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Chapter 1
Introduction

Model checking has its origins in the early 1980s, when Clarke and Emerson [2] as well
as Queille and Sifakis [17] introduced a new algorithmic approach for the verification of
systems, called model checking. One formally defines satisfaction as a relation M |= ¢,
where M is a mathematical model of a system and ¢ is a property, which has to be
shown, encoded within a formal language.

A possible formal language to encode properties is the modal p-calculus [15]. The
pu-calculus allows the expression of safety and reachability properties, as well as combina-
tions of these properties. Furthermore, the modal u-calculus can express most modal and
temporal logics, such as linear temporal logic (LTL) and computational tree logic (CTL
and CTL*), as shown by Emerson [5].

The mathematical model of the system is usually encoded as a pointed Kripke struc-
ture. These Kripke structures often have a large or even infinite state space. Thus instead
of directly calculating M = ¢, one employs abstraction techniques, i.e. one constructs a
smaller abstract model A from the specification of M such that A = ¢ implies M |= ¢.
Thus to counter the state space explosion, predicate abstraction, as defined by Graf and
Saidi [10], is employed.

A successful technique to automatically construct such an abstract model A from a
given large concrete model M is counterezample-guided abstraction refinement (CEGAR)
developed by Clarke et al. [3]. The CEGAR approach typically consists of three steps:
construction of an abstract model, model checking against the property, and refinement
of the abstract model to get a new abstract model. These steps are repeated until
the generated abstract model is sufficient to prove or disprove the property. The usual
approach is to split the abstract states contained in a spurious counter example and
construct a new abstract model. Another approach is lazy-abstraction, implemented in
BLAST, a prominent tool based on CEGAR, developed by Henzinger et al. [14]. There,
the refinement is performed directly on the abstract model to avoid rebuilding of the
abstract model after each step.

An abstraction technique is a way to describe such an abstract model. One such
abstraction technique was developed by de Alfaro et al. [4] and later transformed by
Fecher and Huth [6], who called it pre-abstraction. This technique utilizes generalized
Kripke modal transition systems as abstract models. Additionally, Fecher and Huth
[6] developed a new abstraction technique called post-abstraction, utilizing u-automata
as abstract models. Depending on the concrete model M and the proposition ¢, the
calculation of pre- or post-abstraction may be preferable to each other. In addition they
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sketched how a combination of both techniques may result in a more precise abstraction
without increasing the cost of the abstraction synthesis too much.

1.1 Contribution

In this diploma thesis, I specify the combination of pre- and post-abstraction, sketched
in [6]. This new abstraction technique utilizes generalized p-automata, first used in my
student research project [18]. Based upon this abstraction technique I present a lazy
CEGAR algorithm, which verifies a given model against a property.

This algorithm is based upon three-valued satisfaction games. A verifier tries to obtain
validity, a falsifier tries to obtain invalidity, and a third value (unknown, 1) captures the
possibility that no player wins. So, the model checking is performed via a reduction of the
three-valued satisfaction game into two games: a validity-game and an invalidity-game.
Thus, contrary to traditional CEGAR approaches, unknown results rather than invalid
results lead to refinement.

Furthermore, the algorithm uses a stronger notion of laziness. Only some configura-
tions of the satisfaction game containing a single abstract state are split at each refinement
step, thus the state space remains small. Additionally, since the algorithm operates upon
a satisfaction game instead of the abstract model, the game can be simplified after each
refinement step. Finally, the algorithm allows for a heuristic to determine the next local
refinement step.

1.2 Related work

In my student research project [18] I worked on a combination of pre- and post-abstraction
for the first time. This resulted in the abstract model of generalized u-automata. In
addition I gave a sound definition of satisfaction with the help of satisfaction games
between this new model and alternating tree automata. Furthermore, I gave a definition
of refinement with the help of refinement games between two generalized p-automata,
which is reflexive, transitive and sound.

Grumberg et al. [11, 12| developed a CEGAR based algorithm for the verification of
properties encoded in the p-calculus utilizing three-valued satisfaction games. Fecher and
Shoham [7] developed a new CEGAR based model checking algorithm based upon [11,
12]. There, they utilized generalized Kripke modal transition systems [6] and the tech-
nique of pre-abstraction for an algorithm similar to the one presented here. In [8], Fecher
and Shoham developed a new technique named state focusing as a replacement for state
splitting. This new technique allows for an even lazier algorithm than [7] without any of
its drawbacks, like the possibility of state explosion.

Pardo and Hachtel [16] gave a CEGAR-approach to branching time properties, where
the state space remains unchanged and only the set of transition relations is under and
respectively over approximated.

The tool SLAM [1]| deals with the state space doubling problem, that occurs after
an algorithm splits the whole state space via a predicate, with the help of BDDs. This
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approach is generalized from safety properties checked by the tool to p-calculus properties
in the tool YASM by Gurfinkel and Chechik [13], using a equivalent of Kripke modal
transitions systems as the underlying abstract structure, which is less expressive than
generalized Kripke modal transitions systems used by pre-abstraction.

1.3 Outline

In the second chapter, pointed Kripke structures and alternating tree automata are briefly
introduced. Furthermore, three-valued satisfaction games (strong-weak-parity-games)
and satisfaction for pointed Kripke structures (property games) are presented. Chap-
ter 3 introduces abstraction and generalized p-automata, as well as property games for
them. Additionally, a notion of refinement between two generalized u-automata is pre-
sented. Finally, the third chapter concludes with the introduction of abstract property
games, which are used by the algorithm presented in chapter 4.



Chapter 2
Preliminaries

In the following, P(S) denotes the power set of a set S. Let IN denote the natural
numbers, while INg denotes the natural numbers including zero. Let 0 be even. For a
relation p € B x C' with X C B I will write X.p for {c € C' | 3b € X: (b,c) € p} and
with b € B I will write b.p for {¢ € C | (b,c) € p}. Let U denote the disjoint union of
sets. Let II;(X) denote the projection to the ith component of the tuple X.

2.1 Finite State Machines

A finite state machine is a model of the behavior of a system. Basically, a finite state
machine is a directed graph. Vertices of the graph represent states, while arcs represent
transitions. Additionally a number of variables is assigned to a finite state machine.

Each state stores the current assignment of the variables. Each transition, leading
from one state to another (or to the same), has a label, consisting of the guard and the
action. A transition can be taken, if the guard with the current assignment of variables
is valid. If a transition is taken, the assignment of variables at the next state is changed
according to the action.

Definition 2.1.1 (Finite state machine). A finite state machine M is defined as the
tuple M = (S, 38,V,v,—) with

e S is the finite set of states,

e 5 € S is the initial state,

e V/ is the set of Variables,

e ¥ is the initial assignment of variables, and

e —C S x GUARDS x ACTIONS x S is the set of transitions, where
— GUARDS is the set of guards and
— ACTIONS is the set of actions.

Each guard of GUARDS is usually a formula utilizing variables in V' and simple operators.
Each action of ACTIONS is usually a assignment of variables, often depending on the
prior assignment.

The calculation of the weakest pre-condition of any assignment of values to the set
of variables can efficiently be performed. To calculate the pre-condition of a variable
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Figure 2.1: A finite state machine. The range of n is INg, initialized with 1. The range
of e is boolean and initialized with false. The actions of the transitions can
be executed whenever the guard, depicted in rectangular brackets, evaluates
to true.

assignment v for any transition ¢ = (s1, g, a, s2), one simply calculates pre,(v) = g Av[a],
where [-] stand for the textual replacement. So for v = (n =0) and a = n +— n + 1 one
getsvja] =(n=0)ln—n+1=Mn+1=0)=(n=—1).

To calculate the pre-condition of a variable assignment v for the whole finite state
machine, one calculates the disjunction of the pre-conditions over all transitions. If there
are several states, one has to adapt the guards and actions to include the changes between
the states. An example can be seen in Example 2.1.2.

Example 2.1.1. Consider a simple toy example: a program to determine if a num-
ber (€ IN) is even or odd. The idea is to start with 1, which is odd, and increase by one,
switching from odd to even or from even to odd with every increment step. At each step,
the program non-deterministically chooses either to continue to the next higher number
or to finish, which allows e.g. the printing of the status of the current number.

A possible finite state machine M to describe such a system is illustrated in Figure 2.1.
It consists of a single state and two variables, n € INg and e € {true, false}. The machine
is initialized with n = 1 and e = false, i.e. 1 is an odd number. As long as n is greater
than zero there are always two possible transitions to take. One transition increases the
number and adjusts e accordingly by switching e from true to false and vice versa. The
second transition halts the machine by setting n = 0 such that no further transitions are
possible. - .

Formally the finite state machine M can be written as M = ({m}, 7, V, 0, —) with

o V={n:WNy,e: {true, false}},
e 0= (n=1)A(e= false), and
o —={(m,[n>0],n+—n+1l;e— —e,m),(m,[n>0,n—0,m)}

Example 2.1.2. The formula to calculate any weakest pre-condition of a variable as-
signment v in the finite state machine M is:

e pre(v) = ((n>0) Av[n— 0]) vV ((n>0) Av[n— n+1;e— —el).

More examples of the actual calculation of the weakest pre-condition can be seen at the
end of Example 2.2.1 on page 7.
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2.2 Pointed Kripke Structures

In accordance to Fecher and Shoham [7] I will not consider action labels on models,
thus the concrete models considered here are pointed Kripke structures over a predicate
language £. Such structures are directed graphs. Arcs represent transitions and vertices
represent worlds. Propositions taken from the boolean closure of a predicate language £
are assigned as labels to each vertex.

With regard to finite state machines, each world of a pointed Kripke structure repre-
sents one possible assignment of variables. Each transition represents a possible change
in this assignment.

Definition 2.2.1 (Pointed Kripke structure). A pointed Kripke structure K is a tuple
K = (W,w, R, L) where

W is a (nonempty) set of worlds,
e w € W is an initial world,
e RC W x W is its world transition relation, and

e L is a good predicate language as defined in Definition 2.2.4 on the next page.
K is finite whenever W is.

Definition 2.2.2 (Predicate language £). A predicate language L is a set of predicates
interpreted over the worlds W:

e [ is a (nonempty) set of predicates p, and
e there exists a function () with (-)) : £ — P(W).

Thus each predicate p € £ denotes a set (p) C W of worlds. Usually (p) is the set of
worlds where the predicate p holds true.
Let £ be the boolean closure of the predicate language L.

Definition 2.2.3 (Extension function [-]). The extension of the function () to L is
called the extension function [-]. Thus the extension function [] : L — P(W) for a
pointed Kripke structure (W, 0, R, £) with 9,1’ € L (where L is the boolean closure of
L) is defined as:

oforallpeﬁi[[p]]_qpb
e [false] =0 and [true] =

o [v vy =[Y]UYT],

° [[@Z)/\lb]] H¢ﬂnﬂ ]] and

o forallwe W: w¢ [¢] iff we [].

Thus for every predicate p € £ and every world w € W one has either w € [p] or
w € [-p].
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Figure 2.2: A pointed Kripke structure. Circles depict worlds w € W, arrows w — w’
denote transitions (w,w’) € R. The predicates p € £ are depicted in small
font near the corresponding worlds while world names are omitted for the
sake of simplicity.

Definition 2.2.4 (Good predicate language £). A predicate language £ is called good
if there exists an extension function [-] and

e there exists p € £ with [p] = {w},
e the boolean closure £ of £ is a decidability theory (i.e. satisfiability is decidable),

e L is closed under exact predecessor operations in pointed Kripke structures, i.e.,
for every formula ¢ € L one can compute the weakest precondition pre(y) € L
such that

[pre(¢)] ={w e W | Ju' € [¢] : (w,w') € R}.

One can utilize the related finite state machine to calculate the weakest precondition
efficiently.

Example 2.2.1. Consider the simple program from Example 2.1.1 on page 5 to deter-
mine if a given number (€ IN) is even.

A possible pointed Kripke structure K to model such a system is illustrated in Fig-
ure 2.2. Here the set of worlds W consists of the set of worlds w; for ¢ € IN and the
two worlds @’ and w” which represent printing the result for even or odd numbers.
The initial world is w;. There are two sets of predicates used to characterize these
worlds: n = 0,1,2,... represents the counting variable with [n =0] = {&',@"} and
[n=1] = {w;} for all i € IN. The second set of predicates, e = true and e = false
(or e and —e), means even and not even respectively, and is assigned accordingly, thus
le] = {w"} U{wq;li € N} and [—e] = {@w'} U {wa;—1|i € IN}. The set of transitions R is
depicted in the figure.

To check a given number m one starts at @y, and if m # 1 takes the transition from
w1 to we and continues onward from w,,_1to W, until n = m holds true, thus reaching ws,.
Then one finally takes the transition to @’ or w” respectively and gets the result from
the value of e.

Formally the pointed Kripke structure K is defined as K = (W, w1, R, L) with

o W = {w/,lﬂ”} U {ﬁ)l | 1€ IN},
e R= {(22121,’(2)”) | 1€ ]N} U {(@21‘71,17)/) | 1 E ]N} U {(uNJi,ZDZ'Jrl) | 1 E ]N},

e [ is a good predicate language as described below.



Chapter 2 Preliminaries

The good predicate language £ is formally defined as
e L={e,n>0,n=0,n=1,n=2,...} with
- <[6]> = {ﬂ)”} U {@Qi | i€ ]N},
— (n>0) ={w; | i € N}, and
— (n=1) = {w;} for all i € IN.

Thus the boolean closure £ contains predicates like

e —¢or (n>0)A —e with
o [e] ={w'} U{wai—1|i€IN},
° [[n>0/\—|e]] :{17)27;_1 |Z€]N}

Finally £ is a good predicate language, since

e there exists (n = 1) Ae € £ with [(n = 1) Ae] = {1} = {w},
e Satisfiability of terms such as

— SAT(n > 0) = true or SAT((n > 0) A (n=0)) = false

is easily calculated.

e CPL is closed under the exact predecessor operation, e.g.

— pre(n =0) = (n > 0),

— pre(n > 0) = (n > 0),

— pre(e) = (n > 0),

— pre(—e) = (n > 0),

— pre(e An=0)=eA (n>0),

— pre(e An >0)=-eA(n>0),

— et cetera

The calculation of these pre-conditions can efficiently be performed with the help of the
finite state machine M from Example 2.1.1 and 2.1.2 on page 5. A few examples:

pre(d) = ((n>0) Adfn OV ((n> 0) Al n+ Lie — =)
pre(n=0) = (n>0)A(n=0)[n—0)V((n>0)A(n=0)n—n+1le— —e|)
= (n>0)A0=0)V(n>0A(n+1=0))
= (n>0)V((n>0)A(n=-1))
(n>0)
pre(true) = ((n > 0) Atrue[n— 0])V ((n > 0) Atrue[n — n+1;e — —e])
((n > 0) Atrue) V ((n > 0) Atrue)
= (n>0)
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q1 and g9 hold at the current world q holds at all following worlds
a1
—{A] —{Of—~{4]
q2 |
q1 or g9 hold at the current world q holds at one following world
a1
—17] &

n = 2 holds at the current world
n=2

Figure 2.3: Transitions in alternating tree automata. q,q1,q2 € @, (n =2) € L.

2.3 Alternating Tree Automata

The modal p-calculus [15] is a logic to express properties of pointed Kripke structures.
Here I use the modal p-calculus in its equivalent form of alternating tree automata. This
equivalence is shown by Wilke [19].

Definition 2.3.1 (Alternating tree automaton). An alternating tree automaton for a
property language L is a tuple A = (Q, §, d,0) such that

e () is a finite, nonempty set of states,

e § € @ is an initial state,

e § is a transition function, which maps each automaton state (€ Q) to one of the
following forms: p | ¢' | ¢V¢" | ¢Ad" | Oq' | Oq (where p € L;¢,q" € Q), and

f: @Q — IN is an acceptance condition, which assigns an acceptance number to each
state.

Figure 2.3 illustrates the meaning of an automaton state in the context of a world of
a pointed Kripke structure. The next definition introduces some useful notations (for
subsets of the states of an alternating tree automaton) that will become meaningful in
connection with property games.

Definition 2.3.2 (Useful notations). Qo,Q1,Qp/1 € Q are defined as

° Qo={q€Q|0dq) €Uy eold . dVd" 0d'}},

Q1 ={q€Q|d(q) € Uy yreotd'Nd",0q'}},

Qo1 ={q€Q16(q) € L},

Qquan = {q € Q 1 0(q) € Uyeq{0d',0q¢'}}, and

Qquan = {4 € Q | 0(q) € Uper,g grein. @ d'Va" d' A"}
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Figure 2.4: An alternating tree automaton. States are depicted as rectangles. A depiction
of the transition function is within the state borders in connection with the
transition arrows. Acceptance numbers are depicted close to corresponding
states, state names are omitted for the sake of simplicity. To differentiate
between both {-states a subscript is added.

Additionally, combinations of these notations are used, such as Qo N Qquan-

Example 2.3.1. Considering the finite state machine in Example 2.1.1 on page 5 and
the associated pointed Kripke structure given in Example 2.2.1 on page 7 one might be
interested whether the given system is able to reach numbers (€ IN) as well as to end
execution at each of them. So, at each world w; there must be a transition leading to
one of the two final worlds and one transition to next world w;1.

In other words: (x) (i) there is a transition such that no further transition is possible;
and (ii) there is a transition such that (%) holds again. Note that these transitions are
inside the pointed Kripke structure.

An example of an alternating tree automaton to express () is depicted in Figure 2.4.
At the current world, there are two (A) transitions (Q1 and Q2): One transition in which
the starting property holds again (Q2) and one transition in which no further transition
exists (01). More precisely for all further transitions (O) false holds true, which it never
does, thus there can’t be any further transitions.

Note that the term transitions refers to the pointed Kripke structure. Every time the
transition function of the alternating tree automata refers to { or [, a transition in the
pointed Kripke structure is taken. This will be clarified further by Section 2.4 Parity
Games on the next page. B B

Formally the alternating tree automata A is defined as A = (Q, ¢, 9, 0) with

L4 Q:{ijgla617qalaq2}7
° 0:G— qAG; 1 — Oq;; ¢ — O] — false; go — 04,
e 0:(Q — IN with ¢ — 0 for all ¢ € Q.

