University of Kiel
Department of Computer Science

Software Engineering Group

Reconstructing Software
Architectures using the Code- and
Structure Package of the
Knowledge Discovery Meta-Model

Bachelorthesis

2010-02-23

Written by: Florian Fittkau
born on 1987-01-14 in Kiel

Supervised by: M. Sc. Soren Frey
Prof. Dr. Wilhelm Hasselbring

Abstract

Software maintenance consumes 60 % to 80 % of the total life cycle costs
of a software system [4]. The maintenance process involves the understanding
of the underlying system by 50 % to 90 % [43]. Thus, the understanding of a
system is essential to reduce the total life cycle costs. Software Architecture
Reconstruction (SAR) can yield the needed comprehension of an actual soft-
ware system, e.g. if the knowledge about the internal structure was lost over
time. However, reconstructing the architecture of an existing system is not
trivial. Many research on this field has been done. Recently the Object Man-
agement Group (OMG) proposed a new meta-model, namely the Knowledge
Discovery Meta-Model (KDM), for representing the information contained in
a software system. In this thesis I present a newly developed SAR tool, KDM
Architecture Discoverer (KADis), which utilizes this meta-model. Further-
more, | present an made evaluation of different data formats including KDM
for SAR. In addition, I propose a new categorization of SAR activities that

focuses on the basic understanding of SAR.

CONTENTS CONTENTS

Contents

1 Introduction 1

2 Approaches to Software Architecture Reconstruction

2.1 Common Phases in Software Architecture Reconstruction Processes 3

2.2 Phase Data Extraction o 5
2.2.1 Static Analysis 6
2.2.2 Dynamic Analysis 6

2.3 Phase Repository Storing oL 7
2.3.1 KDM . . . 7
2.3.2 GXL . ..o 7
2.3.3 RSF . . 9
2.3.4 FAMIX e 10

2.4 Phase Abstraction 11
2.4.1 Decomposition 11
2.4.2 Class Hierarchies 12
24.3 Class Diagrams Lo 12
2.4.4 Interfaces 12
2.4.5 Design Patterns. L o o 12
2.4.6 Conformance 13
2.4.7 Feature Locationo o 13
248 UseCase o v i i i i e 13
2.4.9 Configuration 13
2.4.10 Object Traces v o v i i e e e 14
2.4.11 Component Interaction 14
2.4.12 Process Interaction L Lo 14
2.4.13 Object Interaction L 14
2.4.14 Conceptual L 14
2.4.15 Responsibility L o 15
2.4.16 Build Process 15
2.4.17 Files e e 15
2.4.18 View Integration/Combination 15

2.5 Further Approaches 15
2.5.1 Symphony 16
2.5.2 Focus 17
2.5.3 Quality Attribute Driven SAR 19

3 Knowledge Discovery Meta-Model 21

3.1 Structure of KDM Lo 21

3.2 Example for a KDM-conform File., 23

IT

CONTENTS CONTENTS

4 Evaluation of different Interchange Formats for Software Architecture
Reconstruction 26
4.1 Assessment criteria e 26
4.2 KDM . . . e 27
4.3 GXL . . . 28
4.4 RSF . . e 28
4.5 FAMIX . . 29

5 Development of KADis 30
5.1 Features 30
5.2 Design 30
5.3 Activities in KADis’ SAR process, 30

6 Evaluation of KADis 32
6.1 Completeness Evaluation with JPetStore 32

6.1.1 Assessment Criteria 32
6.1.2 DISCuSSiOn e 33
6.2 Performance Evaluation 34

7 Related Tools in Software Architecture Reconstruction 36
7.1 ARMIN . . . s 36
7.2 Rigl . . . e e 36
7.3 MooOSe e 36
7.4 MoDiIsSco e 36

8 Conclusion and Future Work 38
8.1 Conclusion e 38
8.2 Future Work 38

References 40

A Acronyms i

B Glossary ii

C JPetStore elements 1ii

D Functional Specification A

E Design Specification xxxii

F Attachments Ixxx

IT1

1 INTRODUCTION

1 Introduction

Many companies use old software systems. Over the years new requirements to the software
arise. These requirements are often implemented without explicit knowledge of possible
side-effects. The knowledge about the exact architecture was lost over time. Important
reasons for this fact are a missing or outdated documentation and architectural erosion.
This often results in a higher error rate of the software.

In many cases a new development of the software is refused or not economic. Software
Architecture Reconstruction (SAR) provides the needed understanding for maintaining
the existing software system. This enables an improvement or migration of the existing
software architecture, for instance. However, SAR is not trivial. Often many million lines
of source code have to be analyzed, abstracted, and then presented in an appropriate
way. Many research has been done on this field and many terms were introduced. Some
SAR approaches use the term redocumentation of software architectures to emphasize
the creation or update of a documentation. Other approaches use the term recovering
software architectures to describe the fact that in many cases the software architectures
are outdated and have to be recovered. In this thesis, I will use the term reconstruction of
software architectures to focus on the process of reconstructing the views of the software
architecture.

On the one hand, SAR needs a storage format for often million lines of source code
and the data which is abstracted from it. On the other hand, SAR includes many dif-
ferent phases and thus needs different tools that cover different phases. For reasons of
interoperability these tools need a common data interchange format that has to represent
all saved information. A data format that enables both the data interchange and the
data storage makes the development easier. The Object Management Group has defined a
common data interchange format named Knowledge Discovery Meta-Model (KDM). The
thesis will evaluate this data format in the context of SAR.

In this thesis, I show a new categorization of SAR activities by grouping them in iden-
tified common phases. Furthermore, I conducted an evaluation of KDM in comparison
with other common data interchange formats in the context of SAR. Additionally, I devel-
oped KDM Architecture Discoverer (KADis), which uses KDM for the generated output,
to evaluate the applicability of KDM. KADis limits to the code and structure package
of KDM which is a restriction to the static facts of the software system that should be
analyzed.

Related work lists other categorizations of SAR approaches. For example, one catego-
rization can be performed on basis of the level of automatism. Another tool in SAR, which
uses a meta-model for its data storage, is Moose. The used format of Moose, FAMOOS
Information Exchange Model (FAMIX), is part of the format evaluation.

The remainder of the thesis is structured as follows. Section 2 outlines the
identified common phases in SAR approaches. Afterwards, Section 3 describes KDM in

detail. Then, Section 4 presents an evaluation of different data interchange formats in

1 INTRODUCTION

SAR. A developed prototype, named KADis, for using the KDM is discussed in Section 5.
The following Section 6 evaluates KADis. Section 7 describes different related SAR tools.
The final Section 8 concludes important points of the thesis and defines the future work

for advancing KADis.

2 APPROACHES TO SAR

2 Approaches to Software Architecture Reconstr-

uction

A SAR process can be performed manually, semi automatically, or fully automatically. In
the manual processing the reverse engineer analyses the source code and has only limited
tool support. The tools can be syntax highlighters or visualization tools, for instance.
In the semi automatic process the SAR tool proposes a possible solution and the reverse
engineer has to judge if the suggestion of the tool is correct. If the suggestion is not correct
the SAR tool tries to find a different solution. The fully automatic process does not need
human interaction. The human interaction is done implicitly by internal assumptions
about the correct solution.

This Section presents different techniques in the context of SAR by categorizing them
into common phases. The Section is not thought as a broad survey of every approach
available in SAR. For this purpose Ducasse et al. have written a survey [10], for instance.

This Section intends to give a basic understanding of SAR.

2.1 Common Phases in Software Architecture Reconstruc-

tion Processes

no

Scope . . . >@
Scope Data extraction Source model Repository storint
. [identification] P [j %(postiory 9)
yes
Visualization ;' Visualization)e Abstraction model ;Gbstraction ’% Stored data

satisfying result?

Figure 1: Overview of the identified common phases and sequence in the SAR process

I identified the common phases and sequence shown in Figure 1 and extracted them
from different approaches and methods used in SAR [5, 10, 21, 27, 30, 38, 39, 45]. The
created overview, presented in the following, focuses on the SAR process itself and thus
enables a better understanding of the different phases involved in SAR. Other categoriza-
tion can be made, too. For instance, the categorization formerly mentioned into manual,
semi automatic, and fully automatic approaches.

The overview starts with the scope identification. Scope identification recurs in many
SAR approaches. If the scope identification is done only implicitly, the whole system

is selected. However, in most cases a special subsystem is the main interest to focus on.

2.1 Common Phases in SAR 2 APPROACHES TO SAR

Data extraction, abstraction, and presentation are well known steps in SAR [39]. The data
needed for SAR, like classes or packages, has to be fetched from software artifacts. Then,
the data has to be abstracted to enable different views onto the system and then has to
be presented. The presentation is almost always done as visualization. Therefore, the last
step is not called presentation but visualization. Between data gathering, abstraction, and
visualization the data has to be saved to enable more flexibility in presentation. However,
this step is not trivial. By saving information about the reconstructed software system
different purposes shall be achieved. These are, for instance, information exchange with
other tools supporting reusability or enabling the definition of an easy query language for
changing the focus of the visualization.

The remainder of the Section describes the common phases. A more detailed view
on data extraction, repository storing, and abstraction is presented in Section 2.2 to 2.4.
Scope identification and wvisualization are not considered in detail because this would go
beyond the scope of the thesis. Finally, Section 2.5 presents SAR approaches that define

an extra step to emphasize different aspects like, for instance, quality attributes.

Scope identification

The user can select the software artifacts to focus on in the SAR process. This selection
of important facts, like different subsystems or quality attributes, is called scope identi-
fication. By changing the scope on which software artifacts to focus on, the process can
comprise many iterations. Each iteration reveals new knowledge about the software. It
is easier to understand a huge system by considering higher abstraction levels first. To
minimize the amount of data, e.g. classes that can be clustered into components, on the

higher abstraction levels, identifying the scope can act as a filter for subsystems.

Data extraction

The data extraction phase collects the data, like classes, functions or build files, used for
SAR, e.g. by external parsers. One example of an external parser is the Source Navigator
NG [36], which is used for data extraction in KADis (Section 5). The output of this phase
is called source view or source model.

Usually, not all information about a software architecture is contained explicitly in the
source code. Knowledge can be extracted from other software artifacts, too. These are,
for example, build files, tests, and configuration files. Other methods can even extract
information from documentation. However, not all knowledge about the software archi-
tecture is contained in files. Interviews with software architects and other stakeholders
can be done for revealing the business process, for instance.

For more details and further methods for data extraction refer to Section 2.2.

Repository storing

The data has to be saved somewhere. Typically this is done in a repository. This repository
can be a file or a database, for instance. Many SAR tools use databases. Databases make

the querying of information faster and easier, and a query language for selecting items is

4

2.2 Phase Data Extraction 2 APPROACHES TO SAR

built-in. Meta-models like KDM can be used as a data interchange format and a data
format for data storage as well. They can be used natively by saving files or can be
translated into a database schema for usage in a database. Possible data formats are
described in Section 2.3. After the phase has finished, the data of the data extraction

activity is stored in a repository.

Abstraction

The data extraction can produce a big amount of data. Classes and functions represent a
huge part of that data. However, in a big software system considering classes or functions
is not useful as a starting point. A more coarse view has to be presented or in other words
the level of abstraction has to be raised. Therefore, different abstraction methods have
been proposed. Clustering and forming modules by special names, for instance. Section
2.4 describes different methods for abstraction. After performing the abstraction phase an

abstraction model is available.

Visualization

The data has to be visualized for easier reading and understanding. Many tools use their
own domain-specific language (DSL). Some of the tools for SAR use common graphical
DSLs, Unified Modeling Language (UML) in most cases, for attaining a common under-
standing of the displayed data.

Different layouts and display styles in visualization can be used to emphasize different
aspects of the software architecture. For instance, a hierarchical view highlights the hier-
archical aspect of subsystems. The output of this phase is a visual representation of the

views.

2.2 Phase Data Extraction

For extracting data there exist two distinct classes of approaches, namely the static and
dynamic approaches [27, 28]. Static approaches basically provide an overview of static
information extracted from source code like classes or packages, for instance. Dynamic
approaches enable information extraction at runtime, for instance the constructor calls.
Both classes of approaches have their advantages and disadvantages. Static and dynamic
approaches can be too fine granulated to give a good comprehension of the system and the
dynamic approaches additionally do not always yield all data. Therefore, a combination
of static and dynamic approaches is used in practice. This gives the need of having a
merge between them. The merge of two views is called View Fusion. The remainder of

Section 2.2 presents different static and dynamic approaches.

2.3 Phase Repository Storing 2 APPROACHES TO SAR

2.2.1 Static Analysis

There are different static analysis methods which differ in precision, scalability, and ef-
fort. In practice mostly a mixture of them is used, to enable the best ratio between the

mentioned attributes. In the following the different static approaches are presented.

Manual analysis

The reverse engineer analyses the source code manually with only restricted tool support.
He looks at the source code by hand. Many data can be fetched from the system by
looking at the directory structure, for instance. However, in big projects the manual

analysis proves only partially useful because it is accompanied by a big effort.

Lexical analysis

Lexical analysis converts a given sequence of characters to tokens. There are many tools
available that perform lexical analysis. Grep searches for regular expressions, for example.
A regular expression or a so called lexical pattern is, for example, the keyword “include”
in C4++.

Syntactic analysis

Syntactic analysis or in other words parsing defines the process of analyzing a given text,
made of tokens, to determine its underlying grammatical structure on the basis of a specific
formal grammar. The tools that perform this task are called parsers. They typically
construct a syntax tree. Then the user can query the syntax tree for certain patterns to

focus on different aspects of the result.

Semantical analysis

Semantical analysis can be done by parsing the context or variable names. After the

parsing the control and data flow analysis can help to improve the results.

2.2.2 Dynamic Analysis

In dynamic analysis different methods and tools can be used to get dynamic runtime in-
formation from the system. For example, there exist profiling tools (e.g. gprof) or code
instrumentation tools. Dynamic information can be very useful since static analysis can
not recover late bindings easily. Examples for late binding are polymorphism, function
pointers, and runtime parametrization. Dynamic information becomes essential in a mul-
tiprocess system that creates threads dynamically at runtime. Many tools can trace the
execution path of the program and analyze it. For instance, Kieker [33] is a tool for

continuous monitoring, analysis, and visualization of Java software behavior.

2.3 Phase Repository Storing 2 APPROACHES TO SAR

2.3 Phase Repository Storing

As mentioned earlier the input and output data formats should be used for the format
of the repository too and thus this Section describes data formats. At the beginning of
research in SAR nearly every developed SAR tool had its own data format. In the past
years different efforts to a common data interchange format have been made. There are
two major classes of data interchange formats, namely meta-models and graph based data
formats. KDM and FAMIX belong to the meta-models. Graph eXchange Language (GXL)
and Rigi Standard Format (RSF) are graph based data interchange formats. The Sections
2.3.1 to 2.3.4 describe the different data formats that were designed to become a common
data interchange format. In Section 4 an evaluation of these different data formats is

presented.

2.3.1 Knowledge Discovery Meta-Model

KDM was developed by the Object Management Group [17]. This consortium has already
specified the well known UML. KDM was designed with the goal of creating a common
data interchange format for SAR tools, where every element is clearly defined. Section 3

presents it in detail.

2.3.2 Graph eXchange Language

GXL is a standard data format for exchanging graph representations. The motivation
for creating GXL was to enable interoperability between different tools like extractors,
abstractors, and visualizers. With a common data interchange format a powerful reverse
engineering workbench can be built, for instance. At the Dagstuhl Seminar “Interoper-
ability of Reverse Engineering Tools” in January 2001, GXL was ratified as a standard
exchange format in reverse engineering [49].

Tuple Attribute Language (TA) [23], GRAph eXchange format (GraX) [12], and the
graph format of PROGRES [35] were merged to create GXL. Furthermore, the authors
added concepts for handling hypergraphs and hierarchical graphs. In addition, GXL in-
cludes different ideas from Relation Partition Algebra (RPA) [13] and RSF [19]. GXL was
influenced by several other formats used in graph drawing, e.g. daVinci now known as
uDraw(Graph) [16] and GML [22]. Thus, GXL can be seen as a generalization of these
formats.

GXL offers the possibility to exchange different kinds of graphs. These kinds may
be typed, attributed, directed, ordered graphs including hypergraphs, and hierarchical
graphs. Furthermore, the graph schemas can be exchanged as metaschemas. For example,
UML diagrams can be represented and exchanged by supplying the appropriate UML
metaschema, which defines the semantic description of UML. Therefore, GXL can handle
different types of graphs and its underlying semantic.

Figure 2 shows an example graph taken from Holt et al. [24]. This graph is an at-
tributed, typed, and directed graph with two types of edges and two types of nodes. The

0O U i Wi =

2.3 Phase Repository Storing

2 APPROACHES TO SAR

Call

a Proc

File = "test.c"

File = "main.c"

Line =127

Ref Ref
Line = 27
W[_var)

Line = 225 Line = 316

Figure 2: GXL example graph

example can be interpreted as follows. On line 42 procedure P calls procedure Q. The

procedure P is stored in file main.c and procedure Q is stored in file test.c. P references
variable V in line 127 and Q references variable W in line 27. The variable V is defined
in line 255 and the variable W is defined in line 316. The edge (P,Q) has type call and a

line attribute with value 42.

<gxl>
<node id="P” type="Proc”>
<attr name="File” value="main.c” />
</node>
<node id="Q” type="Proc”>
<attr name ”File” value="test.c”/>
</node>
<node id="V” type="Var”’>
<attr name "Line” value="2257/>
</node>
<node id="W’ type="Var”>
<attr name ”Line” value="316"/>
</node>
<edge begin="P” end="Q" type="Call”>
<attr name ”Line” value="42"/>
</edge>
<edge begin="P” end="V” type="Ref”>
<attr name ”"Line” value="1277/>
</edge>
<edge begin="Q" end="W’ type="Ref”>
<attr name ”Line” value="27"/>
</edge>
</ gxl>

Listing 1: "GXL example XML”

Listing 1, again taken from Holt et al., displays the corresponding XML file of the

GXL example graph seen in Figure 2. Basically, there are 2 different types of elements.

The first one is the node type, which represents nodes in the graph. The second one is the

2.3 Phase Repository Storing 2 APPROACHES TO SAR

edge type, which stands for the edges in the graph. These types can contain attr subtags,
which indicate that the type has attributes.
This simple example does not use the full Document Type Definition (DTD) of GXL.

For more information about the possible tags and GXL refer to Winter et al. [49].

2.3.3 Rigi Standard Format

Rigi [51] is a workbench tool for SAR. The rigiedit component of the workbench specifics
a data import format. This format is called RSF [50]. RSF has two major dialects. These
are unstructured and structured RSF. Usually, external tools use the unstructured RSF
and rigiedit saves the provided graph as structured RSF.

RSF bases on tuples. The mainly used unstructured RSF is 3-tuple based. The
structure of the 3-tuple is: verb subject object. Three different cases are allowed.

The first case is representing an arc between two nodes. The structure looks like
arcType startNodeName endNodeName. Listing 2 presents an example for this structure.
The first line represents the fact that the main function calls the createArray function.

The last line shows that the createArray function creates or accesses the data ARRAY.

1 call main createArray

2 data createArray ARRAY

Listing 2: "RSF arc example”

Attributes binding is the second case for the allowed structure of 3-tuple based unstruc-
tured RSF. The structure is: nodeAttribute nodeName attribute Value. Listing 3 shows an
example for attribute bindings in RSF. The lines declare createArray occurred in a file

named array.c at line 10 in the file.

[4

1 file createArray ‘‘array.c’’

2 lineno createArray 10

Listing 3: "RSF attribute binding example”

Node type binding is the last case for the allowed structure. The structure is defined
as: type nodeName nodeType. Listing 4 presents an example for types of node bindings
in RSF. The node createArray is binded to the type Function and the node ARRAY is
binded to the type Data.

1 type createArray Function
2 type ARRAY Data

Listing 4: "RSF node type binding example”

2.4 Phase Abstraction 2 APPROACHES TO SAR

With these 3 different types of 3-tuple based RSF a graph can be represented. Thus,
enabling the exchange of graph information. The structured RSF format is not described

here because it is basically only used internally by rigiedit.

2.3.4 FAMIX Meta-Model

The workbench tool Moose utilizes the FAMIX meta-model [9, 42]. FAMIX was developed
with the goal of describing object-oriented software systems at the program entity level.
The model has been designed for facilitating language independence, extensibility, and
information exchange.

The inventors developed FAMIX as an alternative to UML in version 1.2 for round-
trip engineering [8]. They claim that UML in version 1.2 has different shortcomings in
giving seamless integration between design diagrams and source code, between modeling
and implementation. Therefore, UML is lacking the ability of some important concepts
to generate source code from models and vice-versa. These concepts are namely “method
invocation” and “attribute access”. UML could have been extended at that time, but this
would make data exchange between different tools very complicated and not standardized.
The authors wanted to guarantee tool interoperability. Hence, they developed FAMIX.

FAMIX bases on the CDIF [15] transfer format. CDIF is an industrial standard for
transferring models and provides standard plain text encoding. Therefore, enabling hu-
man readability. XMI [18] was also considered for exchanging information but, when

development started, XMI was too premature.

superclass belongsToClass
Class

‘ subclass

belongsToClass
InheritanceDefinition

invokedBy Method Attribute
candidates accessedln<t>—‘ accesses
Invocation Access

Figure 3: FAMIX core model

Figure 3 taken from Demeyer et al. [9] represents the core model of FAMIX. The core
model consists of the main entities utilized in the object orientation paradigm. These are
class, method, attribute, and inheritance definition. Reengineering needs the invocation
and access entities. Invocation means that one method calls another method and access
represents the fact that a method accesses an attribute. These two extra entities are

needed by reengineering tools for dependency analysis, metrics computations, and other

10

2.4 Phase Abstraction 2 APPROACHES TO SAR

reegineering operations. For example, the invocation entity can be used for evaluating

which method is never invoked.

2.4 Phase Abstraction

Data extraction fetches a great amount of information, e.g. classes and functions. In a
big software system classes must be clustered to modules to get a better understanding
of the system, for instance. Software architecture building differentiates different views.
These views must be reconstructed. There are many definitions of the typical viewpoints
onto a system. The following Section uses the viewpoints categorization by Koschke [28]
that bases on the definition of Clements et al. [6]. This categorization was chosen because
some of these viewpoints, namely the configuration, conceptual, build, and files viewpoint,
can be directly mapped to the corresponding KDM package. The other viewpoints can be
mapped to parts of the code, action, and structure package of KDM. Thus, the selection
gives a first hint to generate KDM packages. The remainder of the Section describes these
different viewpoints and sketches some possible methods for reconstructing the viewpoints.
The Section is inspired by the survey of Koschke [28] that defines the used categorization
of viewpoints. In his survey many examples and references can be found. However,
this Section focuses on providing an overview for reconstructing the viewpoint and the
purpose of the reconstructed viewpoint in SAR. Thus, giving a hint when to reconstruct

each viewpoint.

