
Generalized µ-Automata
Satisfaction and Refinement Games

Student Research Project

Jan Waller

Christian-Albrechts-University Kiel, Germany
jwa@informatik.uni-kiel.de

Abstract. Generalized µ-Automata are a new kind of model, used for
the abstraction of Kripke structures. They are based upon a combina-
tion of pre-abstraction and post-abstraction, developed and sketched by
Fecher and Huth. Satisfaction of these new models with the modal µ-
calculus is introduced with the help of satisfaction games between gen-
eralized µ-automata and the modal µ-calculus in its alternate form of
alternating tree automata. Finally a notion of refinement (abstraction)
between two generalized µ-automata is introduced via refinement games.

Key words: Generalized µ-Automata, Satisfaction Games, Refinement
Games, Abstraction

1 Introduction

Model checking has its origins in the early 1980s, when Clarke and Emerson [1]
as well as Queille and Sifakis [7] introduced a new algorithmic approach for the
verification of systems. One formally defines satisfaction as an relation M |= φ,
where M is a mathematical model of a system and φ is a property, which has to
be shown, encoded within a formal language, such as the modal µ-calculus [6].
Problems arise with the size of the state space of M , which is often infinite
or exponential in its description. Instead of directly calculating M |= φ, one
employs abstraction techniques, i.e. one constructs an abstract model A from
the specification of M such that A |= φ implies M |= φ.

Fecher and Huth [4] worked upon the abstraction technique named pre-
abstraction and developed a new abstraction techniques called post-abstraction.
Depending on the model M and proposition φ the calculation of pre- or post-
abstraction may be preferable to each other. They sketched how a combination
of both techniques may result in a more precise abstraction without increasing
the cost of the abstraction synthesis too much.

1

Contribution. In this student research project I present the combination of
both techniques mentioned above, which results in the model of generalized
µ-automata. In addition a sound definition of satisfaction is given with the help
of satisfaction games between this new model and alternating tree automata.
Further a definition of refinement is given with the help of refinement games
between two generalized µ-automata, which is reflexive, transitive and sound.

Related work. Some other abstraction techniques were developed by Graf and
Saïdi [5], who introduced predicate abstraction (an abstract model A is con-
structed from a partition of the state space of M such that certain properties of
A also hold in M), and Dams [2], who introduced the notion of an abstraction
relation between states of the abstract model A and states of M together with
the notion of precision.

The notion of pre-abstraction is based upon work by de Alfaro et al. [3],
who defined precision for the alternating time µ-calculus for may- and must-
transitions using a parity game in which the Refuter can replace a concrete state
with any state in the same partition. Pre-abstraction is a transformation of this
game into a satisfaction game, restricted to the modal µ-calculus and partition
based abstraction.

Outline. In section 2 of this work Kripke structures and alternating tree au-
tomata are briefly introduced. Furthermore satisfaction between Kripke struc-
ture and alternating tree automata is defined with the help of their standard
satisfaction game. Section 3 briefly summarizes the notion of abstraction as well
as the techniques of pre-abstraction and post-abstraction and their respective
models named generalized Kripke modal transition system and µ-automaton as
well as their particular satisfaction games. The new model named generalized µ-
automaton is defined within section 4. Additionally satisfaction of this model is
defined with the help of satisfaction games. Finally section 5 correlates two gen-
eralized µ-automata with the notion of refinement and abstraction respectively,
formalized through refinement games.

2 Preliminaries

In the following, P(S) denotes the power set of a set S. Let IN denote the natural
numbers including 0, IN≥1 the natural number greater than 0. Let 0 be even. For
a relation ρ ⊆ B×C withX ⊆ B I will writeX.ρ for {c ∈ C | ∃b ∈ X : (b, c) ∈ ρ}.

Let AP be a finite set of atomic propositions, such that true, false ∈ AP
and if p ∈ AP, then ¬p ∈ AP.

Note 1. Since all games presented here are kinds of parity games, there exists a
winning strategy for a player iff the Player has a history independent winning
strategy.

Most of the following definitions and examples are taken from [4].

2

/.-,()*+
/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

/.-,()*+¬e/.-,()*+eŜ Ŝ′′Ŝ′

Ŝ′′′
0 Ŝ′′′

1 Ŝ′′′
2 Ŝ′′′

3 Ŝ′′′
4 Ŝ′′′

5

��
// // // // // //

55lllllllllllll

GG����

ddJJJJJJJJ

::tttttttt

WW////

iiRRRRRRRRRRRRR
K̂ : . . .

. . .

Fig. 1. A Kripke structure. The propositions L(w) ⊆ AP at a world w are
depicted within world borders. Arrows w → w′ denote (w,w′) ∈ R. World
names are depicted close to the corresponding world.

2.1 Kripke Structures

In accordance to Fecher and Huth [4] I will not consider action labels on mod-
els, thus the concrete models considered here are Kripke structures over a finite
set of propositions AP. Such Kripke structures are directed graphs. Arcs repre-
sent transitions and vertices represent worlds. Propositions taken from AP are
assigned as labels to each vertex.

Definition 1 (Kripke structure). A Kripke structure K over AP is a tuple
K = (W, ŵ,R, L) where

– W is a (nonempty) set of worlds,
– ŵ ∈W is an initial world,
– R ⊆W ×W is its world transition relation, and
– L : W → P(AP) is its labeling function.

K is finite whenever W is.

Example 1. Consider a simple program to determine if a given number (∈ IN) is
even. The idea is to start with 0 which is even and increase by 1 switching from
even to odd or from odd to even. Now one just continues to increase until one
reaches the given number and checks whether the current status is even or odd.

A possible Kripke structure K̂ to model such a system is illustrated in Fig. 1.
Here the set of worldsW consists of an initial world Ŝ which represents initiating
the program, the set of worlds Ŝ′′′i for i ∈ IN and the two worlds Ŝ′ and Ŝ′′ which
represent printing the result for even or odd numbers. Each world corresponds
to an assignment to variables. Here only one variable is used. It is undefined in
Ŝ, Ŝ′ and Ŝ′′ and set to i in Ŝ′′′i for i ∈ IN. Further there are two propositions e
and ¬e ∈ AP , where e means even and ¬e odd. Accordingly {e} and {¬e} are
assigned to Ŝ′ and Ŝ′′ via L. The transitions R are depicted in the figure.

To check a given number n one starts at Ŝ, takes the transition to Ŝ′′′0 and
continues onward until the counting variable is set to n, thus to Ŝ′′′n . Then one
takes the transition to Ŝ′ or Ŝ′′ respectively and gets the result from the labeling.

Formally the Kripke Structure K̂ is defined as:
K̂ = (W, Ŝ,R, L) with AP = {true, false, e,¬e} and
– W = {Ŝ, Ŝ′, Ŝ′′} ∪ {Ŝ′′′i | i ∈ IN},
– R = {(Ŝ, Ŝ′′′0)} ∪ {(Ŝ′′′2i , Ŝ′) | i∈IN} ∪ {(Ŝ′′′2i+1, Ŝ

′′) | i∈IN} ∪ {(Ŝ′′′i , Ŝ′′′i+1) | i∈IN},
– L : W → P(AP) with Ŝ′ 7→ {e}; Ŝ′′ 7→ {¬e}; for all w ∈W \{Ŝ′, Ŝ′′} : w 7→ ∅.

3

AX ∧̃//
EX33hhhh AX// false//

EX
++VVVV

jjVVVVVV
0 0

0 0 0

0
Â : q̂ q̈

q0 q′
0 q′′

0

q1

Fig. 2. An alternating tree automaton. State names and acceptance numbers are
depicted close to corresponding states. A depiction of the transition function is
within the state borders in conjunction with the transition arrows.