Furthermore Qo, 1 and Qg are defined as follows:

QO == {glanQ}a Ql - {67 q~/1}7 and QO/]. = {q~1/}

10
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2.4 Parity Games

Parity games are special kinds of (infinite) games, played by two players (Player 0 and
Player 1) on a graph. Every game position is represented by vertices, possible moves
are represented by arcs. Additionally every game position is assigned a priority (i.e. a
natural number).

The set of vertices C is partitioned into three disjoint subsets Cy and C representing
game positions belonging to Player 0 and Player 1, respectively, and Cjy,; representing
additional game positions, usually not belonging to any player.

Each turn one player does a move according to a fixed set of rules. Usually the player
in possession of the current game position selects an outgoing arc leading to a new game
position.

A finite play of a parity game is usually won by Player 0 if Player 1 is unable to
move and vice versa. Infinite plays are won by the Player 0 if the highest infinitely
often occurring priority is even, otherwise Player 1 wins. Additional winning or losing
conditions can be specified by the rules.

2.4.1 Strong-Weak-Parity-Games

In accordance with Fecher and Shoham [7] a generalized form of three-valued parity
games (Grumberg et al. [12]) is employed.

Definition 2.4.1 (Strong-weak-parity-game). A strong-weak-parity-game is defined as a
tuple G = (Co, C1,Cy1,¢,G~,GT,G°, 0, w) with

e (Cp C C is the set of game position belonging to Player 0,

e (1 C C is the set of game position belonging to Player 1,

e Cy/1 C C is the set of game position belonging neither to Player 0 nor to Player 1,
e ¢ € C is the initial game position,

G~,GT,G° C C x C is the set of strong, weak and junction game transitions,

respectively,
e ¥: C' — IN is a parity function with finite image, and

o w: C — {tt, ff, L} is a validity function into the values true, false, and unknown.
As above C'= Co U C1 U Cyy is the set of all game positions.

Definition 2.4.2 (Validity plays). The rules for wvalidity plays of strong-weak-parity-
games are presented below. If the current game position is ¢, choose the rule detailing
winning conditions or movement according to the value of w(c) and according to the
subset ¢ belongs to:

w(c) # L: Player 0 wins iff w(c) = tt; otherwise Player 1 wins;
¢ € Cp ANw(c) = L: Player 0 picks as next game position ¢’ € {c}.(G~ UG®);
c € (Cyy1 UCT) ANw(c) = L: Player 1 picks as next game position ¢’ € {c}.(G* U G°);

11
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In addition to the winning conditions stated by the rules, a finite validity play is won
by a Player 0, if Player 1 can not move at a game position ¢ € Cy. Otherwise Player 1
wins. An infinite validity play is won by Player 0 iff the maximum of all infinitely often
occurring parity numbers (¥(c) € IN) is even, otherwise it is won by Player 1.

Definition 2.4.3 (Invalidity plays). The rules for invalidity plays of strong-weak-parity-
games are presented below. If the current game position is ¢, choose the rule detailing
winning conditions or movement according to the value of w(c¢) and according to the
subset ¢ belongs to:

w(c) # L: Player 1 wins iff w(c) = ff; otherwise Player 0 wins;
¢ € C1 Aw(c) = L: Player 1 picks as next game position ¢’ € {c}.(G~ UG"°);
c € (Cyy1 UCh) ANw(c) = L: Player 0 picks as next game position ¢’ € {c}.(G* U G®);

In addition to the winning conditions stated by the rules, a finite invalidity play is won
by a Player 1, if Player 0 is unable to move at a game position ¢ € Cy. Otherwise Player 0
wins. An infinite invalidity play is won by Player 1 iff the maximum of all infinitely often
occurring parity numbers (9(c) € IN) is odd, otherwise it is won by Player 0.

Definition 2.4.4 (Winning strategy). A player is said to have a winning strategy iff he
has a strategy to choose the movement that allows him to win every play regardless of
moves the other player performs.

Definition 2.4.5 (Valid and invalid games).

e The strong-weak-parity-game G is valid (invalid) in ¢ € C iff Player 0 (Player 1)
has a winning strategy for the corresponding validity (invalidity) play starting in c.

e The strong-weak-parity-game G is valid (invalid) iff G is valid (invalid) in ¢.

Three-valued parity games are a superset of normal (two-valued) parity games. Two-
valued parity games are either valid or invalid, i.e if Player 0 has no winning strategy
to win all validity plays then Player 1 has a winning strategy to win all invalidity plays
and vice versa. Due to abstraction (as introduced in the next chapter) this is no longer
sufficient. A game may be not-valid and not-invalid, thus unknown, i.e. the system is too
much abstracted to verify or to refute the property. As mentioned in the introduction
this will lead to refinement.

Definition 2.4.6. A strong-weak-parity-game G is called well-formed iff (¢1,c2) € G~
implies (c1,co) € GT, thus G- C GT.

In the following I will only consider well-formed strong-weak-parity-games.

12
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Theorem 2.4.1. Validation over well-formed strong-weak-parity-games is three-valued,
thus a strong-weak-parity-game is either valid, invalid or neither of them.

Proof. A simple strong-weak-parity-game that is neither valid nor invalid is the game
Gy = ({2},0,0,2,0,{(z,2)},0,x — 0,z — L). In this game there exists a single Cj
game position x with the parity number 0 and unknown validity. The sole game transition
is a weak game transition from z to x. Player 0 looses all validity plays since he cannot
move. Furthermore Player 1 looses all invalidity plays since Player 0 can always move,
leading to an infinite game, which is won by Player 0. Thus G, is neither valid nor
invalid.

The next things to prove is: if a game is valid it cannot be invalid and if a game is
invalid it cannot be valid.

Let G be a valid game. So Player 0 has a winning strategy for the validity game. With
the help of this strategy he wins every validity play regardless of the moves Player 1
performs at game positions in €7 and in Cp/;. In the validity play Player 0 only picks
if the current game position is in Cy and the only game transitions he may utilize are
strong and junction game transitions.

In the invalidity play Player 0 may pick at game positions in Cy U Cp/q. Furthermore,
instead of strong game transitions he must now use weak game transitions. Regardless
of that fact, Player 0 can still apply his winning strategy. The strategy is independent of
moves performed by Player 1, thus at a game position in Cj/y Player 0 just acts randomly
(Player 1 would pick here in the validity game). At game positions in Cy Player 0 just
acts according to the winning strategy, with one exception: If Player 0 would pick a
strong game position he instead picks a weak game position. This is feasible since G is
well-formed. Thus Player 0 wins all invalidity plays and the game is not invalid.

A similar line of reason holds for G as an invalid game. O

2.4.2 Property Games

Satisfaction of a pointed Kripke structure with respect to a property language (here the
modal p-calculus in its equivalent form of alternating tree automata) is obtained with
the help of a special strong-weak-parity-game called property game.

Definition 2.4.7 (Property game). A property game for a pointed Kripke structure
K = (W,w,R,L) and an alternating tree automaton A = (Q,§,d,0) is defined as the
strong-weak-parity-game Gk a4 = (W x Qo, W x Q1, W X Qq1, (0, ), G, Gt,G°,0,w),
where

e (T =G" ={((w,q), (' q)) | 0(q) € {0¢,0¢'} A (w,w') € R},
o G°={((w,q),(w,q") [3¢" :0(q) € {d,d'Vq",q"Vd',d A", q" N} },

tt, if ¢ € Qoy1 ANw € [d(q)]
i w(qu) = ﬁa if q € QO/I ANw ¢ [[5((])]]
1

, otherwise.
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Definition 2.4.8 (Satisfaction for pointed Kripke structures). A pointed Kripke struc-
ture K satisfies an alternating tree automaton A, written K = A iff the corresponding
property game G 4 is valid.

Since G~ = G'" one can easily see that G KA is valid iff it is not invalid, and vice versa.
Furthermore, this definition of satisfaction for pointed Kripke structures corresponds to
the one presented by Wilke [19] in Sec. 3 of his paper. Equivalence of the definition and
the rules to the well known satisfaction of Kripke Structures with the modal p-calculus
follows from Theorem 3 in the same paper.

Example 2.4.1. Considering the pointed Kripke structure Kin Example 2.2.1 on page 7
and the alternating tree automaton Ain Example 2.3.1 on page 10, one can construct
the associated property game G kA

A section of this property game is illustrated in Figure 2.5 on the following page. Since
K is not finite, the resulting property game G RA cannot be finite, too. This is illustrated
by ---. Put simply, the section of the game repeats its self ad infinitum. Additionally,
unreachable game positions are not depicted, such as (w1,q}) € W x Q /1 Or as it is

depicted in the figure (”?i{;;e) For the rest of this example I will use the less formal

notion used in the figure to denote game positions.
Nevertheless this section of the property game can be used to sketch a winning strategy
for Player 0:

° (”:i/\ﬁ): Player 0 picks (n:%\ﬂe),

O1
o (n?ife): Player 0 picks (nzg\e)’
) e

. (”?;2/\6): Player 0 picks (":F}\l/\ﬂe).

With this strategy, all finite plays end as soon as a game position (":é/l\ﬁe> or ( n=<>i1/\e>

is reached. Player 0 picks (":ODAW) or (”Zg\e), Player 1 will be forced to move, but is

not able to do so. Also, all plays that never reach one of the game positions mentioned
above are infinite. These plays are also won by Player 0 since the maximum over all
infinitely often occurring parity numbers is zero, which is even. Thus K satisfies A.

14
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Figure 2.5: A property game. Green circles are Cj game positions, red circles are C game
positions, and black circles are Cj/; game positions. Values of the parity
function ¥ and values of the validity function w are depicted near the corre-
sponding game positions. Solid arrows depict strong game transitions, dashed
arrows weak game transitions, and dotted arrows junction game transitions.
World names as well as state names are omitted, instead the predicates (€ £)
and transition symbols (€ ¢) are depicted.
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Underlying Structures and Methods

3.1 Predicate Abstraction

Predicate abstraction is a technique used to counter the large (possibly infinite) number
of game positions inherent to the construction of property games with pointed Kripke
structures. Here, predicate abstraction is used to reduce the number of worlds in a given
pointed Kripke structure, thus reducing this concrete structure into an abstract one.

Definition 3.1.1 (Abstraction function). Let K be a pointed Kripke structure, with
K = (W,w,R,L) and let I be a set of abstract worlds usually with |I| < |[W|. An
abstraction function « is a total function « : I — £ which assigns a formula of £ to each
abstract world.

With the help of the extension function [-] (see Definition 2.2.3 on page 6) one can deter-
mine the set of concrete worlds (C W) which are abstracted into an abstract world i € I.
Thus all w € [a(i)] for an ¢ € I are abstracted into the same abstract world i. Similarly
two worlds w,w’ € W are said to be compatible iff there exists an i € I with w € [«(i)]
and w’ € [a(7)].

Example 3.1.1. Let & : I — L be an abstraction lencti()Nn~ fqr the pointed Kripke
structure K described in Example 2.2.1 on page 7 with I = {4,7,7"} and

° 07(% = (n >0),
o &(;’):(n:())/\ﬁe, and
e a(i")=(n=0)Ae.

Thus, with the help of the extension function [-], one gains the concrete worlds (€ W),
abstracted by the elements of I:

i [a(i)] = [n > 0] ={wn | n € N},
i [a()] = [(n = 0) A —e] ={a'},
i [a(@")] = [(n=0) A¢] ={a"},

Clearly all w,,,n € IN are compatible worlds under &.

16
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3.2 Abstraction Techniques

Let K{* be an abstracted structure. This means K¢ is derived from a pointed Kripke
structure K by applying the abstraction function « to I and adjusting the rest of the
structure in a defined way. Fecher and Huth [6] utilized an abstraction technique called
pre-abstraction, which uses generalized Kripke modal transition systems as abstracted
structures, as well as a technique called post-abstraction, using py-automata as abstracted
structures. I developed a combination of these two abstraction techniques utilizing a new
kind of automaton, called generalized p-automaton [18], as the abstracted structure.

An abstraction technique is called sound iff for all alternating tree automata A, the
abstracted structure satisfies A does imply that the concrete pointed Kripke structure
satisfies A. Generally, the opposite implication does not hold.

In the following, let K = (W, @, R, L) be a pointed Kripke structure, I a set of abstract
worlds, o : I — L an abstraction function, and A = (Q,§,d,0) an alternating tree
automaton.

3.2.1 Pre-Games and Pre-Abstraction

Pre-games are similar to property-games as defined for pointed Kripke structures (see
Definition 2.4.7 on page 13). Each game position is a pair (¢, q), where i € I is an abstract
world and ¢ € @ is an alternating tree automaton state. Before applying any rule (so
the name pre) of a validity or invalidity play, Player 1 (or Player 0) chooses one concrete
world w with w € [a(7)]. This world is used to determine the rule in the property game
Gk A at the game position (w,q), resulting in (w’,¢’). Then the new game position in
the pre-game is (i/,¢’) with w’ € [a(7')].

Hence one can only validate or invalidate properties encoded in A that hold for all
compatible worlds.

Thus the idea is to base the game upon an abstract structure, while performing all
actual moves upon the concrete structure. This leads to pre-abstraction, which uses
generalized Kripke modal transition systems incorporating must-hypertransitions to im-
plement the abstraction given by « as well as the possible world changes inherent to
pre-games.

Definition 3.2.1 (Generalized Kripke modal transition systems). A generalized Kripke
modal transition systems G over L is a tuple (T,f, R, R*, L) where

e T is a (nonempty) set of worlds,

e { € T is an initial world,

o R~ CT xP(T) is its set of must-hypertransitions,
e RT C T x T is its set of may-transitions, and

o L: T — L[ is its labeling function.

G is finite whenever T is.

17
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Figure 3.1: A generalized Kripke modal transition system. Circles depict worlds t € T,
dashed arrows ¢ --+ ¢’ denote may transitions (¢,¢') € RT, while solid arrows
t — {t1,...,tp},n € IN represent must-hypertransitions (¢, {t1,...,t,}) €
R~. Labels L(t) € L are depicted in small font near the corresponding
worlds, while world names are omitted for the sake of simplicity.

The complete means of constructing the generalized Kripke modal transition system via
pre-abstraction from a pointed Kripke structure and an abstraction function are left to
the paper of Fecher and Huth [6], Definition 7.

Soundness of pre-abstraction is shown by Fecher and Huth [6].

Example 3.2.1. An example of a generalized Kripke modal transitions system result-
ing from the pointed Kripke structure in Example 2.2.1 on page 7 and the abstraction
function & and the set of abstract worlds I from Example 3.1.1 on page 16 can be seen
in Figure 3.1.

As one would expect from the abstraction function &, all concrete worlds w,, for n € IN
are abstracted into a single abstract world ¢. The labeling function simply corresponds
to the abstraction function.

There exists a may-transition (i,i") € RT if there exists at least one transition from
any concrete world abstracted by 7 to any concrete worlds abstracted by 7. There
exists a must-hypertransition (7, {i1,...,i,}) € R~ if there exists a transition from all
concrete worlds abstracted by ¢ to a concrete world abstracted by one abstract world
from {i1,...,in}.

Formally the generalized Kripke modal transitions system G is defined as:

G = (T,i,R,R", L) with
Ty =]

R™ = {(;7 {;})7 %7 {g/’%//})}a
R* = {(i,1), (1,7, (1,4")}, and
L(t)=a(t) forallt € T.
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Figure 3.2: A p-automaton. OR-worlds (€ O) are depicted as double-lined circles and
BRANCH-worlds (€ B) as small solid circles. L(b) € £ at a BRANCH-world
b are depicted in small font next to the corresponding worlds. Arrows o — b
and b — o denote OR-relations (0,b) €= respectively BRANCH-relations
(b,0) €—. World names are omitted for the sake of simplicity.

3.2.2 Post-Games and Post-Abstraction

The idea of post-games is similar to the idea of pre-games. Instead of switching to a
compatible world prior to a move in the game, one switches after every move of the game
(hence the name post). Each game position is a pair (w,q) with w € W and ¢ € Q. After
applying any rule of a validity or invalidity play in the property game G 4, resulting
in game position (w’,q’), Player 1 (or Player 0) chooses one compatible world w” € W
(i.e. Ji € I : w',w” € [a(i)]). Then the new game position in the pre-game is (w”,q’).
Hence one is usually able to validate or invalidate more properties than in pre-games,
albeit at a usually higher cost.

This leads to post-abstraction, which uses p-automata to implement the abstraction
given by a as well as the possible world changes inherent to post-games.

Definition 3.2.2 (p-automata). A p-automaton M over L is a tuple (O, B,w, =, —, L)
such that

e O is a set of OR-worlds,

e B is a set of BRANCH-worlds (disjoint from O),

e W € OU B is an initial world,

e =C O x B is its OR-transition relation,

e —C B x O is its BRANCH-transition relation, and
e L: B — L is its labeling function.

M is finite if both B and O are.

The complete means of constructing p-automata via post-abstraction from a pointed
Kripke structure and an abstraction function are left to the paper of Fecher and Huth
[6], Definition 10.

Soundness of post-abstraction is shown by Fecher and Huth [6].
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Example 3.2.2. An example of a g-automaton resulting from the pointed Kripke struc-
ture in Example 2.2.1 on page 7 and the abstraction function & and the set of abstract
worlds I from Example 3.1.1 on page 16 can be seen in Figure 3.2 on the previous page.

Similar to Example 3.2.1 on page 18 all concrete worlds w, for n € IN are abstracted
into a single abstract OR-world 7. Seen altogether, the set of OR-worlds corresponds to
the set of abstract worlds I. Additionally, there is a set of BRANCH-worlds for each
OR-world. Each element of such a set corresponds to an equivalence class of concrete
worlds abstracted by the particular OR-world. Each BRANCH-world (equivalence class)
is a tuple consisting of two parts. As mentioned before, each BRANCH-world is assigned
to a subset of the concrete worlds abstracted by the OR-world. The first part of the
BRANCH-tuple is the set of abstract OR-worlds reachable from the respective BRANCH-
world (the abstract worlds that abstract the concrete worlds that are reachable by the
concrete worlds assigned to the BRANCH-world). The second part is the formula (€ £)
that holds true at all concrete worlds belonging to the equivalence class. For a more
detailed explanation of the construction of the equivalence classes see Fecher and Huth
[6], Definition 10.

