
University of Kiel

Department of Computer Science

Software Engineering Group

Reconstructing Software

Architectures using the Code- and

Structure Package of the

Knowledge Discovery Meta-Model

Bachelorthesis

2010-02-23

Written by: Florian Fittkau

born on 1987-01-14 in Kiel

Supervised by: M. Sc. Sören Frey

Prof. Dr. Wilhelm Hasselbring

Abstract

Software maintenance consumes 60 % to 80 % of the total life cycle costs

of a software system [4]. The maintenance process involves the understanding

of the underlying system by 50 % to 90 % [43]. Thus, the understanding of a

system is essential to reduce the total life cycle costs. Software Architecture

Reconstruction (SAR) can yield the needed comprehension of an actual soft-

ware system, e.g. if the knowledge about the internal structure was lost over

time. However, reconstructing the architecture of an existing system is not

trivial. Many research on this field has been done. Recently the Object Man-

agement Group (OMG) proposed a new meta-model, namely the Knowledge

Discovery Meta-Model (KDM), for representing the information contained in

a software system. In this thesis I present a newly developed SAR tool, KDM

Architecture Discoverer (KADis), which utilizes this meta-model. Further-

more, I present an made evaluation of different data formats including KDM

for SAR. In addition, I propose a new categorization of SAR activities that

focuses on the basic understanding of SAR.

I

CONTENTS CONTENTS

Contents

1 Introduction 1

2 Approaches to Software Architecture Reconstruction 3

2.1 Common Phases in Software Architecture Reconstruction Processes 3

2.2 Phase Data Extraction . 5

2.2.1 Static Analysis . 6

2.2.2 Dynamic Analysis . 6

2.3 Phase Repository Storing . 7

2.3.1 KDM . 7

2.3.2 GXL . 7

2.3.3 RSF . 9

2.3.4 FAMIX . 10

2.4 Phase Abstraction . 11

2.4.1 Decomposition . 11

2.4.2 Class Hierarchies . 12

2.4.3 Class Diagrams . 12

2.4.4 Interfaces . 12

2.4.5 Design Patterns . 12

2.4.6 Conformance . 13

2.4.7 Feature Location . 13

2.4.8 Use Case . 13

2.4.9 Configuration . 13

2.4.10 Object Traces . 14

2.4.11 Component Interaction . 14

2.4.12 Process Interaction . 14

2.4.13 Object Interaction . 14

2.4.14 Conceptual . 14

2.4.15 Responsibility . 15

2.4.16 Build Process . 15

2.4.17 Files . 15

2.4.18 View Integration/Combination . 15

2.5 Further Approaches . 15

2.5.1 Symphony . 16

2.5.2 Focus . 17

2.5.3 Quality Attribute Driven SAR . 19

3 Knowledge Discovery Meta-Model 21

3.1 Structure of KDM . 21

3.2 Example for a KDM-conform File . 23

II

CONTENTS CONTENTS

4 Evaluation of different Interchange Formats for Software Architecture

Reconstruction 26

4.1 Assessment criteria . 26

4.2 KDM . 27

4.3 GXL . 28

4.4 RSF . 28

4.5 FAMIX . 29

5 Development of KADis 30

5.1 Features . 30

5.2 Design . 30

5.3 Activities in KADis’ SAR process . 30

6 Evaluation of KADis 32

6.1 Completeness Evaluation with JPetStore . 32

6.1.1 Assessment Criteria . 32

6.1.2 Discussion . 33

6.2 Performance Evaluation . 34

7 Related Tools in Software Architecture Reconstruction 36

7.1 ARMIN . 36

7.2 Rigi . 36

7.3 Moose . 36

7.4 MoDisco . 36

8 Conclusion and Future Work 38

8.1 Conclusion . 38

8.2 Future Work . 38

References 40

A Acronyms i

B Glossary ii

C JPetStore elements iii

D Functional Specification v

E Design Specification xxxii

F Attachments lxxx

III

1 INTRODUCTION

1 Introduction

Many companies use old software systems. Over the years new requirements to the software

arise. These requirements are often implemented without explicit knowledge of possible

side-effects. The knowledge about the exact architecture was lost over time. Important

reasons for this fact are a missing or outdated documentation and architectural erosion.