2.2 Alternating Tree Automata

The modal µ-calculus is a logic to express properties of Kripke structures. Here
I use the modal µ-calculus in its equivalent form of alternating tree automata.
This equivalence is shown by Wilke [8].

Definition 2 (Alternating tree automaton). An alternating tree automa-
ton is a tuple A = (Q, q̂, δ, Θ) such that

– Q is a finite, nonempty set of states,
– q̂ ∈ Q is an initial state,
– δ is a transition function, which maps each automaton state (∈ Q) to one of

the following forms: p | ¬p | q′ | q′∧̃q′′ | q′∨̃q′′ | EX q′ | AX q′

(where p,¬p ∈ AP; q′, q′′ ∈ Q), and
– Θ : Q→ IN is an acceptance condition, which assigns an acceptance number

to each state.

Example 2. Considering the Kripke structure given in Example 1 on the previous
page one might be interested whether the given system is able to terminate for
all input numbers (∈ IN). So, at each world Ŝ′′′i there must be a transition leading
to one of the two final worlds and one transition to next world Ŝ′′′i+1. In other
words: After any transition, (∗) (i) there is a transition such that no further
transition is possible; and (ii) there is a transition such that (∗) holds again.
Note that these transitions are inside the Kripke structure.

An example of an alternating tree automaton to incorporate (∗) is depicted
in Fig. 2. After any transition (q̂), there are two transitions (q̈). One such that
no further transitions are possible (q0) and one transition such that the property
described by q̈ holds again (q1).

Note that the term transitions refers to the Kripke structure. Every time
the transition function of the alternating tree automata refers to EX or AX, a
transition in the Kripke structure happens. This will be clarified further by the
section satisfaction games.

Formally the alternating tree automata Â is defined as:
Â = (Q, q̂, δ, Θ) with AP = {true, false, e,¬e} and

– Q = {q̂, q̈, q0, q′0, q′′0 , q1},
– δ : q̂ 7→ AX q̈; q̈ 7→ q0∧̃q1; q0 7→ EX q′0; q

′
0 7→ AX q′′0 ; q′′0 7→ false; q1 7→ EX q̈,

– Θ : Q→ IN with q 7→ 0 for all q ∈ Q.

4

2.3 Satisfaction Games

Satisfaction games are a special kind of parity game played by two players. One
player is the Verifier, the other one is the Refuter. The game is played on a
field consisting of two automata, one representing the model of a system (e.g. a
Kripke structureK = (W, ŵ,R, L)) and one being an alternating tree automaton
A = (Q, q̂, δ, Θ) representing the property to be shown. Each configuration of the
game is a pair (w, q) with w ∈ W and q ∈ Q. Initially a pawn is placed on the
initial position of each automaton (ŵ, q̂) (initial configuration). The satisfaction
game is played in rounds with a set of rules detailing which player moves the
pawns in which way on the field each round, resulting in a new configuration.
Each player wins a play iff the other one is losing. Winning conditions for finite
plays are detailed by the rules. Additionally, a play is lost if one player is forced
to take a turn which is impossible to do (e.g. one pawn should be moved to an
unreachable/non-existing position). Infinite plays are won by the Verifier iff the
maximum of all infinitely often occurring acceptance numbers (Θ(q) ∈ IN) for
each configuration (w, q) of the play is even, else they are won by the Refuter.

Definition 3 (Winning Strategy). A player is said to have a winning strat-
egy iff he has a strategy to move the pawns on his turns that allows him to win
the play regardless of moves the other player performs.

The Verifier wins a game (opposed to a play) if he has a winning strategy.

Rules for satisfaction games with Kripke structures. The rules for sat-
isfaction games between a Kripke structure (W, ŵ,R, L) and an alternating tree
automaton (Q, q̂, δ, Θ) are presented below:
If the current configuration is (w, q), choose the rule detailing winning conditions
or movement of the pawns in the game according to the value of δ(q).

δ(q) Rules
p: Verifier wins if p ∈ L(w); Refuter wins if p 6∈ L(w)
¬p: Verifier wins if ¬p ∈ L(w); Refuter wins if ¬p 6∈ L(w)
q′: the next configuration is (w, q′)

q1∧̃q2: Refuter picks a q′ from {q1, q2}; the next configuration is (w, q′)
q1∨̃q2: Verifier picks a q′ from {q1, q2}; the next configuration is (w, q′)
EX q′: Verifier picks w′ ∈ {w}.R; the next configuration is (w′, q′)
AX q′: Refuter picks w′ ∈ {w}.R; the next configuration is (w′, q′)

Satisfaction plays are sequences of configurations generated by these rules.

Definition 4 (Satisfaction for Kripke Structures). A Kripke structure K
satisfies an alternating tree automaton A, written K |= A iff the Verifier has
a winning strategy for the satisfaction game between K and A starting in the
initial configuration (ŵ, q̂).

This definition of satisfaction games and these rules for Kripke structures corre-
spond to the ones presented by Wilke [8] in Sec. 3 of his paper. Equivalence of
the definition and the rules to the well known satisfaction of Kripke Structures
with the modal µ-calculus follows from Theorem 3 in the same paper.

5

Example 3. Using the Kripke structure K̂ in Example 1 on page 3 and the
alternating tree automaton Â in Example 2 on page 4, one has K̂ |= Â.

Any satisfaction game between K̂ and Â starts in the initial configuration
(Ŝ, q̂). At each configuration (w, q) the value of δ(q) determines the rule em-
ployed. One possible play is depicted in the table below:
Round (w, q) δ(q) Rules, Choices and Movement

Refuter picks w′ ∈ {Ŝ}.R = {Ŝ′′′0 }
1 (Ŝ, q̂) AX q̈ ↪→ Refuter picks w′ = Ŝ′′′0

↪→ next configuration: (Ŝ′′′0 , q̈)
Refuter picks a q′ ∈ {q0, q1}

2 (Ŝ′′′0 , q̈) q0∧̃q1 ↪→ Refuter picks q′ = q1
↪→ next configuration: (Ŝ′′′0 , q1)
Verifier picks w′ ∈ {Ŝ′′′0 }.R = {Ŝ′, Ŝ′′′1 }

3 (Ŝ′′′0 , q1) EX q̈ ↪→ Verifier picks w′ = Ŝ′′′1
↪→ next configuration: (Ŝ′′′1 , q̈)
Refuter picks a q′ ∈ {q0, q1}

4 (Ŝ′′′1 , q̈) q0∧̃q1 ↪→ Refuter picks q′ = q1
↪→ next configuration: (Ŝ′′′1 , q0)
Verifier picks w′ ∈ {Ŝ′′′1 }.R = {Ŝ′′, Ŝ′′′2 }

5 (Ŝ′′′1 , q0) EX q′0 ↪→ Verifier picks w′ = Ŝ′′

↪→ next configuration: (Ŝ′′, q′0)
Refuter picks w′ ∈ {Ŝ′′}.R = ∅

6 (Ŝ′′, q′0) AX q′′0 ↪→ Refuter can’t pick a next world, thus looses the play
↪→ Verifier wins the play

Proof. A proof of K̂ |= Â requires a winning strategy for the Verifier. As one
can easily see, the only configurations the Verifier can make any decisions are
configurations (w, q0) and (w, q1) with w ∈ W . The first choice is made at
w = Ŝ′′′0 . Following the winning strategy presented below, one can easily see
that w ∈ {Ŝ′′′i |i ∈ IN} always holds true. Thus decisions can only be made at
(Ŝ′′′i , q0) or (Ŝ′′′i , q1).
A winning strategy is:

– (Ŝ′′′i , q0): Verifier chooses Ŝ′ or Ŝ′′ as his next world,
– (Ŝ′′′i , q1): Verifier chooses Ŝ′′′i+1 as his next world.