The set of transitions is calculated easily. Each OR-world is connected to its set of
BRANCH-worlds and each BRANCH-world is connected to the OR-worlds encoded with
itself. The labeling simply corresponds to the second part of each BRANCH-tuple.

Formally the p-automaton M is defined as M = (O, B,i,=,—, L) such that

«O= [P =T
o B = {by,by,V,b"} with
- b= ({7 0> 0) A ),
- ?2 = {i,7"},(n>0) Ae),
= b =(0,(n=0)A—e),
~ ¥ = =0)Ae)},
* == {(z’b 7(’57 b%)v(lia b/) ('” b”)}
{( 1, 7(b17i/)>(b27 ) (b27 )} and
( ) = IIz(b) for all b € B.

1)
i)
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3.3 Generalized py-Automata

The model of generalized p-automata results from a combination of pre- and post-
abstraction [18|. Its basic idea is to employ the simpleness of pre-abstraction, as far
as possible, and to switch to post-abstraction if must-hypertransitions would lead to
greater complexity. In other words one employs the generalized Kripke modal transition
system where all must-hypertransitions are replaced by additional worlds and transitions
according to a local post-abstraction.

Let K = (W,w,R,L) be a pointed Kripke structure, I a set of abstract worlds,
a: I — L an abstraction function, and A = (Q, §,6,6) an alternating tree automaton.
In addition to the abstraction function, an index function ¢ is needed with ¢ : I — {v, u}.
This index function maps each abstract state ¢ € I to the technique to be applied at that
state: a local pre-abstraction (v) or a local post-abstraction ().

Note. As an additional constraint, ¢ has to guarantee that +(i) = p if local pre-abstraction
at the abstract world ¢ would lead to a must-hypertransition.

There are three disjunct sets of worlds in a generalized p-automaton. The set of TRANS-
worlds T and the respective transitions (starting in these worlds) represent the “pre-
abstraction-part”, thus the underlying pre-abstraction (i.e. a generalized Kripke modal
transitions system) without must-hypertransitions. 7' consists of the abstract worlds
i € I with (i) = 7. The sets of OR~-worlds O and BRANCH-worlds B and the respective
transitions form the “post-abstraction-part” (i.e. a p-automaton). O consists of the
abstract worlds i € I with ¢(i) = p, while B consists of additional worlds, where each
b € B is clearly assigned to one OR-world.

No actual means to construct a complete generalized py-automaton for a given pointed
Kripke structure with a set of abstract worlds, an abstraction function and an index
function will be given here. Instead Section 3.3.1 Refinement Games on page 23 will
present a technique to check whether a given generalized p-automaton is an abstraction
of a given pointed Kripke structure.

Definition 3.3.1 (Generalized p-automaton). A generalized p-automaton GM for a
pointed Kripke structure K is a tuple (7,0, B,i, R, R",=,—, L) such that

e T is the set of TRANS-worlds,

e O is the set of OR-worlds,

e B is the set of BRANCH-worlds,

i € (TUO) is its initial world,

R™,RT C Tx(TUO) is the set of must- and may-transition relations (respectively),
e =C O x B is the set of OR-transition relations,

e —C B x (T'UO) is the set of BRANCH-transition relations, and

e L:(TUB)— L is alabeling function.

GM is finite if T, O and B are.

Definition 3.3.2 (Well-formed). A generalized p-automaton GM is called well-formed
iff (w1, ws) € R~ implies (wy,wy) € R, thus R~ C RT.
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Figure 3.3: A generalized p-automaton. TRANS-worlds (€ T') are depicted as unfilled
circles, OR-worlds (€ O) as double-lined circles and BRANCH-worlds (€ B)
as small solid circles. The labeling L(w) € L of a world w is depicted near
the corresponding world. Solid arrows t — w between TRANS-states and
from TRANS- to OR-states are must-transitions (¢, w) € R~, while dashed
arrows t --» w are may-transitions (t,w) € RT. Arrows o — b denote OR-~
transitions (o0,b) €=, while b — w denote BRANCH-transitions (b, w) €—.
World names are omitted for the sake of simplicity.

Example 3.3.1. An example of a generalized p-automaton resulting from the pointed
Kripke structure in Example 2.2.1 on page 7 and the abstraction function & and the set
of abstract worlds I from Example 3.1.1 on page 16 is illustrated in Figure 3.3.

As one can easily see, the worlds of the generalized p-automaton GM match the worlds
of the generalized Kripke modal transition system G (Example 3.2.1 on page 18) almost
perfectly. The only difference results from the world ¢ where the must-hypertransition
in G starts. This world is replaced with i from M (Example 3.2.2 on page 20) along
with the BRANCH-worlds b; and by. Clearly, all worlds w € {i’,4"} are inside the “pre-
abstraction-part”, while all worlds with w € {i, by, bQ} are inside the “post-abstraction-
part”.

For every world w from the “pre-abstraction-part” all transitions {w}. R and {w}.R™
from G are taken over to GM (none in this case). Similarly, for all worlds w from
the “post-abstraction-part” all transitions {w}.=% and {w}.— are taken over to their
respective relations within GM.

Finally the labeling function of each underlying automaton is wrapped to the respective
worlds.

_ Formally the generalized pi-automaton GM is defined as:

GM = (T,0,B,i,R™, R, =, —, L) with

T = {?,2”}, 0= {5}, B = {51,52},
—={h

R* ={},

=={(i,b), (i,b2)},
—={(b1, ), (b, "), (ba, 1), (b, ")}, and

o L: (TUB)—>£w1thg — (n=0)A —|e7ii’»—>(n:0)/\e;
by — (n>0) A—e;by— (n>0)Ae.
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3.3.1 Refinement Games

Generally, refinement is the opposite technique of abstraction. If model M; refines
model Ms then My abstracts M;. The notion of refinement games presented below,
and developed in [18], allows one to correlate two given generalized p-automata and
construct an abstraction (refinement) hierarchy of such automata.

Definition 3.3.3 (Pointed Kripke structures as generalized p-automata). Pointed Kripke
structures can be embedded in the set of generalized p-automata. Given a pointed Kripke
structure K = (W, w, R, L), one can construct an equivalent generalized p-automaton
GM[K]=(W,0,0,w,R,R,0,0, L), with

L:W—L;
w= /\peﬁ/\we[[p]] (p) N /\pe/;/\wg[[p]] (_‘p)-

It is easy to see that for any alternating tree automaton A: K | A iff GM[K] = A,
since the property game for GM[K]| equals the property game for K (see Definition 3.3.7
on page 25).

Refinement of generalized py-automata is defined with the help of refinement games, which
are special kinds of parity games. Two players (Player a and Player b) play this game on
a field consisting of two generalized p-automata GM, = (T, O, By, Wa, R, , R}, =4, —4
yLq) and GM,, = (T, Oy, By, wy, Ry, R;r, =, —b, Lp). To simplify the notations, define
Wo=T,U0,UB, and Wy, =T, U Op U By,

Each configuration of the game is a pair (wg, wp) € W, X Wy, Initially a pawn is placed
on the initial worlds of each automaton, resulting in the initial configuration (g, wp).
Refinement games are played in rounds with a set of rules detailing which player moves
the pawns in which way on the field each round, resulting in a new configuration. If more
than one rule is applicable a single one is chosen by Player b. Each player wins a play
iff the other one is losing. Winning conditions for finite plays are detailed by the rules.
Additionally, a play is lost if one player is forced to take a turn which is impossible to do
(e.g. one pawn should be moved to an unreachable/non-existing position). Infinite plays
are won by Player a.

Definition 3.3.4 (Winning strategy). A player is said to have a winning strategy iff he
has a strategy to move the pawns on his turns that allows him to win all plays regardless
of the moves the other player performs and the rules chosen.

Definition 3.3.5 (Refinement). Let GM, = (T, Oy, Bq, Wa, R, , R}, =4, —a, La) and
GMy = (Ty, Oy, By, 1, R, R;, =y, —p, Lp) be two generalized p-automata. GM, refines
GM, (and GM, abstracts GM,) iff Player a has a winning strategy for all refinement
plays (using the rules stated in Definition 3.3.6 on the following page) between G M, and
G M, started at (g, Wp).
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Definition 3.3.6 (Rules for refinement games). The rules for refinement games be-
tween two generalized p-automata GM, = (T,,0q, Ba,Wa, Ry, BY, =4, —a, La) and
GM, = (Tb, Oy, By, Wy, Rb_’ R;_, =p, —b, Lb) with W, = T,UO0,UB, and W}, = T,UO,UBy
at configuration (wg,wp) € W, x W) are presented below, divided by a case analysis on
the considered configuration:

wq € Og: Player b picks w!), € {w,}.=; next configuration: (w/,wp),
wa & Oq N wy, € Op: Player a picks wy € {wp}.=3; next configuration: (wq,wy),
wq & Og AN wy &€ Oyp: Player b chooses any of the following alternative rules:

1. Player a wins iff Satisfiable(Lq(wq) A Ly(wp))

2. Player b picks wy € ({wp}. R, ) U ({wp}.—0);
Player a picks w), € ({we}.R; ) U ({we}.—a);
— the next configuration is (wj,, w})

3. Player b picks w), € ({we}.RF) U ({wa}-—0a);
Player a picks w) € ({wp}.R;) U ({wp}.—);

< the next configuration is (wj,, w})
Refinement games are sequences of configurations generated by these rules.

Example 3.3.2. The generalized p-automaton GM from Example 3.3.1 on page 22 is
an abstraction of the pointed Kripke structure K from Example 2.2.1 on page 7, or more
precisely an abstraction of the generalized py-automaton GM [IN( ].

So, GM, is GM[K K| and GM, is GM. The initial configuration is (w1, 1).

Player a picks by, resulting in configuration (wy, bl) Player b may now pick one of
three rules. If Player b picks the first rule, Player a would win.

If Player b picks the second rule and w, = i/, Player a picks w, = w’. Now, Player b
can only select the first rule, and Player a wins.

If Player b picks the third rule and w, = @', Player a picks wp = i'. Now, Player b
can only select the first rule, and Player a wins.

If Player b picks the second rule and wy, = ¢, Player a picks wq = @ws. If Player b picks
the third rule and w, = w9, Player a picks wy, = 7. Thus, the new configuration is (ws, %),
similar to the initial configuration.

A winning strategy for Player a is similar to the part sketched above. At a Conﬁguratlon
(Wop—1,1 ) for n € IN, Player a picks w, = bi. At a configuration (way,, ) for n € IN,
Player a picks wy, = by. If Player b picks the second rule and w, = ', Player a picks
w, = w'. If Player b picks the second rule and wy, = 7", Player a picks w, = w". If
Player b picks the thlrd rule and w, = @', Player a picks wp = ¢’. If Player b picks the
third rule and w, = @", Player a picks w, = ¢"’. If Player b picks the second rule and
wy = 5, Player a picks w, = wy+1. If Player b picks the third rule and w, = Wy41,
Player a picks wp = 1.

It is easy to see that Player a wins all refinement plays if he utilizes this strategy. Thus
GM abstracts GM|K].
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3.3.2 Property Games

Satisfaction of a generalized p-automaton with respect to a property encoded into an
alternating tree automaton is obtained with the help of special strong-weak-parity-games,
called property games.

Definition 3.3.7 (Property game). A property game for a generalized p-automaton
GM = (T,0,B,i,R~,R",=,—, L) and an alternating tree automaton A = (Q, ¢, 9, 0) is
defined as the strong-weak-parity game Ggua = (Co, C1, Co1, (3, 4), G, Gt,G°,0,w),
where

o Co=(TUB) x Qu,

e Ci =(TUB) x Qi

e Cyy1=(TUB) x Q1 UO xQ,

e G ={((t,q),(i,¢)) | 6(¢) € {0¢",O¢'} A (t,7) € R™}
U{((b,9),(4,q)) | 6(q) € {0d",0d'} A (b,7) €=},

o GT={((t,q),(5,¢)) | 6(q) € {0¢',0q'} A (t,i) € RT}
U{((b,9),(i,d")) | 6(q) € {0d, 0’} A (b,i) €=},

o G°={((i,9),(i,¢)) i € (TUB)A3¢":5(q) € {d',a'Vq",¢"Vd',d'Nd" . ¢"N\d'}}
U{((0,4),(b,q)) | (0,b) €=},

e ¥(i,q) = 0(q), and

tt, if g€ Qo1 Ni€ (TUB)A(L() = d(q))
e w(i,q) =< ff, ifqgeQynie(TUB)A(L(i)= —d(q))

1, otherwise.

Definition 3.3.8 (Satisfaction for generalized p-automata). A generalized p-automaton
GM satisfies an alternating tree automaton A, written GM = A iff the corresponding
property game G, 4 is valid.

This definition of satisfaction is consistent with the definition given in [18], albeit being
more formalized.

Theorem 3.3.1. A property game for a well-formed generalized p-automaton is a well-
formed strong-weak-parity-game.

Proof. Let M = (T,0, B, i, R™,R", =, —, L) be a well-formed generalized p-automaton.
Let A be an alternating tree automaton. Let Gara = (Co, C1,Cy/1,6,G™, GT,G°,9,w)
be the resulting strong-weak-parity-game.

According to Definition 2.4.6 on page 12, one has to show that G~ C G in order to
prove that Gy 4 is well-formed.

Each set of transitions (G~ and G™) consists of the union of two distinct sets. The
first set is dependant on R~ and R™, respectively. Since M is well formed, the first set
of G~ is a subset of the first set of GT. The second set is only dependent on — in both
cases, thus the second sets are the same. Hence, G~ C G™. O
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Example 3.3.3. Considering the generalized p-automaton GM in Example 3.3.1 on
page 22 and the alternating tree automaton Ain Example 2.3.1 on page 10, one can
construct the associated property game G 5+, This property game is illustrated in
Figure 3.4 on the following page.

In the rest of this example I will use the less formal notion used in the figure to denote
game positions (similar to Example 2.4.1 on page 14).

It is easy to find a winning strategy for Player 0 in this game:

GM,A"

”>0/\6) Player 0 picks ("7 0/\6),

(
o (” g/\ﬁe) Player 0 picks ("~ OAﬁe),
>07e) . Player 0 picks ("3°), and
("5): ("3,

o <”>gg\ﬂe) Player 0 picks (">0).

The first two cases lead to an infinite game that is won by Player 0. The last two cases
lead Player 1 being unable to move, thus Player 0 wins.

Its easy to see that the winning strategy is simply an adaptation of the winning strategy
of Example 2.4.1 on page 14.
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Figure 3.4: A property game. Green circles are Cy game positions, red circles are C1 game
positions, and black circles are Cj/q; game positions. Values of the parity
function ¥ are omitted (here always 0). Values of the validity function w are
depicted near the corresponding game positions. Solid arrows depict strong
game transitions, dashed arrows weak game transitions, and dotted arrows
junction game transitions. World names as well as state names are omitted,
instead the predicates (€ £) and transition symbols (€ §) are depicted.

q@% q@
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GMPO . “Q |

/

Figure 3.5: The initial generalized p-automaton. The sole TRANS-world (€ T') is de-
picted as a unfilled circle. NO OR~worlds (¢ O) or BRANCH-worlds (€ B)
are present. The labeling L(Q2) € L of the sole world € is depicted near the
world. The dashed arrow Q --» Q is a may-transitions (Q,) € R™. There
are no must-, OR-, or BRANCH-transitions. World names are omitted for
the sake of simplicity.

3.3.3 A Most Abstract Generalized p-automaton

With the help of refinement games one can construct a generalized p-automaton that
is an abstraction of all possible pointed Kripke structures, called initial generalized
p-automaton.

Definition 3.3.9 (Initial generalized p-automaton). The initial generalized p-automaton

is defined as GM° = ({Q},0,0,9,0,{(Q,Q)},0,0,Q — {tt}).

Thus the initial generalized p-automaton consists of a single world. The sole may-
transition means that in the concrete structure any transition may happen, but there
need not be any transition. The initial generalized p-automaton can be seen in Fig-
ure 3.5.

Lemma 3.3.1. The initial generalized p-automaton GMP abstracts any pointed Kripke
structure.

Proof. Let K = (W, w, R, L) be a pointed Kripke structure. Let GM[K] be the associated
generalized p-automaton with GM[K] = (W,0,0,w, R, R, 0,0, L).

Proving that GM K] refines GM? requires a winning strategy for Player a. Since there
are no OR-worlds in GM[K] or GM?, only the set of three alternate rules will be used.

The first rule would always be a win for Player a, since Player b can only select tt,
which holds true at every world of pointed Kripke structure. The second rule is not
applicable since there are no must- or BRANCH-transitions in GM°?. The third rule
lets Player b select any transition from the pointed Kripke structure. Player a simply
selects the may-transition (€2,2) and the play can continue. All infinite plays are won
by Player a.

Thus Player a wins all plays and GM K] refines GM?. O

With the help of the initial generalized p-automaton GMC one can construct an initial
property game.
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Figure 3.6: The initial property game. Green circles are Cy game positions, red circles are
C1 game positions, and black circles are Cjy/y game positions. Values of the
parity function ¢ are omitted (here always 0). Values of the validity function
w are depicted in small font. Dashed arrows depict weak game transitions, and
dotted arrows depict junction game transitions. World names as well as state
names are omitted, instead the predicates (€ £) and transition symbols (€ §)
are depicted.

Definition 3.3.10 (Initial property-game). The initial property-game for a pointed
Kripke structure K = (W,w, R, L) and an alternating tree automaton A = (@, ¢,0,0)
is defined as the property-game Ggpo 4 with

GGM07A = ({Q} X Qo, {Q} X Q1, {Q} X QO/lv (Qv(j)7 {},G+,Go,19,w), and

o GT={((249),(2,4)) | (q) € {0d,0q'}},

o G°={((29),(2,d))|3¢":0(q) € {d.d'Vd",q"Vd' . d'Aq",q"A¢'}}, and
tt, if g€ Qo1 NO(q) = tt

e w(Qq) =1 ff, fqe Qo Nilq) =1

1, otherwise.

As expected this initial property game is independent of the pointed Kripke structure K.
Furthermore the set of strong game transitions is empty. This means that this game is
based upon a fully abstracted system, where any transition inside the the system may
occur but does not have to.