2.4.1 Decomposition

The most research has been done in the derivation of the structural decomposition. An
example for this inference is the grouping at lower abstraction levels like classes, variables,
functions into modules. At higher levels, modules can be clustered to subsystems and
layers. For grouping, static dependencies, method calls, and variable accesses are used,
for example. Dynamic dependencies can be used too.

There are different approaches for grouping. Software clustering is the most popu-
lar one. Borrowed from biology the clustering of animals by similarity, the classes can
be clustered by different attributes. Different definitions of similarity lead to different
grouping. Other methods see grouping as a partitioning problem which can be solved
by minimizing coupling and maximizing cohesion between entities. Grouping bases on
semantic. Therefore, the process can only give suggestions for the best grouping based
on different assumptions. Thus, these methods are mostly incremental techniques. The
user has to interact with the process to find the best match for grouping. The purpose of
this viewpoint is to find components that can be clustered to less complex components.
This is done until different subsystems are visible. Thus, enabling an overview of the

reconstructed system.

11

2.4 Phase Abstraction 2 APPROACHES TO SAR

2.4.2 Class Hierarchies

At first view, class hierarchies can be trivially retrieved from object-oriented programming
languages. However, these class hierarchies may not be optimal. The optimal hierarchies
would only contain used methods and variables. By using dynamic approaches the unused
methods can be identified. There exist also approaches that build complex static method
call trees that can find the unused methods too. Class inheritances reveal the internal
structure of the classes. The concrete class can inherit from an abstract class which by
itself can inherit from another abstract class. Therefore, class hierarchies can be used to
understand the abstract base classes that many classes can inherit from. Thus, the class
hierarchies viewpoint can reduce the complexity and give an overview of the structure

again.

2.4.3 Class Diagrams

Class diagrams constitute another viewpoint. They have different association types like
aggregation or composition. Class diagrams display the dependencies between classes
beyond inheritance relation. There are different methods for reconstructing the class
diagrams from source code. For instance, a class diagram can be generated by parsing
the import statements of a class. Though, this example would need an object-oriented
programming language like Java. Nevertheless, class diagrams can even be extracted from
procedural languages by grouping functions to classes. For example, class diagrams are

useful when a layer of a software system has to be understood.

2.4.4 Interfaces

There exist different dependencies between modules. A module provides and requires
access to other modules. This is supported by the interface concept in Java, for instance.
Even if the interfaces are not explicit in a programming language, they can be fetched
from coarse import directives. Maybe not every import is used or not all exports are used.
Here the problem of finding the optimal interface structure arises again.

Interfaces may define preconditions and postconditions and valid sequences of interac-
tion for correct collaboration of modules. This concept is also known as programming by
contract. A very important principle in a big system with different modules is to guarantee
proper invocation between subsystems. Thus, the interfaces viewpoint most often shows

the communication between modules.

2.4.5 Design Patterns

Design patterns are an essential concept for software engineering. First research enabled
only the detection of structural patterns. Later research included behavioral and creational
patterns too. Static approaches use pattern matching. The design pattern is matched in

a graph representation of the class model or abstract syntax tree. Automatic validation

12

2.4 Phase Abstraction 2 APPROACHES TO SAR

can then be done by utilizing dynamic execution traces. Pattern matching underlies the
NP hard problem of finding isomorphic subgraphs [1]. Therefore, approximative methods
have been proposed. In approximative methods false positive and the true negative match
exist. These false matches can be caught by interaction with the user. By detecting the
design patterns the reverse engineer gets a quick understanding of the module in which

the design pattern is used.

2.4.6 Conformance

Interesting for, e.g., maintenance purposes is the conformance between the implemented
architecture and the intended architecture. The intended architecture is often called the
hypothetical view. A popular approach for this is the reflexion model by Murphy et
al. [31]. They define the following states between the two models. A convergence is a
match between the hypothesized and concrete model. A divergence is an element which
is contained in the concrete model but not in the hypothesized model. An absence is
an element which is included in the hypothesized model but not in the concrete model.
With the conformance viewpoint the reverse engineer can detect architectural erosion and

violation of the used architectural style.

2.4.7 Feature Location

Many modules contribute to a product feature. Often it is unknown which modules realizes
which feature. To locate the implemented-by relation a global static dependency graph
can be built and the reverse engineer manually searches for the feature in the graph.
Dynamic analysis supports the reverse engineer with an execution trace when the feature
was executed. This trace provides hints to which module or class is associated to the
feature. With the feature viewpoint the reverse engineer can extract the modules that

take part in a feature and then migrate them to a new architecture, for instance.

2.4.8 Use Case

A Use Case can comprise many features. Therefore, the detection of Use Cases relates
to feature location. A static approach proposed by Lucca et al. [29] starts with an input
statement till it finds an output statement. The search creates a method-message graph.
A Use Case equals one path in it. Like in the feature location, the reverse engineer
can extract the modules that take part in a Use Case and then migrate them to a new

architecture, for example.

2.4.9 Configuration

Source code is often configured with preprocessor directives. This can lead to different
components at higher abstraction levels. The configuration viewpoint shows which line

of code is compiled with which directive. Especially, this viewpoint presents the elements

13

2.4 Phase Abstraction 2 APPROACHES TO SAR

that change on higher abstraction levels. It can be used to identify the components that

are included in a configuration, for instance.

2.4.10 Object Traces

A trace is a record of the execution of software that shows the sequence of operations
executed. This viewpoint can be reconstructed statically and dynamically. Dynamic
analysis simply records the execution of the program while running. Static approaches try
to find every possible execution path. The object trace viewpoint should be reconstructed,
e.g., if an object is created and passed multiple times to understand the processing of the

object.

2.4.11 Component Interaction

Components are modules that encapsulate a set of related concerns and they can interact
with other components. A component can be, for example, a database. The component
interaction viewpoint shows the concrete interaction with other components. Hence, this
viewpoint shows among other things the dependencies to other components. Prior to the
reconstruction of this viewpoint the components in the system have to be identified. The
interaction with other components can be analyzed by recording the interactions as a trace
in dynamic analysis. Other approaches can detect the interaction with static analysis by
following the call chain. The interaction between a component and another component

can be interesting, for example, for the purpose of replacing a component.

2.4.12 Process Interaction

Process interaction is coupled with the component interaction. However, process interac-
tion is harder to analyze statically because processes can be distributed. Nevertheless, the
interaction between processes can be easier reconstructed dynamically by recording the
communication. This viewpoint can be useful, e.g., when two different processes, which

were located on the same server, shall be run on two different machines.

2.4.13 Object Interaction

The object interaction viewpoint describes the messages that are sent between objects.
This kind of interaction can again be analyzed by static and dynamic analysis. The
dynamic analysis records a dynamic trace of the object interaction but this trace does not
need to be complete. This viewpoint can assist a reverse engineer to understand, e.g., the

dependencies of objects.

2.4.14 Conceptual

The conceptual viewpoint shows how the software functionality is mapped to components

and connectors. The implemented-by relation can be seen with this viewpoint. The con-

14

2.5 Further Approaches 2 APPROACHES TO SAR

ceptual viewpoint is used to understand how the software system is achieving conformance

with the specification.

2.4.15 Responsibility

Every source code file has at least one programmer as author and therefore this program-
mer is responsible for the file. The responsibility viewpoint contains a relation that maps
from a source code file to a developer. This relation can be reconstructed, e.g., by analyz-
ing the copyright notices like done by Bowman and Holt [3]. With the responsible relation
the expert for the file can be identified.

2.4.16 Build Process

The build process of a huge software system can become very complicated. The build
process viewpoint represents the configuration, data, activities, and strategy of the build
system. The build view was proposed originally by Tu and Godfrey [44]. With this
viewpoint the reverse engineer can understand the build process which becomes necessary

when a component has been refactored and the build process must be adapted, for instance.

2.4.17 Files

Every line of source code is saved in a file. The file viewpoint can be obtained by static
analysis. It represents the physical structure of source code and can be useful, when the

physical structure of the given source code should be refactored.

2.4.18 View Integration/Combination

The combination of two views can be prolific. For example, the static view can be combined
with a dynamic view resulting in more available information that perhaps one of these
views could have leaked. Thus, view integration can enable a better coverage of information

in a view.

2.5 Further Approaches

There are differing approaches to the common phases described in Section 2. Many of
these approaches add a new phase or aspect to the common phases. Symphony, Focus,
and Quality Attribute Driven SAR are examples for these differing approaches. Symphony,
described in Section 2.5.1, focuses on the prior problem elicitation activity in a SAR
process. Focus emphasizes the importance of incorporating architectural styles in SAR
and is illustrated in Section 2.5.2. Quality Attribute Driven SAR utilizes SAR for the

determination of quality requirements. Section 2.5.3 describes this approach.

15

2.5 Further Approaches 2 APPROACHES TO SAR

2.5.1 Symphony

Symphony [45] is a view-driven approach. The authors claim that most SAR approaches
do not provide information about when to reconstruct a specific view. This gap should be
filled by Symphony. Therefore, Symphony provides two different steps. The reconstruction
design step is the first step and the reconstruction execution step is the second step.
Both steps are used incremental. The reconstruction design step and execution step of

Symphony is illustrated in the following Figure 4 taken from van Deursen et al. [45].

Problem Statement

M, Target Viewpoints | |hiormation
actor in _ Interpretation
Source Viewpoints AA
Problem Mapping Rules
Proplem Statement Concept . Target Viewpoints Knowledge
Elicitation /4. Determination Inference
/;\ AA j Source Viewpoints A
: Library of
Viewpoints Data .
Gathering
A
© Refinement

stakeholders process designer reconstructor

Figure 4: Symphony design step and execution step

Design step

The left part of Figure 4 shows the design step and the right part of Figure 4 illustrates the
execution step. The outcome of the design step is a plan for reconstructing the software
architecture. It consists of problem elicitation and concept determination. The problem
elicitation activity collects all available information about the software architecture and
elaborates the problem statement. For this information gathering, workshops or interviews
with the available stakeholders that created the software are conducted in this activity.
In addition, the relevant high-level documentation is summarized. Then, the concept
determination activity identifies the viewpoints that need to be reconstructed and defines

the mapping rules for the reconstruction that will be made in the execution step.

Execution step

Figure 5, again taken from van Deursen et al. [45], presents the reconstruction execution
step of Symphony. This step consists of data gathering, knowledge inference, and informa-
tion interpretation. These tree activities map basically to the data extraction, abstraction,
and wvisualization phase described in 2.5. Though, in the knowledge inference activity the

abstraction mechanisms base on the rules and viewpoints defined in the design step.

16

2.5 Further Approaches 2 APPROACHES TO SAR

Source Architectural
Dai» Data Views Information Views
Gathering Interpretation
3 > A
: Source Target ‘
Views Map Views
Knowledge
data flow Inference
- - A
actor in : ‘ 3
............. = reconstructor - stakeholders
Figure 5: Symphony execution step
2.5.2 Focus

Focus is an approach from Medvidovic and Jakobac [30]. Medvidovic and Jakobac claim
that most SAR approaches are heavy-weighted because they want to completely recover the
software architecture. The authors of Focus wanted to provide a light-weight approach
for software architecture recovery that includes the reconstruction of the architectural
style. Their approach is semi-automatic and incremental. Focus has three unique facets.
The first one is the fact that Focus uses a system’s evolution requirements to isolate and
incrementally recover only the components which are effected by the evolution. Therefore,
enabling a focused view onto the system’s parts that shall be changed. Secondly, Focus
reconstructs not only the software components, but recovers the key architectural notions
of software connector and architectural style. The last facet is the ability of Focus to
refactor the system.

Focus conducts two different, interrelated steps. Theses are architectural recovery and
system evolution. The steps are displayed in Figure 6 and 7 and are described in the

remainder of the Section.

Architectural recovery step

The architectural recovery step is shown in Figure 6, which is taken from Medvidovic
and Jakobac [30]. This step has the purpose to recover the actual architecture based
on an idealized architecture in an incremental usage. The activities, described below,
are separated into two categories: logical and physical architecture recovery. The logical
architecture recovery starts with an idealized, high-level model of the software architecture,
which is, for instance, inferred from the prior selected architectural style, and tries to
refine the selected components by integrating more concrete details into the idealized
architecture. The physical architecture recovery starts with the source code and tries to
abstract it to get the actual components of the system. By incrementally applying the
step the architecture becomes more and more consistent with the actual architecture.
The step seen in Figure 6 is composed of six activities, namely Identify components,

Propose idealized architectural model, Map components onto architecture, Identify key Use

17

2.5 Further Approaches 2 APPROACHES TO SAR

Logical Architecture I Physical Architecture

Propose idealized
architectural model

Identify
components

Identify key
Use Cases

Analyze component
interactions

Map components
onto architecture

Generate refined
architecture

Figure 6: Focus architectural recovery step

Cases, Analyze component interactions, and Generate refined architecture. At first the
Identify components activity gathers data need for the abstraction of components from
the source code. Then the Propose idealized architectural model activity chooses an ide-
alized architecture model. Different hints in the architecture, like GUI-based or Internet
communication, can yield the architectural style and thus the needed idealized architec-
ture model. Afterwards, the Map components onto architecture activity maps the identified
components from the first step onto the idealized architecture. After this activity the key
Use Cases are abstracted from the selected components in the Identify key Use Cases
activity. The following Analyze component interactions activity analyzes the component

interactions. Finally, the refined architecture is generated in Generate refined architecture.

System evolution step

The next step in Focus is the system evolution step shown in Figure 7, which is taken from
Medvidovic and Jakobac [30]. In this step Focus modifies the application to satisfy the new
requirement. The five activities, that are conducted in this step, are Propose idealized arch
evolution, Add / Modify components, Update component interactions, Generate evolved
architecture, and Set the new focus. These activities are all activities in a refactoring
setting, which is out of the scope of the thesis. Therefore, the activities are only described
briefly for completeness and understanding of the Focus approach.

The first activity Propose idealized arch evolution creates a high-level architecture
evolution plan. The Add / Modify components activity then carries out the first step
of the evolution plan in a semi-automatic way by interaction with the reverse engineer.
Then, the next activity Update component interactions checks the component interactions

and updates, if necessary, the interactions. After this activity the changes are integrated

18

2.5 Further Approaches 2 APPROACHES TO SAR

Add / modify
components

O
Propose idealized
arch evolution

Update component
interactions

Generate evolved
architecture
Set the new focus

Figure 7: Focus system evolution step

into the original architecture. This is done in Generate evolved architecture. Finally, the
Set the new focus activity decides whether or not the generated architecture consists of
sufficient details to enable the implementation of the desired change. If the is not the case,

a new iteration of the recovery step with the changed components is triggered.

2.5.3 Quality Attribute Driven SAR

The goal of Quality Attribute Driven Software Architecture Reconstruction (QADSAR)
[39] is to provide information that enables the analysis of quality attributes of software.
The approach is motivated by the fact that business goals incorporate quality attributes.
In this context, Stoermer et al. [39] have developed a tool named ARMIN that is described
in Section 7.1.

QADSAR uses the notions of quality attribute scenarios and architecture tactics.
These are explained in the next paragraph.

Quality attributes are refined into quality attribute scenarios. A quality attribute
scenario is a quality attribute requirement of a system. For instance, a system must provide
an answer in at most 200 ms. That would create a quality attribute scenario in which a
performance requirement is stated. Those scenarios represent the input to a corresponding
quality attribute model like a performance model. An architecture tactic can then be
chosen by the software architect to accomplish this requirement. In the aforementioned
example the architect could choose the tactic reduce computational overhead.

Figure 8 taken from Stoermer et al. [39] shows the different steps in QADSAR. The
first three steps, namely Scope Identification, Source Model Extraction, and Source Model

Abstraction map roughly to the first three common phases described in Section 2.1. The

19

2.5 Further Approaches 2 APPROACHES TO SAR

QAD Analysis Framework SAR

1) Scope
Identification l

/ Source ; 2) Source Model
// Model — Extraction
Required By - l
QUAD Analysis Abstraction &= | 3) Source Mode!
Framework / Model ; Abstractioil
. / Architecture ; <——| 4) Element and
Views Property Instantiation

5) Quality Attribute

d

Evaluation
Legend
\:| method step — method flow
- remark ---- connects remark
LZ7 step product = produces

Figure 8: QADSAR steps

only difference is the fact that their scope identification includes the identification of the
quality attribute scenario that should be reconstructed and the related architecture tactics.
Step four, namely Element and Property instantiation, describes the process of making
the entities and relations explicitly denoted as architecture elements with particular prop-
erties. The abstraction phase described in Section 2.4 includes this phase. Stoermer et
al. introduce a new step named Quality Attribute Evaluation. In this step the results of
the reconstruction process are evaluated on the basis of the identified quality attribute
scenario, quality attribute model, and the possible architecture tactics. For instance, as-
suming that the scope identification step identified a performance model and the possible
tactics to achieve this requirement and the SAR process is performed. If no tactics can be

identified in the results, the performance is expected to fail the requirement.

20

3.1 Structure of KDM 3 KNOWLEDGE DISCOVERY META-MODEL

3 Knowledge Discovery Meta-Model

KDM [17] defines different meta-data that play an important role in SAR. KDM maps
information about software assets, their associations, and operational environments into
one common data interchange format. Then, different analysis tools have a common
base for interchanging information. Thereby, the different architecture views, which every
analysis tool extracts, can be kept in one meta-model. For this purpose KDM provides
various levels of abstraction represented by entities and relations. Section 3.1 provides an
overview of the structure and organization of KDM. Afterwards, Section 3.2 presents an

example for a KDM-conform file.

3.1 Structure of KDM

Absiraction Infrastructure

Layer

Conceptual

Resouirce

Layer Elements Layer

Figure 9: The different layers of KDM

KDM consists of four different layers. These four layers are split into several different
packages (see Figure 9 which is based on a Figure from the KDM documentation [17]).
Each package, except the core and kdm package, defines one model. Thus, KDM has nine
models for representing knowledge about the software architecture. The remainder of the

Section describes the different packages of each layer of KDM.

Infrastructure layer

This layer describes the core components of KDM. Every model in other layers inherits

directly or indirectly from these components.

21

3.1 Structure of KDM 3 KNOWLEDGE DISCOVERY META-MODEL

e Core package: This package describes the basic meta-classes. For example, the basic
classes KDMEntity and KDMRelationship are defined here. Every element of KDM

inherits directly or indirectly from one of the core classes.
e kdm package: The kdm package provides static context shared by all KDM models.

e Source package: This package defines the source model. The source model represents
the physical structure of the existing software system. This structure includes the

directory structure and files of the file system.
Program layer
The program layer defines a language-independent representation of the existing source

code.

e Code package: Elements of programming languages are described in this package,
e.g. classes, data types, methods, and variables. Providing a maximum of language
independence is the intention of this package. Every case in which this is not pos-
sible the source code line is attributed with the dependent programming language

descriptor.

e Action package: The behavior and interactions of the instructions among each other
are covered here. Function calls and variable assignments are examples for the
behavior of a software system.

Resource layer
Higher-level knowledge about the existing software system is represented in this layer.

e Data package: The persistent data aspects of an application are handled in this

package.

e UI package: This packages represents the user-interface aspects of the existing soft-

ware system.

e Event package: In this package a common concept related to event-driven program-

ming is defined.

e Platform package: The artifacts which relate to the runtime platform are handled

here.

Abstraction layer

This layer contains even higher-level abstractions about the existing software system than

the resource layer.

e Conceptual package: This package is used for representing the business logic and

the domain-specific elements.

22

3.2 Example for KDM 3 KNOWLEDGE DISCOVERY META-MODEL

e Structure package: The logical organization in subsystems, components, and pack-

ages is covered here.

e Build package: The engineers view of the software system is represented here. With

the build package artifacts and processes in the build process can be described.

. H.l.gl}cl‘-lﬁ'vcl, [Conceptual W[Build] Structure 1 } Abstraction Layer
implicit, experts,
analysts []]] 1 }
Data Event ul Platform Resource Layer
Primmtives, Program
explicit, [Hies] Action l Elements Layer
automatically
extracted | =M 1
Infrastructure
framework { ‘ kdm 1 Layer
meta-model { | Core l

Figure 10: Structure of KDM

Figure 10, basing on a Figure from the KDM documentation [17], displays the struc-
ture of KDM with emphasize on the possible level of automatism of creating each package
model. At the bottom lie the core and kdm package that every model inherits from. On
a higher level is the source, code, and action package. These packages can be full auto-
matically extracted from the source code. The packages, displayed above them, can only
be partially extracted automatically. For these packages human interaction is required to
fully represent the information about the system. For example, the information concerning
the conceptual package is mainly included in the source code but it is nearly impossible to
extract all of the business logic automatically because it is only included implicit. Thus,

an human has to provide the input.

3.2 Example for a KDM-conform File

int main(int argc, charx argv][]) {

20}

Listing 5: "KDM simple C example”

Listing 5 shows a typical main procedure of a C program with an empty body. The
procedure is stored in the file simple.c.

The source code in Listing 5 is converted to a KDM-conform file. The result is depicted
in Listing 6, which bases on a hello world example by KDM Analytics [2]. At the lines
2 to 6 are the namespace imports. KDM bases on XML Metadata Interchange (XMI).

23

© 00 N O U ke W N =

—
o

—_
—_

12

13

14

15

16
17
18
19
20
21
22
23
24
25

26

27

28

29

30

31
32

3.2 Example for KDM 3 KNOWLEDGE DISCOVERY META-MODEL

Therefore, it includes a version of XMI namespace. In addition, the example uses the code,

kdm, and source package and therefore, these namespaces must be included as well.

-
<?xml version="1.0" encoding="UTF-8”7>

<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://www.omg. org /XMI”
xmlns:code="http://kdm.omg. org/code”
xmlns:kdm="http://kdm.omg. org /kdm”

xmlns:source="http://kdm.omg. org/source”

name="SimpleExample”>

<model xmi:id="id.0” xmi:type="code:CodeModel” name="SimpleExample”>
<codeElement xmi:id="id.1” xmi:type="code:CompilationUnit” name="

simple.c”>

<codeElement xmi:id="1d.2” xmi:type="code:CallableUnit” name="
main” type="id.4” kind="regular”>
<source xmi:id="1d.3” language="C” snippet="int main(int argc,
charx argv([]) {}"/>

<codeElement xmi:id="id.4” xmi:type="code:Signature” name="main

77>
<source xmi:id="id.5” snippet="int main(int argc, char x argv
[1)57/>
<parameterUnit xmi:id="id.6” name="argc” type="id.12"7 pos="1"
/>

<parameterUnit xmi:id="id.7” name="argv” type="id.8” pos="27">

<codeElement xmi:id="id.8” xmi:type="code:ArrayType”>
<itemUnit xmi:id="id.9” type="id.11"/>
</codeElement>
</parameterUnit>
</codeElement>
</codeElement>
</codeElement>

<codeElement xmi:id="id.10” xmi:type="code:LanguageUnit”>
<codeElement xmi:id="id.11” xmi:type="code:StringType” name="char
x7 />
<codeElement xmi:id="id.12” xmi:type="code:IntegerType” name="int
77/>
</codeElement>
</model>
<model xmi:id="id.13” xmi:type="source:InventoryModel” name="
SimpleExample”>
<inventoryElement xmi:id="id.14” xmi:type="source:SourceFile” name=
"simple.c” language="C"/>
</model>
</kdm:Segment>
-

Listing 6: "KDM simple example”

24

3.2 Example for KDM 3 KNOWLEDGE DISCOVERY META-MODEL

In line 9 a code model from the code package is begun. After this, the only file simple.c is
opened. The following line defines a callable unit. This unit is the main procedure from
the C example. Then, line 12 defines the original source code of the main procedure. It
attributes the source code as C code. This way special behavior of, for instance, variable
declarations in different programming languages can be modeled. The next lines 13 to 21
define the signature for the main procedure. The types of the parameters are modeled in
lines 24 to 27. Line 29 defines an inventory model from the source package. This model
represents the source files that are included. In the example there is only the simple.c file.