With this strategy, all finite games end like the example above. The Refuter
can choose q1 as often as he wants to, but the Verifier just returns to q̈, staying
within {Ŝ′′′i |i ∈ IN}. As soon as the Refuter chooses q0 the play ends as above.
If the refuter never chooses q0 the play is infinite, thus the maximum over all
infinitely often occurring acceptance numbers is calculated. Since in this example
all acceptance numbers are 0, the maximum is 0, which is even. Thus the Verifier
wins. ut

6

3 Pre- and Post-Abstraction

This section is based upon the work of Dams [2], Fecher and Huth [4].
One problem with satisfaction games is the large number of worlds present

within Kripke structures. Abstraction is used to reduce this number of worlds. An
abstraction function α is a surjective function α : W → I which maps concrete
Kripke worlds (w ∈W) to abstract ones (α(w) ∈ I). Two worlds w,w′ ∈W are
said to be compatible iff α(w) = α(w′).

Example 4. Let α̂ be an abstraction function for the Kripke structure K̂ de-
scribed in Example 1 on page 3 with α̂ : Ŝ 7→ î, Ŝ′ 7→ î′, Ŝ′′ 7→ î′′, Ŝ′′′n 7→ î′′′ for
n ∈ IN. Clearly all Ŝ′′′n , n ∈ IN are compatible worlds under α̂.

Let Kα be an abstracted Kripke structure. This means Kα is derived from a
Kripke structure K by applying the abstraction function α to its world space
and adjusting the rest of the structure in a manner that is irrelevant for the
moment. Some possible structures of Kα will be presented in the next sections.
The important things with abstraction are soundness and precision.

Definition 5 (Soundness of abstraction). Let K be a Kripke structure, α
an abstraction function and Kα an abstracted Kripke structure. The abstraction
is said to be sound iff for all alternating tree automata A

(Kα |= A) =⇒ (K |= A)

holds true. Generally speaking the opposite implication does not hold.

Definition 6 (Precision of abstraction [informal]). An abstraction is said
to be more precise than another abstraction if it is possible to verify more prop-
erties in the first one than in the second one. An abstraction is said to be precise
if (with the given parameters such as the abstraction function or an underlying
satisfaction game) it has the most verifiable properties.

Fecher and Huth [4] present two precise and sound abstraction techniques called
pre- and post-abstraction.

3.1 Pre-Games and Pre-Abstraction

Pre-Games are special kinds of satisfaction games between a Kripke Structure
K with an abstraction function α and an Alternating Tree Automaton A. While
the game is played on the abstracted Kripke structure, all moves are based on
the concrete Kripke structure. In other words, configurations of pre-games are
pairs (i, q) ∈ I × Q, but before applying any rule of the satisfaction game, the
Refuter chooses one concrete world w with α(w) = i. This world is used to
determine the action within the selected rule, resulting in (w′, q′). Then the new
configuration is (α(w′), q′). Hence the Verifier can only verify properties that
hold for all compatible worlds of the current configuration.

This leads to pre-abstraction, which uses generalized Kripke modal transition
systems incorporating must-hypertransitions to implement the abstraction given
by α as well as the possible world changes inherent to pre-games.

7

/.-,()*+ /.-,()*+e /.-,()*+¬e

/.-,()*+
î î′ î′′

î′′′
**TTTTTTTTTTTTTTTT

**TTTTTTTT __?
?

?

77oooooo

ggOOOOOO
33ggggggggggg

OO
_ %

�Y

�OO

Ĝ :

Fig. 3. A generalized Kripke modal transition system. The propositions L(w) ⊆
AP at a world w are depicted within world borders. Dashed arrows w 99K w′
denote may-transitions (w,w′) ∈ R+, while solid arrows w → {w1, . . . , wn}, n ∈
IN represent must-hypertransitions (w, {w1, . . . , wn}) ∈ R−. World names are
depicted close to the corresponding worlds.

Definition 7 (Generalized Kripke modal transition systems). A Gener-
alized Kripke modal transition systems M over AP is a tuple (W, ŵ,R−, R+, L)
where

– W is a (nonempty) set of worlds,
– ŵ ∈W is an initial world,
– R− ⊆W × P(W) is its set of must-hypertransitions,
– R+ ⊆W ×W is its set of may-transitions, and
– L : W → P(AP) is its labeling function.

M is finite whenever W is.

The complete means of constructing the generalized Kripke modal transition
system via pre-abstraction are left to the paper of Fecher and Huth [4], Defini-
tion 7.

The definition of satisfaction and the rules for satisfaction games with gen-
eralized Kripke modal transition system are, with two exceptions, identical to
the corresponding definitions and rules for Kripke structures. The changes are
presented below:

δ(q) Rules
EX q′: Verifier picksD′ ∈ {w}.R−; Refuter picks w′ ∈ D; next configuration: (w′, q′)
AX q′: Refuter picks w′ ∈ {w}.R+; next configuration: (w′, q′)

Precision related to pre-games and soundness of pre-abstraction are shown by
Fecher and Huth [4].

Example 5. The generalized Kripke modal transition system Ĝ from Fig. 3 is
an abstraction from K̂ (Example 1 on page 3) using the abstraction function α̂
from Example 4 on the preceding page.

Ĝ |= Â, with Â from Example 2 on page 4, can be easily seen with the
following winning strategy:

– (̂i′′′, q0): Verifier chooses the must-hypertransition (̂i′′′, {̂i′, î′′}),
– (̂i′′′, q1): Verifier chooses the self-loop (̂i′′′, {̂i′′′}).

8

'&%$!"#��������
'&%$!"#��������

'&%$!"#��������'&%$!"#��������
•

•
•
•

•

î

î′′′

î′′
î′

b̂3

b̂2

b̂4

b̂1

b̂0

�� //______________
""

55lllllll__ //

pp

55lllllll

//// ¬e
e

M̂ :

Fig. 4. A µ-automaton. OR-worlds (∈ O) are depicted as double-lined circles
and BRANCH-worlds (∈ B) as solid circles. The propositions L(b) ⊆ AP at a
BRANCH-world b are depicted in small font next to the corresponding worlds.
Arrows o→ b and b→ o denote OR-relations (o, b) ∈⇒ respectively BRANCH-
relations (b, o) ∈→. World names are depicted close to the corresponding worlds.

3.2 Post-Games and Post-Abstraction

Post-Games are similar to pre-games, they also are special kinds of satisfaction
games between a Kripke Structure K with an abstraction function α and an
Alternating Tree Automaton A. Configurations off such games are, similar to
satisfaction games on Kripke structures, pairs (w, q) ∈ W ×Q. After any move
resulting in (w′, q′), the Refuter may switch to another compatible world w′′

of w′, resulting in the new configuration (w′′, q′). Consequently the Verifier is
usually able to verify more properties than in pre-games, albeit at a (usually)
higher cost.

This leads to post-abstraction, which uses µ-automata to implement the ab-
straction given by α as well as the possible world changes inherent to post-games.

Definition 8 (µ-automata). A µ-automaton M over the set of atomic propo-
sitions AP is a tuple (O,B, ŵ,⇒,→, L) such that

– O is a set of OR-worlds,
– B is a set of BRANCH-worlds (disjoint from O),
– ŵ ∈ O ∪B is an initial world,
– ⇒⊆ O ×B is its OR-transition relation,
– →⊆ B ×O is its BRANCH-transition relation, and
– L : B → P(AP) is its labeling function.

M is finite if both B and O are.

The complete means of constructing µ-automata via post-abstraction are left to
the paper of Fecher and Huth [4], Definition 10.

The definition of satisfaction and the rules for satisfaction games with µ-
automata are similar to the corresponding definitions and rules for Kripke struc-
tures. Configurations of satisfaction games between µ-automata and alternating
tree automata are pairs (w, q) ∈ (O ∪B)×Q.