Example 3.3.4. The initial property game GGmO, ; for the alternating tree automaton
A from Example 2.3.1 on page 10 is illustrated in Figure 3.6.

If in a validity play Player 1 picks the path to configuration ( étl ) , Player 0 can’t move,
thus Player 1 wins all validity plays. Thus the game is not valid.

If in an invalidity play Player 1 picks the path to configuration ( éi), Player 0 can
pick the path to (%) There, Player 1 can’t move and looses the play. If Player 1 picks

the path to configuration ( é’;), Player 0 can pick the path back to (%) Infinite plays

are won by Player 0. Thus Player 0 wins all invalidity plays and the game is not invalid.

Thus initial property game GGmo 7 is neither valid nor invalid.
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3.4 Abstract Property Games

The basic idea is that abstract property games are a superset of property games for
generalized p-automata that allow finer refinement steps.

The usual property game for generalized p-automata is based upon a cross-product of
the worlds of a generalized p-automaton with the states of an alternating tree automaton.
Any prior notion of refinement is based upon the generalized p-automaton, thus any new
refined property game will be a cross-product again. The algorithm presented in the next
chapter will utilize a lazier notion of refinement. Instead of splitting any abstract world
in the generalized p-automaton, a single game position containing the abstract world will
be split. Since any abstract world will be contained in more than one game position, but
(usually) only one game-position will be split, the resulting new refined game is no longer
the cross-product of a generalized p-automaton with the alternating tree automaton. It
is easy to see that there exists a series of refinement steps that will again lead to an usual
property game (one simply splits all game positions that contain the abstract world).

Each abstract property game is seen in the context of a pointed Kripke structure
K = (W,w, R, L) and an alternating tree automaton A = (@, ¢, d,0) and consists of a
tuple encoding a set of abstract worlds I for the pointed Kripke structure, an abstraction
function « associating each abstract world with one or more concrete worlds, an index
function ¢ assigning each abstract world to a local pre- or post-abstraction, and finally a
strong-weak-parity-game G = (Co, C1,Cy1,¢, G, GT,G°,9,w) encoding the (in)validity
of the abstract structure.

Similar to generalized p-automata, each abstract world (€ I) is mapped to one of two
sets (via ¢), the set of TRANS-worlds 7" and the set of OR-worlds O. For each OR-world
0 € O, there is a additional set of BRANCH-worlds B, that is not part of I. The set of
all BRANCH-worlds B is the union of all B, for all o € O. Each set B, represents a split
of the abstract world o into several finer abstract worlds (€ B,), i.e. all BRANCH-worlds
of the set B, together describe the abstract world o. Each abstract world b € B, encodes
the abstract worlds reachable from b as well as a proposition taken from £ that is true
at o as well as at all concrete worlds abstracted by b.

Similar to property games of generalized p-automata, each game position (¢ € C) of
the strong-weak-parity-game G is a tuple ¢ = (i,q) € (TUOUB) x Q. Furthermore game
positions (i, q) containing abstract TRANS- and BRANCH-worlds as its first component
are assigned to Cp, C1, and Cy/; according to d(g). Game positions containing abstract
OR-worlds as its first component are always assigned to Cp/1.

Strong and weak game transitions between two game positions (i,q) and (i’,¢’) only
occur if there is a possible change in the abstract world, i.e. the alternating tree automa-
ton state contains a quantifier (¢ € Qquan) and the abstract world encoded in the first
component is a TRANS- or BRANCH-world (i € TUB). Junction game transitions only
occur if the abstract world encoded in the first component stays the same, i.e. either the
alternating tree automaton state contains no quantifier (¢ € Qm), or the game tran-
sition is a transition from an abstract OR-world to an abstract BRANCH-world (i € O
and i’ € B).

Thus, similar to normal property games for generalized p-automata, strong and weak
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game transitions may only start in game positions containing TRANS- and BRANCH-
worlds and end only in game positions containing TRANS- and OR~worlds. Furthermore,
any transition starting in a game position containing an OR-world must be a junction
game transition leading to a game position containing a BRANCH-world.

Definition 3.4.1 (Abstract property game). An abstract property game for a pointed
Kripke structure K = (W,w, R, L) and an alternating tree automaton A = (Q,¢,0,6)
is defined as the tuple Px 4 = (I,,t,G) where I is a set of abstract states, « is an
abstraction function, ¢ is an index function, and G is a strong-weak-parity-game with
G = (Co,C1,Cy1,¢,G~,G*,G°,9,w) such that

T={ieI|ui)=n},
O ={ieI[ui)=n},
BCP() x L,

e Gy C(TUB) x Qo
C, C(TUB) x Qq,
Coy1 € (T'UB) x Qoy1 JO x Q,

e Jicl: ¢=(i,4) €C,

GGt C{((4,9), (I, q)) € (CoUC1) x C | ' € TUO Ad(q) € {0, 0¢'}},
G° C{((4,9),(i,¢)) | i e (TUB)A 3" : 6(q) € {d',d'Vd",d"Vd',d' A", ¢"Ad' }}
U{((o,q),(b,q)) |o€ ONb e B},

e J(i,q) = 0(q).

Definition 3.4.2 (Initial abstract property game). The initial abstract property game
for a pointed Kripke structure K and an alternating tree automaton A is the abstract
property game P%A = (I,a,¢,G) with

o () = tt,
e () =7, and

e G = Ggpmo, 4, the initial property game (Definition 3.3.10 on page 29).

Definition 3.4.3 (Validity). An abstract property game Px s = (I, a,t,G) is valid iff
the strong-weak-parity-game G' is valid. Pk 4 is invalid iff G is invalid.

Definition 3.4.4 (Soundness). An abstract property game Pk 4 is said to be sound iff
Pk 4 is valid implies that K = A and Pk 4 is invalid implies that K = A.
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Lemma 3.4.1 (Sound abstract property games). Let K = (W,w,R,L) be a pointed
Kripke structure and A = (Q, §,0,0) an alternating tree automaton. An abstract property

game P 4 = (I,a,1,G) with G = (Co, C1,Cy1,¢,G7, GT,G°,9,w) is sound if

1. diel:¢=(i,q) €e Chw € [a(i)]
The abstract world i of the initial configuration ¢ is an abstraction of the initial
world w.

2. G is well-formed.

3. V(i q),(',q) € Cwith i, € I - (i #7 = ([a()] € [a(@)] A [a(@)] £ [«(3)]))
There must not exist game positions that only differ in the first component and
where one abstract world is a finer version of the other abstract world, i.e. '
abstracts a subset of the concrete worlds abstracted by i.

4. Y((t,q),(i,¢)) € G- witht e T,i eI : YVw € [a(t)] : I € [a(i)] : (w,w’") € R
Strong game transitions starting at a game position containing a TRANS-world re-
late to must transitions of generalized p-automata and pre-abstraction respectively.
Consequently for each strong game transition starting at a game position contain-
ing the abstract world t and ending at a game position containing ¢, there has to be
a transition in the pointed Kripke structure for every w abstracted by t to any w'
abstracted by i.

5. Ye e Cy Uy with c= (i,q) and i € I and w(c) = L:
At all game positions that are not already valid or invalid...
5(g) = 04 — (Vw € [a()].R: (w b= ¢

= Ji": ((I",¢) € CAw € [a(@)] A ((4,9), (', ¢)) € GT))

...1f the second component of the game position is {q’, thus the game position is
i Cy and there is a possible change in the abstract world. Consider all concrete
worlds w, reachable in one step from the concrete worlds abstracted by ©. If the
(concrete) property game G 4 is valid at game position (w,q') (short: w = ¢'),
then there has to be a game position (i, q') such that i’ abstract w and there has to
be a weak game transition from (i,q) to (i',q"). This rule ensures that Player 0 can
disprove invalidity games.

5(q) =0¢ = (vw e [a(i)].R: (w I )
= 3" ((7",q) € CAw € [a(@)] A ((4,9), (7, 0')) € GT))

...1f the second component of the game position is (q’, then the game position is
in C1 and there is a possible change in the abstract world. Consider all concrete
worlds w, reachable in one step from the concrete worlds abstracted by i. If the
(concrete) property game Gk a is invalid at game position (w,q") (short: w - ¢q'),
then there has to be a game position (i',q") such that i’ abstract w and there has to
be a weak game transition from (i,q) to (i',q"). This rule ensures that Player 1 can
disprove validity games.

0(q) = @Vg2 = (Vj €{1,2}: (Gw € [a(i)] s w = ¢j) = (i,q5) € {c}.G?))
...if the second component of the game position is q1Vqo, then the game position is
in Cy and there is no change in the abstract world. Consider all concrete worlds
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w abstracted by i. If the (concrete) property game Gi o is valid at game posi-
tion (w,qy) or (w,qa), then there has to be a game position (i,q1) or (i,q2) respec-
tively, that is reachable via a junction game transition from (i,q). This rule ensures
that Player 0 can disprove invalidity games.

5(q) = iigs — (¥ € {1,2}: (B € [ali)] s w I q) = (i,qy) € {c}.G7))
...if the second component of the game position is q1/\qa, then the game position is
in Cy and there is no change in the abstract world. Consider all concrete worlds
w abstracted by i. If the (concrete) property game G a is invalid at game posi-
tion (w,q1) or (w,qa), then there has to be a game position (i,q1) or (i,q2) respec-
tively, that is reachable via a junction game transition from (i,q). This rule ensures
that Player 1 can disprove validity games.

Let Zy ={iel|Tw €w.R:w' € a(i)]} for allw € W be the set abstract worlds
that abstract the concrete worlds that are reachable (within one step) from w.
Ve € Cyjy with ¢ = (0,q), o€ {i € I'|1(i) = p} = O, and w(c) = L :
For each game position that encodes an OR-worlds o as its first component and that
is not yet valid or invalid...
VZ € {{v' € [a(0)] | Zw = Zw} | w € [a(0)]} :
Ad € (P(I) x L) x Q) C C with ¢ = ((Z', P),q) such that

(FweZz:7 =2,)

NP = alo)NVweZ:VpeLl:we]p] = (p = P))

A (e, d) e G°

ANMw(ld)=tt = YweZ:wEgN(w({d)=ff = YweZ:wlq)
...for each equivalence class Z, there has to be a corresponding game position that
encodes the abstract worlds that abstract any concrete world reachable (in one step)
from any concrete world in the equivalence class in addition to the formula that holds
true at all concrete worlds of the equivalence class. This equates to the definition
of BRANCH-worlds in post-abstraction. The simplest formula for P is P = «(0).
Furthermore each of these game positions ¢ containing an equivalence class is con-
nected via a junction game transition to the game position ¢ containing the respec-
tive OR-world.
Finally, if the validity function returns true or false at a game position (b, q), then
all concrete worlds w contained in the equivalence class of b have to be (in)valid
at (w,q).
Ve e (P(I) x L) x Q) C C withc= ((Z,P),q) and w(c) = L :
For each game position ¢ encoding a BRANCH-world that is still unknown...
3(q) =0 = (Vie Z:VYwe [a(@)]: (wE{)

= A eC:(d=00,¢)N(c,d) e GT A(c,d) € GT))

...1f the second component of the game position is {q’, then the game position is
i Cy and there is a possible change in the abstract world. Consider all concrete
worlds w, abstracted by the abstract worlds encoded in Z, which are the abstract
worlds reachable in one step from c. If the (concrete) property game Gi 4 is valid
at game position (w,q’) (short: w |= ¢'), then there has to be a game position (i,q’)
and there has to be a weak and a strong game transition from c to (i,q’). This rule
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ensures that Player 0 can disprove invalidity games.

i) =0¢ = (Vie Z:Vw € [ai)] : (w £~ )
= A eC:(d=00,¢)N(c,d) e GT A(c,d) € GT))

...1f the second component of the game position is (q’, then the game position is
i C1 and there is a possible change in the abstract world. Consider all concrete
worlds w, abstracted by the abstract worlds encoded in Z, which are the abstract
worlds reachable in one step from c. If the (concrete) property game Gk 4 is invalid
at game position (w,q'), then there has to be a game position (i,q') and there has
to be a weak and a strong game transition from ¢ to (i,q’). This rule ensures that
Player 1 can disprove validity games.

Let Wizpy={weW | cwR:3iecZ: (v ela(@)]Aw €[P])} be the set
of concrete worlds abstracted by the BRANCH-world (Z, P).

0(¢) =1V = (Vje{1,2}: (Bw e Wp) :wkEq)
= 3¢ e C: (' =((Z,P),q) N (c,c) € G°))

...if the second component of the game position is g1V qo, then the game position is
in Cy and there is no change in the abstract world. Consider all concrete worlds w
abstracted by the BRANCH-world (Z, P). If the (concrete) property game G A is
valid at game position (w,q’), then there has to be a game position ((Z, P),q') and
there has to be a junction game transition from c to ((Z, P),q'). This rule ensures
that Player 0 can disprove invalidity games.

0(q) = a1Age = (Vj € {1,2}: (Gw € Wiz p) 1 w |~ q))

= 3 e C:( =((Z,P),q) N (c,d) € G°))
...if the second component of the game position is g1Aqa, then the game position is
in C1 and there is no change in the abstract world. Consider all concrete worlds
w abstracted by the BRANCH-world (Z, P). If the (concrete) property game Gk 4
is invalid at game position (w,q'), then there has to be a game position ((Z, P),q’)
and there has to be a junction game transition from c¢ to ((Z,P),q’). This rule
ensures that Player 1 can disprove validity games.
Lt Wizpy={weW | cwR:3FieZ: (wela@]Aw €[P])} be the set
of concrete worlds abstracted by the BRANCH-world (Z, P).

Y(((Z,P),q),(i,q)) € G~ with (Z,P) € (P(I) x L), i €1 : Yw € Wizpy: ' €
[a(i)] : (w,w') € R

Strong game transitions starting at a game position containing a BRANCH-world
relate to BRANCH-transitions of generalized p-automata and post-abstraction re-
spectively. Consequently for each strong game transition starting at a game position
containing the abstract world (Z, P) and ending at a game position containing i,
there has to be a transition in the pointed Kripke structure for every w abstracted
by (Z, P) to any w' abstracted by i.

. Yee C with ¢ = (i,q) and i € I it is:

(wle) =ttt = Yw € [a@i)] :wE ¢ A (w(c) =ff = Yw € [a(i)] : w £~ q)

If the validity function returns true or false at a game position (i,q) then all concrete
worlds w abstracted by i have to be valid or invalid at (w,q).
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Proof. Let Pk 4 be a valid abstract property game that fulfils assertions 1.-9. Thus
there exists a winning strategy for Player 0 to win all validity games regardless of moves
Player 1 performs. Let P be the (concrete) property game of K and A. Let (w,q) be
the current game position in the concrete property game and let (i,q) be the current
game position in the abstract property game. Initially the current game position in both
games is the respective initial game position. Assertion 1 ensures that the initial game
position of the abstract property game corresponds to the initial game position of the
concrete property game. (A concrete game position (w,q) corresponds to an abstract
game position (i, q) if i abstracts w.)

Whenever Player 0 is able to make a move in the concrete property game, one has to
deduce the strategy for the move from the winning strategy for the abstract property
game. Whenever Player 1 makes a move in the concrete property game, one has to mirror
the move in the abstract property game.

Since the abstract game is valid, no play will ever reach an invalid abstract game
position. If the current abstract game position is valid, assertion 9 ensures that the
concrete game is valid, too. If a play never reaches a valid abstract game position,
i.e. the play is infinite, then the validness of the abstract property game ensures that
the maximum of all infinitely often occurring parity numbers is even. The definition
of abstract property games ensures that parity function only depends on the alternating
tree automaton. The constructed winning strategy (and the mirroring of moves) sketched
below, ensures that the abstract as well as the concrete property game always have the
same second component in their respective game positions, thus the maximum of all
infinitely often occurring parity numbers in the concrete property game is even, too.
And thus P is valid, too.

Suppose (w,q) € Cp, thus Player 0 must make a move. Since ¢ is independent of
the abstraction it follows that (i,q) € Cp, too. Player 0 has a winning strategy for the
abstract property game, thus he can select a new game position (i/,¢’) that ensures that
he will eventually win. There are two possibilities for the game transition ((i,q), (i, ¢')).
The simplest one is §(q) = q1Vqa, so the game transition is a junction game transition
(i.e. ¢/ = i) and the definition of (concrete) property games ensures that there is a
transition in P to the new game position (w,q’) that corresponds to the new abstract
game position (i,q’). The second possibility is §(¢) = ¢q’. Thus the game transition
is a strong game transition. Depending on (i) either assertion 4 or assertion 8 ensures
that there exists a concrete game position (w’,¢’) reachable in the concrete game that
corresponds to (i, ¢).

Suppose (w,q) € Cy and Player 1 moves to (w’,q’). This new game position can not
be invalid, since assertion 5 and 7 would ensure that this move could be mirrored in
the abstract property game which is valid. Thus the new game position (w’,¢’) must be
valid and there are only two possibilities: either there is no possible move in the abstract
property game and thus it is valid too, or there is a possible move to a new game position
(7', q") which corresponds to (w',q’).

Whenever a move in the abstract property game reaches an OR game position, special
care has to be applied. At these game positions Player 1 would perform an immediate
extra move that is not immediately mirrored in the concrete property game. Thus one
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moves the current abstract game position to the BRANCH game position that corre-
sponds to (w',q’), as assured by assertion 6.

So, with the help of the winning strategy for the abstract property game, Player 0 is
able to win all validity games in the concrete property game.

A similar reasoning holds true for invalid abstract property games that imply the
invalidity of the corresponding concrete property games. O

Theorem 3.4.1. The initial abstract property game P%A is a sound abstract property
game.

Proof. It is evident that the initial abstract property game is an abstract property game.
To prove its soundness all items of Lemma 3.4.1 on page 32 have to be shown.

Correct, since ¢ = (£2,G) and w € [a(Q)] = [tt] = W.
There are no strong game transitions, so G is well-formed.
There is only one abstract world.

There are no strong game transitions.

A

Definition 3.4.1 on page 31 ensures that at all game positions (€2,q) € C with
d(q) € {0¢',0q¢'} there is a weak game transition ((£2,¢), (€2,¢")). Thus, especially
for all w € [a(2)].R there is game position (€,¢') € C with w € [a(Q)] and
((2.0), (.4).