This file is represented in line 30.

25

4 EVALUATION OF DIFFERENT INTERCHANGE FORMATS
4.1 Assessment Criteria FOR SAR

4 Evaluation of different Interchange Formats for

Software Architecture Reconstruction

KDM | GXL | RSF | FAMIX
C1 Bases on XMI | XML | Tuples | CDIF
C2 Completeness + + + i
C3 Evolvability + + T I
C4 Flexibility + + + I
C5 Formality + + + +
C6 Included predefined models + — — +
C7 Scalability + + + +
C8 Several levels of abstraction + + + +
C9 Solution reuse + + — o+
C10 Static and dynamic dependencies + + + +

Legend: +: supported +: minimal —: not at all

Table 1: Evaluation of different interchange formats

Table 1 summarizes the evaluation of the different common interchange formats for SAR.
GXL and RSF are examples from the class of data interchange formats with graph repre-
sentation. FAMIX is another meta-model based approach to evaluate the functionality of
KDM in its own equivalence class.

The legend reads like follows. Supported stands for full feature support. Minimal
stands for an only partially supported feature. Not at all stands for a feature that is not
supported at all.

The evaluation was conducted with KDM in version 1.1 [17], GXL in version 1.1
[24, 48, 49|, RSF in version 5.4.4 (handbook’s version) [19, 46, 50, 51], and FAMIX in
version 2.0 [9, 11, 42].

Section 4.1 defines the different assessment criteria. Then, Section 4.2 to 4.5 describe

the results for the different formats in detail.

4.1 Assessment criteria

St-Denis et al. [37] propose the following assessment criteria for evaluation of interchange
formats. However, some aspects were omitted and added. This has been done to scope the
evaluation for SAR. The omitted criteria are transparency, simplicity, neutrality, popular-
ity, metamodel identity, legibility, and integrity. The added aspects are bases on, included

predefined models, several levels of abstraction, and static and dynamic dependencies.

C1 Bases on The underlying format is an important criterion and affects implicitly to

other criteria like scalability.

26

4 EVALUATION OF DIFFERENT INTERCHANGE FORMATS
4.2 Knowledge Discovery Meta-Model FOR SAR

C2 Completeness All necessary components and algorithms should be specified. The
specification must provide explicit and unambiguous guidelines for the user. Hence, the

potential of incompatibility is reduced.

C3 Evolvability New requirements should be easy to implement. Thus, the interchange

format must provide an easy way to adapt new requirements.

C4 Flexibility The interchange format should be so flexible that different models,

tool-specific data, and language systems can be included.

C5 Formality The specification of the format should be formal and well-defined. Re-
sulting in a well understanding and a non conflicting interpretation. Hence, incompatibility

and information corruption is avoided.

C6 Included predefined models For easier interoperability the specification should
include predefined models for the representation of data. If there are no predefined models
included the format fails this criterion. If only one model is included, the format fulfills

the requirement only partially.

C7 Scalability The format should handle small and huge systems. Therefore, the

format must be able to deal with a great amount of information.

C8 Several levels of abstraction The interchange format should provide different
levels of abstraction. On a lower level of abstraction the source model should be contained
and at a higher stage the subsystem structure should be contained, for instance. If only one
level of abstraction is possible, the format fails the requirement. If it is possible to define

several levels of abstraction by extending the format, the criterion is partially fulfilled.

C9 Solution reuse Solution reuse consists of adapting and integrating standards,
tools, and other reusable concepts or mechanisms. The format should reuse these proven
technologies for a reduction of the error probability. The solution reuse criterion does not

include reused solutions which result from the base format.

C10 Static and dynamic dependencies Static and dynamic data should be repre-

sentable in the format.

4.2 Knowledge Discovery Meta-Model

KDM bases on (C1) XMI. XMI is a standard by the Object Management Group (OMG)
which combines the meta-meta-model (MOF) and a textual format, namely XML. For
KDM a documentation with a description, semantics, and special constraints of its el-
ements is available from its website [17]. Hence, KDM fulfills the completeness (C2)
requirement. Generic extensions of the existing models and the possibility of defining new
models make KDM evolvable (C3). New models can be implemented on the basis of the
core and kdm package and tool specific data can be added as annotations, for instance.
Thus, KDM is flezible (C4). The specification defines the semantic and constraints for
the KDM elements. Therefore, KDM fulfills the formality (C5) criterion. There are 9

27

4 EVALUATION OF DIFFERENT INTERCHANGE FORMATS
4.4 Rigi Standard Format FOR SAR

predefined models included (C6) in KDM. These models are described in Section 3. XMI
is a verbose format but KDM scales up (C7) that is shown by KADis which can analyze
systems with millions of lines of code. The models included in KDM provide different
levels of abstraction (C8). For example, the code model contains classes and the structure
model can contain the structure of components of the software system. KDM reuses (C9)
ISO norms for primitive types, for instance. The static and dynamic dependencies (C10)

can be expressed, for example, by the code and action package of KDM.

4.3 Graph eXchange Language

GXL bases on (C1) the XML format. XML was chosen by the developers of GXL instead
of XMI to have a less verbose base format. Since GXL is specified comprehensively by a
DTD, it fulfills the completeness (C2) requirement. Graphs can be easily extended and
new requirements can be implemented by changing the semantic schema. In GXL not only
the graph is represented but its underlying schema definition is exchanged as a metaschema
with the graph representation. Hence, GXL provides evolvability (C3). Through changing
the metaschema, tools can provide their own specific data and models. Thus, GXL is
flezible (C4). The DTD for GXL provides a formal (C5) and well-defined specification for
the format. GXL has no included predefined models (C6). The format defines only a graph
representation. However, programs can define their own models with a metaschema but
the specification has none metaschema included. TA, GraX and PROGRES were merged
to create GXL. These formats have been proven in several large software analyses. For
instance, TA was successfully used at analyzing the Linux kernel and GCC C++ compiler.
Therefore, GXL scales up (C7) and can handle large software systems too. Nearly every
abstraction level can be represented as a graph. Only the underlying metaschema changes
at every abstraction level. This metaschema can be manipulated in GXL. Hence, GXL
provides the possibility of several levels of abstractions (C8) but none is included. GXL
evolved from different formats. Therefore, it reuses (C9) these solutions. Static and
dynamic dependencies (C10) can be represented by graphs. Hence, GXL can represent

them by altering the metaschema.

4.4 Rigi Standard Format

RSF bases on (C1) tuples. The tuple rules are described in Section 2.3.3. A specification
and examples for RSF are available from its handbook. Hence, RSF fulfills the complete-
ness (C2) requirement. Like in GXL, graphs can be easily extended and new requirements
can be implemented by changing the underlying semantic schema. Therefore, RSF is flez-
ible (C3). With the tuples in RSF it is possible to construct a graph. Graphs are evolvable
(C4) for new requirements. A formal (C5) definition of RSF is available from the Rigi
wiki [46]. RSF only defines a graph representation and no concrete models. Hence, there
are no included predefined models (C6). Rigi utilizes RSF and has been proven in large
scale systems of around 5 million lines of code. Therefore, RSF scales up (C7). Through

28

4 EVALUATION OF DIFFERENT INTERCHANGE FORMATS
4.5 FAMIX Meta-Model FOR SAR

different graphs with a different underlying metaschema different levels of abstraction (C8)
can be achieved but only one is included. No solution reuse was described in the papers
and no solution reuse was obvious except the underlying base format. Therefore, RSF does
not reuse solutions (C9). Graphs can represent static and dynamic dependencies (C10).
Hence, RSF fulfills this requirement.

4.5 FAMIX Meta-Model

FAMIX bases on (C1) CDIF. CDIF is an industrial standard that was chosen for FAMIX
due to its extensibility and standard plain text encoding. FAMIX is defined by a specifica-
tion with a description for each element. Therefore, it fulfills the complete (C2) criterion.
New requirements to the format can be implemented by inheriting from the abstract classes
defined in FAMIX. Hence, FAMIX is evolvable (C8). Tool specific data and own models
can be included in FAMIX by extending the abstract base classes. Thus, FAMIX is flexible
(C4). FAMIX is formal (C5) and well defined by its specification which describes the ele-
ments, their methods, and their attributes. A predefined model (C6) for the representation
of entities like methods, classes, or packages is contained in FAMIX. However, this is the
only one. Moose uses FAMIX for its data storing and Moose has provided adequate results
in SAR. Hence, FAMIX fulfills the scalability (C7) criterion. Several levels of abstraction
(C8) can be implemented in FAMIX. However, this would require an extension of the
FAMIX model. FAMIX reuses (C9) the common entities of object orientation to define
its abstract model. Static and dynamic dependencies (C10) can be represented in FAMIX.
The creators of FAMIX have focused on the fact that a SAR format needs invocation and

access entities.

29

5.3 Activities in KADis’ SAR process 5 DEVELOPMENT OF KADIS

5 Development of KADis

KADis is a new tool, which I developed within the scope of this thesis, to enable SAR
with the usage of KDM. It is implemented as an Eclipse-RCP application. The source
code of KADis and the tool itself can be downloaded from its website [14]. The future
work for further versions of KADis is described in Section 8.2. Section 5.1 and 5.2 present
an overview of the program by listing the features and the design of KADis. The last
Section 5.3 shows the different activities that are performed by KADis in its main feature

accomplishing the SAR process.

5.1 Features

KADis enables the reconstruction of software architectures and uses Source Navigator
NG [36] for the data extraction phase. Source Navigator NG is an open-source project
and thus enables further development and extension of the included parsers. In the first
version KADis only supports Java. However, interfaces for further implementation of other
languages are contained. Basically, classes, packages, and associations are reconstructed
by using the code- and structure package of KDM. The output of the SAR process in
KADis is an XML file in a KDM-conform format (see Section 3.2 for an example).
Appendix D contains the functional specification of KADis. It includes further infor-

mation about the features and other functional details of the program.

5.2 Design

The first version of KADis provides a basis for a powerful SAR tool utilizing the KDM.
Therefore, the main intention of the design is focused onto extensibility and exchangeability
of the created components. Thus, KADis implements the Model-View-Controller (MVC)
architectural pattern, which separates the view, controller, and model from each other.
For future versions it is planed that KADis should act in a self developed framework.
Therefore, the view has to be independent.

For more information about the design of KADis refer to the design specification in

Appendix E.

5.3 Activities in KADis’ SAR process

KADis covers the SAR phases which were defined in Section 2. Figure 11 shows the
different activities that are being performed by KADis in detail. The first activity is
scope identification. This activity is carried out by the user by selecting the files and
folders that the following SAR process should use. After the SAR process is started by
the user, KADis starts the parsing of the passed files and folders in the data extraction
activity with special focus on the information needed by the code and source package of
KDM. KADis uses Source Navigator NG for this task. Then, the results of the parsing

30

5.3 Activities in KADis’ SAR process 5 DEVELOPMENT OF KADIS

@)

Scope
identification

Data extraction

Save into database

code model

Abstraction

(Create KDM structure W

LCreate KDM source model andJ

model

Export as an XML file

Figure 11: Activities in KADis” SAR process

are saved into a database in the save into database activity. The developed database
schema is based on the KDM specification. After Source Navigator NG has finished, a
Java Abstract Syntax Tree (AST) is used to verify and complete the results. Then, a code
and source model instance of KDM are created from the database. Subsequently, KADis
abstracts the information gathered in the data extraction activity to create a structure
model instance of KDM. Finally, the program exports the three created model instances
as one KDM-conform XML file.

31

6.1 Evaluation with JPetStore 6 EVALUATION OF KADIS

6 Evaluation of KADis

This Section evaluates the functionality of KADis. The completeness evaluation is con-
ducted with JPetStore 5.0 and is described in Section 6.1. The following Section 6.2 shows

the performance evaluation of KADis.

6.1 Completeness Evaluation with JPetStore

JPetStore 5.0 [25] is a web store for pets published by iBatis. The program is a wide used
program for evaluation purposes. The generated output for JPetStore can be downloaded
from the KADis website [14].

KDM is a verbose format. A hello world example in KADis consists of 50 lines as
KDM format. Thus, only an evaluation summary in table 2 is shown for JPetStore. The
elements that were detected by KADis were measured by counting the occurrence of the
corresponding KDM elements type with a text tool. The words, which were searched for
each criterion, are contained in each criterion definition. The total number of the elements
present in JPetStore was counted manually and Appendix C shows a detailed table for the
calculation of the total number in the files. Section 6.1.1 defines the assessment criteria

and Section 6.1.2 discusses the results.

Found | Total | Percentage
E1 Directories 41 41 100 %
E2 Files 171 171 100 %
E3 Packages 6 6 100 %
E4 Classes 49 49 100 %
E5 Imports 220 220 100 %
E6 Inheritances 42 42 100 %
E7 Instance Variables 150 150 100 %
E8 Methods 421 421 100 %
E9 Local Variables 273 273 100 %

Table 2: Detected elements by KADis and total elements of JPetStore

6.1.1 Assessment Criteria

KADis’ output contains the three models from the source, code, and structure package.
These models have to be evaluated. The source package defines the inventory model
which represents the physical structure of the source code. Directories and files are mostly
contained in this model. For this purpose, E1 and E2 are chosen. The code model
represents the source code. KADis 1.0 only supports Java and is therefore only applicable
for object-oriented software. E3 to E9 define the main elements of an object-oriented

language. The structure model generated by KADis contains a textual description of the

32

6.1 Evaluation with JPetStore 6 EVALUATION OF KADIS

package dependencies in the system. For the package diagram, packages (E3) and imports
(E5) have to be correctly detected.

E1 Directories Directories are part of the physical organization of the source code.
KDM represents the directory structure by recursion. The first directory entry defines the
absolute path to the root source folder. The child directory entry defines the name of the
root source folder. The following directories are always child of these and always define
the relative location of the directory container. A directory in a KDM-file is of the type

source:Directory.

E2 Files Files are containers for different data. The type of a file in KDM can be
source:SourceFile, source: ResourceDescription, source:Image, source: EzecutableFile,

source:BinaryFile, or source:Configuration.

E3 Packages Packages are the Java specific representation of a module. Only the pack-

ages that contain source files are counted. In KDM the type of a package is code:Package.

E4 Classes Classes can be normal classes, interfaces, or enumerations here. Inner
classes are counted as a normal class. The corresponding types in KDM are code: ClassUnit,

code:InterfaceUnit, and code: Enumerated Type.

E5 Imports Imports define the usage of other classes and packages. The imports are

only counted once for a file. The type for imports in KDM is code:Imports.

E6 Inheritances An inheritance relation can be of two types, namely extends and

implements. These types are mapped by KDM to code:Extends and code:Implements.

E7 Instance Variables Instance variables are the global variables of a class. In KDM
variables are of the type code:StorableUnit and an instance variable is of the type global

or static.

E8 Methods In this context methods mean constructors and normal method declara-
tions. KDM defines the type code:MethodUnit for methods.

E9 Local Variables Local variables always belong to one method and are counted for
each declaration. Though anonymous variables, for example new Integer, are not counted.

KDM maps local variables to the type code:StorableUnit with the type local.

6.1.2 Discussion

The directory criterion definition already stated that KDM includes the path and name
of the root source folder. These two directories entries were subtracted from the result of
the search for source:Directory in the KDM-file.

The results show that KADis detects the basic elements of Java. Though looking at the
source code reveals different shortcomings which result from using Source Navigator NG.
Source Navigator NG fails to detect inner classes correctly and simply adds two classes
with the main class name. This can result in mismatching modifiers as happened in the

class ProductSqlMapDao which is a public class but is detected as a public static class,

33

6.2 Performance Evaluation 6 EVALUATION OF KADIS

for instance. Another shortcoming is the detection of package private modifiers. Source
Navigator NG detects this modifier as a private modifier. In future versions of KADis
these shortcomings shall be resolved.

An evaluation with one program is not necessarily generalizable. Though, the evalua-

tion shows that KADis detects a large part of main elements of Java.

6.2 Performance Evaluation

[e0]
N
30 <
o)
rl
25 Y
20 /
3
E /
E
E
£ 15 /
[0
£ /
C
) /
€ ©
10 g -
S
/
s N —
o
62 -
= O b
o.- Q —
3 £ —
< S - —
Sx _H
o
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

total lines of code

Figure 12: Performance evaluation

In the majority of cases SAR must provide a fast output despite handling a big amount
of data. Therefore, KADis was optimized for generating the output as fast as possible by
tuning the used database schema and the database itself, and by implementing different
threads in the linking ids step, which links the reference from an KDM element to another
KDM element. In addition, optimizations for memory usage were done by using a relational
database without an object-relational mapper to control the data that the RAM has to
hold.

The evaluation was done on an Intel Core 2 Duo E7200 2.53 GHz and 4 GB RAM
and a maximum heap size for the JVM of 1536 MB. The versions of the used programs
are JDK [32] 1.6 Update 18 (the contained src.zip), Vuze [47] 4.3.1.2, JabRef [41] SVN

34

6.2 Performance Evaluation 6 EVALUATION OF KADIS

revision 3161 of the main program, KADis 1.0 [14] and JPetStore 5.0. Source code written
in other languages than Java was removed before the reconstruction was accomplished.

Figure 12 shows the performance of KADis processing the aforementioned software.
The total lines of code (LOC) on the x-axis were measured by Metrics [34]. LOC shall
only be a hint for the size of the project here. The mean time in minutes were taken
from the displayed time in KADis after the reconstruction has finished. This time is the
difference between the click on the start reconstruction button and after the KDM-file is
written to the hard disk. To calculate the mean time, the SAR process for each program
was conducted 3 times and to guarantee the same conditions KADis was restarted after
each SAR process. The dashed curve defines an estimated mean time. The values behind
the items are the concrete mean time values in minutes for the item.

The curve in Figure 12 lets assume that KADis’ output generation is above linear time
but within square time. An explanation can be found in the underlying algorithms. The
link algorithms in KADis, for instance the former mentioned id linking step, have O(nxm)
time where n stands for the number of elements that have to be linked from and m for
the number of available elements in the KDM instance. These algorithms, which form the

bottleneck here, have to be optimized in future versions by search trees, for example.

35

7.4 MoDisco 7 RELATED TOOLS IN SAR

7 Related Tools in Software Architecture Recon-

struction

There are many tools available that perform SAR. Section 7.1 to 7.3 list only a few tools
that were mentioned in other Sections of the thesis. An exception is made for MoDisco,
which is a framework which uses KDM to describe software architectures, and that is

covered in greater detail in Section 7.4.

7.1 Architecture Reconstruction and MINing

Architecture Reconstruction and MINing (ARMIN) [39] is a tool developed by the Software
Engineering Institute and Robert Bosch Corporation. It uses RSF for importing files
and provides configurable modeling and visualization. ARMIN is a successor of the Dali
architecture reconstruction workbench [26] and realizes the QADSAR approach, which is
described in Section 2.5.3.

7.2 Rigi

Rigi [19] is a semi automatic reverse engineering environment, which was developed at
the University of Victoria. It consists of several tools. These are parsers, command-line
utilities, and an interactive graph editor, which is the core of the system and is called
rigiedit. Graph models are stored and retrieved by this tool. It is programmable by using
the scripting language Tcl, which is a library of scripts supplied for performing common

reverse engineering tasks. The data is represented in its own format named RSF.

7.3 Moose

Moose [20] is a language-independent environment for reverse and re-engineering software
systems. The project started at the Software Composition Group in 1997. The tool is
an open source software and utilizes a Smalltalk implementation of FAMIX. Moose offers
a set of different services. The tool includes a common meta-model, visualization, and a
model repository, for instance. Moose was developed in the context of FAMOOS, which
was an European project whose goal was to support the evolution of first generation

object-oriented software towards object-oriented frameworks.

7.4 MoDisco

MoDisco [40] provides a framework to develop model-driven tools in different scenarios
of software modernization. These scenarios are mostly quality assurance, documentation,
improvement, and migration. In the quality assurance scenario it shall be verified whether
an existing system fulfills the quality requirements. The documentation scenario requires

extracting information from a system to support the process of understanding the system.

36

7.4 MoDisco 7 RELATED TOOLS IN SAR

The improvement scenario transforms an existing system to integrate, e.g., design patterns.
Finally, the migration scenario transforms an existing system to change, for instance, a
component.

For these purposes MoDisco provides different supporting components. Firstly, MoDisco
offers different meta-models to describe the existing system. Secondly, it includes discover-
ers for the automatic extraction of these models. Finally, the framework includes generic

tools to understand and transform the created models.

37

8.2 Future Work 8 CONCLUSION AND FUTURE WORK

8 Conclusion and Future Work

The remainder of the Section concludes the main aspects of the thesis in Section 8.1 and

defines the future work in Section &8.2.

8.1 Conclusion

Different approaches to SAR were shown in Section 2. These approaches were categorized
into a new categorization, which focuses on the basic phases of SAR and therewith the
understanding of SAR. The common data interchange formats for SAR were compared in
Section 4 to evaluate the suitability of KDM. The result of this evaluation is the fact that
KDM meets all defined requirements and is more formal defined than the existing FAMIX
format, which is widely used in similar contexts. Therefore, enabling better interoperabil-
ity between different tools. KADis, a new tool for SAR, was developed to evaluate the
practicability of KDM. The evaluation in Section 6 has shown that KADis generates the
expected output. Hence, KDM was practically utilized and thus KDM has proven useful
in SAR.

8.2 Future Work

Most of the future work lies in extending KADis. KDM is a huge specification. Therefore,
KADis only implements the core, source, kdm, code, and structure package at this time.
The other packages, namely action, data, event, platform, ui, conceptual, and build package,
have to be integrated to fully support KDM.