9

If the current configuration is (o, q) with o ∈ O, the only rule is:

– Refuter picks b ∈ {o}.⇒; the next configuration is (b, q).

Otherwise for configurations (b, q) with b ∈ B the rules, with the following
exceptions, are like the normal rules for Kripke structures:

δ(q) Rules
EX q′: Verifier picks o ∈ {b}.→; the next configuration is (o, q′)
AX q′: Refuter picks o ∈ {b}.→; the next configuration is (o, q′)

Precision related to post-games and soundness of pre-abstraction are shown by
Fecher and Huth [4].

Example 6. The µ-automata M̂ from Fig. 4 on the preceding page is an ab-
straction from K̂ (Example 1 on page 3) using the abstraction function α̂ from
Example 4 on page 7.

M̂ |= Â, with Â from Example 2 on page 4, can be easily seen with the
following winning strategy:

– (b̂3, q0), (b̂4, q0): Verifier chooses the transition to î′ or î′′ respectively,
– (b̂3, q1), (b̂4, q1): Verifier chooses the transition to î′′′.

3.3 Remarks

As Fecher and Huth [4] annotated, that there are cases where pre-abstraction
leads to more complex models than post-abstraction and vice versa. Which
one leads to the better results when verifying a given property depends heav-
ily on that property (the alternating-tree-automata) as well as the underlying
Kripke structure. The complexity of generalized Kripke modal transition sys-
tems (pre-abstraction) results from the must-hypertransitions. The complexity
of µ-automata results from the blow up in brach worlds, which often is exponen-
tial.

Using the same abstraction function α post-abstraction is more precise than
pre-abstraction, albeit most often more complex. Nevertheless using different
abstraction functions the expressiveness of both abstractions is the same. If any
property under an abstraction function α is not satisfied by the pre-abstracted
automaton, but the post-abstracted one, one can construct an abstraction func-
tion α′ such that the pre-abstraction under α′ satisfies the property at the cost
of even more increased complexity.

In the discussion of their paper, Fecher and Huth [4] sketch a combination of
pre- and post-abstraction which may result in more precise abstraction without
increasing the complexity too much. This leads to the generalized µ-automata
detailed below.

10

/.-,()*+ /.-,()*+e /.-,()*+¬e

/.-,()*+��������

• •
î î′ î′′

î′′′

b̂0 b̂1

$$JJJJJJJJJJJJJJJJJJJ

$$J
J

J
J

J
J

J
J

J
J

OO

��

JJ��������

��������

ggOOOOOO
44jjjjjjjj

ĜM :

Fig. 5. A generalized µ-automaton. TRANS-worlds (∈ T) are depicted as unfilled
circles, OR-worlds (∈ O) as double-lined circles and BRANCH-worlds (∈ B) as
small solid circles. The propositions L(w) ⊆ AP at a world w are depicted within
world borders. Dashed arrows t 99K w are may-transitions (t, w) ∈ R+, while
solid arrows t → w between TRANS-states and from TRANS- to OR-states
are must-transitions (t, w) ∈ R−. Arrows o→ b and b→ w denote OR-relations
(o, b) ∈⇒, respectively BRANCH-relations (b, w) ∈→. World names are depicted
close to the corresponding worlds.

4 Generalized µ-Automata

The model of generalized µ-automata results from a combination of pre- and
post-abstraction [4]. Its basic idea is employing the simpleness of pre-abstraction,
as far as possible, and switching to post-abstraction if must-hypertransitions lead
to greater complexity. In other words one employs the generalized Kripke modal
transition systems, where all must-hypertransitions are replaced by additional
worlds and transitions according to a local post-abstraction.

Definition 9 (Generalized µ-automaton). A generalized µ-automaton GM
over AP is a tuple (T,O,B, ŵ, R−, R+,⇒,→, L) such that

– T is the set of TRANS-worlds,
– O is the set of OR-worlds,
– B is the set of BRANCH-worlds,
– ŵ ∈ (T ∪O ∪B) is its initial world,
– R−, R+ ⊆ T×(T ∪O) is the set of must- and may-transitions (respectively),
– ⇒⊆ O ×B is the set of OR-transitions,
– →⊆ B × (T ∪O) is the set of BRANCH-transitions,
– L : (T ∪B)→ P(AP) is its labeling function.

G is finite if T , O and B are.

The worlds w ∈ T∪O∪B and the respective transitions (starting in these worlds)
of the generalized µ-automaton consist of two parts. The “pre-abstraction-part”
corresponds to the underlying pre-abstraction without must-hypertransitions, so
one is in this part iff w ∈ T . The “post-abstraction-part” corresponds to the local
post-abstraction that replaced any must-hypertransitions, so one is in this part
iff either w ∈ B or w ∈ O.

11

Remark 1 (Well-formedness of generalized µ-automata). A generalized µ-auto-
mata is said to be well-formed iff there is a may-transition (v, w) ∈ R+ whenever
there is a must-transition (v, w) ∈ R−. Henceforth only well-formed generalized
µ-automata are considered.

Example 7. An example of a generalized µ-automaton resulting from the Kripke
structure in Example 1 on page 3 and the abstraction function α̂ from Example 4
on page 7 is illustrated in Fig. 5 on the preceding page.

As one can easily see, the worlds of the generalized µ-automaton ĜM match
the worlds of the generalized Kripke modal transition system Ĝ almost perfectly.
The only difference results from the world î′′′ where the must-hypertransition
in Ĝ starts. This world is replaced with î′′′ from M̂ along with the BRANCH-
worlds b̂0 and b̂1 which correspond to the two BRANCH-worlds b̂3 and b̂4 from
M̂ . Clearly, all worlds w ∈ {̂i, î′, î′′} are inside the “pre-abstraction-part”, while
all worlds with w ∈ {̂i′′′, b̂0, b̂1} are inside the “post-abstraction-part”.

For every world w from the “pre-abstraction-part” all transitions {w}.R+

and {w}.R− from Ĝ are taken over to ĜM . Similarly, for all worlds w from the
“post-abstraction-part” all transitions {w}.⇒ and {w}.→ are taken over to their
respective relations within ĜM .

Finally the labeling function of each underlying automaton is wrapped to the
respective worlds.

Formally the generalized µ-automaton ĜM is defined as:
ĜM = (T,O,B, î, R−, R+,⇒,→, L) with AP = {true, false, e,¬e} and

– T = {̂i, î′, î′′},
– O = {̂i′′′},
– B = {b̂0, b̂1},
– R− = {(̂i, î′′′)},
– R+ = {(̂i, î′′′)},
– ⇒= {(̂i′′′, b̂0), (̂i′′′, b̂1)},
– →= {(b̂0, î′′′), (b̂1, î′′′), (b̂0, î′), (b̂1, î′′)}, and
– L : (T ∪B)→ P(AP) with î′ 7→ {e}; î′′ 7→ {¬e} and î, b̂0, b̂1 7→ ∅.

4.1 Satisfaction Games

Satisfaction games between a generalized µ-automaton GM = (T,O,B, ŵ, R−,
R+,⇒,→, L) and an alternating tree automaton A = (Q, q̂, δ, Θ) are similar
to satisfaction games between Kripke structures and alternating tree automata.
Each configuration of the game is a pair (w, q) with w ∈ T ∪O ∪ B and q ∈ Q.
The initial configuration is (ŵ, q̂).

The set of rules is divided in two parts. Depending on w of the current
configuration (w, q), one is either in the “pre-abstraction-part” or in the “post-
abstraction-part” (see above for details) of the generalized µ-automaton. Inside
the “pre-abstraction-part” the rules of pre-abstraction are adapted and employed,
inside the “post-abstraction-part” the rules of post-abstraction are in use.