Similarly Definition 3.4.1 ensures that at all game positions (£2,q) € C with
8(q) € {q1Vq2,q1Ag2} there are a junction game transitions ((2,q), (2, q1)) and
((Qa Q)7 (Q7 q2))

There are no OR-worlds and no BRANCH-worlds.

There are no BRANCH-worlds.
There are no BRANCH-worlds.

For all ¢ € C with ¢ = (€, ¢) and w(c) = tt one has 0(q) = tt. Thus for all w € W:
w = tt. And for all ¢ € C with ¢ = (€2, ¢) and w(c) = ff one has 6(q) = ff. Thus
for all w € W: w -~ tt.

© ® N o

Thus the initial abstract property game is sound. O
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Chapter 4
CEGAR

4.1 Counter-Example Guided Abstraction Refinement

The usual approach to counter the state (world) explosion problem in model checking
is abstraction. Gaining the actual abstraction, i.e. the abstraction function, usually
requires considerable creativity and insight. Counter-example guided abstraction re-
finement, or short CEGAR, was invented by Clarke et al. [3] to enable the automatic
generation of the abstraction.

The CEGAR-~approach begins with an initial abstract model, that can be easily created.
From this abstract model one constructs a property game to perform a validity play.
This validity play either proves the property or provides a counterexample. Due to the
abstraction the counterexample may be erroneous (or spurious). The next step is to
perform an invalidity play on the property game. If this invalidity play confirms the
counterexample, the property is disproved. Otherwise the counterexample is spurious
and can be utilized to refine the abstract model. Then the cycle starts anew.

——{Build Abstract Model H Validity Game |—> Prove
Refinement M Invalidity Game |—> Disprove

Figure 4.1: The CEGAR-Cycle. Typically this cycle runs until either the validity game
proves the property or the invalidity game refutes it.

In the usual CEGAR-approach the abstraction function is modified in a way such that
the abstract world responsible for the spurious counterexample is split into two more
refined abstract worlds. Then a new abstract model is constructed with the help of the
abstraction function.

Lazy abstraction, as defined by Henzinger et al. [14], works directly upon the abstract
model. Instead of modifying the abstraction function and constructing a new abstract
model from scratch, most of the abstract model is kept. Only the abstract world respon-
sible for the spurious counterexample is split into two more refined abstract worlds and
the transitions leading to or leaving the abstract world are adjusted.
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Here an even lazier form of refinement is utilized. Instead of modifying the abstract
model and constructing a new property game in each turn of the CEGAR-cycle, the game
is modified directly.

Only the game position responsible for the spurious counterexample as well as all
game positions connected via junction game transitions to this one have to be split. All
of these game positions have in common that they contain the same abstract world as
its first component. Thus an even finer version of refinement is utilized in order to avoid
unnecessary blow up in the abstract structure.

This approach significantly shortens the CEGAR-cycle and reduces the size of the
property games. There is no need to construct an abstract model in every turn, there is
no need to construct a new property game in every turn, and only game positions that
are really relevant to the spurious counterexample are split. In addition this approach
allows a simplification of the games played. Validity or invalidity of parts of the game
structure, which were not affected by changes due to the refinement, does not have to be
rechecked, but remains known.

4.2 Simplified Games

Most strong-weak-parity-games can be simplified. For example, if any game position ¢
with w(c) = tt or w(c) = ff is reached, no further transitions will be taken (due to the
first rule of validity and invalidity games respectively). Thus any transitions leaving such
a game position can be removed. Similarly at any game position ¢ € Cy with w(c) = L,
Player 0 has to choose a transition. If he chooses any transition leading to game position
¢ with w(c’) = ff, he would lose the game. Likewise at any game position ¢ € Cy with
w(c) = L, Player 1 has to choose a transition. If he chooses any transition leading to
game position ¢ with w(c¢’) = ¢, he would lose the game. Thus any of these transitions
can be removed.

Definition 4.2.1 (Simplified game). A strong-weak-parity-game G is called simplified if
(i) it is valid in c € C iff w(c) = tt,
(ii) it is invalid in ¢ € C iff w(c) = ff, and
(iii) there are no game transitions (¢, ¢’) with
a) w(c) = tt or w(c) = ff,
b) ¢ € Cy and w(c') = ff, or
¢) ce€ Cy and w(d) = tt.

Theorem 4.2.1. For any strong-weak-parity-game G there exists a simplified strong-
weak-parity-game G with

e G and G’ utilize the same set of game positions C, and
e for all c € C it is: G is valid in ¢ iff G' is valid in c.
e for all c € C it is: G is inwalid in c iff G' is invalid in c.
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Algorithm Simplify(G)

1 Use a parity game algorithm to determine the valid game positions and set w(c) = t¢ in G for every
valid game position c.

2 Use a parity game algorithm to determine the invalid game positions and set w(c) = ff in G for every
invalid game position c.

3 Remove all game transitions (c,c’) from G with w(c) # L.

4 Remove all game transitions (c,c’) from G with ¢ € Cp and w(c') = ff.

5 Remove all game transitions (c,¢’) from G with ¢ € Cy and w(c') = tt.

6 Return the modified game G as G'.

Table 4.1: The algorithm Simplify gets a strong-weak-parity-game G as a parameter
and returns a simplified strong-weak-parity-game G’.

Additionally the algorithm Simplify (Table 4.1) calculates such a simplified G' for any
strong-weak-parity-game G.

Proof. Let G = (Co,C1,Co/1,¢,G—,GT,G°, 0, w) with C' = Cy UCy UG,y be a strong-
weak-parity-game. Let G’ be the output of the algorithm Simplify(G) where ' is the
validity function of G.

Since G is a strong-weak-parity-game and the only changes performed by the algorithm
are the removal of some game transitions and the setting of w’(¢) to tt or ff for some ¢ € C,
G’ is a strong-weak-parity-game, too.

This also ensures the first point of the theorem. Let ¢ € C' be a valid game position
in G. Line 1 of the algorithm ensures that w’(¢) = tt. Thus any validity play on the
game G’ starting in ¢ is won by Player 0. Thus G’ is valid in c.

Let ¢ € C be a valid game position in G’. Thus either w'(¢) = tt or there exists a
winning strategy to win any validity play on G’ starting in ¢. Assuming w'(c) # i,
it follows that G is not valid in ¢ (otherwise line 1 of the algorithm would have set
W'(¢) = tt). Thus the removal of game transitions must have changed the validity in c.
Line 3 removes game transitions that start in a game position ¢ € C' with /() # L.
Any play that reaches such a ¢ ends, thus these transitions cannot influence validity.
Line 4 removes game transitions (¢, ¢’) with w’(¢’) = L and &'(¢”) = ff. Player 0 would
not pick these transitions since they would mean him losing the play, additionally since
W'(') = L, there exists another game transition (¢,c”) with w'(¢”") # ff (otherwise
line 2 would have ensured w'(¢’) = ff). Thus these removed game transitions have no
influence on validity. An analogous argument holds true for the transitions removed by
line 5. Thus the assumption of w'(c) # ¢t must be false. Further w'(c) = ¢t iff either
w(c) = ¢t and thus ¢ is valid in G or the algorithm set w'(¢) = tt and thus it is a valid
game position in G. Equivalence of invalidity can be shown by similar means.

The last thing to prove is that G’ is a simplified strong-weak-parity-game. (i) and (ii)
are shown above. (iii) follows directly from the algorithm. O

39



1
2
3
4

5
6

Chapter 4 CEGAR

Algorithm PropertyCheck(K, A)

Set the abstract property game Pk a to PR 4
while (w(é) = 1) do

Simplify(G)

Remove from G every game position ¢ € C' that is unreachable from ¢ and every game transition

leaving such a game position c.

Refine(Px,4)

return w(é)

Table 4.2: The algorithm PropertyCheck gets a pointed Kripke structure K and an al-
ternating tree automaton A as parameters and returns the validity of the
property encoded in A related to K.

4.3 Property Check

To check a given property encoded into an alternating tree automaton A with respect to
a pointed Kripke structure K, one starts with the initial abstract property game P?Q A
(see Definition 3.4.2 on page 31). As long as this game is not determined in its initial
game position, one refines the game.

Even an abstracted property game can become quite big. To reduce the size of the
game one simplifies the strong-weak-parity-game (see Section 4.2 Simplified Games on
page 38). Additionally, unreachable game positions can be removed. The complete
algorithm PropertyCheck is presented in Table 4.2.

This algorithm utilizes Pk o as a local variable. Pk 4 always contains the current
abstract property game (I, «, ¢, G) with G = (Cp, C1,Cy /1, ¢, G—,GT,G°,¥,w), it is ini-
tialized with the initial abstract property game for the alternating tree automaton A.

As long as Pk 4 is not valid, the algorithm loops. First the abstract property game
is simplified (Simplify(G), see Table 4.1 on the previous page) and unreachable game
positions are removed.

Finally a game position is selected and this game position, as well as all via junction
game transitions reachable game positions, are refined (algorithm Refine(Pg ), see
Table 4.3 on the following page). This mechanism is detailed in Section 4.4 Refinement on
the next page.
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Algorithm Refine(Pk 4)

A Heuristic determines the used refinement approach.

% Heuristic determines split of game position ¢ with predicate p with ¢ = (i,q) and i € I
Split(Pk,a,c,p)

% Heuristic determines transformation of game position ¢ with ¢ = (i,q), ¢ € I, and (i) =
Transform(Pxk, 4,c)

return the modified game Pk 4

Table 4.3: The algorithm Refine gets an abstract property game Pk 4 as a parameter
and returns a refined version of the abstract property game.

4.4 Refinement

The algorithm Refine on Table 4.3 gets an abstract property game Prx 4 = (I,,t,G)
as an input and returns a modified abstract property game Py , = (I’,o/,//,G’). This
new abstract property game is a refined version of the former one, i.e. one or more
game positions are split or one or more game positions are transformed from local pre-
abstraction to local post-abstraction. A heuristic determines which approach is used.

The first approach determines a game position ¢ € C together with a predicate p € L.
This game position ¢ consists of an abstract world ¢ € I and an alternating tree automaton
state ¢ € Q. This game position, as well as all game positions reachable via junction
transitions will be split with the help of the predicate. An appropriate heuristic is
employed to get the game position as well as the predicate.

The second approach determines a game position ¢ € C'. This game position ¢ consists
of an abstract world ¢ € I with (i) = v and an alternating tree automaton state ¢ € Q.
This game position, as well as all game positions reachable via junction transitions will
be transformed. Thus ¢(7) will be set to u and corresponding game positions, consisting
of BRANCH-worlds with the associated alternating tree automaton states, are created.
An appropriate heuristic is employed to get the game position.

4.4.1 The Splitting Approach

The complete algorithm Split can be seen on pages 68-70. It gets an abstract property
game Pg 4 = (I,a,1,G) with G = (Co,C1,Cy)1, ¢, G~,GT,G°,¥,w), a game position
¢ = (i,q) with i € I, and a predicate p € £ as input and returns a modified abstract
property game P 4 = (I',a/,/, G").

Splitting the abstract world

The first step in the algorithm is to construct two new abstract worlds i+ and ¢— from
i. These two new abstract worlds should abstract subsets of the same concrete worlds
as i, where i+ only abstracts the subset of concrete worlds w with w € [p], thus w €
[a(2)] N [p] = [a(i) Ap]. Similarly i— only abstracts the subset of concrete worlds w

with w & [p], thus w € [a(:)] N [-p] = [a(i) A —p].
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So, one has to add such a new abstract world i+ with [a(i+)] = [a(i) A p] to the
set of abstract worlds I and adjust the abstraction function « and the index function ¢
accordingly. i— is treated similarly. It is entirely possible that this may lead to two (or
more) abstract worlds ¢" and " with a(i") = a(i").

This is accomplished by the pseudo-code presented below:

Algorithm Split(Px 4,c,p)

% Splitting the abstract world

determine [a(i) A p] and [a(i) A —p]

add an i+ to I, adapt « so that a(i+) = (a(i) A p), and adapt ¢ so that ¢(i+) = ¢(7).
add an ¢— to I, adapt « so that a(i—) = (a(i) A —p), and adapt ¢ so that t(i—) = ().

W N e

Adding new game positions

First one has to determine all game positions that are connected to ¢ via junction game
transitions. Let C’ be the set of these game positions. The definition of abstract property
games (see Definition 3.4.1 on page 31) ensures that for all ¢ € C’ there are only two
possibilities: Either ¢ = (i,¢’) for any ¢’ € @ and (i) = v, i.e. the first component of
these game positions is an abstract TRANS-world and they differ only in their second
component, the alternating tree automaton state. Or ¢(i) = pu, so all game positions
¢ € C" are either ¢ = (i,¢') for any ¢ € Q or ¢ = (b,q') for any ¢’ € Q and b € P(I) x L,
thus the first component of each such game position is either an abstract OR-world or
an abstract BRANCH-world.

The following pseudo-code calculates the set C’. The local variable C'? contains all
unchecked, connected (to ¢) game positions, initialized with ¢. As long as C7 contains
any game positions, one stays within the while loop. Every checked game position (7', ¢)
is removed from C? and added to C’. Then, every game position (i7, ¢?), reachable from
(7, ¢’) via any incoming or leaving junction game transition, is added to C?, but only if
it was not checked before, i.e. (i?,q?) & C.

% Calculate the set of game positions C’

C?:={(i,q)}; C':=10

while C? # () do

remove (i, q") from C?

C'=C'u{({,q)}
10 foreach (((i?,¢7?), (i',q')) € G° or ((',q'), (i?,¢?)) € G°) do
11 C?:=C?U{(i?,q7)}\ C’

© 0w N D«

The next step is the addition of the new game positions. For every (i,q") € C’ two new,
split game positions are needed: (i+,q’) and (i—, q’). For every new game position (i, ¢")
combined with a parity value ¢ and and a validity «’, the procedure Add(Px 4, (i',q'),
¥, w') has to ensure that each new game position is added to the correct subset of C.
For the new split game positions (i+,¢’) and (i—,¢’) the parity and validity values are
inherited from the old game position (z,q").

Additionally one has to check whether the initial game position ¢ is split, i.e. there
exists (i,q) € C" with (i,q) = ¢, that is @ € [a(i)]. If this is the case, either (i+,¢’) or
(i—,q") has to become the new initial game position.
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Definition 2.2.4 on page 7 requires a formula p with [p] = {w}. Thus with @ € [a(i)]
one gets [p] = [p] N [a(i)] = [p A a(i)]. To calculate whether w € [a(i+)], one simply
determines if [p] N [a(i+)] # 0. Thus [p] N [a(i+)] = [pA a(i+)] = [p A a(i) Ap] =
[pAa@)]Np] =[] NIp] = [pAp]. Finally with [false] = (), one can easily see, that
call of Satisfiable(p A p) is sufficient to determine whether (i+,q’) or (i—,¢’") has to
become the new initial game position.

12 % Add each new game position and adjust the initial game position
13 foreach (i,¢') € C’' do

14 Add(Pk,a, (i+,4'),9((i,9)), w((i,4')))

15 Add(PK,Av (i_vql)vﬂ((iaq/))7 w((i7q/)))

16 if é= (i,q’) then

17 if Satisfiable(p A p) then é:= (i+,q’) else ¢ := (i—,q’)

There are two cases to differentiate: ¢(i) = v and ¢(7) = u, thus whether the split occurs
in the pre-abstraction part or in the post-abstraction part.

Splitting in the pre-abstraction part

18 % Split in the pre—abstraction part.
19 if (i) = then

In the first case, i.e. if (i) = ~, there are three types of game transitions one has to check.
The simplest part is checking each game position ¢ € C’ for outgoing junction game
transitions. It is to note, that there cannot be any incoming junction game transitions
into any ¢ € C’ which are not also outgoing junction game transitions originating from
any ¢’ € C'. This is due to C’ including all game positions connected by junction game
transitions.

The pseudo-code checks every game position (i,¢") € C’ that has junction game tran-
sitions. If there are any outgoing junction game transition in (4, ¢’) they are removed and
two new junction game transitions originating from the two new split game positions are

added.

20 % Add new junction game transitions
21 foreach (i,q’') € C' do

22 foreach ((i,q'), (1,47)) € G° do

23 remove ((4,q'), (i,9?)) from G°
24 insert ((i+,¢), (i+,¢?)) into G°
25 insert ((i—,q'), (i—,q?)) into G°

The next part is checking for outgoing and incoming weak game transitions. An outgoing
weak game transition may occur at every game position (4,¢") € C’ with ¢’ € Qquan. If
there is any outgoing weak game transition, one has to decide whether any of the two
new split game position has to get an outgoing weak game transition.

Let (i, ¢’) and (i”,¢") be two game positions. One has ((i,¢’), (i",¢")) € GT iff ¢ €
Qquan and [a()] N [pre(a(i”))] # 0. Definition 2.2.2 on page 6 introduced the notation
[pre(a(i”))], that is [pre(a(i”))] is the set of concrete worlds that have a world transition
into a world abstracted by /. Thus one gets a weak game transition, whenever there
exists at least one of these concrete world that is also abstracted by ¢”. This is consistent
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with the normal definition of may transitions (e.g. in the underlying generalized u-
automaton).
Similar to the determination of initial game positions, one can simplify the calculation
of [a(7)] N [pre(a(i”))] # 0 to a satisfiability check.
% Add new outgoing weak game transitions
foreach (i,q’') € C' do
foreach ((i,¢), (i?,4?)) € G do
remove ((1,q'), (i?,4?)) from G*
if Satisfiable(a(i+) A pre(a(i?))) then insert ((i+,q'), (i7,¢?)) into G
if Satisfiable(a(i—) A pre((i?))) then insert ((i—,q’), (i?,¢?)) into G

Incoming weak game transitions are calculated similarly:

% Add new incoming weak game transitions
foreach (i,q') € C' do
foreach ((i?,q?), (i,¢')) € G do

remove ((i?,q?), (i,¢")) from G*

if Satisfiable(a(i?) A pre(a(i+))) then insert ((i?,q?), (i+,q’)) into G

if Satisfiable(a(i?) A pre(a(i—))) then insert ((i?,q?), (i—,q’)) into G
The last part is checking for strong game transitions. An outgoing strong game transition
(d, ") € G~ may only occur whenever an outgoing weak game transition (¢/,c”) € G*
already exists. Thus all outgoing weak game transition starting in (i+,¢’) and (i—,¢’)
are checked for outgoing strong game transitions.