This often results in a higher error rate of the software.

In many cases a new development of the software is refused or not economic. Software

Architecture Reconstruction (SAR) provides the needed understanding for maintaining

the existing software system. This enables an improvement or migration of the existing

software architecture, for instance. However, SAR is not trivial. Often many million lines

of source code have to be analyzed, abstracted, and then presented in an appropriate

way. Many research has been done on this field and many terms were introduced. Some

SAR approaches use the term redocumentation of software architectures to emphasize

the creation or update of a documentation. Other approaches use the term recovering

software architectures to describe the fact that in many cases the software architectures

are outdated and have to be recovered. In this thesis, I will use the term reconstruction of

software architectures to focus on the process of reconstructing the views of the software

architecture.

On the one hand, SAR needs a storage format for often million lines of source code

and the data which is abstracted from it. On the other hand, SAR includes many dif-

ferent phases and thus needs different tools that cover different phases. For reasons of

interoperability these tools need a common data interchange format that has to represent

all saved information. A data format that enables both the data interchange and the

data storage makes the development easier. The Object Management Group has defined a

common data interchange format named Knowledge Discovery Meta-Model (KDM). The

thesis will evaluate this data format in the context of SAR.

In this thesis, I show a new categorization of SAR activities by grouping them in iden-

tified common phases. Furthermore, I conducted an evaluation of KDM in comparison

with other common data interchange formats in the context of SAR. Additionally, I devel-

oped KDM Architecture Discoverer (KADis), which uses KDM for the generated output,

to evaluate the applicability of KDM. KADis limits to the code and structure package

of KDM which is a restriction to the static facts of the software system that should be

analyzed.

Related work lists other categorizations of SAR approaches. For example, one catego-

rization can be performed on basis of the level of automatism. Another tool in SAR, which

uses a meta-model for its data storage, is Moose. The used format of Moose, FAMOOS

Information Exchange Model (FAMIX), is part of the format evaluation.

The remainder of the thesis is structured as follows. Section 2 outlines the

identified common phases in SAR approaches. Afterwards, Section 3 describes KDM in

detail. Then, Section 4 presents an evaluation of different data interchange formats in

1

1 INTRODUCTION

SAR. A developed prototype, named KADis, for using the KDM is discussed in Section 5.

The following Section 6 evaluates KADis. Section 7 describes different related SAR tools.

The final Section 8 concludes important points of the thesis and defines the future work

for advancing KADis.

2

2 APPROACHES TO SAR

2 Approaches to Software Architecture Reconstr-

uction

A SAR process can be performed manually, semi automatically, or fully automatically. In

the manual processing the reverse engineer analyses the source code and has only limited

tool support. The tools can be syntax highlighters or visualization tools, for instance.

In the semi automatic process the SAR tool proposes a possible solution and the reverse

engineer has to judge if the suggestion of the tool is correct. If the suggestion is not correct

the SAR tool tries to find a different solution. The fully automatic process does not need

human interaction. The human interaction is done implicitly by internal assumptions

about the correct solution.

This Section presents different techniques in the context of SAR by categorizing them

into common phases. The Section is not thought as a broad survey of every approach

available in SAR. For this purpose Ducasse et al. have written a survey [10], for instance.

This Section intends to give a basic understanding of SAR.