SAR processes are mostly iterative and incremental and performed semi-automatically.
Different points come up with this circumstance. Firstly, the user has to interact with
the SAR program. Hence, a graphical domain-specific language, that represents KDM
elements, has to be developed. With this graphical representation the reverse engineer
can make changes to the software system, for instance. Secondly, the reconstructed KDM-
conform files have to be merged at the end of each iteration. Therefore, KADis has to
provide a merge system that allows the user to decide whether or not to adopt the made
changes. Thirdly, an easy scripting language for presenting only special points of interest,
for instance only names which start with add, of the architecture has to be developed
and integrated into KADis. In addition, the GUI can support the process of writing
such queries. Lastly, the computation of an iteration should complete as fast as possible.
Therefore, further threads should be implemented in the data gathering and abstraction
phase to meet this requirement, for instance.

Source Navigator NG has different shortcomings in parsing, since it only supports Java
1.0. I have added elements like enumerations by the usage of a Java AST implementation
from the Eclipse package org.eclipse.jdt.core.dom. Although, some elements are still not
being detected correctly. These elements are inner classes, generics, overloaded methods,

and annotations in methods. In future versions these wrongly parsed elements must be

38

8.2 Future Work 8 CONCLUSION AND FUTURE WORK

detected and then be resolved by, for example, the Java AST. An alternative would be
that the Java AST should be the only parser for Java.

Many huge software systems are written in more than one programming language.
Thus, other programming languages than Java have to be supported in KADis, too. This
raises the problem of interoperability between different languages. Many of the old soft-
ware systems are written in procedural languages, like COBOL. Therefore, an abstraction
mechanism that finds classes has to be implemented in KADis.

For a large system there may be more than one reverse engineer involved in SAR.
Therefore, the project system must be extended to save all relevant data, e.g. source files
and resource files, and to provide the possibility of an easy interchange. In a system with
million lines of code and other resource files, like build scripts, the project file can be very
large. The problem of finding an efficient way to save the data by compression or dummy

files, for instance, must be solved.

39

REFERENCES REFERENCES

References

1]

2]

[12]

[13]

[14]

Approximation Algorithms for NP-Hard Problems. SIGACT News, 28(2):40-52, 1997.
ISSN 0163-5700.

KDM Analytics. KDM examples. http://kdmanalytics.com/kdmexamples, 2010-
02-16.

Ivan T. Bowman and Richard C. Holt. Reconstructing Ownership Architectures To
Help Understand Software Systems. Technical report, University of Waterloo, 1999.

Gerardo Canfora and Aniello Cimitile. Software Maintenance. Technical report,

University of Sannio, 2000.

Gerardo Canfora and Massimuliano Di Penta. Frontiers of Reverse Engineering: a

Conceptual Model. Technical report, University of Sannio, Benevento, Italy, 2008.

Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,
Robert Nord, and Judith Stafford. Documenting Software Architecture: Views and
Beyond. Addison-Wesley, 2002.

Reidar Conradi. Software Engineering mini glossary. http://www.idi.ntnu.no/
grupper/su/publ/ese/se-defs.html, 2010-02-16.

Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. Why FAMIX - Shortcom-
ings of UML for Round-trip Engineering. Technical report, University of Berne, 1999.

Serge Demeyer, Sander Tichelaar, and Patrick Steyaert. FAMIX 2.0 The FAMOOS

Information Exchange Model. Technical report, University of Berne, 1999.

Stéphane Ducasse and Damien Pollet. Software Architecture Reconstruction: A

Process-Oriented Taxonomy. Technical report, Centre de Recherche Inria Lille, 2009.

Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. MOOSE: an Extensible
Language-Independent Environment for Reengineer Object-Oriented Systems. Tech-

nical report, University of Berne, 2000.

Jiirgen Ebert, Bernt Kullbach, and Andreas Winter. GraX - An Interchange Format
for Reenginieering Tools. In in Sizth Working Conference on Reverse Engineering.
IEEE Computer Society, Los Alamitos, pages 89-98. IEEE Computer Society Press,
1999.

Loe Feijs, René Krikhaar, and Rob van Ommering. A Relational Approach to Support
Software Architecture Analysis. Software, Practice Ezxperience, 28(4):371-400, 1998.

Florian Fittkau. KADis. http://sourceforge.net/projects/kadis/, 2010-02-16.

40

http://kdmanalytics.com/kdmexamples
http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html
http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html
http://sourceforge.net/projects/kadis/

REFERENCES REFERENCES

[15]

[16]

[17]

[23]

[24]

Rony G. Flatscher. Metamodeling in EIA /CDIF—meta-metamodel and metamodels.
ACM Trans. Model. Comput. Simul., 12(4):322-342, 2002. ISSN 1049-3301.

Bernd Krieg-Briickner’s Group. uDraw(Graph). http://www.informatik.
uni-bremen.de/uDrawGraph, 2010-02-16.

Object Management Group. Knowledge Discovery Meta-Model. http://www.ong.
org/spec/KDM/1.1/, 2010-02-16.

Object Management Group. XML Metadata Interchange. http://www.omg.org/
spec/XMI/2.1.1/, 2010-02-16.

Rigi Group. Rigi Website. http://www.rigi.csc.uvic.ca, 2010-02-16.

Software Composition Group. Moose Homepage. http://www.moosetechnology.
org/, 2010-02-16.

George Yanbing Guo, Joanne M. Atlee, and Rick Kazman. A Software Architec-
ture Reconstruction Method. Technical report, University of Waterloo and Carnegie
Mellon University, Pittsburgh, 1999.

Michael Himsolt. GML: A portable Graph File Format. Technical report, University
of Passau, 1997.

Richard C. Holt. An Introduction to TA: The Tuple-Attribute Language. Technical
report, University of Waterloo, 1997.

Richard C. Holt, Andreas Winter, and Andy Schiirr. GXL: Toward a Standard Ex-
change Format. Technical report, University of Waterloo and University of Koblenz-

Landau and University Bw, Muenchen, 2000.

iBATIS team. JPetstore. http://mirror.synyx.de/apache/ibatis/binaries/
ibatis.java/JPetStore-5.0.zip, 2010-02-16.

R. Kazman and S.J. Carriere. Playing Detective: Reconstructing Software Architec-

ture from Available Evidence. Technical report, 1999.

Rick Kazman, Liam O’Brien, and Chris Verhoef. Architecture Reconstruction Guide-
lines, Third Edition. Technical report, Carnegie Mellon University, Pittsburgh,
November 2003.

Rainer Koschke. Architecture Reconstruction, Tutorial on Reverse Engineering to

the Architectural Level. Technical report, University of Bremen, 2009.

Giuseppe Antonio Di Lucca, Anna Rita Fasolino, and Ugo de Carlini. Recovering
Use Case Models from Object-Oriented Code: A Thread-Based Approach. Reverse
Engineering, Working Conference on, 0:108, 2000. ISSN 1095-1350.

41

http://www.informatik.uni-bremen.de/uDrawGraph
http://www.informatik.uni-bremen.de/uDrawGraph
http://www.omg.org/spec/KDM/1.1/
http://www.omg.org/spec/KDM/1.1/
http://www.omg.org/spec/XMI/2.1.1/
http://www.omg.org/spec/XMI/2.1.1/
http://www.rigi.csc.uvic.ca
http://www.moosetechnology.org/
http://www.moosetechnology.org/
http://mirror.synyx.de/apache/ibatis/binaries/ibatis.java/JPetStore-5.0.zip
http://mirror.synyx.de/apache/ibatis/binaries/ibatis.java/JPetStore-5.0.zip

REFERENCES REFERENCES

[30]

[31]

[36]

[37]

[40]

[41]

[42]

Nenad Medvidovic and Vladimir Jakobac. Using software evolution to focus archi-

tectural recovery. Technical report, University of Southern California, 2006.

Gail Murphy, David Notkin, and Kevin Sullivan. Extending and Managing Software
Reflexion Models. Technical report, University of British Columbia and University of

Washington and University of Virginia, 1997.

Oracle. JDK website. http://java.sun.com/javase/downloads/index. jsp, 2010-
02-16.

Matthias Rohr, Andre van Hoorn, Jasminka Matevska, Nils Sommer, Lena Stoever,
Simon Giesecke, and Wilhelm Hasselbring. Kieker. http://kieker.sourceforge.
net/, 2010-02-16.

Frank Sauer. Metrics website. http://sourceforge.net/projects/metrics/, 2010-
02-16.

Andy Schiirr, Andreas Winter, and Albert Ziindorf. The Progres Approach: Language
And Environment. Technical report, University of Miinchen and University of Aachen
and University of Paderborn, 1999.

sourcenav NG development group. Source Navigator NG. http://sourcenav.
berlios.de/, 2010-02-16.

Guy St-Denis, Reinhard Schauer, and Rudolf K. Keller. Selecting a Model Interchange
Format, The Spool Case Study. Technical report, University of Montreal, 2000.

Christoph Stoermer, Anthony Rowe, Liam O’Brien, and Chris Verhoef. Model-centric
software architecture reconstruction. Technical report, Robert Bosch Corporation,
Pittsburgh and Carnegie Mellon University, Pittsburgh and Software Engineering
Institute, Pittsburgh and Free University of Amsterdam, 2000.

Christoph Stoermer, Liam O’Brien, and Chris Verhoef. Moving Towards Quality
Attribute Driven Software Architecture Reconstruction. Technical report, University
of Bremen, 2009.

AtlanMod Team. MoDisco. http://wiki.eclipse.org/MoDisco, 2010-02-16.

JabRef team. JabRef website. http://sourceforge.net/projects/jabref/, 2010-
02-16.

Sander Tichelaar, Stéphane Ducasse, and Serge Demeyer. FAMIX and XMI. Technical
report, University of Berne and University of Antwerp, 2000.

S. Tilley and D. B. Smith. Perspective on Legacy System Reengineering. Technical
report, Carnegie Mellon University, 1995.

42

http://java.sun.com/javase/downloads/index.jsp
http://kieker.sourceforge.net/
http://kieker.sourceforge.net/
http://sourceforge.net/projects/metrics/
http://sourcenav.berlios.de/
http://sourcenav.berlios.de/
http://wiki.eclipse.org/MoDisco
http://sourceforge.net/projects/jabref/

REFERENCES REFERENCES

[44]

[45]

Qiang Tu and Michael W. Godfrey. The Build-Time Software Architecture View.
Technical report, University of Waterloo, 2001.

Arie van Deursen, Christine Hofmeister, Rainer Koschke, Leon Moonen, and Clau-
dio Riva. Symphony: View-Driven Software Architecture Reconstruction. Technical
report, University of Technol., Netherlands, 2004.

Eelco Visser. Rigi RSF. http://www.program-transformation.org/Transform/
RigiRSF, 2010-02-16.

Vuze Inc. Vuze website. http://www.vuze.com/, 2010-02-16.

Andreas Winter. Exchanging Graphs with GXIL. Technical report, University of
Koblenz-Landau, 2002.

Andreas Winter, Bernt Kullbach, and Volker Riediger. An Overview of the GXL
Graph Exchange Language. Technical report, University of Waterloo and University
of Koblenz-Landau and University Bw, Muenchen, 2002.

Kenny Wong. Rigi User’s Manual. Technical report, University of Victoria, 1998.

Kenny Wong, Scott R. Tilley, Hausi A. Mueller, and Margaret-Anne D. Storey. Struc-
tural Redocumentation: A Case Study. Technical report, University of Victoria,
January 1995.

43

http://www.program-transformation.org/Transform/RigiRSF
http://www.program-transformation.org/Transform/RigiRSF
http://www.vuze.com/

A ACRONYMS

A ACRONYMS

Appendices

A Acronyms

AST
Abstract Syntax Tree

DTD
Document Type Definition

FAMIX
FAMOOS Information Exchange Model

GXL
Graph eXchange Language

KADis
KDM Architecture Discoverer

KDM
Knowledge Discovery Meta-Model

QADSAR

Quality Attribute Driven Software Architecture Reconstruction

RSF
Rigi Standard Format

SAR

Software Architecture Reconstruction

TA
Tuple Attribute Language

UML
Unified Modeling Language

XMI
XML Metadata Interchange

B GLOSSARY B GLOSSARY

B Glossary

Software architecture
Architecture is the fundamental organization of a system embodied in its compo-
nents, their relationships to each other, and to the environment, and the principles
guiding its design and evolution. [IEEE Std 1471-2000]

Software artifact
Any piece of software [..] developed and used during software development and
maintenance. Examples are requirements specifications, architecture and design
models, source and executable code (programs), configuration directives, test data,
test scripts, process models, project plans, various documentation etc. [taken from

“Software Engineering mini glossary” [7]]

View
A view is a representation of a whole system from the perspective of a related set
of concerns. [ISO/IEC 42010:2007]

Viewpoint
A viewpoint is an abstraction that yields a specification of the whole system re-
stricted to a particular set of concerns. [IEEE Std 1471-2000]

i

C JPETSTORE ELEMENTS

C JPETSTORE ELEMENTS

C JPetStore elements

File name Pack Cla | Imp | Inh | InstV | Met | LocV
Account.java domain 1 1 1 18 36 0
BeanTest.java domain 1 11 1 1 2 9
Cart.java domain 1 5 1 2 10 11
Cartltem.java domain 1 2 1 4 0
Category.java domain 1 1 1 3 0
DomainFixture.java domain 1 2 0 0 4
Item.java domain 1 2 1 13 27 0
Lineltem.java domain 1 2 1 7 16 0
Order.java domain 1 6 1 27 57 3
Product.java domain 1 1 1 4 9 0
Sequence.java domain 1 1 1 2 6 0
AccountDaoTest.java persistence 1 3 1 1 4)
BasePersistenceTest.java | persistence 1 2 1 1 1 0
CategoryDaoTest.java persistence 1 1 1 1 2 0
DaoConfig.java persistence 1 8 0 2 3 8
ItemDaoTest.java persistence 1 5 1 4 5 3
OrderDaoTest.java persistence 1 4 1 3 2 5
PersistenceFixture.java persistence 1 6 0) 2 3
ProductDaoTest.java persistence 1 1 1 1 3 0
SequenceDaoTest.java persistence 1 1 1 1 1 4
AccountDao.java iface 1 1 0 0 4 0
CategoryDao.java iface 1 2 0 0 2 0
ItemDao.java iface 1 3 0 0 4 0
OrderDao.java iface 1 2 0 0 3 0
ProductDao.java iface 1 2 0 0 3 0
SequenceDao.java iface 1 0 0 0 1 0
AccountSqlMapDao.java sqlmapdao 1 3 2 0 5 1
BaseSqlMapDao.java sqlmapdao 1 2 1 1 1 0
CategorySqlMapDao.java | sqlmapdao 1 4 2 0 3 0
ItemSqglMapDao.java sqlmapdao 1 8 2 0 5 7
OrderSqlMapDao.java sqlmapdao 1 5 2 0 4 3
ProductSqlMapDao.java sqlmapdao 2 7 2 1 6 2
SequenceSqlMapDao.java | sqlmapdao 1 4 2 0 2 2
AbstractBean.java presentation | 1 2 1 5 1 0
AccountBean.java presentation 1 8 1 10 28 3
AccountBeanTest.java presentation | 1 8 1 0 11 38

iii

C JPETSTORE ELEMENTS C JPETSTORE ELEMENTS

CartBean.java presentation 1 7 1 14 8
CartBeanTest.java presentation | 1 7 1 7 21
CatalogBean.java presentation | 1 5 1 12 31 0
CatalogBeanTest.java presentation | 1 8 1 0 8 18
OrderBean.java presentation | 1 9 1 9 22 10
OrderBeanTest.java presentation | 1 12 1 0 14 65
AccountService.java service 1 4 0 1 6
AccountServiceTest.java service 1 5 1 0 8
CatalogService.java service 1 10 0 3 10
CatalogServiceTest.java service 1 10 1 0 8 16
OrderService.java service 1 8 0 4 6 2
OrderServiceTest.java service 1 9 1 0 4 12
Overall 6 | 49 | 220 | 42 | 150 | 421 | 273 |

Table 3: Elements of JPetStore

Legend for table 3

File name: The file name which is unique in JPetStore.

Pack: Pack stands for package declaration. To count the distinct packages the package
declaration name is displayed in the table.

Cla: Classes, interface, and enumerations are counted in this column.

Imp: Imp are all import statements included in the file.

Inh: Inh stands for the inheritances declared by implement and extend statements.
InstV: InstV are the instance variables in the file.

Met: The methods in the file.

LocV: LocV are the local variables in the file. Variable declarations in for statements are

not counted as local variables because they have a special purpose for indexing elements.

v

D FUNCTIONAL SPECIFICATION D FUNCTIONAL SPECIFICATION

D Functional Specification

Functional Specification:

KDM Architecture Discoverer
KADis)

Discoverer

State: 2010-02-15

Version: 1.0

Author:

Florian Fittkau

CONTENTS

CONTENTS

Contents
1 Purpose
1.1 Required features
1.2 Desired features
1.3 Optional features
2 Scope
2.1 Applicationrange
2.2 Target group

3 Minimum Requirements

3.1 Software
3.2 Hardware

4 Product Overview

5 Actors

6 Product Functions

6.1 User Use Cases
6.1.1 Manage projects
6.1.2 Manage data for reconstruction
6.1.3 Set output folder for KDM-file

6.1.4 Perform architecture reconstruction

6.1.5 Filter log messages
6.2 System Use Cases
6.2.1 Parse artifacts
6.2.2 Get results from external parser

7 Product Data

7.1 Projects
72 KDM-Afiles

8 Product Performance

9 Graphical User Interface

9.1 Main window
9.2 Dialogues
93 Layout
9.4 Eclipse integration

CONTENTS CONTENTS
10 Software System’s Attributes 18
11 Test Cases 19
11.1 Hello World program 19
11.2 More complex test program 19
11.3 JPetStore 19
12 Development Environment 20
12.1 Software 20
12.2 Hardware e 20
References 21
A Acronyms i
B Glossary ii

IT

1 PURPOSE

1

Purpose

KDM Architecture Discoverer (KADis) is an Eclipse-RCP application, which enables

the user to reconstruct the architecture of a given program on basis of its source

code.

Section 1.1 to 1.3 outline the features of KADis. For a definition of the

different feature types refer to the glossary.

1.1

1.2

Required features

Enabling software architecture reconstruction from Java source code and other
system artifacts. The reconstructed architecture is saved in a Knowledge Dis-
covery Meta-Model (KDM)-conform format into a file.

Using Source Navigator NG [4] for parsing the given source code.

The Java parser in Source Navigator NG understands Java 1.0 and upwards.
If there are needed symbols that can not be parsed and are essential, they will

be added by extending the Java parser.

Basically classes, packages, and associations will be reconstructed by using
code- and structure package from KDM. For details refer to the KDM specifi-

cation [3].

Project-system: The user can open a new or existing project, which saves the
added folders and files in a list. After program start a new unnamed project

is open.

Folders and files with system artifacts can be added or removed from an in-

ternal list. Items in the list are used for the architecture reconstruction.

While the system is busy with the reconstruction, a progress-bar is shown
with information about the progress and in which phase of reconstruction the

system is currently working.

After the reconstruction has finished the reconstructed architecture is opened
with an XML Editor.

Extension mechanism that lays the foundations for applying different program-

ming languages and further abstraction mechanisms.

Desired features

Different language support (English and German)

1.3 Optional features 1 PURPOSE

1.3 Optional features

e Graphical representation of the reconstructed architecture

A scripting language which enables configuration of the items mapped to KDM

(for instance, filtering of components with special names)

Support for different functional programming languages as input (namely
COBOL, FORTRAN and ANSI C)

Support for different object-oriented programming languages as input (namely
C++)

Adding more supported programming languages as input by writing own parser

for Source Navigator NG.

2 SCOPE

2 Scope

2.1 Application range

KADis can be used for reconstruction of a software architecture from source code.

It is aimed that different object-oriented languages will be supported.

2.2 Target group

The target group mostly consists of software engineers and software reengineers but

every person with knowledge about programming can use this tool.

3 MINIMUM REQUIREMENTS

3 Minimum Requirements

3.1 Software

e Java Runtime Environment (at least version 1.6 update 18)
e Any operating system that supports Java

e Eclipse (version 3.5)

3.2 Hardware

e Personal computer with minimum requirements:

— CPU: at least Pentium 4 with 2 GHz
— RAM: at least 2 GB

— Graphic-card: at least DirectX 9 compatible
— Free HDD space for the resulting KDM-file (min. 500 MB)

4 PRODUCT OVERVIEW

4 Product Overview

Figure 1 gives an overview of User Use Cases and System Use Cases. The User
Use Cases define the possible interaction between the user and KADis. Section
6.1 describes them in detail. The System Use Cases define the interaction between
KADis and external services. For a specific description refer to Section 6.2. All

displayed Use Cases are required features.

KADis

V-1 Manage projects
V-2 Manage data for reconstruction

::: V-3 Set output folder for KDM-File
5-1 Start external parser

User \ -
-

=<include==
V-4 Perform architecture reconstruction =
/ System

e
——
—

T~

==include==
§-2 Get results from external parser
V-5 Filter log messages

Figure 1: Overview of User Use Cases and System Use Cases

5 ACTORS

5 Actors

The following actors interact with KADis. They relate to the Use Cases described

in Section 6.

Actor Description Related Use Cases
V-1 Manage projects
Manages projects, V-2 Manage data for reconstruction
folders and files.

User Starts the architec V-3 Set output folder for KDM-file
ture reconstruction V-4 Perform architecture reconstruction
process.

V-5 Filter log messages
Works with the ex-
ternal parser and S-1 Parse artifacts

System | conducts the archi-

S-2 Get results from external parser
tecture reconstruc-
tion process.

6 PRODUCT FUNCTIONS

6 Product Functions

6.1 User Use Cases

The Use Cases listed below are described in the following:

e V-1 Manage projects

6.1.1 Manage projects

V-5 Filter log messages

V-2 Manage data for reconstruction
V-3 Set output folder for KDM-file

V-4 Perform architecture reconstruction

Use Case number

V-1

Use Case name

Manage projects

Primary actor

User

Other actors

Description The user creates a new project or, opens or saves an
existing project.

Precondition -

Postcondition The created or chosen project is open.

Functionality of Use Case

Steps:

1. The user chooses "New project from the file

menu.

2. The user enters a name for the new project.

Alternatives
to 1) The user chooses "Open project from the file
menu.
to 2) The user chooses "Save project” from the file
menu.
Exception The user did not enter a valid project name.

Used Use Cases

6.1 User Use Cases

6 PRODUCT FUNCTIONS

6.1.2 Manage data for reconstruction

Use Case number

V-2

Use Case name

Manage data for reconstruction

Primary actor

User

Other actors

Description The user manages the data used for reconstruction.
Precondition -
Postcondition The selected data was added to or removed from the

data list.

Functionality of Use Case

Steps:
1. The user clicks on "Add folder*.

2. The user chooses a folder in the opening dia-

logue.

Alternatives

to 1) The user clicks on "Add file“.

to 1) The user clicks on "Remove*.

Exception

Used Use Cases

6.1 User Use Cases

6 PRODUCT FUNCTIONS

6.1.3 Set output folder for KDM-file

Use Case number V-3
Use Case name Set output folder for KDM-file
Primary actor User

Other actors

Description The user sets the output folder in which the created
KDM-file will be saved.