If there already exists an outgoing strong game transition ((i,q’), (i7,4?)) € G~ there
will also be two strong game transitions ((i+,q’), (i?,¢?)) and ((i—,¢’), (i?,4?)). This
corresponds to the usual notion of must transitions. An outgoing strong game transition
((i,q"), (i7,47)) € G~ exists if for every concrete world w abstracted by i there exists
a concrete worlds w’ abstracted by i? with (w,w’) € R. Since [a(i+)] C [a(i)] and
[a(i=)] C [ex(7)], this also follows for ((i+,q’), (i?,4¢?)) and ((i—,q"), (i?,4?)).

If there is not already an existing outgoing strong game transition, one has to check if
there should be one. [pre(«(i?))] are concrete worlds that have a transition to a concrete
world abstracted by 7. Thus [-pre(a(i?))] are concrete worlds that have no transition
to a concrete world abstracted by i?. So, if [a(i+)] N [-pre(a(i?))] = @ there has to be
a strong game transition. Similar with ¢—. This leads to the unsatisfiability checks seen
in the pseudo-code below:

% Add new outgoing strong game transitions

foreach (i,q') € C' do
foreach ((i+,q), (i?,¢?)) € G* do
if ((4,¢), (i?,q?)) € G~ then
insert ((i+,q'), (i?,4?)) into G~
else
if not Satisfiable(a(i+) A —pre(a(i?))) then insert ((i+,q’), (i?,¢?)) into G~
foreach ((i—,q), (i?,¢?)) € G do
if ((4,¢'), (i7,4?)) € G~ then
insert ((i—,q"), (i7,4?)) into G~
else
if not Satisfiable(a(i—) A —pre(a(i?))) then insert ((i—,q'), (i?,4?)) into G~
foreach ((i,q'), (i7,97)) € G~ do
remove ((4,q'), (i?,¢?)) from G~
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The set of incoming strong game transitions is calculated differently. Since strong game
transitions mostly depend on their starting point (there must ezists one concrete world
at the end point for every concrete world at the starting point), there will not be any
new strong game transition added. Instead, existing incoming strong game transitions
are checked and possibly made more precise, i.e. they are possibly assigned to one of the
new game positions.

If there was an incoming strong game transition ((i?, ¢?), (¢,¢')) € G~ which can not be
assigned to any of the corresponding new game positions (i+,q’) or (i—,¢’), there would
have been a hypertransition. Thus, to avoid the loss of any information, the abstract
world 7 has to be transformed into an OR-~world.

% Add new incoming strong game transitions

foreach (i,q’') € C' do
foreach ((i?,¢?),(i,q¢')) € G~ do
remove ((i7,¢?), (4,4")) from G~
added := false;
if ((i?,47), (i+,¢")) € GT then
if not Satisfiable(a(i?) A —pre(a(i+))) then
insert ((i?,¢?), (i+,¢')) into G~
added := true;
if ((i?,47),(i—,q')) € GT then
if not Satisfiable(a(i?) A —pre(a(i—))) then
insert ((i?,4?), (i—,q')) into G~
added := true;
if not added then
Notify Heuristic of game position (i7, g7).

Splitting in the post-abstraction part

% Split in the post—abstraction part.

if (i) = p then
In the second case, i.e. if ¢(i) = p, a lot more new game positions have to be added.
More precisely, each BRANCH game position ((B, P),q’) € C’ has to be split, too.

At each of these game positions ((B, P),q') € C', B encodes all abstract worlds that
abstract the concrete worlds reachable (within one step) from the concrete worlds ab-
stracted by 4, thus B € P(I). The first step is to collect all these sets of abstract worlds
in the set B’

% Collect all BRANCH worlds in C’

B =0

foreach ((B, P),q') € C' do

B':= B'"U{B}

Each of these BRANCH-worlds will be split, similar to the split in the OR-world i,
resulting in two new split BRANCH-worlds, B+ and B— for every set in B’. The set of
reachable abstract worlds for every new split abstract world B+ and B— can only be a
subset of B (due to being split). Thus every possible subset I’ € PB has to be tested
until a matching subset is found.

[a(i+)] encodes the concrete worlds abstracted by i+. Every abstract world i’ that
abstracts a concrete world reachable within one step from one of these worlds has to fulfil
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[a(i+)] N [pre(a(i’))] # 0. Thus to get all such abstract worlds, i.e. the set I’, one has
to check [a(i+)] N Nycp[pre(a(i’))] # 0. Finally to get the maximal set I, one has to
consider the abstract worlds not present in I’. An abstract world 7’ is not present in I’
if Ja(i+)] N [-pre(a(i’))] # @. This results in the final check for every possible subset
I" e P(B) of [a(i+)] N yrepIpre(e(@)] NNy py o [-pre(e(i))] # 0.

This calculation ensures that there is only one possible I’ that fulfils the check, thus as
soon one is found no further checks are necessary. The algorithm presented below omits
this aborting condition for better readability.

Finally for the second component of the BRANCH-world, the predicate (€ L) that
holds true at all concrete worlds abstracted by B+, the algorithm uses the same calcu-
lation as for the satisfiability check. It is similar for i— and B—.

The calculation of the check can again be performed as a satisfiability check, as pre-
sented below:

73 % Split each BRANCH world
74 foreach B € B’ do

75 foreach I' € P(B) do

76 ¢+ = a(i+) A Ny ep pre(afi’)) A Niepr —pre(a(i’))
77 ¢— = ali=) A N\yep pre(a(i’)) A Ny epyp ~pre(a(i))
78 if Satisfiable(¢+) then B+ := (I, ¢+)

79 if Satisfiable(¢—) then B— := (I, ¢—)

The next step is the addition of the new split game positions. For each old BRANCH
game position, simply two new split game positions are added.

so % Add new BRANCH game positions

81 foreach ((B, P),q') € C’ do

2 Add(Pica, (B+.q), 9((B, P),d)), w((B, P),d)))

83 Add(Px,a, (B—,¢'), 9(((B, P),¢)), w(((B, P),q')))
Similar to the split in the pre-abstraction part, the transitions have to be adapted.
The adaption of the junction transitions now consists of two parts. There are junction
transitions connecting the OR game position with the BRANCH game position and junc-
tion game transitions connecting BRANCH game positions with other BRANCH game
positions. The first one corresponds to the OR-transitions of generalized p-automata
and includes no transition of the second component. The second one corresponds to
BRANCH-transitions where 6(¢') € Qguan and 6(¢') & Qo1

The pseudo-code is similar to the one from the pre-abstraction part:

84 % Add new OR to BRANCH junction game transitions
85 foreach (i,¢') € C' with € I do

86 foreach ((i,q'), ((B, P),q")) € G° do
87 remove ((4,q'), (B, P),q')) from G°
88 insert ((i+,q'), (B—&—7 q")) into G°
89 insert ((i—,q'),(B—,q")) into G°

90 % Add new BRANCH to BRANC’H Junction game transitions
91 foreach ((B,P),q") € C' do

92 foreach (((B,P),q'),((B,P),q?)) € G° do
93 remove (((B, P),q'), (B, P),q?)) from G°
94 insert ((B+ q), (B+ q7)) into G°
95 insert ((B—,q’),(B—,q?)) into G°
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Outgoing weak and strong game transitions can only start in BRANCH game positions.
Furthermore these transitions are always precise, i.e. if there exists a weak game transi-
tion there is a strong game transition, too.

The algorithm simply checks all outgoing game transitions and if the target is encoded
in the first component of B+ or B— respectively, a new game transition is added.

% Add new outgoing weak and strong game transitions
foreach ((B,P),q") € C' do

foreach (((B, P),q'), (i?,q?)) € Gt do
remove (((B, P),q), (i?,¢?)) from G*
remove (((B,P) ", (47, ¢?)) from G~
if ¢? € II;(B+) then
insert ((B+,q'), (i?,¢?)) into G*
insert ((B+,q’), (i?,¢?)) into G~
if ¢? € II;(B—) then
insert ((B q),(i?,q?)) into G+
insert ((B—,q’), (i7,¢?)) into G~

Incoming weak and strong game transitions can only end in OR game positions, thus the
calculation is the same as in the pre-abstraction part.

% Add new incoming weak game transitions
foreach (i,¢') € C' withi € I do
foreach ((i?,47), (1,¢')) € G do
remove ((i?, ¢?), (i,¢")) from G*
if Satisfiable(a(i?) A pre(a(i+))) then insert ((i?,¢?), (i+,q’)) into G
if Satisfiable(a(i?) A pre(a(i—))) then insert ((i?,q?), (i—,q’)) into G
% Add new incoming strong game transitions
foreach (i,¢') € C' withi € I do
foreach ((i?,¢?),(i,¢')) € G~ do
remove ((i?,¢?), (i,¢")) from G~
added := false;
if ((4?,4?), (i+,q’)) € GT then
if not Satisfiable(a(i?) A —pre(a(i+))) then
insert ((4?,q?), (i+,¢')) into G~
added := true;
if ((i?,47),(i—,q")) € GT then
if not Satisfiable(w(i?) A —pre(a(i—))) then
insert ((i?,q?), (i—,q')) into G~
added := true;
if not added then
Notify Heuristic of game position (i7, q7).

Removing the old game positions

The final step in the algorithm is the removal of all old game positions that are now split.
All incoming and outgoing game transitions from or to any of these old game positions
are already removed by the algorithm.

% Add new incoming weak game transitions
foreach (i,q') € C' do
remove (i,q’) from Pk 4 and adjust ¢ and v
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Chapter 4 CEGAR

During the calculation of outgoing game transitions the old game positions may still be
targeted. But every so created (now incoming) game transition is handled during the
recalculation of the incoming transitions. Thus even self loops are handled well.

Furthermore, the splitting of the abstract world i into i+ and i— produces new abstract
worlds i+ and i— every time it is performed. This ensures that (besides the most abstract
world §2) every via junction game transition connected part of the game consists of unique
abstract game positions, i.e. in the transformation approach one can simply change ¢
of such an abstract world and only affect the small targeted portion of the game. The
initial abstract property game could easily be modified to change €2 into several €2;, one
for each via junction game transition connected part of the initial game. This reasonable
(and if one wants to transform the abstract world €2 necessary) change has been omitted
for an easier readability of the respective sections.

4.4.2 The Transforming Approach

The complete algorithm Transform can be seen on page 71. It gets an abstract property
game Py 4 = (I,a,t,G) with G = (Co, C1,Cp1,¢,G~,GT,G°,9,w), and a game posi-
tion ¢ = (i,q) with ¢ € I and «(i) = v as input and returns a modified abstract property
game P, = (I',a/, /. G").

Similar to the splitting approach, all via junction game transition connected game
positions have to be transformed. The calculation of the set C” is similar to the calculation
in the splitting approach.

Algorithm Transform(Pg 4,c)

% Calculate the set of game positions C’
C?:={(i,q)}; C':=10
while C'?7 # () do

remove (4,q") from C?

C'=C"U{@i,q¢)}

foreach (((i?,47), (4,4')) € G° or ((i,q'), (i?,47?)) € G°) do

C? = C? U {(i%,q)}\ C"

First, all TRANS game positions have to be transformed into OR game positions. All
these game positions have their first component in common, the abstract world 7. Thus
the algorithm simply updates ¢(i) to . As reasoned above, this change will only affect
game positions in C’.

% Transform all TRANS game positions into OR game positions

(@) = p
foreach ¢’ € C’
Move ¢’ into Cy /1

The calculation of the abstract BRANCH-world belonging to the OR-world ¢, is similar
to the calculation in the splitting approach. The first component of a BRANCH-world
B = (I',P) encodes all abstract worlds that abstract the concrete worlds reachable
(within one step) from the concrete worlds abstracted by 4, thus I’ € P(I). Every
possible subset I’ € P(I) has to be tested until a matching subset is found.
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[ae(i)] encodes the concrete worlds abstracted by i. Every abstract world i’ that ab-
stracts a concrete world reachable within one step from one of these worlds has to fulfil
[a(i)] N [pre(a(i’))] # 0. Thus to get all such abstract worlds, i.e. the set I’, one has
to check [a(i)] N ;e lpre(a(i’))] # 0. Finally to get the maximal set I’, one has to
consider the abstract worlds not present in I’. An abstract world ¢ is not present in
I' if Ja(i)] N [-pre(a(i’))] # 0. This results in the final check for every possible subset
I' € B(I) of [a(i)] N NyepIpre(@(@)] N Nyep p [ore(a(@))] # 0.

This calculation ensures that there is only one possible I’ that fulfils the check, thus as
soon as one is found no further checks are necessary. In the algorithm presented below
this aborting condition is omitted for better readability.

Finally for the second component of the BRANCH-world, the predicate (P € £) that
holds true at all concrete worlds abstracted by B, the algorithm uses the same calculation
as for the satisfiability check with the same reasoning.

The calculation of the check can again be performed as a satisfiability check, as pre-
sented below:

12 % Calculate BRANCH worlds

13 B =0

14 foreach I' € P(I) do

15 ¢ = a(i) A /\i’e]’ pre(a(i')) A /\i/e[\p ﬁpre(a(i’))
16 if Satisfiable(¢) then

17 B :=B' U{(I',¢)}

The next step is the addition of the new BRANCH game positions. For every old TRANS
game position the algorithm adds a new game position for every newly created BRANCH
world.

18 % Add BRANCH game positions

19 foreach (i,¢') € C’' do

20 foreach B € B’ do

21 Add(PK;A7(Bvql)fﬂ((ivql))7w((i7q/)))

The adaption of the junction game transitions is straightforward. A junction game
transition can only occur between two BRANCH game positions or connecting an OR
game position to a BRANCH game position.

Every existing junction game transition is duplicated to each BRANCH game position
created for the corresponding TRANS game positions. Then every OR game position is
connected to each of its corresponding BRANCH game positions.

22 % Adapt junction game transitions

23 foreach (i,¢') € C' do
24 foreach ((i,q'), (i,q”)) €G”

25 remove ((i,q'), (i,¢")) from G°
26 foreach B € B’ do
r insert. ((B,q'),(B,q")) into G°

28 % Connect OR to BRANCH game positions
29 foreach (i,q') € C' do

30 foreach B € B do

31 insert ((4,¢), (B,¢')) into G°
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Outgoing weak and strong game positions can only leave BRANCH game positions.
Furthermore, whenever there is an outgoing weak game transition leaving a BRANCH
game position, there is a strong game transition, too.

Thus, for every weak game transition leaving any of the old TRANS game positions the
algorithm simply checks which of the corresponding BRANCH game positions encodes
the correct target in its first component.

32 % Adapt outgoing weak and strong game transitions

33 foreach (i,q') € C' do
34 foreach ((i,¢'), (i?,q?)) € G
/

35 remove ((i,q'), (i?,¢?)) from G+

36 remove ((i,q'), (i?,4?)) from G~

37 foreach B € B’ do

38 if 47 € II;(B) then

39 insert ((B,q'),(i?,4?)) into G*
40 insert ((B,q'), (i7,4?)) into G~

Finally, there is no need to adapt any incoming weak or strong game transitions. Any of
these can only end at an OR game position, and the switch of TRANS to OR does not
change anything.

4.4.3 Adding new game positions

For every new game position (4, q) combined with a parity value ¥ and and a validity «’,
the procedure Add(Pk 4, (4,q), ¥, w') ensures that each new game position is added
to the correct subset of C.

Additionally, if ¢ € @/, in a TRANS- or BRANCH-world, the procedure has to ensure
that the correct value of the validity function is calculated.

Procedure Add(Pxk 4,(i,q),9, w')

1if i€ IANW(i) =p % OR—world

2 Coy1:=Co/1U(3,q)

3 else % TRANS—world or BRANCH—world
4 1if g € Qo then

5 Co :=Co U (4,q)

6 else if ¢ € )1 then

7 Cr:=C1U (i,q)

8 else % q€ Qon

9 Co/l = Co/1 U (i, q)

10 if a(i) = 6(q)

11 W' = tt

12 else if a(i) = —d(q)
13 W= ff

14 else

15 w =1

16 % Adapt 9 and w
17 Set 9((4, q)) ==
18 Set w((4,q)) =’
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4.5 Soundness of the Algorithm PropertyCheck

To prove the soundness of the algorithm PropertyCheck (Table 4.2 on page 40) one
has to ensure that the abstract property game Pk 4 that is utilized by the algorithm
remains a sound abstract property game (Lemma 3.4.1 on page 32) after every step of
the algorithm.

Pk 4 is initialized with the initial abstract property game P% 4 Wwhich is a sound
abstract property game (Theorem 3.4.1 on page 36).

Lemma 4.5.1. Given a sound abstract property game Pk 4 = (I,a,t,G) the abstract
property game Pj 4, = (I, a,t,G") with G' = 8implify(G) is a sound abstract property
game.

Proof. The algorithm Simplify (Table 4.1 on page 39) only modifies game transitions
and the value of the validity function w in a way such that game positions ¢ with w(c) = L
become w(c) = tt or w(c) = ff. Generally speaking, the algorithm only removes, but does
not add anything. So, if any assertion was true for anything before the algorithm, it will
still be true for anything after the algorithm. Only the interesting items of Lemma 3.4.1
will be detailed, the rest follows straightforwardly:

2. Whenever a weak game transition (c,c’) € G is removed by the algorithm, a
possible strong game transition (¢,¢’) € G~ is removed, too. Thus the strong-
weak-parity-game stays well-formed.

5. There are no new game positions ¢ € CoUC] with ¢ = (i,q) and i € I and w(c) = L.
For any old game position ¢ with these properties and with 6(¢q) = ¢¢, i.e. ¢ € Cp:
For all concrete worlds w, reachable in one step from the concrete worlds abstracted
by i, if the (concrete) property game G, 4 is valid at game position (w, ¢") (short:
w = ¢'), then there has to be a game position (7', ¢’) such that ¢’ abstracts w and
there has to be a weak game transition from (i,q) to (¢/,¢’). No game positions
have been removed, so ¢ = (i,¢) still exists. In addition, since G is a sound
game and there exists a w with w € [alpha(i')] and w' | ¢, ¢ can’t be invalid,
ie. w(d) # ff. The weak game transition (¢, c’) would only have been removed if
c € Cp and w(c’) = ff, thus it still exists and the assertion holds true.