12

Rules for Satisfaction Games. The rules for satisfaction games between a
generalized µ-automaton (T,O,B, ŵ, R−, R+,⇒,→, L) and an alternating tree
automaton (Q, q̂, δ, Θ) are presented below:
If the current configuration is (w, q), choose the rule detailing winning conditions
or movement of the pawns in the game depending on the part one is in and
according to the value of δ(q).

pre-abstraction-part with w ∈ T :

δ(q) Rules
p: Verifier wins if p ∈ L(w); Refuter wins if p 6∈ L(w)
¬p: Verifier wins if ¬p ∈ L(w); Refuter wins if ¬p 6∈ L(w)
q′: the next configuration is (w, q′)

q1∧̃q2: Refuter picks a q′ from {q1, q2}; the next configuration is (w, q′)
q1∨̃q2: Verifier picks a q′ from {q1, q2}; the next configuration is (w, q′)
EX q′: Verifier picks w′ ∈ {w}.R−; the next configuration is (w′, q′)
AX q′: Refuter picks w′ ∈ {w}.R+; the next configuration is (w′, q′)

post-abstraction-part with w ∈ O:

Rule
Refuter picks b ∈ w.⇒; the next configuration is (b, q)

post-abstraction-part with w ∈ B:

δ(q) Rules
p: Verifier wins if p ∈ L(w); Refuter wins if p 6∈ L(w)
¬p: Verifier wins if ¬p ∈ L(w); Refuter wins if ¬p 6∈ L(w)
q′: the next configuration is (w, q′)

q1∧̃q2: Refuter picks a q′ from {q1, q2}; the next configuration is (w, q′)
q1∨̃q2: Verifier picks a q′ from {q1, q2}; the next configuration is (w, q′)
EX q′: Verifier picks w′ ∈ {w}.→; the next configuration is (w′, q′)
AX q′: Refuter picks w′ ∈ {w}.→; the next configuration is (w′, q′)

Satisfaction plays are sequences of configurations generates by these rules.

Definition 10 (Satisfaction for Generalized µ-automata). A generalized
µ-automata GM satisfies an alternating tree automaton A, written GM |= A iff
the Verifier has a winning strategy for the satisfaction game between GM and A
starting in the initial configuration (ŵ, q̂).

Remark 2. Soundness of these rules follows with the help of the notion of re-
finement presented in the next section, Remark 3 on page 15 and Theorem 3 on
page 20. One can easily see that any generalized µ-automata GM satisfies an
alternating tree automaton A iff there exists a Kripke structure K with K |= A.

13

Example 8. Using the generalized µ-automaton ĜM in Example 7 on page 12
and the alternating tree automata Â in Example 2 on page 4, one has ĜM |= Â.

Any satisfaction game between ĜM and Â starts in the initial configuration
(̂i, q̂). One possible play is depicted in the table below:
Round (w, q) part δ(q) Rules, Choices and Movement

Refuter picks w′ ∈ {̂i}.R+ = {̂i′′′}
1 (̂i, q̂) pre AX q̈ ↪→ Refuter picks w′ = î′′′

↪→ next configuration: (̂i′′′, q̈)
Refuter picks b ∈ {̂i′′′}.⇒ = {b̂0, b̂1}

2 (̂i′′′, q̈) post – ↪→ Refuter picks b = b̂0
↪→ next configuration: (b̂0, q̈)
Refuter picks a q′ ∈ {q0, q1}

3 (b̂0, q̈) post q0∧̃q1 ↪→ Refuter picks q′ = q1
↪→ next configuration: (b̂0, q1)
Verifier picks w′ ∈ {b̂0}.→ = {̂i′, î′′′}

4 (b̂0, q1) post EX q̈ ↪→ Verifier picks w′ = î′′′

↪→ next configuration: (̂i′′′, q̈)
Refuter picks b ∈ {̂i′′′}.⇒ = {b̂0, b̂1}

5 (̂i′′′, q̈) post – ↪→ Refuter picks b = b̂1
↪→ next configuration: (b̂1, q̈)
Refuter picks a q′ ∈ {q0, q1}

6 (b̂1, q̈) post q0∧̃q1 ↪→ Refuter picks q′ = q0
↪→ next configuration: (b̂1, q0)
Verifier picks w′ ∈ {b̂1}.→ = {̂i′′, î′′′}

7 (b̂1, q0) post EX q′0 ↪→ Verifier picks w′ = î′′

↪→ next configuration: (̂i′′, q′0)
Refuter picks w′ ∈ {̂i′′}.R+ = ∅

8 (̂i′′, q′0) pre AX q′′0 ↪→ Refuter can’t pick a next world, thus looses
↪→ Verifier wins the play

Proof. A proof of ĜM |= Â requires a winning strategy for the Verifier. Similar to
the proof of Example 3 on page 6 one can easily see that the only time the Verifier
can make any decisions is at the configurations (b̂0, q0), (b̂1, q0), (b̂0, q1), (b̂1, q1).
A winning strategy is:

– (b̂0, q0), (b̂1, q0): Verifier chooses the transition to î′ or î′′ respectively,
– (b̂0, q1), (b̂1, q1): Verifier chooses the transition to î′′′.

With this strategy all finite games end like the example above. The choice of b̂0 or
b̂1 doesn’t influence the outcome of the game. The Refuter can choose q1 as often
as he wants to, but the Verifier just returns to q̈, staying within {̂i′′′, b̂0, b̂1}. As
soon as the Refuter chooses q0 the play ends as above. If the refuter never chooses
q0 the play is infinite, thus the maximum over all infinitely often occurring
acceptance numbers is calculated. Since in this example all acceptance numbers
are 0, the maximum is 0, which is even. Thus the Verifier wins. ut

14

5 Refinement

Generally, refinement is the opposite technique of abstraction. If model M1 re-
fines Model M2 then M2 abstracts M1. As mentioned before, abstraction (and
so its converse refinement) is useful in the context of verification. Here one em-
ploys abstraction to yield a smaller number of worlds within a system and then
uses model checking on this abstract system. The notion of refinement games
presented below allows one to correlate two given generalized µ-automata and
construct an abstraction (refinement) hierarchy of such automata.

Remark 3 (Kripke structures as generalized µ-automata). It can be easily seen,
that Kripke structures can be seen as a subset of generalized µ-automata. Given
a Kripke structure K = (W, ŵ,R, L), you can easily construct a generalized µ-
automata GM [K] = (W, ∅, ∅, ŵ, R,R, ∅, ∅, L) which corresponds to this Kripke
structure. It is obvious that for any alternating tree automata A: K |= A iff
GM [K] |= A.

5.1 Refinement Games of Generalized µ-Automata

Refinement of generalized µ-automata is defined with the help of refinement
games, which are special kinds of parity games, similar to satisfaction games.
Two players (Player I and Player II) play this game on a field consisting of
two generalized µ-automata GM1 = (T1, O1, B1, ŵ1, R

−
1 , R

+
1 ,⇒1,→1, L1) and

GM2 = (T2, O2, B2, ŵ2, R
−
2 , R

+
2 ,⇒2,→2, L2). To simplify the notations, define

W1 = T1 ∪O1 ∪B1 and W2 = T2 ∪O2 ∪B2.
Each configuration of the game is a pair (w1, w2) ∈ W1 × W2. Initially a

pawn is placed on the initial worlds of each automaton, resulting in the initial
configuration (ŵ1, ŵ2). Refinement games are played in rounds with a set of rules
detailing which player moves the pawns in which way on the field each round,
resulting in a new configuration. If more than one rule is applicable a single
one is chosen by Player II. Each player wins a play iff the other one is losing.
Winning conditions for finite plays are detailed by the rules. Additionally, a play
is lost if one player is forced to take a turn which is impossible to do (e.g. one
pawn should be moved to an unreachable/non-existing position). Infinite plays
are won by Player I.

