	Agents, Actors, Roles, and Groups
	Task Obligations and Access Rights
	Prerequisites for Execution
	Deriving Permissions for Execution
	Permitted and Forbidden Operations
	Logic of Actual Obligation: Dynamic Permissions

	Implementing Access Control Lists
	Static Permissions
	Dynamic Permisssions

	Data Exchange
	Data Integration in General
	Database Cooperation
	Application of Cooperation to Multi Database Systems
	Application of Cooperation to Incremental Database Systems
	Database Collaboration in the Washer Approach

	Transformation
	Development of the Content Warehouse Kernel
	Derivation of Requirements for Wrappers
	Collaboration Warehouses

	Presentation as Data Exchange

	Interaction
	Storyboarding: Modeling Interaction
	Interaction Prototyping
	Executable Specifications and Rapid Prototyping
	Using SiteLang for Code Generation