A similar argument is also valid for any old game position ¢ with §(¢) = O¢/, i.e.
c € Cy. Here, ¢’ can not be valid, since there exists a w with w € [alpha(i')] and
w' F£ q, thus w(c) # ¢t and the weak game transition has not been removed.

Finally similar arguments are valid for 6(¢) = ¢1Vg2 and §(q) = q1Aqa.

6. There are no new game positions ¢ € Cy,; with ¢ = (0,¢) and 0 € O and w(c) = L.
There are no game positions removed, thus all game positions containing BRANCH-
worlds are still present. Furthermore there are no game transitions removed, that
start in a game position ¢ € Cpy/; with ¢ # L. Finally the algorithm will set
w(d) = tt iff ¢ is a valid game positions, i.e. for all w € Z : w = ¢. It is similar
for w(d) = ff.

7. This item is reasoned in an analog way to item 5.
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9. If there are any new game positions ¢ € C' with w(c) # L, the assertion is assured
by the first two lines of the algorithm.

Thus P}Q 4 is a sound abstract property game. O

Lemma 4.5.2. Given a sound abstract property game Pk g = (I,a,t,G), the abstract
property game Py , = (I, a1, G"), where G’ is the strong-weak-property-game G with all
unreachable (from ¢) game positions removed, is a sound abstract property game.

Proof. Here, only unreachable game positions are removed, this may include game tran-
sitions between unreachable game positions. Like before, nothing is added to the game,
thus if any assertion was true for each of anything, it remains true. Again, only interesting
items will be detailed, the rest follows straightforwardly:

2. If any game transition leaving a game position is removed, all such game transitions
are removed, thus the game remains well-formed.
5.-7. Since Pk 4 is a sound abstract property game, any required game position is con-
nected, thus there will be nothing removed that is required by this assertion.

Thus Pj. 4 is a sound abstract property game. O

Lemma 4.5.3. Given a sound abstract property game Pg a = (I, 1, G), the abstract
property game P , = (I,a,t,G") with Pj; , = Split(Pk a,c,p) is a sound abstract
property game.

Proof. This lemma can straightforwardly be checked throughout the algorithm. In ad-
dition to details provided below most of the reasoning was already given during the
description of the algorithm. The interesting items of Lemma 3.4.1 on page 32 are de-
tailed below:

1. This is ensured by lines 16-17 of the algorithm, as detailed in the part of the
algorithm on on page 43.

2. The algorithm only adds a strong game transition (c,c’) if there already exists a
weak game transition (c,c’) € GT.

3. Each split game position (€ C’) is removed from the game in lines 129-130. For
each of these removed game positions, two new game positions are added. Each of
these pairs of new game positions contains the same abstract worlds ¢+ and 7—.
The calculation of these abstract worlds ensures that they abstract disjoint sets of
concrete worlds, since [a(i) A p] = [«(2)] N [p] and [a(i) A —p] = [a()] "W\ [p].

4. Let ((t,q), (7', q")) € G~ be a strong game transition added by the algorithm. Thus
either ¢ or 7 is a new abstract world. If ¢ is one of the two new split abstract
worlds then ((¢, q), (',¢")) is a new outgoing strong game transition added in lines
38-51 of the algorithm. Suppose t = i+, thus either there was already a strong
game transition ((7,q), (i',¢")) or the unsatisfiability check holds true. In the first
case the assertions holds true, since [a(i+)] C [«(7)]. In the second case suppose
there exists a w € [a(i+)] such that for all w' € [a(i)] it is (w,w’) € R, then
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[a(i+)] N =[pre(a(i’))] # 0, thus the unsatisfiability check would be satisfiable
and there would not have such a strong game transition been added. The same
reasoning holds true for ¢t = i—.

If i' is one of the new split abstract worlds then ((¢,q), (¢',¢’)) is a new incom-
ing strong game transition added either in lines 52-66 or in lines 113-127 of the
algorithm. In both cases a similar reasoning to above holds true.

5. Since the assertion holds true before the algorithm runs, the algorithm has to assure
that there still exists any needed junction or weak game transition that involves a
split game position after the algorithm ran. This is ensured by lines 20-37 of the
algorithm and the reasoning is included in the description of these lines.

6. As reasoned in the description of lines 73-79 of the algorithm the calculated set of
BRANCH-worlds corresponds to the set of equivalence classes in the assertion. For
each equivalence class the algorithm calculates a BRANCH-world that encodes the
set Z' of reachable abstract worlds. Furthermore, ¢+ respectively ¢— corresponds
to P of the assertion. The set of junction game transitions is added in lines 84-
89. The last assertion of this item is ensured by the inheritance of w and the
procedure Add.

7. A similar reasoning to item 5 holds true.

®©

A similar reasoning to item 4 holds true.
9. This assertion is ensured by the inheritance of w and the procedure Add.

O

Lemma 4.5.4. Given a sound abstract property game Pk 4 = (I, a,t,G) the abstract
property game Pj , = (I, o, G") with P}, 4 = Transform(Pg 4,c) is a sound abstract
property game.

Proof. This lemma can straightforwardly be checked throughout the algorithm. In ad-
dition to details provided below most of the reasoning was already given during the
description of the algorithm. The interesting items of Lemma 3.4.1 on page 32 are de-
tailed below:

2. The algorithm always adds a strong and a weak game transition.
6. This can be reasoned similarly to Lemma 4.5.3, item 6.

7. This follows from item 6 of the assertion and how the algorithm transforms these
game transitions to the new BRANCH game transitions.
8. This can be reasoned similarly to Lemma 4.5.3, item 4.

O

Theorem 4.5.1 (Soundness of PropertyCheck). The algorithm PropertyCheck is sound
for any pointed Kripke structure K and any alternating tree automaton A, i.e. if the
algorithm return tt: K = A and if the algorithm returns ff: K [~ A.

Proof. This theorem follows directly from P% 4 being a a sound abstract property game
and Lemmata 4.5.1, 4.5.2, 4.5.3 and 4.5.4. O
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4.6 Heuristics

The CEGAR-based algorithm PropertyCheck uses a heuristic in its Ref inement to decide
whether Split or Transform is used for the local refinement step. Additionally the
heuristic determines the affected game state ¢ and a potential predicate p, needed for the
split.

Let P = (I,a,t,G) be an abstract property game with the strong-weak-parity-game
G = (Cy, C1, Co/l,é, G—,GT, Go,ﬁ,w) and C = CyuC1 U 00/1-

Definition 4.6.1 (Predicate-unknown). A game position ¢ € C with ¢ = (i,q) is
predicate-unknown if ¢ € Qg1 and w(c) = L.

Definition 4.6.2 (Real may transition). A real may transition is a weak game transition
t € G that has no corresponding strong game transition, i.e. if t = (¢,¢’) € G then
there exists no corresponding strong game transition (¢, ) € G™.

Predicate unknown game states as well as game states with an outgoing real may
transition are good candidates for a split. Both of these kinds of game states can be seen
as causes of uncertainty.

Let ¢ be a predicate unknown game position, i.e. ¢ € Cy;; and there can not be any
outgoing game transition starting in c¢. Thus in any validity play that reaches ¢, there is
no possible further move and Player 1 wins the play. Additionally, in any invalidity play
that reaches ¢, there is no possible further move and Player 0 wins the play. So neither
Player 0 can win a validity play that reaches ¢ nor can Player 1 win any invalidity play
at c.

Let ¢ be a game position with an outgoing real may transition leading to ¢. If ¢ € Cy
then Player 0 can possibly not reach ¢’ , in any validity play and thus possibly looses
the play at game position c¢. Furthermore in any invalidity play, Player 0 can reach ¢
and thus can possibly prevent Player 1 from winning. Thus it is possible that neither
Player 0 can win any validity play nor can Player 1 win any invalidity play due to the
real may transition. A similar argument holds for ¢ € (.

Thus possible strategies for the heuristic are:

e Determine a predicate unknown game state ¢ = (i,q) and order a split of ¢ with
p=14(q).

e Determine a real may transition (¢, ) with ¢ = (i,¢) and ¢ = (i
split of ¢ with p = pre(a(?')).

’.q") and order a

With the first strategy the algorithm Split will split at least the predicate unknown
game position (i,q) into (i+,q) and (i—,q), with a(i+) = (a(i) A p) and a(i—) =
(a(i) A —p). The procedure Add ensures that w((i+,q)) = ¢t and w((i—,q)) = ff, since
(a(i+) = 0(q)) = ((a(i) Ap) = p) = true and (a(i—) = =6(q)) = ((a(i) A—p) = —p) =
true. Thus after the the split there is one cause of possible uncertainty removed: the
predicate unknown game position c.
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With the second strategy the algorithm Split will split at least the game position
¢ = (i,q) with the outgoing real may transition into two new game positions (i+, q) and
(i—,q). Of these two new game positions only (i+, ¢) may have an outgoing weak game
transition to ¢, since SAT(a(i—) A pre(a(i’))) = SAT(«(i) A —pre(a(i’)) A pre(a(i'))) =
false. 1If there is a new outgoing weak game transition ((i+,q), (i',¢')) € GT then
there will also be an outgoing strong game transition ((i+,q),(i',q¢')) € GT, since
=SAT(a(i+) A —pre(a(i’))) = —SAT(a(i) A pre(a(i’)) A =pre(a(i))) = =SAT(a(i) A
false) = true. Thus after the the split there is one cause of possible uncertainty re-
moved: the real may transition (c,c).

Furthermore the algorithm Split is able to inform the heuristic of a possible loss of
precision, i.e. before the split there was a strong game transition (¢, ') that is lost after
the split, i.e. there is neither a strong game transition (¢, c+) nor (¢, c—), where ¢+ and
c— are the two new game positions resulting of the split of ¢/.

If the heuristic is notified of this condition a possible strategy to get back the lost
precision is:

e Transform the game position c.

Due to the construction of the BRANCH game positions there will be a strong game
transition for each weak game transition leaving a BRANCH game position. Since there
was a strong game transition (c,c’) before the split, there was at least one weak game
transition after the split, i.e. (¢,c+) or (¢,c) € Gt. Thus the new BRANCH game
position corresponding to ¢ will have a strong game transition to c+ or to c—.
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Algorithm OptimizedPropertyCheck(K, A)

1 Set the abstract property game Pk, 4 to PIOQ A
2 Use a parity game algorithm to determine the valid game positions and set w(c) = ¢t in G for every
valid game position c.
3 Use a parity game algorithm to determine the invalid game positions and set w(c) = ff in G for every
invalid game position c.

4 while (w(é) = 1) do

5 Remove all game transitions (c,¢’) from G with w(c) # L.

6 Remove all game transitions (c,c’) from G with ¢ € Cy and w(c') = ff.

7 Remove all game transitions (c,c’) from G with ¢ € C7 and w(c') = tt.

8 Remove from G every game position ¢ € C that is unreachable from ¢ and every game transition
leaving such a game position c.

9 A Heuristic determines the used refinement approach.

10 % Heuristic determines split of game position ¢ with predicate p with ¢ = (i,q) and i € I

11 Split(Pxk,a,c,p)

12 % Heuristic determines transformation of game position ¢ with ¢ = (i,q), it € I, and (i) =~

13 Transform( Pk, 4,c)

14 Use a parity game algorithm to determine the valid game positions and set w(c) = ¢t in G for every
valid game position c.

15 Use a parity game algorithm to determine the invalid game positions and set w(c) = ff in G for
every invalid game position c.

16 return w(é)

Table 4.4: The algorithm OptimizedPropertyCheck gets a pointed Kripke structure K
and an alternating tree automaton A as parameters and returns the validity
of the property encoded in A related to K.

4.7 Optimization

The algorithm PropertyCheck can easily be optimized to reduce unneeded calculations.
The optimized algorithm OptimizedPropertyCheck is presented in Table 4.4.

The only change to the algorithm PropertyCheck from Table 4.2 on page 40 is the
direct inclusion of Simplify fromTable 4.1 on page 39 into the algorithm and the move-
ment of the breaking condition after the determination of (in)valid game positions. Thus
if the game is valid or invalid no further (unneeded) calculations are performed.

It is easy to see that the optimized algorithm still retains soundness.
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Figure 4.2: The initial abstract property game. Throughout the example, green circles are
Co game positions, red circles are C; game positions, and black circles are Cy /¢
game positions. Values of the parity function ) are omitted (here always 0).
Values of the validity function w are depicted in small font. Dashed arrows
depict weak game transitions, solid arrows depict strong game transitions, and
dotted arrows depict junction game transitions. World names of TRANS- and
OR-worlds as well as state names are omitted, instead the predicates (€ L)
and transition symbols (€ ¢§) are depicted. Worlds names of BRANCH-worlds
will be included instead of the predicates.

4.8 Example

This example will demonstrate the algorithm PropertyCheck (or rather the algorithm
OptimizedPropertyCheck) with the help of the sample pointed Kripke structure K from
Example 2.2.1 on page 7 and the sample alternating tree automaton A from Example 2.3.1
on page 10. Note that the heuristic in this example is not limited to the strategies
described in Section 4.6 Heuristics on page 54.

The abstract property game of the algorithm gets initialized with the initial abstract
property game from Definition 3.4.2 on page 31 and Example 3.3.4 on page 29. The most
important part of the abstract property game (the strong-weak-parity-game) can be seen
in Figure 4.2.

Since validity at the initial game position is still undecided, the first turn of the al-
gorithm starts. Neither the validity play not the invalidity play results in any new
information, thus there is nothing to simplify.

Thus the next step in the algorithm is refinement. There are several causes why neither
Player 0 can win the validity game nor Player 1 can win the invalidity game, e.g. the
weak game transition leaving ( éi) causes Player 0 to loose all validity plays at that game
position and prevents Player 1 from winning all invalidity plays at that game position.
Similarly, the weak game transition leaving (%) causes Player 1 to loose all invalidity
plays at that game position and prevents Player 0 from winning all validity plays at that
game position.

In this example the heuristic selects the second cause sketched above, thus a split of
the game position (%) The predicate selected by the heuristic is e € L.
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Figure 4.3: The first turn: Refinement.

The algorithm Split first calculates i+ and i— with a(i+) = tt Ae = e and a(i—) = —e.
The set of connected game positions C’ only consists of the sole game position (%), thus
only two new game positions are added: (§) and ().

Since there is only one game position in C’, there are no junction game transitions
to check. The algorithm thus begins with outgoing weak game transitions. There is a
single one, thus two satisfiability checks have to be performed. SAT(«(i+) A pre(it))
and SAT(a(i—) A pre(tt)). Example 2.2.1 on page 7 gives pre(tt) = (n > 0), thus
SAT(e A (n > 0)) and SAT(—e A (n > 0)). Both checks are satisfiable, so both junction
game transitions are added.

Incoming weak game transitions are handled in a similar way. The algorithm has
to check SAT(tt A pre(e)) as well as SAT(#t A pre(—e)). With pre(e) = (n > 0) and
pre(—e) = (n > 0) one gets SAT(n > 0) in both cases, thus two new incoming weak
game transitions are added.

The next step is the calculation of outgoing strong game transitions. Each newly
added outgoing weak game transition is checked for a possible strong one. Thus two
(un)satisfiability checks are performed: —=SAT(e A —pre(tt)) and =SAT(—e A —pre(it)).
Thus =SAT (e A (n = 0)) and =-SAT(—e A (n = 0)), both are satisfiable and no outgoing
strong game transitions are added. Furthermore there are no incoming strong game tran-
sitions and the algorithm Split finishes with the removal of the old game position (tDt)

The resulting strong-weak-parity-game (as part of the abstract property game) can be
seen in Figure 4.3.

A new validity play as well as a new invalidity play results in no new information, thus
again nothing can be simplified and the second turn of the algorithm starts.

This time the heuristic selects the first cause sketched above, thus a split of the game

position ( <t>t2 ) The predicate selected by the heuristic is (n = 0) € L.
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Figure 4.4: The second turn: Refinement.

Again, the algorithm Split determines the new abstract TRANS-worlds i+ and i—
with a(i+) = (n = 0) and a(i—) = (n > 0). The set C’ of via junction game
transition connected game positions contains three different game positions this time:
e ={(1-(z)-()}

1 02

Hence six new game positions are added, and since two of them may become the new
initial game position, the unsatisfiability of a satisfiability check of SAT(p A (n = 0)) =
SAT((n =1)AeA(n = 0)) determines that (";0) becomes the new initial game position.

The set of new junction game transitions is calculated straightforwardly. Each existing
junction game transition between two game positions of the set C’ is mirrored to the
respective game positions containing ¢+ and i—.

For each existing outgoing weak game transition, there have to be two satisfiability
checks performed, one check each to decide whether the outgoing game transitions leave
the respective split game position containing i+ and i—, too. Here, there are three
existing outgoing game transitions, thus six satisfiability checks. For the first outgoing
game transition one has SAT((n = 0) A pre(e)) = SAT((n = 0) A (n > 0)) = false and
SAT((n > 0) Apre(e)) = SAT((n > 0) A (n > 0)) = true, thus only one new weak game
transition is added. Similar with the game transition leading to (E) The last existing
outgoing weak game transition is somewhat special, as it is an incoming weak game
transition, too. The two satisfiability checks are SAT((n = 0) A pre(#t)) = SAT((n =
0) A (n > 0)) = false and SAT((n > 0) A pre(tt)) = SAT((n > 0) A (n > 0)) = true,
thus again only one new weak game transition from ("<>>2 %) to ('}f) is created. This newly
created game transition is an incoming weak game transition, too, and thus has to be
checked. Furthermore it is the sole incoming weak game transition (the old existing one

has been removed by the algorithm). The algorithm performs two more satisfiability
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Figure 4.5: The third turn: Simplification.

checks and adds two new weak game transitions. The result can be seen in Figure 4.4 on
the previous page.

The next step is checking every outgoing weak game transition for possible outgoing
strong game transitions. There are four such game transitions, thus four unsatisfiability
checks are performed. All four checked conditions are indeed unsatisfiable and four strong
game transitions are added. Since there are no incoming strong game transitions, the
algorithm Split finishes with the removal of the old game positions (€ C”).