Precondition -

Postcondition The output path is set to a valid location.

Functionality of Use Case

Steps:

1. The user clicks on "Change” beneath the dis-
played output folder.

2. The user chooses a folder in the opening dia-

logue.

Alternatives

Exception

Used Use Cases

6.1 User Use Cases

6 PRODUCT FUNCTIONS

6.1.4 Perform architecture reconstruction

Use Case number

V-4

Use Case name

Start architecture reconstruction

Primary actor User

Other actors System

Description The user performs the software architecture recon-
struction process and the system executes the recon-
struction.

Precondition -

Postcondition A new KDM-file is stored in the output folder. The

name of the file is the project name and a timestamp
of the start time of the reconstruction process. The
created KDM-file was opened in a XML Editor.

Functionality of Use Case

Steps:
1. The user clicks on ”Start reconstruction®.
2. The system starts the external parser (6.2.1)

3. The system processes the results from the ex-

ternal parser (6.2.2)

Alternatives

Exception

No data was selected for reconstruction.

Used Use Cases

S-1 and S-2 (see Section 6.2.1 and 6.2.2)

10

6.1 User Use Cases

6 PRODUCT FUNCTIONS

6.1.5 Filter log messages

Use Case number

V-5

Use Case name

Filter log messages

Primary actor

User

Other actors

Description The user filters different types of log messages.
Precondition The check-box with the desired filter is unchecked.
Postcondition The log window displays only the filtered messages.

Functionality of Use Case

Steps:

1. The user clicks on the checkbox "Errors®.

Alternatives
1. to 1) The user clicks on the checkbox "Warn-
ings®.
2. to 1) The user clicks on the checkbox "Normal“.
Exception -

Used Use Cases

11

6.2 System Use Cases

6 PRODUCT FUNCTIONS

6.2 System Use Cases

The following Use Cases are described in the subsequent Sections 6.2.1 and 6.2.2:

e S-1 Parse artifacts

e S-2 Get results from external parser

6.2.1 Parse artifacts

Use Case number

S-1

Use Case name

Parse artifacts

Primary actor

System

Other actors

Description The system parses the artifacts.
Precondition -
Postcondition The parser ran and a result file is available.

Functionality of Use Case

Steps:

1. The system starts parsing the artifacts.

Alternatives

Exception

The parser was not found.

Used Use Cases

12

6.2 System Use Cases

6 PRODUCT FUNCTIONS

6.2.2 Get results from external parser

Use Case number

S-2

Use Case name

Get results from external parser

Primary actor

System

Other actors

Description The results from parsing step are fetched from a result
file.

Precondition The parser ran and a result file is available.

Postcondition The results of the parser are loaded in the system.

Functionality of Use Case

Steps:

1. The system opens the result file and reads it.

Alternatives

Exception

Result file could not be read.

Used Use Cases

13

7 PRODUCT DATA

7 Product Data

The following Section declares all data and data structures that KADis saves and

uses:

7.1 Projects

Different projects for different reconstructions can be defined. The data saved for

every project is:
e Name
e Folders and files as paths that were added
e Output folder for the created KDM-file

e The path to the last reconstructed KDM-file (if there is one)

7.2 KDM-files

The reconstructed architecture is stored in a file. For the specific data, which is
stored, refer to KDM specification [3]. The output includes an inventory model, a

code model, and a structure model from KDM.

14

8 PRODUCT PERFORMANCE

8 Product Performance

Scoping: By adding own folders and files the user can determine which data will
be used for architecture reconstruction. In this way the user has control over
the artifacts to focus on. For instance, only one subsystem can be selected and

reconstructed to focus on this special subsystem.

Abstraction: In a system with multi million lines of source code it is not adequate
to view every single class. Instead of this, the classes must be clustered to
components, for instance. The different views of the architecture must be
reconstructed. Abstraction mechanisms make this possible. The software will
make basic abstraction (namely by simple clustering) of the system artifacts.

Other abstraction mechanisms can be implemented through an interface.

15

9 GRAPHICAL USER INTERFACE

9 Graphical User Interface

This Section provides an overview and first impression of the Graphical User Inter-
face of KADis. The sketched Graphical User Interface is only a prototype for showing

the functionality and constitutes a coarse overview of the final user interface.

9.1 Main window

o N
| £ Basic Application Example E@ﬂ

File Info

QOuput folder: | C:\ProgrammyKDMFiles

Selected folders and files for reconstruction:

C:\Progam\Edipse \Workspace'Hellovorld [Add folder]

C:\Progam'\Edlipse \Workspace\ComplexProject\Bank. java

(Add file |

[Remove]

Start reconstruction

Log:

Filter: [|Normal [~|Warnings [|Errors

Status: Progress: | J

Figure 2: Main window

Figure 2 shows the main window. The button "Change” changes the output
folder (Use Case: V-3 Set output folder for KDM-file). The buttons "Add folder*,
”Add files* and "Remove” realize the adding and removing of folders and files used
for reconstruction (Use Case: V-2 Manage data for reconstruction). The "Start
reconstruction button starts the reconstruction process (Use Case: V-4 Perform
architecture reconstruction). The log window displays normal text in black, warnings
in a dark blue and errors in a dark red color. The filter options under the log window
filter the log messages (Use Case: V-5 Filter log messages). Status at the bottom
shows statuses like "Reconstruction started” or in which phase the reconstruction
process currently is. The progress-bar at the lower right shows the overall progress

of reconstruction process.

16

9.2 Dialogues 9 GRAPHICAL USER INTERFACE

9.2 Dialogues

Info

Mew project y
‘KDMFile
Open project
tion:
Exit Strg+Q

e

Figure 3: File menu

File [Info|

About...
Oup —\grar

Figure 4: Info menu

1. The file menu contains the items shown in Figure 3. The first two items,
namely "New project“ and "Open project”, realize the project-system as de-
scribed in the Use Case V-1 Manage projects. The "Exit* item closes the

application.

2. The info menu consists of the items shown in Figure 4. The "About® item

opens a new window with details about KADis (e.g., version and author).

9.3 Layout

To enable an intuitive user interaction with the program, the layout will be guided
by programming-guidelines for designing an user interface for desktop applications

like [2].

9.4 Eclipse integration

Eclipse integration will be made to enable users a familiar handling with the pro-
gram. The program will be implemented as an Eclipse-RCP application. The de-

tailed integration is still under examination.

17

10 SOFTWARE SYSTEM’S ATTRIBUTES

10 Software System’s Attributes

very important

important

less important

unimportant

robustness

X

reliability

maintainability

extensibility

X
X
X

user friendliness

efficiency

portability

compatibility

B RS

Table 1: Software system’s attributes

18

11 TEST CASES

11 Test Cases

The following scenarios will be tested to verify system functionality:

11.1 Hello World program

A simple "Hello World program* will be created in Java with two classes and an asso-
ciation between them. They will be located in a package called hello WorldPackage.
The information has to be present in the created KDM-file.

11.2 More complex test program

A more complex test program will be created in Java. This program will consist of
two classes in one package called firstPackage and two classes in another package
called secondPackage. The classes will call each other. The information must be
contained in the created KDM-file either.

11.3 JPetStore

JPetStore [1] will be used to test the program. All of the static information in
JPetStore must be contained in the created KDM-file.

19

12 DEVELOPMENT ENVIRONMENT

12 Development Environment

12.1 Software

e Platform:

— Java

— Subversion
e Tools:

— Eclipse
— Adobe Acrobat Reader

- BTRX
— Visual Paradigm
— NetBeans with UML plugin

e Operating system:

— Windows 7

12.2 Hardware

e One personal computer that meets the minimum requirements listed in Sec-

tion 3 with Internet access.

20

REFERENCES REFERENCES

References

1]

iBATIS. JPetstore. http://apache.linux-mirror.org/ibatis/binaries/
ibatis.java/JPetStore-5.0.zip, 2010-02-15.

Microsoft. Microsoft Inductive User Interface Guidelines. http://msdn.
microsoft.com/en-us/library/ms997506.aspx, 2010-02-15.

Object Management Group. Knowledge Discovery Meta-Model. http://www.
omg.org/spec/KDM/1.1/, 2010-02-15.

sourcenav NG development group. Source Navigator NG. http://sourcenav.
berlios.de/, 2010-02-15.

21

A ACRONYMS

Appendices

A Acronyms

KADis
KDM Architecture Discoverer

KDM
Knowledge Discovery Meta-Model

B GLOSSARY

B Glossary

Desired feature

The implementation of this feature is not critical but should be implemented.

Optional feature

The feature will be implemented only if there is enough time.

Required feature

A feature that is critical and has to be implemented.

System artifact

System artifacts are things like source code, build files, configuration files etc.

System Use Cases

Use Cases that have the system as their primary actor.

User Use Cases

Use Cases that have the user as their primary actor.

11

E DESIGN SPECIFICATION E DESIGN SPECIFICATION

E Design Specification

Design Specification:

KDM Architecture Discoverer
KADis)

Discoverer

State: 2010-02-15

Version: 1.0

Author:

Florian Fittkau

xXxXxil

CONTENTS CONTENTS

Contents
1 Introduction 1
1.1 References 1
1.2 Overview e 1
2 System Overview 2
2.1 Packages 2
2.2 Components 3
3 Packages 4
3.1 View e 4
3.1.1 EclipseRCP o 4
3.1.1.1 MenuHandler 4
3.1.1.2 Preferences 4
3.1.1.3 XMLEditor 4
3.2 Model 4
3.2.1 Observerlnterfaces 4
3.2.2 Repository 4
3.3 Controller 4
3.3.1 Abstraction 5
3.3.2 Cache 5
3.3.2.1 Cache Model 5
3.3.22 Cache Types)
3.3.3 Parser 5
3.3.3.1 Parser Helper 5
3.3.32 SourceNav. 5
3.3.3.3 SourceNav Handler 5
3.3.3.4 SourceNav Models 5
3.3.4 SARManager 5
335 Toolso 6
4 Classes 7
4.1 View (Section B.1) o 7
4.1.1 EclipseRCP (Section B.1.1), 7
4.1.1.1 MenuHandler (Section B.1.1.1) 8
4.1.1.2 Preferences (Section B.1.1.2) 8
4.1.1.3 XMLEditor (Section B.1.1.3) 8
42 Model (Section B.2)o 9

CONTENTS CONTENTS
4.2.1 Observerlnterfaces (Section B.2.1) 10

4.2.2 Repository (Section B.2.2)o 10

4.3 Controller (Section B.3) 10
4.3.1 Abstraction (Figure B.3.1) 10

4.3.2 Cache (Section B.3.2) 10

4.3.2.1 CacheModel (Section B.3.2.1) 11

4.3.2.2 CacheTypes (Section B.3.2.2) 11

4.3.3 Parser (Section B.3.3) 11

4.3.3.1 Parser Helper (Section B.3.3.1) 12

4.3.3.2 SourceNav (Section B.3.3.2) 12

4.3.3.3 SourceNav Handler (Section B.3.3.3) 12

4.3.3.4 SourceNav Models (Section B.3.3.4) 13

4.3.4 SARManager (Section B.3.4)o 13

4.3.5 Tools (Section B.3.5) 13

5 Dynamic Diagrams 14
5.1 V-1 Manage projects 14
5.2 V-2 Manage data for reconstruction 15
5.3 V-3 Set output folder for KDM-file 16
5.4 V-4 Perform architecture reconstruction 17
5.5 V-5 Filter log messages 18
5.6 S-1 Parse artifactso 19
5.7 S-2 Get results from external parser 20
References 21
A Acronyms i
B Class Diagrams ii
B.1 View class diagram ii
B.1.1 EclipseRCP class diagram iii

B.1.1.1 MenuHandler class diagram iv

B.1.1.2 Preferences class diagram v

B.1.1.3 XMLEditor class diagram vi

B.2 Model class diagram vii
B.2.1 Observerlnterfaces class diagram viii

B.2.2 Repository class diagram ix

B.3 Controller class diagram X
B.3.1 Abstraction class diagram xi

B.3.2 Cache class diagram xii

IT

CONTENTS CONTENTS
B.3.2.1 CacheModel class diagram Xiv

B.3.2.2 CacheTypes class diagram XV

B.3.3 Parser class diagram xXvi

B.3.3.1 Parser Helper class diagram xvii

B.3.3.2 SourceNav class diagram xviii

B.3.3.3 SourceNav Handler class diagram Xix

B.3.3.4 SourceNav Models class diagram XX

B.3.4 SAR Manager class diagram xxi

B.3.5 Tools class diagram xxii

I1I

1 INTRODUCTION

1 Introduction

This document represents a documentation of the design of KDM Architecture Dis-
coverer (KADis). It is written particularly for people who want to develop KADis
further. For this purpose the understanding of the underlying design is essential.
There already exists a functional specification [3], which describes the fundamental
functions of the application. Furthermore, the different Use Cases are defined in the
functional specification, which give a more precisely overview of the planed program

features.

1.1 References

To enable an easy development and an open project format Eclipse is used as IDE.
Eclipse [1] is a free platform, which has native Java support. Furthermore, the
application is designed and implemented as an Eclipse RCP application.

KADis is developed with Java 1.6. Thus, it is assumed that the reader is familiar
with Java. Java is a free programming language which was developed by Sun Mi-
crosystems. More information about Java and Sun Microsystems can be obtained
from the official website [7].

For modeling the system the Unified Modelling Language (UML) plug-in for
NetBeans is used. This plug-in for the free IDE NetBeans is specialized for the
creation of UML diagrams. NetBeans plug-ins and further information can be found
on the NetBeans website [5].

The design utilizes some design patterns that are described by Gamma et al [4].

For data collection the tool Source Navigator NG is used. More information
about this tool is available on its website [8].

To compensate the shortcomings of Source Navigator NG KADis features a Java

AST implementation from the Eclipse project [2].

1.2 Overview

Section 2 gives a short, abstract overview of the structure of the system. In Section 3
the description of the packages follows. Section 4 displays the classes and Section 5

describes the dynamic behavior of the system on the basis of its Use Cases.

2 SYSTEM OVERVIEW

2 System Overview

2.1 Packages

KADis implements the MVC pattern. Therefore, KADis consists of three packages,
namely a view, a model and a controller package (Figure 1). In the view package
all graphical components are contained. The controller package covers the logical

aspects and tasks. All data of KADis is held in the model package and when this

data has changed, the view is informed by it.

A
2 -~ || ©
e 8
& 7
~ v
I
a
CHE
3 i
A A
7 @
Y\ 5 gl
5 4
R
s |
E \\ |
o |
&
I y \ N
I \ N
A 7 \]
uJ'r Lt A
H [2! I 5
wl ! w =
=7 =] m
vl v B
v I v N E
! [\ ¥
v ! | 5 N
- W I \“I o \\
u
3 ! :
2 ! \
3 I \
v ~
8 / y =
T Ry 'ﬁ
o
&
1=

<<|sage=>

=
observerinterfaces

eclipsercpview

view

Figure 1: Packages of KADis

2.2 Components 2 SYSTEM OVERVIEW

2.2 Components

Figure 2 sketches the components of KADis. The MVC components described in

Section 2.1 can be found here again.

<<gomponent>> gl <<gomponent>> {l
View Model

<<component>=> g <<gomponants > g

Eclipse RCP Repository
C{ IModel
IGUIFac al
<<pomponent>> g
Controllar
<<components=
SARManager
\(— |AbstractionManager
IParserManager
<<gomponent>> {l
<<component>> Abstraction Manager
Parser Manager
/)O\ |Abstraction
<<ppmponent= > IParser <cppmponent= > gl <<Opmponent=>
Source Navigator NG Java AST Package Abstractor
Q ICache
<<gomponents > gl
Cache

Figure 2: Components of KADis

3 PACKAGES

3 Packages

This Section describes the different packages of KADis.

3.1 View

The view package realizes the graphical user interface.

3.1.1 EclipseRCP
This package realizes the displaying of a user interface in an Eclipse RCP application.

3.1.1.1 MenuHandler

All menu handlers are contained in this package. A menu handler is called by a click

on an item in the menu bar of KADis.

3.1.1.2 Preferences

This package holds the preferences dialog and constants for it.

3.1.1.3 XMLEditor

In this package the XML editor is contained. The XML editor is created with a
template example of Eclipse RCP applications.

3.2 Model

The model holds all data in KADis.

3.2.1 ObserverInterfaces

The observer interfaces for the view are contained in this package.

3.2.2 Repository

The repository package contains the different representations of the final output of

the Software Architecture Reconstruction (SAR) process.

3.3 Controller

The controller handles all requests from the view.

3.3 Controller 3 PACKAGES

3.3.1 Abstraction

This package contains the elements involved in the abstraction phase of the SAR
process.

3.3.2 Cache

The CacheOOPFacade is hold in this package. It realizes a common database for
all SAR phases.

3.3.2.1 Cache Model

The cache model package contains the models generated from the different tables in

the common database.

3.3.2.2 Cache Types

The cache type package contains the types that are shared by the different models
in the common database.
3.3.3 Parser

The parser package holds all parsers that are used in KADis. These are at this time
Source Navigator NG and Java AST.

3.3.3.1 Parser Helper

This package contains helper classes for common parser jobs.

3.3.3.2 SourceNav

The sourcenav package holds all classes that get and convert results from Source
Navigator NG.

3.3.3.3 SourceNav Handler

The different table handlers for Source Navigator NG are contained here.

3.3.3.4 SourceNav Models

The different models for Source Navigator NG are held by this package.

3.3.4 SARManager

The SAR manager handles the correct sequence of the different phases in the SAR

process.

3.3 Controller 3 PACKAGES

3.3.5 Tools

Different tools, for instance for accessing the local file system, are contained in this

package.

4 CLASSES

4

Classes

This Section lists the classes of KADis. The class diagrams of each package can be

found in appendix B.

4.1

View (Section B.1)

EclipseRCPGUIFacade: Realizes the IGUIFacade interface to enable an
Eclipse RCP Application GUI.

IGUIFacade: Defines the required methods of the GUI for KADis.

4.1.1 EclipseRCP (Section B.1.1)

Activator: The activator class controls the plug-in life cycle and is automat-

ically created for an Eclipse RCP application.

ApplicationActionBarAdvisor: An action bar advisor is responsible for
creating, adding, and disposing of the actions and is automatically created for

an Eclipse RCP application.

ApplicationWorkbench Advisor: The workbench advisor handles settings
for the created workbench and is automatically created for an Eclipse RCP

application.

ApplicationWorkbenchWindowAdvisor: The workbench window advisor
handles settings for the main window in the workbench and is automatically

created for an Eclipse RCP application.

ChangeOutputPanel: This panel is for displaying the change output related

components.
LogPanel: The log panel shows the log and the check boxes used for filtering.

MainView: The main view brings all other visible components together and

creates the menu bar.

ManageDataPanel: The manage data panel handles the displayed data used
for SAR and has a button for starting the SAR process.

Perspective: The default perspective is created because KADis has only one.

StatusBar: The bottom bar that shows the current status and the overall

progress.

4.1

View (Section B.1) 4 CLASSES

4.1.1.1 MenuHandler (Section B.1.1.1)

AboutHandler: The about handler opens the about dialog.

DeleteProjectHandler: The delete project handler opens the delete project
dialog.

ExitHandler: This handler closes the application.

LoadProjectHandler: Creates an open dialog and loads the selected dialog.
NewProjectHandler: The new project handler creates a new project wizard.
NewProjectWizard: The wizard that enables the creation of a new project.
NewProjectWizardPage: The concrete page of the new project wizard.
SaveProject AsHandler: Opens a save as dialog.

SaveProjectHandler: Saves the open project at its current location.

XMLEditorHandler: Opens the XML editor.

4.1.1.2 Preferences (Section B.1.1.2)

kadisPreferencePage: The concrete preference page of KADis.
PreferenceConstants: Constants used for identifying the selected items.

Preferencelnitializer: Creates the preference page.

4.1.1.3 XMLEditor (Section B.1.1.3)

ColorManager: Automatically created from an Eclipse template for display-
ing an XML editor.

IXMLColorConstants: Automatically created from an Eclipse template for
displaying an XML editor.

MyXMLEditorInput: The input provider for the XML editor is defined

here.

NonRuleBasedDamagerRepairer: Automatically created from an Eclipse

template for displaying an XML editor.

TagRule: Automatically created from an Eclipse template for displaying an
XML editor.

4.2 Model (Section B.2) 4 CLASSES

4.2

XMLConfiguration: Automatically created from an Eclipse template for
displaying an XML editor.

XMLDocumentProvider: Automatically created from an Eclipse template

for displaying an XML editor.

XMLDoubleClickStrategy: Automatically created from an Eclipse tem-
plate for displaying an XML editor.

XMLEditor: Automatically created from an Eclipse template for displaying
an XML editor.

XMLPartitionScanner: Automatically created from an Eclipse template

for displaying an XML editor.

XMLScanner: Automatically created from an Eclipse template for displaying
an XML editor.

XMLTagScanner: Automatically created from an Eclipse template for dis-
playing an XML editor.

XMLWhitespaceDetector: Automatically created from an FEclipse tem-

plate for displaying an XML editor.

Model (Section B.2)

EGUILanguage: Enumeration for the different languages of the GUI.

ELogMessageType: The different types of log messages are defined in this

enumeration.

LogMessage: The log message class which enables sending log messages to

the view.
ModelFacade: Facade that provides all external services of the model.
Project: The project class for managing data associated with a project.

SaveSettings: Realizes settings that are saved and loaded when KADis shuts

down or starts.

4.3 Controller (Section B.3) 4 CLASSES

4.2.1 ObserverInterfaces (Section B.2.1)

IChangeOutputObserver: The observer interface for recognizing that the
output path has changed.

IDataHasChanged: The observer interface for recognizing that the data
used for SAR has changed.

ILogMessageObserver: The observer interface for receiving log messages.
IProgressObserver: The observer interface for the progress bar.

IProjectHasChangedObserver: The observer interface for the title of the

window which contains the project name.

IReconstructionEndedObserver: The observer interface for the enabling

and disabling of the start reconstruction button.

IStatusObserver: The observer interface for receiving status messages.

4.2.2 Repository (Section B.2.2)

4.3

IRepository: The interface for repositories

KDMClasses: A repository implementation by direct mapping to KDM

Classes.

Controller (Section B.3)

ControllerFacade: Provides all needed methods for the view.

4.3.1 Abstraction (Figure B.3.1)

AbstractionManager: Manages the abstraction process.
IAbstraction: Interface for different abstraction mechanisms

IAbstractionManagerObs: The observer interface for the abstraction man-

ager.

PackageAbstractor: Implements the [Abstraction interface and provides

basic package abstraction.

4.3.2 Cache (Section B.3.2)

CacheOOPFacade: Provides a common database for all phases of the SAR

process.