Definition 11 (Winning Strategy). A player is said to have a winning strat-
egy iff he has a strategy to move the pawns on his turns that allows him to win
all plays regardless of the moves the other player performs and the rules chosen.

Definition 12 (Refinement). Let GM1 = (T1, O1, B1, ŵ1, R
−
1 , R

+
1 ,⇒1,→1,

L1) and GM2 = (T2, O2, B2, ŵ2, R
−
2 , R

+
2 ,⇒2,→2, L2) be two generalized µ-auto-

mata. GM1 refines GM2 (and GM2 abstracts GM2) iff Player I has a winning
strategy for all refinement plays (using the rules stated below) between GM1 and
GM2 started at (ŵ1, ŵ2).

15

Rules for Refinement Games. The rules for refinement games between
two generalized µ-automata GM1 = (T1, O1, B1, ŵ1, R

−
1 , R

+
1 ,⇒1,→1, L1) and

GM2 = (T2, O2, B2, ŵ2, R
−
2 , R

+
2 ,⇒2,→2, L2) with W1 = T1 ∪ O1 ∪ B1 and

W2 = T2 ∪O2 ∪ B2 at configuration (w1, w2) are presented below, divided by a
case analysis on the considered configuration:

w1 ∈ O1:
Player II picks w′1 ∈ {w1}.⇒; next configuration: (w′1, w2)

w1 6∈ O1 ∧ w2 ∈ O2:
Player I picks w′2 ∈ {w2}.⇒; next configuration: (w1, w

′
2)

w1 6∈ O1 ∧ w2 6∈ O2:
Player II can choose any of the following three alternative rules:

1. Player II picks p ∈ L2(w2); Player I wins iff p ∈ L1(w1)
2. Player II picks w′2 ∈ ({w2}.R−2) ∪ ({w2}.→2);

Player I picks w′1 ∈ ({w1}.R−1) ∪ ({w1}.→1);
↪→ the next configuration is (w′1, w

′
2)

3. Player II picks w′1 ∈ ({w1}.R+
1) ∪ ({w1}.→1);

Player I picks w′2 ∈ ({w2}.R+
2) ∪ ({w2}.→2);

↪→ the next configuration is (w′1, w
′
2)

Refinement games are sequences of configurations generates by these rules.

Example 9. Using the generalized µ-automaton ĜM from Example 7 on page 12
and the generalized µ-automaton GM [K̂] from Remark 3 on the previous page
corresponding to the Kripke Structure K̂ in Example 1 on page 3, one has
GM [K̂] refines ĜM .

Any refinement game between GM [K̂] and ĜM starts in the initial configu-
ration (Ŝ, î). One possible play is depicted in the table below:
Round (w1, w2) Rules Choices and Movement

Ŝ 6∈ O1 Player II picks w′2 ∈ {̂i}.R− = {̂i′′′}
1 (Ŝ, î) î 6∈ O2 ↪→ Player I picks w′1 ∈ {Ŝ}.R− = {Ŝ′′′0 }

second rule ↪→ next configuration: (Ŝ′′′0 , î
′′′)

Ŝ′′′0 6∈ O1 Player I picks w′2 ∈ {̂i′′′}.⇒ = {b̂0, b̂1}
2 (Ŝ′′′0 , î

′′′) î′′′ ∈ O2 Player I picks w′2 = b̂0
↪→ next configuration: (Ŝ′′′0 , b̂0)
Player II picks w′1 ∈ {Ŝ′′′0 }.R+ = {Ŝ′, Ŝ′′′1 }

Ŝ′′′0 6∈ O1 ↪→ Player II picks w′1 = Ŝ′′′1
3 (Ŝ′′′0 , b̂0) b̂0 6∈ O2 ↪→ Player I picks w′2 ∈ {b̂0}.→ = {̂i′, î′′′}

third rule ↪→ Player I picks w′2 = î′′′

↪→ next configuration: (Ŝ′′′1 , î
′′′)

Ŝ′′′1 6∈ O1 Player I picks w′2 ∈ {̂i′′′}.⇒ = {b̂0, b̂1}
4 (Ŝ′′′1 , î

′′′) î′′′ ∈ O2 Player I picks w′2 = b̂1
↪→ next configuration: (Ŝ′′′1 , b̂1)

16

Round (w1, w2) Rules Choices and Movement
Player II picks w′2 ∈ {b̂1}.→ = {̂i′′, î′′′}

Ŝ′′′1 6∈ O1 ↪→ Player II picks w′2 = î′′

5 (Ŝ′′′1 , b̂1) b̂1 6∈ O2 ↪→ Player I picks w′1 ∈ {ŵ1}.R− = {Ŝ′′, Ŝ′′′2 }
second rule ↪→ Player I picks w′1 = Ŝ′′

↪→ next configuration: (Ŝ′′, î′′)
Ŝ′′ 6∈ O1 Player II picks p ∈ L2(̂i′′) = {¬e}

6 (Ŝ′′, î′′) î′′ 6∈ O2 ↪→ Player II picks p = ¬e
first rule ↪→ since p = ¬e ∈ L1(Ŝ′′)

↪→ Player I wins the play

Proof. A proof of GM [K̂] refines ĜM requires a winning strategy for Player I.
One can easily see that the only time Player I can make any decisions in with
w2 ∈ O2 and the second or third alternate rule.

The winning strategy presented below makes sure that w2 ∈ O2 is only ever
reached within configurations (Ŝ′′′i , î

′′′) with i ∈ IN. Additionally the second and
third alternate rules are only reached within configurations (Ŝ′′′i , b̂j) with i ∈ IN
and j ∈ {1, 2}. Thus the following winning strategy is complete.
A possible winning strategy is:

With w2 ∈ O2, Player I picks w′2 ∈ {b̂0, b̂1} depending on w1. This choice can
only be made at w1 = Ŝ′′′i with i ∈ IN. If i is even Player I picks w′2 = b̂0 else
Player I picks w′2 = b̂1.

With the second alternate rule, Player I picks according to the choice done
by Player II. If Player II picks î′(̂i′′), Player I picks Ŝ′(Ŝ′′). If Player II picks î′′′,
Player I picks Ŝ′′′i with i ∈ IN.

The third alternate rule is analog to the second one. That is Player I picks
according to the choice done by Player II. If Player II picks Ŝ′(Ŝ′′), Player I
picks î′(̂i′′). If Player II picks Ŝ′′′i with i ∈ IN, Player I picks î′′′.

With this strategy all finite plays end similarly to the example play presented
above. Further according to the definition all infinite plays are won by Player I.
Thus Player I wins all refinement plays between GM [K̂] and ĜM . ut

5.2 Reflexive, Transitive and Sound Refinement

The notion of refinement presented above is reflexive, transitive and sound as
shown by the theorems below.

Theorem 1 (Reflexiveness). Let GM be a generalized µ-automaton. Then
GM refines GM .

Proof. An obvious winning strategy for Player I is always selecting the same
worlds as Player II. This selection is possible as long as both pawns are on the
same worlds, i.e. the configuration is (w,w).

If w ∈ O Player II must choose w′ ∈ {w}.⇒ resulting in configuration (w′, w)
with w′ ∈ B. Thus Player I can pick the same w′ ∈ {w}.⇒ resulting in configu-
ration (w′, w′).

17

If w 6∈ O Player I obviously has the same possibilities to select next worlds
as Player II resulting in configuration (w′, w′).

Thus as long as Player II is moving its pawn, Player I is able to move its
pawn in the same way. If Player II selects the first of the alternate rules, thus
picking p ∈ L(w), Player I is obviously able to pick p ∈ L(w), too.