A validity play results in no new information, but an invalidity play can identify three

invalid game positions: (";0), ("0:10), and (”0220).

The resulting strong-weak-parity-game (as part of the abstract property game) can be
seen in Figure 4.4 on the preceding page.

Since the initial game position is still undecided, the third turn of the algorithm be-
gins. This time the algorithm can indeed simplify the game. All game positions leaving

(n?O n>0

Iy ) can be removed. Additionally all game transitions from ( o ) to ("?O

A ) can be

removed, too. Finally the now unreachable game positions (";0), ("0:1 O), and (n<>:2 0) can
be removed. The resulting simplified strong-weak-parity-game (as part of the abstract
property game) can be seen in Figure 4.5.

This time the heuristic selects a split of the game position ( E) The predicate selected
by the heuristic is (n = 0) € L.
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Similar to the previous splits, the algorithm Split determines the two new abstract
worlds i+ and i— with a(i+) = (n = 0) A e and a(i—) = (n > 0) A e. Furthermore
the algorithm determines the set C’, adds two new game positions and adapts all game
transitions. The resulting strong-weak-parity-game (as part of the abstract property
game) can be seen in Figure 4.6.

The only interesting difference is the calculation of the incoming strong game transi-
tions. There is a single one leading from (n<>> 0) to (E) Two unsatisfiability checks are

performed:

=SAT((n>0)A—-pre(eA(n=0)))=-SAT((n>0)A—(eA(n>0)))=-SAT((n>0)A—e)=false

—SAT((n>0)A—-pre(eA(n>0)))=—-SAT((n>0)A—(—eA(n>0)))=—-SAT((n>0)Ae)=false

Thus no incoming strong game transition can be added, i.e. the algorithm lost informa-
tion. Fortunately this is detected by Split and the heuristic is informed to handle the
game position ("<>>1 0) next.

A wvalidity play results in no new information, but a invalidity play can identify

(”>£)/\e> as invalid. Thus all game transitions leaving that game position can be re-
moved, in addition to the weak game transition entering the game position from the green
Cy game position. Finally the now unreachable game position ((">£)Ae) can be removed.
The resulting simplified strong-weak-parity-game (as part of the abstract property game)
can be seen in Figure 4.7 on the next page.

This time the heuristic was informed of a possible next refinement, and thus selects

the transformation of the game position ("<>>1 0).
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Figure 4.7: The fourth turn: Simplification.

The first step of the algorithm Transform is the calculation of the via junction game
transitions connected set of game positions C’. This set consists of the three game

positions (”/?\O), <n<>>10>, and ("OZO). Each of these game positions is transformed into a

Co/1 game position.

The next step is the calculation of the abstract BRANCH-worlds. The algorithm has
to consider all possible subsets of I, but in this case there are only two subsets that pass
the satisfiability check:

Br = ({(#),(n=0),(n>0),(e), (=e), ((n = 0)

n=>0 )} (
By = ({(tt),(n=0),(n>0),(e), (=€), ((n > 0)

)} (

For each game position in the set C’ there is a new game position added for each of
these BRANCH-worlds. Thus six new game positions are added in this example. The
adaption of the junction game transitions as well as the connection of the OR game
positions with the newly created BRANCH game positions is straightforward and can be
seen in Figure 4.8 on the following page.

Additionally outgoing weak and strong game transitions have to be recalculated. Since
whenever there is a weak game transition leaving a BRANCH game position, there will
also be a strong one, the algorithm simply checks all outgoing weak game positions with
the reachable abstract worlds encoded in the first component of each abstract BRANCH-
world.

The complete refined strong-weak-parity-game (as part of the abstract property game)
can be seen in Figure 4.8 on the next page.

Ne)l,(n>0)Ae)
Ae)}, (n>0)A—e)

n
n
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Blz({(tt)7(n:0)7(n>0)1(e)7(_‘6)7((n:0)/\e)}7(n>0)/\e)
Ba=({(tt),(n=0),(n>0),(e),(—e),((n>0)Ae)},(n>0)A—e)

Figure 4.8: The fourth turn: Transformation.

A validity play identifies (gi) and <(”:£)/\e) as valid game positions. An invalidity
play results in no new information. Nevertheless the strong-weak-parity-game can be
simplified. The result can be seen in Figure 4.9.

Figure 4.9: The fifth turn: Simplification.
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Bi=({(t),(n=0),(n>0),(e),(=e),((n=0)Ae)},(n>0)Ae)
Bao=({(tt),(n=0),(n>0),(e),(=e),((n>0)Ae) },(n>0) A-e)

Figure 4.10: The fifth turn: Refinement.

In this fifth and last turn the heuristic picks the game position (E‘e) for a split with
the predicate (n = o) € L.

The resulting strong-weak-parity-game (as part of the abstract property game) can be
seen in Figure 4.10. A validity play identifies the game positions ((n:%/\ﬁe) and (gi)
as valid. Now every validity play either ends at a valid game positions or is infinite, thus
the initial game position is valid, too.

The algorithm stops and returns the validity of K with respect to A.
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Chapter 5
Conclusion

We developed a new CEGAR-based algorithm for p-calculus verification. Contrary to
most other CEGAR-based algorithms, this algorithm operates directly upon an abstract
property game. Thus there is no need to reconstruct the property game in each turn of the
CEGAR-cycle. Furthermore each step of refinement is based upon the lazy abstraction
technique that is applied locally in the game, i.e. only some game positions are refined
instead of all game position belonging to an abstract world.

The algorithm begins with a given initial abstraction, which is based upon a most
abstracted automaton. Than at each turn a heuristic determines the next step of the
automatic abstraction refinement. This is continued until the given property can either
be proved or disproved.

Furthermore this approach allows for a simplification of the abstract property game
after each refinement step, thus further reducing the state explosion problem.

5.1 Future Work

A more detailed discussion of possible heuristics, especially additional heuristics that
imply the use of Transform, is a topic for future work.

Furthermore we gave no notion of completeness. The algorithm should be complete
for least fixpoint free p-calculus formulas, i.e. in the alternating tree automata, as well
as in the abstract property game, the acceptance condition respective the parity function
always maps to zero. A detailed analysis and a proof similar to the proof of soundness
in this work remains for future work.

Finally an implementation of the algorithm, similar to the implementation of the algo-
rithm of Fecher and Shoham [8] by Fenten [9] in his (as yet unpublished) diploma thesis,
is a topic for future work.
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Algorithm PropertyCheck(K, A)

1 Set the abstract property game Pk, 4 to P;O(’ A

2 while (w(é) = 1) do

3 Simplify(QG)

4 Remove from G every game position ¢ € C that is unreachable from ¢ and every game transition
leaving such a game position c.

5 Refine(Pxk,a)

6 return w(¢)

Algorithm Simplify(G)

1 Use a parity game algorithm to determine the valid game positions and set w(c) = t¢ in G for every
valid game position c.

2 Use a parity game algorithm to determine the invalid game positions and set w(c) = ff in G for every
invalid game position c.

3 Remove all game transitions (c,c’) from G with w(c) # L.

4 Remove all game transitions (c, ¢’) from G with ¢ € Cp and w(c’) = ff.

5 Remove all game transitions (¢, c’) from G with ¢ € Cy and w(c') = tt.

6 Return the modified game G as G'.

Algorithm Refine(Pg 4)

1 A Heuristic determines the used refinement approach.

2 % Heuristic determines split of game position ¢ with predicate p with ¢ = (i,q) and i € I

3 Split(Pk,a,c,p)

4 % Heuristic determines transformation of game position ¢ with ¢ = (i,q), i € I, and (i) = v
5 Transform(Pxk,4,c)

6 return the modified game Pk, 4

66



Algorithms

Algorithm OptimizedPropertyCheck(K, A)

1 Set the abstract property game Px 4 to PIO(’ A
2 Use a parity game algorithm to determine the valid game positions and set w(c) = ¢t in G for every

valid game position c.

3 Use a parity game algorithm to determine the invalid game positions and set w(c) = ff in G for every

invalid game position c.

4 while (w(é) = 1) do

5
6
7
8
10
11

12
13

15

© 00 N O W N

N e
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15

Remove all game transitions (¢, ¢’) from G with w(c) # L.
Remove all game transitions (c,c’) from G with ¢ € Cp and w(c') = ff.
Remove all game transitions (¢, ¢’) from G with ¢ € Cq and w(c’) = tt.
Remove from G every game position ¢ € C' that is unreachable from ¢ and every game transition
leaving such a game position c.
A Heuristic determines the used refinement approach.
% Heuristic determines split of game position ¢ with predicate p with ¢ = (i,q) and i € 1
Split(PK,A,Qp)
% Heuristic determines transformation of game position ¢ with ¢ = (i,q), 1 € I, and (i) =~
Transform( Pk, 4,c)
Use a parity game algorithm to determine the valid game positions and set w(c) = ¢t in G for every
valid game position c.
Use a parity game algorithm to determine the invalid game positions and set w(c) = ff in G for
every invalid game position c.

return w(é)

Procedure Add(Pg 4, (7,q),7, w')

if i€ IN(i) = p % OR—world

Cos1 :=Co/1 U (4,q)

else % TRANS—world or BRANCH—world

if ¢ € Qo then

Co :=Co U (3,q)
else if ¢ € 1 then
C1:=C1U (4,q)

else % q € Qo
Cos1:=Co/1 U (4,q)
if a(i) = 6(q)

w =t

else if (i) = —d(q)
W= ff

else
w =1

16 % Adapt 9 and w
17 Set 9((4,q)) := '

18 Set w((7,q)) i=w

’
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Algorithm Split(Pg 4,c,p)

1 % Splitting the abstract world

© 00 N O W N

26

32

determine [a(i) A p] and [a(i) A —p]

add an ¢+ to I, adapt « so that a(i+) = (a(i) A p), and adapt ¢ so that ¢(i+) = ¢(7).

add an i— to I, adapt a so that a(i—) = (a(i) A —p), and adapt ¢ so that ¢(i—) = ¢(4).
% Calculate the set of game positions C’

C?:={(i,q)}; C" =0

while C? # () do

remove (i, q") from C?

C'=C' U{(,q¢)}

foreach (((i?,¢7?), (V',¢")) € G° or ((¢',¢'), (i?,¢?)) € G°) do
C?:=C?U{@i?,q")}\ C’

% Add each new game position and adjust the initial game position
foreach (i,q') € C' do

Add(Pk,a, (i+, q,)’ﬁ((i7 q/))v w((7, q,)))
Add(Px,a, (i—, q/)vﬂ((iv q/))» w((4, q/)))
if é= (i,q’) then
if Satisfiable(p A p) then é:= (i+,q’) else ¢ := (i—,q’)

% Split in the pre—abstraction part.
if ((i) = then
% Add new junction game transitions

foreach (i,q') € C' do
foreach ((i,q'), (4,97)) € G° do
remove ((7,q"), (4,¢?)) from G°
insert ((i+,¢), (i+,4?)) into G°
insert ((i—,¢'), (i—, ¢?)) into G°

% Add new outgoing weak game transitions

foreach (i,q') € C' do
foreach ((i, ) (i?,97)) € GT do
remove ((4,q'), (i7,¢?)) from G+
if Satisfiable(a(i+) A pre(a(i?))) then insert ((i-+,q’), (i?,¢?)) into G
if Satisfiable(a(i—) A pre(a(i?))) then insert ((i—,q’), (i?,¢?)) into G

% Add new incoming weak game transitions

foreach (i,q') € C' do
foreach ((i?,q7?), (3,¢))
remove ((i?,¢?), (3,¢')) from G+
if Satisfiable(a(i?) A pre(a(i+))) then insert ((i?,¢?), (i+,q’)) into G
if Satisfiable(a(i?) A pre(a(i—))) then insert ((i?,¢?), (i—,q’)) into G*

€ Gt do

% Add new outgoing strong game transitions

foreach (i,q') € C' do
foreach ((i+,4'), (i7,47)) € G do
£ ((i,q), (i 761”)) € G~ then
msert ((i+,4"), (i?,q?)) into G~
else
if not Satisfiable(a(i+) A —pre(a(i?))) then insert ((i+,q’), (i?,¢?)) into G~
foreach ((i—,q), (i?,¢?)) € G do
if ((4,¢'), (i7,4?)) € G~ then
insert ((z—,¢"), (?,¢?)) into G~
else
if not Satisfiable(a(i—) A —pre(a(i?))) then insert ((i—,q'), (i?,4?)) into G~
foreach ((i,q'), (i7,47)) € G~ do
remove ((4,q'), (i?,¢?)) from G~
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52 % Add new incoming strong game transitions
53 foreach (i,q’) € C' do

54 foreach ((i?,q7), (i,¢')) € G~ do

55 remove ((i?,q?), (i,q’)) from G~

56 added := false;

57 if ((i?,¢7?), (i+,9')) € GT then

58 if not Satisfiable(a(i?) A —pre(a(i+))) then
59 insert ((i?,¢7?), (i+,¢')) into G~

60 added := true;

61 if ((3?,¢?),(i—,q')) € G then

62 if not Satisfiable(a(i?) A —pre(a(i—))) then
63 insert ((i?,¢?), (i—,¢')) into G~

64 added := true;

65 if not added then

66 Notify Heuristic of game position (i7, ¢7?).

67 % Split in the post—abstraction part.
68 if ¢(¢) = p then
69 % Collect all BRANCH worlds in C’

70 B =0
71 foreach ((B,P),q") € C' do
72 B :=B' U{B}

73 % Split each BRANCH world
74 foreach B € B’ do

75 foreach I’ € P(B) do

76 ¢+ = a(i+) A Nyep pre(a(i')) A /\Z.,EB\I, —pre(a(i’))
7 ¢— = ali—) A /\i’e[’ pre(a(i’)) A /\i’eB\I’ —pre(a(i’))
78 if Satisfiable(¢+) then B+ := (I',¢+)

79 if Satisfiable(¢—) then B— := (I, ¢—)

80 % Add new BRANCH game positions

81 foreach ((B, P),q') € C' do

2 Add(Pia, (B+,d), 9(((B, P),d)), w(((B, P),q)))
s Add(Pia, (B—q), 9(((B, P),q)), w((B, P), )
84 % Add new OR to BRANCH junction game transitions
85 foreach (i,¢') € C' with € I do

86 foreach ((i,¢'), (B, P),q')) € G° do
87 remove ((4,q'), (B, P),q')) from G°
88 insert ((i+,q'), (B+,q’)) into G°
89 insert ((i—,q'),(B—,q")) into G°

90 % Add new BRANCH to BRANCH junction game transitions
91 foreach ((B,P),q") € C' do

92 foreach (((B, P),q"), ((B,P),q?)) € G° do
93 remove (((B, P),q'), (B, P),q?)) from G°
94 insert ((B+ q) (B—l—,q?)) into G°
95 insert ((B—,q’),(B—,q?)) into G°

96 % Add new outgoing weak and strong game transitions
97 foreach ((B,P),q") € C' do

98 foreach (((B, P),q), (i7,q?)) € G do
99 remove (((B, P),q), (i?,4?)) from G*
100 remove (((B7 P),q), (i7,q7)) from G~
101 if 4?7 € II;(B+) then

102 insert ((B+,q'), (i?,4?)) into G*
103 insert ((B+,¢), (i?,¢?)) into G~
104 if i? € IL(B ) then
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insert ((B—,q'), (i?,¢?)) into G*
insert ((B—,¢’),(i?,q?)) into G~

107 % Add new incoming weak game transitions

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

foreach (i,¢') € C' with i € I do
foreach ((i?,q7), (i,¢')) € GT do
remove ((i?,q?), (i,¢")) from G*
if Satisfiable(a(i?) A pre(a(i+))) then insert ((i?,q?), (i+,q’)) into G
if Satisfiable(a(i?) A pre(a(i—))) then insert ((i?,¢?), (i—,q’)) into G

% Add new incoming strong game transitions

foreach (i,¢') € C' with i € I do
foreach ((i?,q?), (i,¢')) € G~ do
remove ((i7,¢?), (4,4")) from G~
added := false;
if ((i?,¢7?), (i+,q')) € GT then
if not Satisfiable(w(i?) A —pre(a(i+))) then
insert ((i?,¢?), (i+,¢')) into G~
added := true;
if ((i7,47),(i—,¢')) € GT then
if not Satisfiable(a(i?) A —pre(a(i—))) then
insert ((i?,4?), (i—,q')) into G~
added := true;
if not added then
Notify Heuristic of game position (i7, g7).
% Add new incoming weak game transitions
foreach (i,q') € C' do
remove (i,q’) from Pk 4 and adjust ¢ and
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Algorithm Transform(Pg 4,c)

% Calculate the set of game positions C’
C?={(i,q)}; C":=10
while C? # () do
remove (4,q") from C?
C"=C"U{(i,q)}
foreach (((i?,¢7?), (i,¢")) € G° or ((i,¢), (i?,4q?)) € G°) do
C?:=C?U{(i?,q7)} \ C’
% Transform all TRANS game positions into OR game positions
(i) :==p
foreach ¢/ € C’
Move ¢’ into Cyq
% Calculate BRANCH worlds
B =10
foreach I' € P(I) do
¢ = a(i) A /\ilep pre(a(i’)) A /\i’e[\]’ —pre(a(i’))
if Satisfiable(¢) then
B':=B'U{(I',¢)}
% Add BRANCH game positions
foreach (i,q') € C' do
foreach B € B’ do
Add(Prk,4,(B,4q'),9((i,q")).w((i,q')))
% Adapt junction game transitions
foreach (i,q") € C' do
foreach ((i,q'), (i,q")) € G°
remove ((4,q'), (i,¢")) from G°
foreach B € B’ do
insert ((B,q'),(B,q")) into G°
% Connect OR to BRANCH game positions
foreach (i,q") € C' do
foreach B € B’ do
insert ((4,¢), (B,¢')) into G°
% Adapt outgoing weak and strong game transitions
foreach (i,q') € C' do
foreach ((i,¢'), (i?,q?)) € G
remove ((i,q'), (i7,¢?)) from G+
remove ((¢,q'), (i?,¢?)) from G~
foreach B € B’ do
if 7 € 11, (B) then

insert ((B,q'),(i?,4?)) into G*
insert ((B,q'), (i?,4?)) into G~

q
/
q
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