10

4.3 Controller (Section B.3) 4 CLASSES

4.3.2.1 CacheModel (Section B.3.2.1)

ClassModel: A model for a class entity

FileModel: A model for a file entity

ImportModel: A model for an import entity
InheritanceModel: A model for an inheritance entity
MethodModel: A model for a method entity
PackageModel: A model for a package entity

VariableModel: A model for a variable entity

4.3.2.2 CacheTypes (Section B.3.2.2)

EAccess: Enumeration for the different kinds of access to a variable (read,

write,...)

EAttribute: Enumeration for the modifier of classes/methods/variables (pub-

lic, private,...)
ELanguage: Enumeration for the concrete programming language (java, c,...)

EType: Enumeration for the type of the entity if it is dynamically associated
(class, method,...)

Position: Position defines the start and end position of a declaration.

TypeHelper: Converts from the string representation to a enumeration and

vice versa.

4.3.3 Parser (Section B.3.3)

IParser: Interface for different external parsers
IParserManagerObs: Observer interface for the parser manager.
JavaAST: Provides a Java abstract syntax tree.

KDMCodeModelCreator: Creates the Knowledge Discovery Meta-Model
(KDM) [6] code model.

KDMlInventoryModelCreator: Creates the KDM inventory model.
ParserManager: Manages the parser phase.

SourceNavigator: Implements the [Parser interface and provides the possi-

bility to use source navigator as external parser.

11

4.3 Controller (Section B.3) 4 CLASSES

4.3.3.1 Parser Helper (Section B.3.3.1)

ExternalCommandExecuter: Executes external programs.

IExternalProgrammFinishedObserver: Observer interface which is called

when an external program has finished

InputStreamGobbler: Defines a stream thread for getting the results from

an external program.

IResultObserver: Observer interface for receiving the results from the input

stream of an external program.

4.3.3.2 SourceNav (Section B.3.3.2)

SNMainTableManager: Creates and executes the Source Navigator query

script for each Source Navigator table.

SNResultTupleParser: Converts the result of the query to a string array

representation.

4.3.3.3 SourceNav Handler (Section B.3.3.3)

ClassHandler: Handles the result of the classes table query.
IncludesHandler: Handles the result of the includes table query.
InheritanceHandler: Handles the result of the inheritances table query.

InstanceVariablesHandler: Handles the result of the instance variables ta-

ble query.
LocalVariablesHandler: Handles the result of the local variables table query.

MethodDefintionsHandler: Handles the result of the method definitions
table query.

MethodImplementationsHandler: Handles the result of the method im-

plementations table query.

ProjectFilesHandler: Handles the result of the project files table query.
ReferredByHandler: Handles the result of the referred-by table query.
RefersToHandler: Handles the result of the refers-to table query.

SymbolsOfFilesHandler: Handles the result of the symbols-of-files table
query.

12

4.3 Controller (Section B.3) 4 CLASSES

4.3.3.4 SourceNav Models (Section B.3.3.4)

- ReferredByModel: A model that contains all referred-by relations. It should

be saved into the common database in further versions.

- RefersToModel: A model that contains all refers-to relations. It should be

saved into the common database in further versions.

4.3.4 SARManager (Section B.3.4)

- SARManager: Manages in which sequence the phases are executed in the

SAR process.

4.3.5 Tools (Section B.3.5)

- Filesystem: Implements the IFilesystem interface and provides the possibility

to save and load data from local hard disk.
- IDGenerator: A generator for unique IDs.
- JDBCLogic: Provides the communication to a database.

- LanguageStrings: The different strings for the currently selected language
are fetched from this class. For instance, “Rekonstruktion” for reconstruction

if German is the selected language.
- PreferredMapper: Enables correct mapping of XML namespaces.

- XML: A class for marshalling and unmarshalling XML files.

13

5 DYNAMIC DIAGRAMS

5 Realization of Use Cases: Dynamic Diagrams

The following Sections 5.1 to 5.5 describe the dynamic of the software on the basis

of the Use Cases defined in the functional specification.

5.1 V-1 Manage projects

| : Contl'ollerFacade| | : ModeIFacade|

- MewProjectHandler

newProjectiname, path)
u newProject(name path)

Projectiname,path)

|
|
| setlpenProjectinew)
|
|

Figure 3: Create a new project

14

5.2 V-2 Manage data for reconstruction 5 DYNAMIC DIAGRAMS

5.2 V-2 Manage data for reconstruction

| :ManageDataF‘anel| | :CDntrnIIEl'Facade| | :Filesystem‘ ‘ :MndelFacade|
| |

|

| | |
Ij addFolder(folder) | | |
ﬂIeExists(ntder}_E_ | |

|

|

|

|

addFiIeOanIder(fnlder)

etOpenProject)

"é _)‘
addFileQrFolderifolder)

|

|
|
|
|
| T
| |
| |
| |
| |
| |
| |
| |

|
|
|
| _openProject
|
|
|
|

Figure 4: Add a folder to the data that is used for reconstruction

15

5.3 V-3 Set output folder for KDM-file 5 DYNAMIC DIAGRAMS

5.3 V-3 Set output folder for KDM-file

| :ChangeOutputF‘anel‘ ‘ :CDntl'DIIerFacade| ‘ :FilesystemH :MUdeIFacade‘

cé}angeOutputFoIder(fnldername

setOutputFUIder(fDJdername)

etOpenProject()

= "setOutputPath(fnldei'name)

i J

|
|
|
|
|
| _npenF’rnject |
|
|
|
I

Figure 5: Change output folder

16

5.4 V-4 Perform architecture reconstruction

5 DYNAMIC DIAGRAMS

5.4 V-4 Perform architecture reconstruction

| :ManageDataPane\| ‘ :ContrmlelFacade| | :SARManagel” :CacheOOFFacade|

statReconstruction()

statReconstructipn)

startg) |

finishegParser)

: SourceMavigator

tartHandler(and writeintoDatabaseq)

J(5| cJavaAsT

arseAST() and writeintoDatabase(
finished)

><_ _—}————

: AbstractionManager
. PackageAbstractor

createPackageDiagram()

finished()

finishedAbstraction()

|
|

Figure 6: Perform architecture reconstruction

17

5.5 V-5 Filter log messages 5 DYNAMIC DIAGRAMS

5.5 V-5 Filter log messages

cLogPanel

filterMessages()

f

Figure 7: Filter log messages

18

5.6 S5-1 Parse artifacts 5 DYNAMIC DIAGRAMS

5.6 S-1 Parse artifacts

‘ :SuurceNavigatnr|

|executeCnmmand{snauigatur.exe)
I:g ‘“"Jl : ExternalCommandExecuter

‘“"Jl :InputStreamGnhbler|

||:|'eate listener forinput and error stl'elam

M

|
|
|
J<

|

|

|

. |
finished() D
X

Figure 8: Start external parser

19

5.7 S-2 Get results from external parser 5 DYNAMIC DIAGRAMS

5.7 S-2 Get results from external parser

| :SourceNavigatnr| ‘ :SNMainTableManager|

I-l‘ﬁ initQ | executeCommand(hyper.exe)
|
|
|
|
|
|
|
|
|
|
I
1

\T “Jl cBExternalCommandExecuter

reate listener for input and error stream

. InputStreamGother|

|
|
|
| fetch |'94ults from input
|
|
|

results

| ;

Figure 9: Get results from external parser

20

REFERENCES REFERENCES

References

[1] Eclipse Foundation. Eclipse. http://www.eclipse.org/, 2010-02-15.

[2] Eclipse Foundation. Java AST. http://help.eclipse.org/help32/nftopic/
org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/
package-summary.html, 2010-02-15.

[3] Florian Fittkau. KADis. http://sourceforge.net/projects/kadis/, 2010-
02-15.

[4] Gamma, Erich and Helm, Richard and Johnson, Ralph and Vlissides, John. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman, 1995.

[5] NetBeans community. NetBeans. http://www.netbeans.org, 2010-02-15.

[6] Object Management Group. Knowledge Discovery Meta-Model. http://www.
omg.org/spec/KDM/1.1/, 2010-02-15.

[7] Oracle. Java. http://www.java.com/, 2010-02-15.

[8] sourcenav NG development group. Source Navigator NG. http://sourcenav.
berlios.de/, 2010-02-15.

21

A ACRONYMS

Appendices

A Acronyms

DSL

Domain-specific Language

KADis
KDM Architecture Discoverer

KDM
Knowledge Discovery Meta-Model

SAR

Software Architecture Reconstruction

UML
Unified Modelling Language

B CLASS DIAGRAMS

B Class Diagrams

For the specific meaning of attributes and methods refer to the JavaDoc in the source
code of KADis [3].

B.1 View class diagram

ElEclipseRCPGUIFacade

Attributes .- Singleton Pattern
public String incomingXMLString J_.f”
public String incomingXMLFilenameString -

Operations
private EclipseRCPGUIFacade() -~ Facade Pattern
public EclipseRCPGUIFacade getinstance() ,x’r‘

Operations Redefined From IGUIFacade
public vaoid createGUI[)

public vaid openxMLView(String xml, String xmiFilename)

Y
<<interface==
to IGUIFacade

Attributes

COperations
public void createGUI{)
public void openXMLView(String xmil, String xmiFilename)

Figure 10: View class diagram

11

B CLASS DIAGRAMS

View class diagram

B.1

B.1.1 EclipseRCP class diagram

(quaaJad yur JBuwosuissaiBoidmau ploa angnd
1BMIBSa 50id] Lo 9]

(smess Bus JBuiwoauisnieismau pioa aygnd
JBAIBSGOSNIBIS] WO paulapay suonelado

(&1A1s 1 waled aysodwog pegsniels agnd

(Buiddogs ueajooqg Jpapu3uoRangsUoIagMau pioa gnd
PEPUIUORIMISUOIBY] WDl PAUSPaY SUCHLIND

suonpsadg

wangioqualed aysodwon ajeaud
leq segssalfioig aeaud

(pasowal ueajoog 'eyep Gulls JGUWoIUEIEQMEU PIOA 2NQNd
JaAlssqopabueyJseHENE]) WOl Pauyspsy suoleisdo

|aqeTsniels |age ajeaud
SanqUALY

(alfys Wi ‘wated aysodwon Jauegelegabeuely angnd
suonzisdo

legsmels =

wangio Juaied aysodwog ajeaud
UOJINGUOIINISUDIBYLELS Uojng ajeaud
1srielep 1si ajeaud

SHnqLEY

(aBessapbo| abessapbo J6uiwoouabessawbomau ploa aygnd
13MasqQaBessamiBo]] Woid paulspay SUCREISTD

(aBessaBo] aBessapBo)a|qe oabessawboquasul ploa ajeaud

|auedejegabeuen =

()Bopes|a pioa angnd
()safiessapayy pioa ajeaud

{ a1f1s w1 waied aysodwo))jauegbo agnd

(iedmau Buns Jpabueyouiedindinomau pioa angnd
Jsrssgoundingebuey D WoiH paulspaY SuoneIsdn

suopp1adg

ajqe) fo| aj0e) aleaud

(&1f1s i waied sysodwoy)jsuedindingabueyy ongnd
suonEizd0

uangioqualed aysodwon ajeaud
as|e} = |ewiopayy ueajoog abexaed

wangio Juaied aysodwoy ajeaud
uopngindine uopng ajeaud
wa]ndino yxa) ajeaud
|ageinding [aqe ajeaud

as|ep = Bulnieppsayy ueajoog afieyoed
as|E} = J0. y ueajoog shieyoed
an|q Jojoy apeaud

pat 1ojoy sjeaud

SenqIy
LT |1suedBoiH

_m:mn_u_._&:owm:w:o_w_
|lauedBo|

(inoke| nodeaBe) JinoAeqemuiaieas ploa agnd
suoiesads

sepnquy

sApedsiad =

suogesado

10v>1, = a1 NIDMTd Pums a1
samqupy

10JeARIY [

(1egnusw ssBeuepnuajy| Jiegnuajyy pioa pejasjoid

(MOpUIM MOPUIAAYIUSGHIOAN JSUDIDa)EW ploa pajasjold

(1zunByuos JsinByuogieguonoy Losmpyieguoayuoljealddy agnd
stopedo

sanqupy

Lom_>v<._wm:o_uu<_._o_umu__aaa._M_

(aweundiaaloud Guls ‘uiedinalodd Buns ‘aweuidaload Bung Jpabueyolaaloidmau ploa aqnd

ianiasqopabueyDsE HIIal0Id Woid pauapay Suolesdo

ByUDDMOPUIARYDUSIHIOAAN)I0SIADYMOPUIAALIUSTHIOANSIESID I0SIAPYMOPLIAALIUSTHIOAN 3

suogesedo

wianed uojs|bulg

(uana Juang Juaaga|puey proa angnd

(JBopeaa proa Jgnd
(Noup3imxe?
[)snaojes

(uaied aysodwos Jjouuoaueajeaa

ENEasIa SIOYA, = O IAL0IdS 5ad PUNS S1EAT
sanqLpy

Lom_>vd._._u_._we_‘_o>>_._o_uwu__o_a<_W_

(puewwiwoa Bumg Jauajsipuewwon) agnd suoneIadg
suoREIa00
puelwwoa Guuys sjeaud
SangLEY samquay
JausysrpuewwodAn = MBIAURIN

(Jusdomopuippaad proa angnd

(12inByuoa seinByuoniequonay| JIosIpyIEQUONIYaIEEID I0SIpYIeguolaY J1gnd

(JaunByuoa JeinByuoJMOPUIAYIUBDHOAN MOSIPEMOpUIAYIUEDpopsUaeanddy angnd
suoessdn
sanquay

J10SIAPYMOPUIMUdUBdNIoMuonesddy [

lagram

EclipseRCP class di

Figure 11

111

B CLASS DIAGRAMS

View class diagram

B.1

B.1.1.1 MenuHandler class diagram

(Jpajpueys! uesjoog angnd

()pajgeuqs) uesjoog angnd

{ wans waaguonnaaxg Janoaxs jalgo 2

(Jasodsip pioa o

(18ualsIIa|pUBY JaUSISIIA|pUBH| JIaUSISITIa|pUBHPPE PIOA 31
swonesado

sanqLpy

(JaualsI=|puey Jsugiss|pUEH] JBURISI8|pUBHEAOWEL ploa angnd

{ Jps|puens! uesjoog angnd

{)psjgeugst uesjoog angnd

(Juana uaagquonnaaxy Jeindaxa a8lgn ajgnd

(Jesodsip proa aygnd

(13ualsug|puey Jaualsiia|puEH| JiaualsiiapueHppe pioa agnd
suogelady

ds|pueHIX3 =

saguuy

13|pueHyaafoidaialaa

(JsualsIya|pUey JaUs)SII8|PUBH| JI8UBISIIE|PUBHEADLUAL PIOA 3

(Jpajpueys| uesjoog 2

(Jpe|geugs| uesjooq 2

(Juaa Wwarguonnaaxy Jamaaxa jaalgo o

(Jasodsip proa 2

a|pUBL JEURISIIS|PUEH])IaUaISIU|pUEHPRE PIOA 2
suonEIad

(12ua

SANGLIRY

d3|pueHJ0UPIARIH E

(Jaualsrya|puey 18U)SIi8|pUBH| J18Ua}SITIE|pPUBHSADLUAL PIOA 3
()pajpueys! uesjoog o

(Jpajgeugs) uesjoog 2

(uans waaguonnaaxg Jenoexs j28[go 2

(Jasodsip pioa o

(Jaus}sIa|puBY JaUalSIIS|pUBH| LaUsISIIa|pUEHPPE PIOA 3
suonesadn

SAMQLRY

d3|pUeHIOUPTINX =

(JuiegmanzB Bung angnd
(Jewepoalougmapial Bumns aignd
(waied aysodwoy Jjosuogaiesls proa aijgqnd
(Jabedpiezippiaalolgaman angqnd
suoyesado

18UIBIUDD aysodwos aleand
yledmau 1xaj aead
awepsfoigmau 1xe) aleaud
saprqupy
sBedprezipasloldmen =

auo

(Jyswiquiopad uesjoog angnd
()sabedppe pioa angnd

({ Jpaezipppaafoogmar) aignd
SuoBRIRdD

SYNGLRY
piezipyoaloddman m

(18ualsuE|pUBY JAURISITIA|PUEH| LaUalSITIa[pUEHEADWEL ploA Sijgnd

(Jpapuens) uesjoog aygnd

(Jp=jqeugs! uesjooq aygnd

(Juana waaguonnaaxy Janaaxa oalgo angnd

(Jasodsip proa ayjgnd

(Jaualsra|puey JausisiIa|pueH| JIausisiug|puBHpPE ploa ajjgnd
sUoReIada

SANGLEY

J9|pueHsyioaloidanes =]

(1aua}sa|puey Jaualsiia|puey| Jauaisipia|pueHaaclual ploa aiqnd

(Jpapueys! uesjoog agnd

(Jpageugs) ueajoog aygnd

(ana eajuonnasxg Jensexa jaalgg aygnd

(Jesodsip pioa aignd

[Jaua)sIalpuey Jaua)sis|puen| J1aus)sis|puUEHppE ploa aijgnd
suoneIdo

SYNGLUEY

JepueH3saloldpeo =]

3U8|SI3[pUEH3A0WEI pioa 2jgnd
(Jpajpueys| uesjoog angnd

(Jpajgeugs) uesjoog angnd

(wans waaguonnaax] Janaaxs 2aafgo agnd

(Jasodsip pion 2ygnd

(JaumisIia|puey Jaualsra|pueH| JJauaisiiapueHppe ploa 2gqnd

(JaualsIP=|pUEY J3Ua)SII3|pUEH)

3[PUEH| JBURISIIB|pUBHaA0WR) ploa Jjgnd
()pa|puens! uesjoog a1gnd

()pajqeugs uesjoog argnd

(uana wanjuonnaaxy Jamnaaxa 12alg 2gnd

(Jesodsip pioa 2ygnd

(13ualsIPa|pUeY Jaualsria|pueH| Jiaualsiig|pueHppe ploa angnd

(18ualsg|puBY J8Us)SITIB|PUEH| LBURISITI3[pUEHaA0WE ploa dljgnd
(Jpajpueds! ueajoog ygnd

(Jpageugs) uesjooq ongnd

(wana uaajuonnaaxd Janaaxa jaalgo aignd

(Jesodsip proa 2ygnd

(Jaualsrya|puey Jauaisiia|puen| Jauslsiug|pueHppe ploa ajjgnd

swoneado suoReladg suoResado
sanqLEY sagUYy SangLUEY
I3|pueHinoqy = 1a|pueH3aafoidmaN = Ia|pueH3oaloidanes

iagram

MenuHandler class d

12

Figure

1v

B.1

View class diagram

B CLASS DIAGRAMS

B.1.1.2 Preferences class diagram

El Preferencelnitializer

Attributes

Operations
public void initializeDefaultPreferences()

El PreferenceConstants

Attributes

public String P_CHOICE = "languagePreferance”

Operations

£ kadisPreferencePage

Attributes

Operations
public kadisPreferencePage()
public void createFieldEditors()
public void init{ Warkbench workhench)
public boolean performTlk()

Figure 13: Preferences class diagram

B CLASS DIAGRAMS

View class diagram

B.1

B.1.1.3 XMLEditor class diagram

(Jwawonaxieb Bumg 2ngnd

(Japooysey i aygnd

([go yoalgo)sjenbe uesjooq aygnd

(saydepe ssejn haydepyiab jaalno angnd

(Jwapdipoogieb Gumg ongnd

(Jejqeisisiagisb jusws|3s|qeisisisd| aignd

(Jopdusssgebew)iab tojdussagsbew oygnd
()sisixa ueajoog agnd

(aeua)y Buuls ‘jwx Buuls JindupoppI A 2ngnd
suonesadn

(pamo|jyjoa uesjooq ‘[, ‘gleausnbas Jeys *

suonpizdo

IaULEDS IsuUEISIal0EIEY]| Jpajoalagaduanbas uesjoog psjoajoid

sweualy buulg seaud
wauowx buyg ajeand
samqray

(uayoy uayo]|)ainygBe] angnd

sanquEy

indupenpIINXAN

sinybeL =

(Jsuueaguonuedax 2gnd
suoneIado

JDEP WX =9V TAX Pulis Jnqnd

samqry

JauueasuoniedINX =

(wawala 12algn Juawniogaesala Juawnaoq| payaiod
suonessdn

suonesado

sanqry

I8pIACIdIUBWINIOTTNX 5

(6T 07 0g9Y MaU = 9v1 694
(070 0dg9d MaU = TINvd30 995

(2 1eya Jeoedsayyppsi uesjoog aignd
suoneIadg

{ane anguityixa) 'yiBua) jur '1asyo Ui uoiejuasald uolejuasaldixa] JaBuedppe ploa pajaaiod
(uoibas uoiBaypadf]| 'uoneusseaid uoiejussaIg)xa] JunlEjUSSEI{8IESIT pIOA
(paBueynBuiuoiHEIUELLINIoR UES|0OL ‘U3A3 JaATUaWN20Q ‘uoiyped uniBagpadf)) JuoiBayabeweqiaf uoifay)

(12540 U1 JoaurpopUa U1 pajaaoad
(uswnoop uswWNI0g| JUsWNI0gles ploa aljgnd

sauqLy

J0329320a2edsauumINX 5

(078C1 "0'g0y MeU = ONIHLS 893 Poxa L)ne@Ep anquityixe | Naiedagiabewegpaseganyguop aond
(821 "8C1 "8Cg9Y Mau = HISNI 0084 894 suopesedg
1070 78Z1/9d MaU = [NIJNNCD ™ TAX 899
SENGLIY aqnquUIYIXE LINeJaq JINguyIxe] pajaajod
SUEIU0DI0/05 TN O] . JUBWND0Q) WaWNa0Q)| pajasiond

<<a2BHAUE>

JsaiedeyisBewegpasegainyuoN =

(61 goy Jojoieb Jojog angnd
(Jasodsip proa 21gnd
suopessdo

(01)depysey meu = ajqe10jo7) depy pajaajoid

samqry

(sogdois jui ‘soguels i JaBueyiosjas pion sjeaud
(s0d181eD U1 JpiopAlaa(as ueajoog pajasiold
(JaBeuew saBeuepiony JauueasBe | A agnd (504321 D I JUaWLWONIE(ES UEE|00r palaalold (J1zBeuew JaBeueppoog Jauueag X Jqnd
suoReizd0 { ued jamaipgxal | Jpeyangegnop pioa aygnd suoeszdD
SNqUEY suoneiado sanqIEy
._m::ﬂummﬂ._.n_S_x_W_ 1x8]) Jamalplxe]| palaaioid dsuueasINX =
sagnqupy
Iueasbep IBUUBIS
ABajensyoudsianogINX =