Thus Player I wins all games and GM refines (abstracts) GM . ut

Definition 13 (Reachability). In any refinement game with GM refines GM2

employing a winning strategy ν, a configuration (w1, w2) is called reachable un-
der ν iff there exist a sequence of configurations in any play of this game, that is
won by Player I with the help of ν, such that (w1, w2) is a configuration of this
sequence.

In any satisfaction game with GM1 |= A employing a winning strategy γ,
a configuration (w, q) is called reachable under γ iff there exist a sequence of
configurations in any play of this game, that is won by the Verifier with the help
of γ, such that (w, q) is a configuration of this sequence.

Theorem 2 (Transitiveness). Let GM1, GM2 and GM3 be three generalized
µ-automata with GM1 refines GM2 and GM2 refines GM3. Then GM1 refines
GM3.

Proof. Let ν12 and ν23 be history independent winning strategies for refinement
games between GM1, GM2 and GM2, GM3 respectively.

Let V be the set of configurations ((w1, w3), w2), such that (w1, w2) is reach-
able under ν12 and (w2, w3) is reachable under ν23. In those configurations, w2

encodes partial history information and is always modified by Player I.
Initially w2 is set to ŵ2, and obviously((ŵ1, ŵ3), ŵ2) ∈ V. If ŵ1 6∈ O1∧ŵ2 ∈ O2

Player 1 has to set w2 to w′2 according to ν12 at the configuration (ŵ1, ŵ2).
The new starting configuration is ((ŵ1, ŵ3), w′2). Obviously (ŵ1, w

′
2) is reachable

under ν12. Additionally since (ŵ2, ŵ3) is reachable under ν23, there exists a play
between GM2 and GM3 such that at configuration (ŵ2, ŵ3) Player II picks w′2.
Thus (w′2, ŵ3) is reachable under ν23 and the starting configuration is in V.

A winning strategy ν13 for Player I on any ((w1, w3), w2) ∈ V is defined
by a case analysis on this configuration as follows, where also the modification
of w2 is being defined. Additionally it is shown that any play, beginning in a
configuration of V and played by Player I according to the strategy presented
below, stays within V.

Case Analysis of ((w1, w3), w2) ∈ V:
w1 ∈ O1:

Player II picked w′1 ∈ {w1}.⇒. If w2 6∈ O2 the next configuration is ((w′1, w3),
w2). Since (w1, w2) is reachable under ν12, there exists a play between GM1

and GM2 under ν12 such that at configuration (w1, w2) Player II picks w′1.
Thus (w′1, w2) is reachable under ν12, thus the next configuration is in V.
If w2 ∈ O2 Player 1 sets w′2 according to ν12 at the configuration (w′1, w2).
The next configuration is ((w′1, w3), w′2). Obviously (w′1, w

′
2) is reachable un-

der ν12. Since (w2, w3) is reachable under ν23, there exists a play between

18

GM2 and GM3 under ν23 such that at configuration (w2, w3) Player II picks
w′2. Thus (w′2, w3) is reachable under ν23, thus the next configuration is in V.

w1 6∈ O1 ∧ w3 ∈ O3: (and w2 6∈ O2)
Player I picks w′3 according to ν23 at the configuration (w2, w3). The next
configuration is ((w1, w

′
3), w2). Obviously (w2, w

′
3) is reachable under ν23,

thus the next configuration is in V.
w1 6∈ O1 ∧ w3 6∈ O3: (and w2 6∈ O2)

– Player II selected the second alternative rule and chose w′3.
Player I sets w′2 ∈ ({w2}.R−2) ∪ ({w2}.→2) according to ν23 at con-
figuration (w2, w3) as well as the choice of w′3. Then Player I picks
w′1 ∈ ({w1}.R−1) ∪ ({w1}.→1) according to ν12 at configuration (w1, w2)
as well as the choice of w′2. There are three special cases to consider now:

w′1 6∈ O1 ∧ w′2 ∈ O2: It is obvious that (w′1, w
′
2) is reachable under ν12,

thus Player 1 is able to set w′′2 according to ν12 at the configura-
tion (w′1, w

′
2). The next configuration is ((w′1, w

′
3), w

′′
2). Obviously

(w′1, w
′′
2) is reachable under ν12. Additionally it is obvious that (w′2, w

′
3)

is reachable under ν23, thus there exists a play between GM2 and
GM3 such that at configuration (w′2, w

′
3) Player II picks w′′2 . Thus

(w′′2 , w
′
3) is reachable under ν23 and thus the the next configuration

is in V.
w′1 6∈ O1 ∧ w′2 6∈ O2: The next configuration is ((w′1, w

′
3), w

′
2). Obviously

(w′1, w
′
2) is reachable under ν12 and (w′2, w

′
3) is reachable under ν23,

thus the next configuration is in V.
w′1 ∈ O1 ∧ w′2 ∈ O2: Since a selection of w′′2 6∈ O2 depends on w′1 6∈ O1,

this has to wait until the next step of the play. Thus the next con-
figuration is the same as in the second case.

– Player II selected the third alternative rule and chose w′1.
Player I sets w′2 ∈ ({w2}.R+

2) ∪ ({w2}.→2) according to ν12 at con-
figuration (w1, w2) as well as the choice of w′1. Then Player I picks
w′3 ∈ ({w3}.R+

3) ∪ ({w3}.→3) according to ν23 at configuration (w2, w3)
as well as the choice of w′2. There are exactly the same three special cases
to consider as above.

It should be obvious that the strategy ensures the invariant w1 6∈ O1 =⇒ w2 6∈
O2 in front of every step in the game.

Employing the strategy presented above ensures that Player I can perform
a move of its pawn whenever he has to do so. Additionally since all moves
are performed according to the two winning strategies ν12 and ν23, whenever
Player II selects the first alternate rule, picking p ∈ L3(w3) there exists p ∈
L2(w2) (due to ν23) and thus p ∈ L1(w1) (due to ν12).

Thus the strategy presented above is a winning strategy and Player I wins
all refinement games between GM1 and GM3. Thus GM1 refines GM3. ut

19

Theorem 3 (Soundness). Let GM1 and GM2 be two generalized µ-automata
with GM1 refines GM2. This notion of refinement is sound, i.e. for all alternat-
ing tree automata A

(GM2 |= A) =⇒ (GM1 |= A)

Proof. Let A be an alternating tree automaton. Let γ2 be a history independent
winning strategy for the Verifier with respect to the satisfaction game GM2 |= A.
Let ν be a history independent winning strategy for Player I with respect to the
refinement game between GM1 and GM2.

Let V be the set of configurations ((w1, q), w2), such that (w2, q) is reachable
under γ2 and (w1, w2) is reachable under ν. In those configurations, w2 encodes
partial history information and is always modified by the Verifier.

Initially w2 is set to ŵ2, and obviously ((ŵ1, q̂), ŵ2) ∈ V. If ŵ1 6∈ O1∧ŵ2 ∈ O2

the Verifier has to set w2 to w′2 according to ν at the configuration (ŵ1, ŵ2) as
if the Verifier would be Player I. The new starting configuration is ((ŵ1, q̂), w′2).
Obviously (ŵ1, w

′
2) is reachable under ν. Additionally since (ŵ2, q̂) is reachable

under γ2, there exists a play between GM2 and A such that at configuration
(ŵ2, q̂) the Refuter picks w′2. Thus (w′2, q̂) is reachable under γ2 and the starting
configuration is in V.

A winning strategy γ1 for the Verifier on any configuration ((w1, q), w2) ∈ V is
defined by a case analysis on on this configuration, where also the modification
of w2 is being defined. Additionally it is shown that any play, beginning in a
configuration of V and played by the Verifier according to the strategy presented
below, stays within V.