Dajensyaloaanop

(1amalAB2INDS JaMalAz2IN0S)| Jalaundayuoneluasalqiel Ja)auodayuoneuasald) Jqnd
(JisuueagBe]wxieb Jsuueagbe |y paiosjoid
(JMauueagTAIe6 Jauuedswy pajaajoud
(8dfusoa Bums ‘amalasainos semaipsunos| Jibeiensyanoagnogieb Afsjensyangagnogyxa) ayqnd
(1amaip82uN0S IamsiaBaIn0g| Jsadk | ueuoppainbyuogieb [, glBuulg aignd
(JaBeuepuoioa 1aBeueppolog JuonenByuody a1gqnd
suopesadn

mem:nE._o_oo_M_

Jafeuepiojod afeuepI0|03

samqry

sapqLEy

10JIPTTANX £

uopenBuuoTNX =

iagram

XMLEditor class d

Figure 14

B.2 Model class diagram B CLASS DIAGRAMS

B.2 Model class diagram

EIModelFacade ElLogMessage
Attributes Attributes
private double applicationersion= 1.0 private String message ="
Operations Operations
private ModelFacade() public LogMessage(String message, ELogMessageType type)
public ModelFacade getinstancef) public String getMessage()
private lLogMessageCOhserver getlogMessageChsemver() public void setMessage(String msg)
public void setLogM geObsener(ILogh geObsenver val) public ELogMessageType getType()
private IProgressObserver getProgressObserver() public void setType(ELogMessageType type)
public void setProgressObserver(IProgressObsarver val)
private |StatusObsenver getStatusObserver() type 1
public void setStatusObserver(IStatusObsearver val)
public void setChangaOutputObserver(IChangeOutputObserver changeOutputChbserver) - =IELogMessageType
public IChangeCutputObserver getChangeCOutputObserver() s Literals
public void setDataHasChangedObserver(IDataHasChangedObserver dataHasChangedObsemver) Singleton NORMAL
public IDataHasChangedObsenver getDataHasChangedObserver() WARNMING
public void setProjectHasChangedObserver(IProjectHasChangedObserver projectHasChangedOhserver) ERROR

public IProjectHasChangedOhbsemver getProjectHasChangedObserver()
public void setReconstructionEndedOhsenver(IReconstructionEnded reconstructionEndedObserver)

public IReconstructionEnded getReconstructionEndedObsenver() ElProject
public SavedSettings getSavedSettings() Attribites
public void setSavedSettings(SavedSettings val) private String name
public Project getOpenProject() private String fullPathincIName
public void setOpenProject(Projact targetProject) private String outputPath
public EGUILanguage getLanguage() private String filesAndFolders[0.."]
public void setlLanguage{ EGUILanguage lang) package boolean anlylntermal = false
public void setCOutputFolder(String folder) private String lastCreatedKDMFile
public void newStatus(String status) private boolean hasChanged = false
public void newProgress(int percent) private long serialVersionUID = 1L
public void newLogNormal(String message) Operations
public void newLogWarming(String message) public Project{ String name, String path)
public void newLogError(String message) openProject | public String getName()
public double getApplicationVersion() public void setMName(String val)
public void newProject(String projectMame, String path) public String getFullPathinciName()
public void createDefaultProject() public void setFullPathinciName(String pathAndName)
public void addFileOrFolder(String name) public String getCutputPath()
public void removeFileCrFolder(String displaysdMame) public void setOutputPath(String path)
public String getTempPath() public String[0..*] getFilesAndFalders()
public void setFilesAndFolders(String list[0..*])
SaVEﬂSEﬁinﬂS/ public String getLastCreatedKDMFile{)
I savedSettings public void setLastCreatedKDMFile String val)
- public void setHasChanged(boolean changed)
Attributes
private String openProjectFulliilename public void addFileOrFolder(String name)
private String tempDir = Filesystem. getinstance(). getRuntimeF older() + File. separator + "temp" (i e et Al Peog g iy eeliis)

private long serialVersionUlD = 1L

= EGUILanguage

Cperations

|
public SavedSettings() Ok—j_ﬂﬂ?; Literals
public String getOpenProjectFullfilename) GERMAN
public void setCpenProjectFullfilename(String openProjectFullfilename) ENGLISH

public EGUILanguage getlLanguage()

public void setlLanguage{ EGUILanguage lang)
public void setTempDir(String tempDir)

public String getTempDir()

Figure 15: Model class diagram

Vil

B CLASS DIAGRAMS

B.2 Model class diagram

B.2.1 ObserverInterfaces class diagram

(aweujnyiosfod Bulys ‘Yiediosliod Bulys ‘sweussioud Buys pabueyniosloigmsau pioa aiygnd
stonelado

SMGLRY

JanlasqgopabBueyoseHgaaloidl o
<<2IBUUIE>

{ smjejs Buuys JBuniosusnieismau pioa aijgnd
suoResado

SapgLay

laAlasgqosmels| _.)._
<<z2elzlulz>

[abesssybo) sbessayybo] Jbunvoousbessayybogmeu pioa aygnd

[Burddojs uesjoog JpepuJuoysnijsucosymau ploa sygnd

<<zJel=lul>>

suoneIado suoneiado
SEMGLRY sanqLpy
Janlasqgoabessapboy .)._ RapuIUoIINIISUCIYY .)._

<<zJElzUI>>

(Juasuad jui JBunuosuissaiboigmau proa ignd (paaowal uesjoog ‘ejep Buwys JBunuosufeegmau pioa sygnd { yjedwau Buujs Jpabueyqyiedindinomsu proa aygnd
suoReladn suoneIadD suoResadn
samgLEY samguLyy sanguyy
landasqossaiboid) o JanlasqopabueydseHeieq) o laalasqoindinpabuey oy o
<<3IBa>> <<3Ielalll>> <<32eaUl>>

Figure 16: ObserverInterfaces class diagram

viil

B.2 Model class diagram

B.2.2 Repository class diagram

EIKDMClasses

Aftributes

Operations

public KDMClasses(String segmentMame)

Operations Redefined From IRepository
public InventoryModel getinventaryModel{)
public CodeMadel getCodeMadel|)
public StructureModel getStructureModel()
public ObjectFactary getCodeModelFactary()
publlic OhjectFactory getinventoryModelFactory()
public ObjectFactary getStructureModelFactory()
public ObjectFactary getkDMModelFactory()
putllic Segment getSegment()
public String convertTaxMLStringl)

¥
<<jnterfaces:
e IRepository
Attributes

Operations
public InventoryModel getfnventoryModel()
public CodeModel getCodellodel{)
public StructureModel getStructureModell)
public ObjectFactory getCodelModelFactory()
public ObjectFactory getinventoryModelFactory()
public ObjectFactory getStructureModelFactory()
public ObjectFactory getkDMModelFactory()
public String convertToXMLSting()
public Segment getSegment()

Figure 17: Repository class diagram

1X

B CLASS DIAGRAMS

B.3 Controller class diagram B CLASS DIAGRAMS

B.3 Controller class diagram

= controllerFacade Singleton Pattern
#
Attributes r
private ControllerFacade instance ’

Operations i
private ControllerFacade() ;s
public ControllerFacade getinstance() N
public void startApplication() Facade Pattern
public void exitApplication]) ;
public void changeQOutputFolder(String folder) ;
public void addFalder(String folder) i
public void addFile{ String filename) 4
public void removeFileCrFolder(String displayedMame) |-
public void startReconstruction{)
public void stopReconstruction{)
public void newProject(String projectMame, String path)
public void openProject(String filename)
public void saveProject(String filename)
public void deleteProject{ String filename)

Figure 18: Controller class diagram

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.1 Abstraction class diagram

ElAbstractionManager
Altributes

Operations
public AbstractionManager(IRepository repo, Project project)
,| public vaid statAbstractors()
| private void processWaitingQueue()
- public void run()

4 Operations Redefined From IAbstractordanagerObs
public void abstractioninstanceFinished()

Al " 0.*
- waitingAbstractors
<<interface>=

[© IAbstractorManagerObs <<interface>>
Attributes to 1Abstraction
Operations G iaes

S public void abstraction/nstanceFinished() Cperations
hs) public void startAbstraction()
. finishedObs
N
- 7
~ L
~ T
~ ,
ElPackageAbstractor
Attributes

Cperations
public PackageAbstractor(IRepositary repo, |1AbstractorManagerObs finishedChs)
private void abstractStructureModel()
private void addTolmportList(String importMame, String importList[0..*])
private String getMameFromld(String id)
private String seekOnlyClassesMame(String id, AbstractCodeElement elements[0..*], String packageMame)
private boolean containedinList{ String itemMName, String importList[0..*])

Cperations Redefined From IAbstraction
public void startAbstraction()

Figure 19: Abstraction class diagram

x1

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.2 Cache class diagram

Elcache0OPFacade
Attributes

private PreparedStatement prepFile

private PreparedStatement prepPack

private PreparedStatement prepClass

private PreparedStatement preplmport

private PreparedStatement prepinheritance

private PreparedStatement prepMathod

private PreparedStatement prepWariable

private PreparedStatement prepLanguageUpdate
private PreparedStatement prepPackagelnClassUpdate
private PreparedStatement prepClassCommentAnnoUpdate -
private PreparedStatement prepMethodCommentAnnoUpdate
private PreparedStatement prepWariableUpdate

private PreparedStatement prepWariableFuncAndTypeUpdate
private PreparedStatement prepFileSeekinGetClass

private PreparedStatement prepGetClass

private PreparedStatement prepGetMethodByName

private PreparedStatement prepGetVariableByClass

private PreparedStatement prepGetVariableByMethod

private PreparedStatement prepFileSeek

private PreparedStatement prepPackageSeck

private PreparedStatement prepGetimportByClass

private PreparedStatement prepGetLocalVariableByClass
private PreparedStatement prepGetiethodByClassld

private PreparedStatement prepGetFileByld

private PreparedStatement prepGetClassByld

private PreparedStatement prepGetinheritanceByClassld
private PreparedStatement prepGetPackageByld

private PreparedStatement prepGetClassByName

private PreparedStatement prepDeleteVariahle

singleton

Operations
private CacheCOOPFacade()

public CacheQOPFacade getinstance()

public void start{)

public void close()

public void reset()

public void delsteOnlyData()

public void delste()

public void create()

public void commit()

public void prepareFilelnsert()

public void preparePackagelnsert()

public void prepareClassinsert()

public void preparelmportinsert()

public void preparelnheritancelnsert()

public void prepareMethodinsert()

public void prepareVariablelnsert()

public void prepareLanguageUpdate()

public void preparePackageinClassUpdate()
public void prepareClassCommentAnnoUpdate()
public void prepareMethodCommentAnnoUpdate()
public void prepareVariableUpdate()

public void prepareVariableFuncAndTypeUpdate()
public void prepareGetPackageByName()
public void prepareGetClass{)

public void prepareGetMethodByMName()

public void prepareGetimportByClass()

public void prepareGetVariableByClass()

public void prepareGetLocalVariableByClass()
public void prepareGetVariableByMethod(}
public void prepareGetMethodByClassld()
public void prepareGetFileByld()

public void prepareGetClassByld()

public void prepareGetinheritanceByClassld()
public void prepareGetPackageByld()

public void prepareGetClassByMName()

public void prepareDeleteVariable()

public void prepareGetFileByName()

Figure 20: Cache class diagram part 1

xii

B.3 Controller class diagram B CLASS DIAGRAMS

public void endFilelnsert()

public void endPackinsert()

public void endClassinsert{)

public void endimportinsert{)

public void endinheritancelnsert()

public void endMethodinsert{)

public void endVariablelnsert{)

public void endLanguageUpdate()

public void endPackagelnClassUpdate()

public void endClassCommentAnnoUpdate()

public void endMethodCommentAnnolpdate()

public void endVariableUpdate()

public void endGetPackageByMName()

public void endVariableFuncAndTypeUpdate()

public void endGetClass()

public void endGetMethodByName()

public void endGetVariableByClass()

public void endGetLocalVariableByClass()

public void endGetVariableByMethod()

public void endGetlmportByClass()

public void endGetMethodByClassld()

public void endGetFileByld()

public void endGetClassByld()

public void endGetinheritanceByClassld()

public void endGetPackageByld()

public void endGetClassByName()

public void endGetFileByMame()

public void endDeleteVariable()

public void insertintoFileTable(String filename)

public void insertintoPackageTable(String name, boolean namespace, boolean packs
public void insertintoClassTable(String filename, String packageMName, String name,
public void insertIntolmportTable(String filename, String includedMame, String attribut
public void insertintolnheritanceTable(String filename, String classMame, String base
public void insertintoMethodTable(String filename, String fatherClassName, String na
public void insertintoVariableTable(String filename, String fatherMethodMame, String
public void updateLanaguagelnClassTable(String filename, String language)

public void updatePackagelnClassTable(int id, String fully QualifiedMName)

public void updateClassCommentAnna(int id, String comment, String annotation)
public void updateMethodCommentAnno(int id, String comment, String annotation)
public void updateVariableTypeCommentAnno(int id, String type, String comment, St
public void updateVariableFuncAndType(int id, String funcname, String type, String fi
public FileModel[0..*] getFileModel{ String filename)

public FileMaodel[0..*] getFileMaodelByld(int id)

private PackageModel[0..*] getPackageModelByMame(String packageMame)

public PackageModel[0..*] getPackageModelByld(int id)

public ClassModel[0..*] getClassModelByld(int id)

public ClassMadel[D..*] getClassModelByMName(String name)

public ClassModel[0..*] getClassModel{ String filename)

public ImportModel[0..*] getimportModelByClassID(int classld)

public InheritanceMadel[0..*] getinheritanceModelByld(int id)

public InheritanceMadel[0..*] getinheritanceModelByClassld(int classld)

public MethodMaodel[0..*] getMethodModelByClassID(int classld)

public MethodModel[0..*] getMethodModelByMName(String name)

public VariableModel[0..*] getVariableModelByClassID(int classld)

public VariableModel[0..*] getlLocalVariableModelByClassID{ int classld)

public VariableModel[0..*] getVariableModelByMethod|D(int methodld)

public FileModel[0..*] getAllFileModels()

public ClassModel[0..*] getAllClassModels()

private PackageModel[0..*] createPackageModel(ResultSat res)

private FileMaodel[0..*] createFileModel{ ResultSet res)

Figure 21: Cache class diagram part 2

xlil

B CLASS DIAGRAMS

B.3 Controller class diagram

B.3.2.1 CacheModel class diagram

(Juonelwuuyizb Bung 2

(uoneouue Bulg JuoleloULyas pIoa 3|

(JUEISUODWNUE UES|00(JJUBISUDDLLINUTIES PIOA I
(Jwesuogwnuzgyeb uesjooq o

(|e9o] uesjooq)jesoTies pioa o

(Jesomysb uesjoog o

(uoneziemupaddius Bumys Juoneziepuzddiugias ploa 2
(Juonezienyupaddiugiaf Buulg ol

(alEeNUIISOd UDINSDY JBWEBNUDINSO IS PIoA D
(Jawepuosodiab uoisod al

(wewwoa Bumg Juswiwo)ias ploa

(Juswwogisb Buug ol

(awepuomsod uosod JaWeNUONISD1ES PIOA)

(Jawepuoiysodisb uomsod i

(joogsjuswa|dw uesjooq)joogsiusius|diuyiss pioa al
(Joogsjuswsa|dwysb uesjoog 9

cnd
qnd
qnd
gnd

(["olsemngupe singupy3 Jsainguingias ploa o (|oogspusixa uesjooq)joogspuaix3ies pioa 2ignd K (TR L] DEEAIEES D e
()senqupgieb [, oleinquiy3 2 ()ioogspuaixgieb uesjoog angnd (ooaugs) uesjocq ayand
(adfy Bung Jadi]jas pioa 2l (awepsse|naseq Bug Jaluensse|nasegias ploa aygnd {aweuayy Buing Jaweus)idias pior 3yand
()adf3a6 Bug o (Jawepssepasegeb Buug agnd JECIE(LFED ChpRS S
(aweu Buing)awepas pioa | (plsse|Daseq ju))p|sse|asegias pioa ayqnd (pr :.__mmmn_u.; g g:“
{ Jawieniab Buis o (Jpissejoasegied jui aygnd (K1030811p uesjoog ‘sweus|y Bums ‘pi E,ﬁu_umnn__umim__f“ M “”m
(PISSE[DIBYIE) JUI)PISSE[QIAYIELIES PIoA 3 (pisseja jur Jpjsse|ies pioa aygnd swonesado
(Ipisse|Qieye 8B qui o (Ipisseinieb yur angnd [Juonesouuie Bums angnd
(pIPOy1aAISYIE) 11)PIPOUISINIBYIE SIS PIOA 3 {pryu dpnes proa oygnd AT A IS [S fiojoanp ueajooq sjemd
(Jpipouieppiayie et i 2 (Jpned i anand (uouyagiaddius Buuls Juougegiaddiugias ploa aggnd EIEIE N Sy
(prun Jppas pioa 2 3 'PISSE|QASED U1 'PISSEID U1 Pl Il)j2poiyadueayu) 2ngnd [Juomuyagieddugyaf Bumg aygnd p1 jur ayenud
(JppaB o suonesady SAMGLRY
s s s (adoaguomsod uoipsod Jadoaguoimsodias pioa aijgnd
15 PISSEIDIELIEL 1LY _u_mn;_mE_mEE‘E, P UL)|3ROaIGEUEA, |oogsiuawa|dwi uesjooq ajeand (Jadooguoiysogisf uomsog aygnd 1apowsiiE
) |oogspuaixa Ueanog ajeaud (swepuosod uoysod JaWENUOINS0ias pioa aijgnd
uelsuRgLINUE ueajoog ajeald alepsse|paser Buug ajeand (Jawepnuosoqieb uoiysod aygnd
|e20] ueajood ajead p|sse|Dasedq ul ajeaud (uswwoa Bums Jawwonias proa agnd (Juonejouuyyaf Bums angnd
uoezijenuaddius Bumng ajead [d d (Jwawwonzb Bums angnd (adoaguosod uosod Jadoaguomsodies ploa 2jgnd
uoljejouue Bug ajead ud ([olsainquie aingquiy Jsanquipgias ploa angnd (Jadoaguonisodizf uosod aygnd
wewwoa bumg sienud senquEy ()sanquigiab [,glamguirgg angnd (awepuasod UaSog JaLBNUONSOJIaS plok
adfy Bumg ejenud I12poWeouBIIBYUI (Lol nplsWEEd BuLlS)SSLUENISISWEIEIES oA ygnd (Jswepnuoisodisb uoisod
aweu bumg ajenud ()sswenpsisweleqsb [, glbung aygnd (wawwoa Bumg Juswwog1as pioa
PIsse|Dsayley I ajenud ([, 0lsadf psjsweied Guuls Jsadi pajsweiedias pioa angnd (Jwawwogn)sb Bumg
pIpoLaIALaYIe) I 2lead (Juonejouuyieh Buulg 2 ()sedfssweie b [, plBuns ongnd (sjedws | ssejo Buus Jaieidwe | sseinies ploa
pijur ajeaud (uonelouue Bulls JUonEjoULYES PIoA 3 (adfpuinias Buyg adf uinieyias proa aygnd (Jejeidwayssenieb Bums
sanqLRy (awepuomsod Bulls JawWeNUoIISO1ES PIoA 2 (Jedh wnamizb Bums angnd ([0lsanquie 21Uy JSaIngquiyias ploa
[ELTUEIC LIRS (Jawepuoiysodieb Buuis 3 (uoruyaghiue uesjoog JuoiuyagAluoias ploa angnd (Jsainqupgial [oolanguiyg
(wawwo3s Bumg Jluawwng)as pioa 3 (Juomuyagfugiab ueapor angnd (afenBue| aBenBueg Jafenfueqias pioa
(swepuomsod uosod JsWENUOINSOd1Es ploa d1jgnd (Jwewwoyish Buug ai (aweu Bumg Jawepas proa angnd (JefenBueTiaf aBenfueqy
(Jewepuoiisogisb uomsod angnd (|oogabexoed uesjooq)joogsbeyaedlas pioaa (Jewepysb Bung aygnd (Bweu Buug Jswepias pioa
([, olssinquue sinquipya Jssnquiryias pioa aygnd (Jioogabesyoedish uesjooq ol (pIssejnisyiey I)pisse|nisyie4ias pioa ayggnd (Jswepysb Bums aygnd
(Jssinquiwisb [, olsinguipyg aygnd (soedssweu ueajoog Jeoedsswepn)as ploa 3 (Ipissejqusyie43e6 qun ongnd (qiebexyaed i Jqisbeysedias poa angnd
(awepsseopapniaul Bulls Jawensseigpapniaupas ploa gnd ()azedsawepjah ueajoog Il (prun)ppas proa aygnd (JgeBeyaedisb
(Jawepysseopapniaupsh Buug agnd (aleu Buulg Jawepias pioa 3 (JppaB ur 2ngnd (qrEy wrjgiEndias poa aggnd
(pIsse|OpapN|aUl W1)P|SSEIDPERNIIUIES pIoA 2lgnd (Jawepeb Bung 2l ueajooq ‘aweu Bumg ‘pisseosayie) il) japopoyiay aygnd (Jaiandieb w anognd
(Ipisseiopapnjaupad jui aygnd (pr)ppss pioaa suanBIzdo (prutJppas. piox
(pIssejgwoy jui Jpssejguwoifiss ploa ayqnd (JpneB o uoiuyagieddius Bus ajeaud (Jpeb
(Jpissejpwoiqieb jur oygnd nweu ues|oog ‘sweu Bumg ‘pi i Jjapopyebeyaed o uonelouue Bumg ateaud ‘sweu Buug ‘gebexoed i 'gs(y un 'piul japojsse|n aygnd
(piyui Jppss pioa aygnd suonesady Wswwos Bung syeaud suopesady
()pneb i oygnd awenuopsod Bumg sjeaud [, Dlseweppaiaweied bums sjeand uonejouue Gumyg ajeaud
NS ' PISSEIQPAPNI2UL juI " PISSEWOY Jul 'pLjul Ji2pojyodu 3ygnd uopejouue Bumg sjeaud [, olsadf pisisweied Bumg ajeaud wiswwoa Bug sjeaud
suoyei2do Juswwoo Bums syeaud adf junyel Buuyg sjeaud ajeidws) ssep buyg sjeaud
awepsseopapniaul Bumys ajeaud joogafeyoed ueajoog ajeaud uonuysgkjuo uesjooq ajeaud aweu Buuls ajeaud
PISSEIDRAPNIaUL I ajeaud goedsalieu ueajoog ajeaud aweu Buug aeaud qlafeyaed jur ajeaud
PISSEIDWOY I ajeaud aweu Buuyg ajeaud PISsEDIaYIEY I ajeaud alay i ajeaud
IRUIEIEL] 1w 2iead Pl ageaud Pl ageaud
samquiy samquiy samquyy sanqupy
1eponuodu) = 1spoabeyoed = 12PONPOWISIN = I9RPoNSSEID =]

iagram

CacheModel class d

Figure 22

X1v

B CLASS DIAGRAMS

B.3 Controller class diagram

B.3.2.2 CacheTypes class diagram

ElPosition
Attributes

ElTypeHelper
Aftributes

private int start_line
private int start_column
private int end_line
private int end_calumn

private int attribut_private = 1
private int attribut_protected =2
private int attribut_public = 4
private int attribut_static =8

private int attribut_abstract = 16
private int attribut_final = 32

private int attribut_native = 64

private int attribut_synchronized = 128
private int attribut_volatile = 256

private int attribut_transient = 512
private int attribut_interface = 1024

private int attribut_constructor = 16384

private int attribut_snum = 65536
private int attribut_initializer = 131072

Operations
public boolean containsAttribute(EAttribute attris[0..*], EAttribute toSee
private int _convertHexToDezHelper(char hex, int pos)
private int _convertHexStrToDez(String hexStr)
private EAttribute getAttributeFromValue(int value)
private boolean getAttributeHelperHelper(int rest, int valueToTry J