In the definition of the rules of the satisfaction game on page 13, there are
three distinct parts. Here two parts are enough. If δ(q) = EX q′ the Verifier is
(depending on w) able to pick from R− or→. The second alternative rule in the
refinement game allows the same choices. Thus the same set of rules is able to
govern the strategy for w1 ∈ B as well as w1 ∈ T . Similarly for δ(q) = AX q′

with the third alterative rule.

Case Analysis of ((w1, q), w2) ∈ V:
w1 ∈ O1:

Refuter chose w′1. If w2 6∈ O2 the next configuration is ((w′1, q), w2). Since
(w1, w2) is reachable under ν, there exists a play betweenGM1 andGM2 such
that at configuration (w1, w2) Player II picks w′1. Thus (w′1, w2) is reachable
under ν and the next configuration is in V.
If w2 ∈ O2 the Verifier sets w′2 according to ν at the configuration (w′1, w2)
as if he would be Player I. The next configuration is ((w′1, q), w

′
2). Obviously

(w′1, w
′
2) is reachable under ν. Since (w2, q) is reachable under γ2, there exists

a play between GM2 and A such that at configuration (w2, q) the Refuter
picks w′2. Thus (w′2, q) is reachable under γ2 and the next configuration is
in V.

w1 ∈ (T1 ∪B1): (and w2 6∈ O2)
δ(q) = q1∧̃q2:

Refuter picked q′ ∈ {q1, q2}. The next configuration is ((w1, q
′), w2).

20

Since (w2, q) is reachable under γ2, there exists a play between GM2 and
A such that at configuration (w2, q) the Refuter picks q′. Thus (w2, q

′)
is reachable under γ2 and the next configuration is in V.

δ(q) = q1∨̃q2:
Verifier picks q′ ∈ {q1, q2} according to γ2 at the configuration (w2, q).
The next configuration is ((w1, q

′), w2). Obviously (w2, q
′) is reachable

under γ2. Thus the next configuration is in V.
δ(q) = EX q′:

Verifier sets w′2 according to γ2 at the configuration (w2, q). Then the
Verifier picks w′1 according to ν at the configuration (w1, w2) where he
acts as Player I and as if Player II just chose w′2. There are three special
cases to consider now:
w′1 6∈ O1 ∧ w′2 ∈ O2: It is obvious that (w′1, w

′
2) is reachable under ν,

thus the Verifier is able to set w′′2 according to ν at the config-
uration (w′1, w

′
2) as if he were Player I. The next configuration is

((w′1, q
′), w′′2). Since obviously (w′2, q

′) is reachable under γ2, there
exists a play between GM2 and A such that at configuration (w′2, q

′)
the Refuter picks w′′2 . Thus (w′′2 , q

′) is reachable under γ2. Addition-
ally it is obvious that (w′1, w

′′
2) is reachable under ν and thus the the

next configuration is in V.
w′1 6∈ O1 ∧ w′2 6∈ O2: The next configuration is ((w′1, q

′), w′2). Obviously
is (w′2, q

′) reachable under γ2 and (w′1, w
′
2) reachable under ν. Thus

the next configuration is in V.
w′1 ∈ O1 ∧ w′2 ∈ O2: Since a selection of w′′2 6∈ O2 depends on w′1 6∈ O1,

this has to wait until the next step of the play. Thus the next con-
figuration is the same as in the second case.

δ(q) = AX q′:
Refuter chose w′1. Verifier sets w′2 according to ν at the configuration
(w1, w2) where he acts as Player I and as if Player II just chose w′1.
There are three special cases to consider now:
w′1 6∈ O1 ∧ w′2 ∈ O2: It is obvious that (w′1, w

′
2) is reachable under ν,

thus the Verifier is able to set w′′2 according to ν at the config-
uration (w′1, w

′
2) as if he were Player I. The next configuration is

((w′1, q
′), w′′2). Obviously (w′1, w

′′
2) is reachable under ν. Additionally

since (w2, q) is reachable under γ2, there exists a play between GM2

and A such that at configuration (w2, q) the Refuter picks w′2. Thus
(w′2, q

′) is reachable under γ2. Since w′2 ∈ O2 there exists a play
between GM2 and A such that at configuration (w′2, q) the Refuter
picks w′′2 . Thus (w′′2 , q

′) is reachable under γ2 and the next configu-
ration is in V.

w′1 6∈ O1 ∧ w′2 6∈ O2: The next configuration is ((w′1, q
′), w′2). It is obvi-

ous that (w′1, w
′
2) is reachable under ν. Additionally since (w2, q) is

reachable under γ2, there exists a play between GM2 and A such
that at configuration (w2, q) the Refuter picks w′2. Thus (w′2, q

′) is
reachable under γ2. Thus the next configuration is in V.

21

w′1 ∈ O1 ∧ w′2 ∈ O2: Since a selection of w′′2 6∈ O2 depends on w′1 6∈ O1,
this has to wait until the next step of the play. Thus the next con-
figuration is the same as in the second case.

It should be obvious that the strategy ensures the invariant w1 ∈ (T1 ∪B1) =⇒
w2 6∈ O2 in front of every step in the game.

Employing the strategy presented above ensures that the Verifier can perform
a move of its pawn whenever he has to. Additionally whenever δ(q) = p or
δ(q) = ¬p, Verifier wins because of γ2 and ν being winning strategies, i.e. γ2

ensures that p ∈ L2(w2) and the first alternate rule of the refinement game with
ν ensures that p ∈ L1(w1). Thus the Verifier wins all finite satisfaction plays.
Infinite plays are also won, since γ2 is a winning strategy, i.e. the maximum of
all infinitely occurring acceptance numbers for all configurations (w2, q) of the
play is even, thus the maximum of all infinitely occurring acceptance numbers
for all configurations (w1, q) is even, too.

Thus the strategy presented above is a winning strategy and the Verifier wins
all satisfaction games between GM1 and A. Thus GM1 |= A. ut

Bibliography

[1] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Dexter Kozen,
editor, Logic of Programs, volume 131 of Lecture Notes in Computer Sci-
ence, pages 52–71. Springer, 1981. ISBN 3-540-11212-X.

[2] Dennis Dams. Abstract interpretation and partition refinement for model
checking. PhD thesis, Technische Universiteit Eindhoven, The Netherlands,
1996.

[3] Luca de Alfaro, Patrice Godefroid, and Radha Jagadeesan. Three-valued
abstractions of games: Uncertainty, but with precision. In LICS, pages 170–
179, 2004.

[4] Harald Fecher and Michael Huth. More precise partition abstraction. In
VMCAI, Lecture Notes in Computer Science. Springer, 2007.

[5] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with
pvs. In CAV, pages 72–83, 1997.

[6] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput.
Sci., 27:333–354, 1983.

[7] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-
current systems in cesar. In Symposium on Programming, pages 337–351,
1982.

[8] Thomas Wilke. Alternating tree automata, parity games, and modal µ-
calculus. Bull. Belg. Math. Soc., 8(2):359–391, May 2001.

22

	Generalized mu-Automata
	Jan Waller
	1 Introduction
	2 Preliminaries
	2.1 Kripke Structures
	2.2 Alternating Tree Automata
	2.3 Satisfaction Games
	Rules for satisfaction games with Kripke structures.

	3 Pre- and Post-Abstraction
	3.1 Pre-Games and Pre-Abstraction
	3.2 Post-Games and Post-Abstraction
	3.3 Remarks

	4 Generalized mu-Automata
	4.1 Satisfaction Games
	Rules for Satisfaction Games.

	5 Refinement
	5.1 Refinement Games of Generalized mu-Automata
	Rules for Refinement Games.

	5.2 Reflexive, Transitive and Sound Refinement

	Bibliography