Operations

public Position(String positionString)
public Position(String positionStart, String positionEnd)

public Position(int start_line, int start_column, int end_line, int end_co
private int[0..*] parsePosition(String stringToParse)

private void convertPositionString(String str)
public String convertPositionints()
public int getStart_line()

public void setStart_line(int startLine)
public int getStart_column()

public void setStart_column{ int statColumn)
public int getEnd_line()

public void setEnd_line(int endLine)
public int getEnd_column()

public void setEnd_column(int endColumn)

public EAttribute[0..*] getAttributes(String attribute) EIELanguage EAttribute EEType
ublic ELanguage getlanguage(String languageDesc I terals I terals | terals
public EType getType(String typeDesc) JBVA PUBLIC IMPORT
p_ubl!c EA.ccess getAcces.s String acc.essDesc. cPP PRIVATE CLASS
public String getStringAttributes(EAttribute attris[0 *])
public String getStringType(EType type) c PROTECTED METHOD_DEFINITION
public String_getStringlanguage(ELanguage lang) NOT_DEFINED ABSTRACT METHOD_IMPLEMENTATION
public String getStringAccess(EAccess access) OTHERS STATIC NOT_DEFINED
PHP FINAL INSTANCE_VARIABLE
INTERFACE LOCAL_VARIABLE
NOT_DEFINED EXCEPTION
EElEAccess CONSTRUCTOR INHERITANCE
Literals DESTRUCTOR VARIABLE
NOT_DEFINED | | SYNCHRONIZED FUNCTION
READ INITIALIZER MACRO
WRITE TRANSIENT
PARAMETER VOLATILE
NATIVE
ENUM

Figure 23: CacheTypes class diagram

XV

(Jpausiuy pioa ajgnd

()iasieduels pioa ajgnd (J2siedueis pioa aiand

1881Ed| 0K PRUYENRY SUGREISH0

B CLASS DIAGRAMS

(Jpausiuy pioa agnd pensgy ‘[, olis| alws|Jliouampoensgy aweus|y fuuls Jiso | wajfiojusiuppe ploa ajeaud

J851E4| WD paulyspay Suoleisd (Juns pioa aygnd ([, -ohsmamw [2powa)id Jinyaysauoiozngppe ploa aleaud
(Juns pion aygnd ()exgieddiyyees Bumg seaud Usauaens gy nQieddnaweus)y Buuls ‘sweus) Buns Jppyolyiegfowangieb folang seaud

(5pou apONLSY IS8 JAUOnENdWISg JSoguensD Bung sead Oxguebueuspss Guis siend (‘aweua)y Bug Juonduasaganosaysi uesjoog ajenud
{ o uoleiouLy JBunISUOEILIEE Buls aend (aweuayy Buws *[, clsaly Bums Nisma4aieaia pio ajenud { awieualy Bung JuonenByuogsi ueajoog ajenud

{ 5pol sopEAEr a0 TERE e IEsAEE Bung steAd [sqopaysiuy saouaBeuepiasied))sqopaysiuinas pioa sygnd (aweus)y Bumg)eqeinax3s) uesjoog ajeaud

(Jsqopaysiuiyel sqoiabeueppasied| aygnd (aweuayy 6ung Jannaigs) ueajong ajeaud

([, olsynsal &l veis uawaIelS)s3|qelEAE20T|@8s plon ajeaud
(&pou epoNLSYy)BwenpayiaAuaiedisl Buns aead

(Jpelogieh 1oaloig s (aweuspy Bums Ja|4aunogs! ueajooq ajeaud

ea nsal Cuvadf aiepdn pion ajeaud (308loud 308f0ug oeloudies ploa zieaud (Jiepopfiowesaujzsied pios angnd
e e .msm__,_mmmz.,m, . ._smmmz, : L X “a> mwmza { sqopaysiuy sqoieBeuepiasieg) ‘1oafoid asloid Jojebinenyaainog aygnd { sqopeysiuy sqoieBeuepiasieg) ‘oda Aioysoday Jiojeai|spapiezayas| gnd
suozsado suanziadg
o Buns 1e1s “JInsa 9 pion agenud
(1 ‘ynsal puy RRLLLIE pdn pioa ajeaud BlIEpIEp|o Jdwal Bug seaud SANqUEY
(sweus)y Bums 'ela NSy fwon pion sqead (uteddwa] a6 ()aaueisupabi-speae ylapoy = Iipdwai bumg sieaud Jojeaigiaponiiojusauingd 5

iagram

(aweus|y Bulg "ynsal Junuone(dwoy] iy saqLRY
(sweus)y Bumg "efa 0 'Wnsa wur idwo Juor quinuga JoyeBiAeNa2unos [
(ep 2 'Jinsal pur 9 geBesaeduasul pion ajead
oyisp ‘B9 D WNs a1 puf] pioa ajeaud . JBPODLENSY Bumg Bung odEas Buuig seaud
(e 3 nsal puy 3 assejgsiepdn pion sjeaud . (ol | [3epagiaensdy ‘auweu Bunis pi [ohlugiees Buig sjenud
(suopaysiuy sgouabeuepasied)) Syeser sond (Lo wawa|3h. ‘aweuay Buing Jp Bumg aleaud
suonzisdn (xapujoy i *xapujwes i '[,glswawale waws|g Jpspeaiy sqpurisod pioa ajenud
o ()sapjurisod pio ajenud
([olsume angug3 Jpuniajgeingiali punyajgeiois ajeaud
Lsyerer saopausiuy ([, "olsine angupyg Jpunuodx3ieb punjuedxs sjeaud

B.3 Controller class diagram
B.3.3 Parser class diagram

SO0paYSIUY

([, -ohsmBue) uswea|Iepagiaensey Jsadk | amyideaerppe ploa ajeaud

(Jpeystuapopapoa pion oyqnd 3| wawag *feue Bung ‘[, ohismBue| wawe|3epodliensay JAedyiogyaeya Bulg aeaud
(Jpousispoptiomens pion and Jwa|3 ‘adA} Bumg ‘[, glisrbuel zmsm,m%uuam;mé?&EE_E 4iopneB Buwg ajeaud
- sqgpausiuL { Jpasnsamiepupiossed pion apqnd ([~ ghs!l wawaj3 'adk) bung JpjBuojagadkampuniab Bumg ajead
e JslpuEHUSILY { 0} Bumg 'woy Bumng)adA sepjaieiauab adA sep ajeaud
(wawwoa buug Juawwogaeisual JunuswWon ajeaud
. . samquEy (ngouue Bunis Juonelouuyaielaush uonelouuy aieaud
N sqosebeUBLIFsIEH] o (1en j2poa|g 1 sessush Buug sgenud
' <<32BLEI>> (Buing agenud
h I 0) Dajeraush Buig ajeaud
< v 1EAJEaD| ‘punpoyIEBW JunpoyIE Ippe pioa ajenud
(Jpaysiui ploa ajgnd i .

JunpoYEW punpoyE pion ajeaud
(hesieqyes pioa syqnd ()PaUSILIIZPOWAIDIUZAUL PIoA 2iand |1 |3POALEUBYU] JUAPOYIEL IUAPOYIAA JUDIIEIE3EQIOUONE uBWS|dwIppE ploa ajeAud

suonsiado 0 (Jpausiudizpon=zpoa pioA aignd ol |3&p0d Welapo) Jn2 Wawz|3 12%QPOUIRINPPE PloA 21EN.
R (Jpausiui4adueisupasied pioa Jjgnd SUE[ZEP0D WEYEPOD WUSWHTIIEIND USLH|T JUClEIE[a]S E|qELEAIEGOIOPPE Plos Hleaud
dzsied of siasiedbunem £qO/80BUBYIBSIES) U0 PBUISNEY SUOREISCD zuayu [, ghsrisiuaws|a wawajg ‘ppusuna Buug Juonelepagaaueluayulppe plos ajeaud
<<3IBUSIZ> 3popypoduw *[, ghsMsiuawiala uawaj3 *pluauna Buulg Juoelejaaguodwippe pioa ajeaud
(Juns pion aygnd (5 apom sxenud

(Jananpbuimeprssaanid pion ajea

()sizsiequess pion 2jjqnd
isoday| Jisbeueiasied ignd
suonziato

(Jispopspogssied pion ayand
leEIDISRONEPOINGS! HNand

a|pueHysIuY sqolabeuepiasied) ‘odas fonsoday)
suoges2do

(waloud yaefoag ‘odal K.

Parser class d
xvi

Figure 24

1aBeuepuasied 5 dojealdlapoNePodNaN =

B.3 Controller class diagram

B CLASS DIAGRAMS

B.3.3.1 Parser Helper class diagram

g ExternalCommandExecuter

Attributes

public ExternalCommandExecuter()
public void executeCommand(String commands[0..*], IResultObserver outputObserver, [ExternalPrograr
public void executeCommandWithEnv(String commands[0..*], String envira)

public Process executeCommandWithEnvAndProcess(String commands[0..*], String enviro)

Cperations

ElInputstreamGobbler

private InputStream is

Attributes

public void run{)

Operations

public InputStreamGobhbler(InputStream is, IResultObserver resObs, Process proc, IExternalProgramFinished Observer finishedObserver)

I'ESODS/

ﬂniShEdObSEl\l’N

<<interface>>

<<interfaces>

|-(,- IResultObserver I'U IExternalProgramFinishedObserver
Attributes Attributes
Operations Operations

public void resultsReady(String results[0.."])

public void programHasFinished()

Figure 25: Parser Helper class diagram

Xvii

B.3 Controller class diagram

B CLASS DIAGRAMS

B.3.3.2 SourceNav class diagram

ElTableModel

public String ext

Attributes
waitingQueu

Operations

public TableModel(String ext, IResultObserver obs) (0.

£l SNResultTupleParser

Attributes

public String[0..*] parseResult(String textToParse)

Operations

public String deleteOuterChars(String res)

public String getFilename(String firstkey[0..*]. int startindex)

[ElsNMainTableManager

Attributes
private String ReferredByExt = "hy"
private String ClassesExt = "cl"
private String ProjectFilesExt = "f"
private String SymbolsExt = "fi
private String InheritancesExt = "in"
private String IncludesExt = "iu"
private String InstanceVariablesExt = "i
private String LocalVariablesExt = "'
private String MethodDefinitionsExt = "md"
private String MethodimpelementationsExt = "mi"
private String RefersToExt = "to"
private String putsAllCommand = "puts [join [$db_functions seq] Wn]nin"
private String endCommand = "puts n\n"
private String dbPath
private String hyper
private String tempPath

Operations
public SNMainTableManager()
public void init{ String hyper, String tempPath, String DBPath, Project proj, IParser finishedObserver)
private void callHyper(String tableExt, IResultCbserver resObs)
private String createBTreeCommand(String ext)
private String getSNTableMame(String ext)

Operations Redefined From |ExternalProgramFinishedObsenver
public void programHasFinished()

Figure 26: SourceNav class diagram

xviii

B CLASS DIAGRAMS

B.3 Controller class diagram

B.3.3.3 SourceNav Handler class diagram

([,"nlsunsau Bulis JApeadsynsal ploa anand
1aAIBSqOYNSaY | WoiH paulapay suonelado

([0lsunsaJ Bus JApeadsynsal ploa ajand
Janlasqoynsay | Wol paulspay suonelado

‘nlsynsal Buns Jajgeay| asied pioa ajeaud
- 0ISH S J3|qelay L pt !
{ Jirmaud proa aygnd

([)sigpowolsiaediel [Loollepowolsiaey angnd
sitoieiadn

~plsynsal b ajqeayasied pioa ajead
L 0lsY ms Ja|qelsyl p! !
(Jiraund pioa aygnd

{ Nepomkgaizb [, olizponigpauaiey angnd
sionedadn

([, olsyns=u Bulns JApeagsynsas pioa angnd
13AIBSgOYNSaY | Wioi Paulspay SuoheIadg

([Dlsynsa) Buuys Je|qe sy ssied ploa sjeaud
suopead0

saqLRY

sapqupy

saqupy

18|pueHolsI1a)ed [

18|pueHAgpaliajeN 5

18|pueHsadueIBYU| =

([0lsunsas Buls JApeaysynsal ploa ajand
13AIBSQOYNSaY) Wold paulapay sucieladn

(["nlsunsau Bulas JApeaxdsynsal ploa anand
J13AIRSQOYNEaY | WOl paulapay SUcHEISaD

([nlsunsaJ Buls JApeaxdsynsal ploa anand
JaAIBSqOUNEaY | Wol paulspay suonelado

([."nlsynsau Buis JApeaysynsal ploa anand
J3AISRqOYNSaY | W0 paulapay SUoHBISdD

([, Dlsynsas Buwis Jejqe sy asied pioa sleaud
suonelado

([, Dlsynsal Bus Jajqerayasied ploa sieaud
stloieiad

([olsynsal Bums Je|qelsylasied ploa ajensd
suonesado

([Dlsynsa) Buis Je|qeaylssied ploa sjeaud
suopead0

SENgLEY

SRy

SaMgUEY

senguRy

J8|pueHsuonRiuagpowIBIN =

J3|pueHsapnPUIE

I3|pueHsa|qelleARdURISUI]

I3|puUeHsa|qelIepled0T

([0lsunsas Bus JApeaysynsal ploa aand
J1aAlasqoynsay| Woi- paulapay suoReladn

([,"nlsunsau Bulis JApeadsynsal ploa anand
1aAIBSqOYNSaY | WoiH paulapay suonelado

([nlsunsa. Bus JApeadsynsal ploa ajand
Janlasqoynsay | ol paulspay suonelado

([,"nlsynsau Buis JApeadsynsal ploa ajand
JaAlesgoynsay| WouH paulspay suoneladn

([, olsynsal Bumys Jajgeay asied pioa ajeand
suonel2do

([, '0lsynsal Bug Jajgeay asied pion ajeand
LT E]

([, olsynsai Bumg Jaiqeayasied pioa apeaud
sionesd0

([, olsynsau Buuyg Jajqeay asied pioa ajeaud
SHONBISTD

SNgLUY

SRNGLRY

SagLYY

SaqLnY

J3pueHsuoneuswdwipoaN =

12|pueHsaid3e=lold =

43|pueHs3Ii0sI0quis =

13|pueHssE|D 5

iagram

SourceNav Handler class d

Figure 27

XI1X

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.3.4 SourceNav Models class diagram

ElRefersToModel E|ReferredByModel
Abtributes Attributes
private String classSymbaol private String refClass
privats String name private String reflame
private String refClassSymbol private String callerClass
private String reflame private String callerName
private int linenumber private int linenumber
private String filename private String filename

private String parameterTypes(0.."] private String callerArgumentTypes[0..*]

private String refParameterTypes[0..*] private String refArgumentTypes{0..*]

Cperations

Cperations
public String getString() public String getString()
public String getClassSymbol() public String getRefClass()
public void setClassSymbol(String classSymbol) public void setRefClass(String refClass)
public String getMName() public String getRefMame()
public void sethame(String name) public void setRefMame(String refame)
public EType getType() public EType getRefType()
public void setType(EType type) public void setRefType(EType refType)
public String getRefClassSymbal() public String getCallerClass()
public void setRefClassSymbol(String refClassSymbol) public void setCallerClass{ String callerClass)
public String getRefName() public String getCallerMame()
public void setRefName(String refName) public void setCallerName(String callerhame)
public EType getRefType() public EType getCallerType()
public void setRefType(EType refType) public void setCallerType(EType callerType)
public EAccess getAccess() public EAccess getAccess()
public void setAccess(EAccess access) public void setAccess EAccess access)
public void setlinenumber(int linenumber) public int getLinenumber()
public int getLinenumber() public void setLinenumber(int linenumber)
public String getFilename() public String getFilename()
public void setFilename(String filename) public void setFilename(String filename)
public String[0.."] getParameterTypes() public String[0..*] getCallerArgumentTypes()
public void setParameterTypes(String parameterTypes([0.."]) public void setCallerArgumentTypes(String callerArgumentTypes[0..*])
public void setRefParameterTypes(String refParameterTypes[0..*]) public String[0..*] getRefArgumentTypes()

public String[0..*] getRefParameterTypes() public void setReffrgumentTypes(String refArgumentTypes[0.*])

public String test() public String test()

Figure 28: SourceNav Models class diagram

XX

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.4 SAR Manager class diagram

EIsARManager
Attributes

private int PARSER_START =0
private int PARSER_EMD = 390
private int PARSER_STEPS = 14
public int ABSTRACTION_START = 390
public int ABSTRACTION_END = 100
private int ABSTRACTION_STEPS =2 P
private int parser_process_current = PARSER_START “
private int abstraction_process_current = ABSTRACTION_START /.
private boaolean running = false .
private String reconstructionMame
private long startTime

Singleton

Operations
private SARManager()
public SARManager getinstance()
public void startSARProcess(IRepository repo, Project project)
public void parserFinished()
public void abstractionFinished()
private String getTakenTimeString(long time)
public void stopReconstruction()
public void newParserProcessStatus()
public void newAbstractionProcessStatus()

Figure 29: SAR Manager class diagram

xx1

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.5 Tools class diagram

EJDBCLogic EiFil =] ings
Aftributes Attributes Attributes
private String user = "KADis" rivate Logger logger = Logger getlogger(Filesystem. class. getName| private ResourceBundle languageData
private String pass = "myKADisPW" Operations Cperations
private String dbUrl = "jdbe:derby:KADIsDB;" private Filesystem() private LanguageStrings()
private Conngction conn = null public Filesystem getinstance public Lange getlnstance()
piivate Statement stmt = null public File loadFile(String filename) public String getString{ String key)
public boolean isClosed public File[0..*] loadFiles(String fullpath, String extension) 7
Operations public void saveSettings{ SavedSettings data) ’,"
public JDBCLogic() public SavedSettings loadSettings() ! =lIDGenerator
public void createConnection{) public void saveProject(Project data, String filename) /
public void closeConnection{) public Project loadProject(String filename) /' private long c’;ﬁ::?;‘!e:s 4
public void setAutocommit(boolean val) public void saveRepository(String XMLData, String path, String filename) /
public void commit() public String loadRepository(String filzname) ; Operations
public ResultSet query(String SQL) public void saveTxtFile(String data, String fullfilename) / /’ private IDGenarator()
public boolean execute(String SQL) pulilic String loadTxtFile(String fullfilename) . i nublic IDGenerator getlnstance()
public int update(String SQL) public boolean filsExists(String filename) T Singlston i public String generatelD()
public PreparedStatement prepareStmt(String sql) public void deleteFile(String fullFilename) public void reset()
public void setUser(String user) public String getRuntimeF alder() <<
public String getUser() public void mkDir{ String path) \“\
public void setPass(String pass) public String[0..*] listFilesRekursivly(String fulifilename) “\
public String getPass() private void listFilesRekursilyHelper(File path, String fileList[0..*]) “\
public void deleteDir(String fullfilename) “\
private void deleteDirHelper(File path) e
ElDerbyThread public String getOnlyPath(String fullilename) Exm
Atiributes public String getParentPath(String fullflename) Attributes
Operations public String getOnlyFilename(String fullfilename) private Marshaller m
public vaid run() public String getOnlyFileExt(String fullfilename) private Unmarshaller u
private void copyDirectory(File sourceLocation, File targetLocation) private JAXBCantext je
public void copyDir(String source, String dest) private Validator validator
public boolean isDirectory(String filename) rivate Logger logger = Logger. getlogger(XML.class. getMamel
public String seekltFileRecursiviy(String str, String dir) Operations
private XML()
public XML _getinstance
EiPreferredMapper public void loadSchema(String filename)
Attribates public boolzan validate(String xmlString)
private String raotNamespace public String generate(JAXBElement<> element)
public Object extract({ String xmiString)
Operations

public XMLGregorianCalendar today()

public PreferredMapper(String rootMamespace)
public String getPreferredPrefix(String namespaceUri, String suggestion, boolean requirePrefix)
public String[0.*] getPreDeclaredNamespacelris()

Figure 30: Tools class diagram

xXxii

F ATTACHMENTS F ATTACHMENTS

F Attachments

- One DVD labeled Bachelorthesis attachment - Florian Fittkau containing the source
code for KADis, created documents in pdf-format, used external test applications,

and generated KDM outputs for the used test applications

Ixxx

	1 Introduction
	2 Approaches to Software Architecture Reconstruction
	2.1 Common Phases in Software Architecture Reconstruction Processes
	2.2 Phase Data Extraction
	2.2.1 Static Analysis
	2.2.2 Dynamic Analysis

	2.3 Phase Repository Storing
	2.3.1 KDM
	2.3.2 GXL
	2.3.3 RSF
	2.3.4 FAMIX

	2.4 Phase Abstraction
	2.4.1 Decomposition
	2.4.2 Class Hierarchies
	2.4.3 Class Diagrams
	2.4.4 Interfaces
	2.4.5 Design Patterns
	2.4.6 Conformance
	2.4.7 Feature Location
	2.4.8 Use Case
	2.4.9 Configuration
	2.4.10 Object Traces
	2.4.11 Component Interaction
	2.4.12 Process Interaction
	2.4.13 Object Interaction
	2.4.14 Conceptual
	2.4.15 Responsibility
	2.4.16 Build Process
	2.4.17 Files
	2.4.18 View Integration/Combination

	2.5 Further Approaches
	2.5.1 Symphony
	2.5.2 Focus
	2.5.3 Quality Attribute Driven SAR

	3 Knowledge Discovery Meta-Model
	3.1 Structure of KDM
	3.2 Example for a KDM-conform File

	4 Evaluation of different Interchange Formats for Software Architecture Reconstruction
	4.1 Assessment criteria
	4.2 KDM
	4.3 GXL
	4.4 RSF
	4.5 FAMIX

	5 Development of KADis
	5.1 Features
	5.2 Design
	5.3 Activities in KADis' SAR process

	6 Evaluation of KADis
	6.1 Completeness Evaluation with JPetStore
	6.1.1 Assessment Criteria
	6.1.2 Discussion

	6.2 Performance Evaluation

	7 Related Tools in Software Architecture Reconstruction
	7.1 ARMIN
	7.2 Rigi
	7.3 Moose
	7.4 MoDisco

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	References
	A Acronyms
	B Glossary
	C JPetStore elements
	D Functional Specification
	E Design Specification
	F Attachments