2.1 Common Phases in Software Architecture Reconstruc-

tion Processes

Scope
identification

Scope Data extraction Source model

AbstractionAbstraction model

Repository storing

Stored dataVisualization Visualization

satisfying result?

yes

no

Figure 1: Overview of the identified common phases and sequence in the SAR process

I identified the common phases and sequence shown in Figure 1 and extracted them

from different approaches and methods used in SAR [5, 10, 21, 27, 30, 38, 39, 45]. The

created overview, presented in the following, focuses on the SAR process itself and thus

enables a better understanding of the different phases involved in SAR. Other categoriza-

tion can be made, too. For instance, the categorization formerly mentioned into manual,

semi automatic, and fully automatic approaches.

The overview starts with the scope identification. Scope identification recurs in many

SAR approaches. If the scope identification is done only implicitly, the whole system

is selected. However, in most cases a special subsystem is the main interest to focus on.

3

2.1 Common Phases in SAR 2 APPROACHES TO SAR

Data extraction, abstraction, and presentation are well known steps in SAR [39]. The data

needed for SAR, like classes or packages, has to be fetched from software artifacts. Then,

the data has to be abstracted to enable different views onto the system and then has to

be presented. The presentation is almost always done as visualization. Therefore, the last

step is not called presentation but visualization. Between data gathering, abstraction, and

visualization the data has to be saved to enable more flexibility in presentation. However,

this step is not trivial. By saving information about the reconstructed software system

different purposes shall be achieved. These are, for instance, information exchange with

other tools supporting reusability or enabling the definition of an easy query language for

changing the focus of the visualization.

The remainder of the Section describes the common phases. A more detailed view

on data extraction, repository storing, and abstraction is presented in Section 2.2 to 2.4.

Scope identification and visualization are not considered in detail because this would go

beyond the scope of the thesis. Finally, Section 2.5 presents SAR approaches that define

an extra step to emphasize different aspects like, for instance, quality attributes.

Scope identification

The user can select the software artifacts to focus on in the SAR process. This selection

of important facts, like different subsystems or quality attributes, is called scope identi-

fication. By changing the scope on which software artifacts to focus on, the process can

comprise many iterations. Each iteration reveals new knowledge about the software. It

is easier to understand a huge system by considering higher abstraction levels first. To

minimize the amount of data, e.g. classes that can be clustered into components, on the

higher abstraction levels, identifying the scope can act as a filter for subsystems.

Data extraction

The data extraction phase collects the data, like classes, functions or build files, used for

SAR, e.g. by external parsers. One example of an external parser is the Source Navigator

NG [36], which is used for data extraction in KADis (Section 5). The output of this phase

is called source view or source model.

Usually, not all information about a software architecture is contained explicitly in the

source code. Knowledge can be extracted from other software artifacts, too. These are,

for example, build files, tests, and configuration files. Other methods can even extract

information from documentation. However, not all knowledge about the software archi-

tecture is contained in files. Interviews with software architects and other stakeholders

can be done for revealing the business process, for instance.

For more details and further methods for data extraction refer to Section 2.2.

Repository storing

The data has to be saved somewhere. Typically this is done in a repository. This repository

can be a file or a database, for instance. Many SAR tools use databases. Databases make

the querying of information faster and easier, and a query language for selecting items is

4

2.2 Phase Data Extraction 2 APPROACHES TO SAR

built-in. Meta-models like KDM can be used as a data interchange format and a data

format for data storage as well. They can be used natively by saving files or can be

translated into a database schema for usage in a database. Possible data formats are

described in Section 2.3. After the phase has finished, the data of the data extraction

activity is stored in a repository.

Abstraction

The data extraction can produce a big amount of data. Classes and functions represent a

huge part of that data. However, in a big software system considering classes or functions

is not useful as a starting point. A more coarse view has to be presented or in other words

the level of abstraction has to be raised. Therefore, different abstraction methods have

been proposed. Clustering and forming modules by special names, for instance. Section

2.4 describes different methods for abstraction. After performing the abstraction phase an

abstraction model is available.

Visualization

The data has to be visualized for easier reading and understanding. Many tools use their

own domain-specific language (DSL). Some of the tools for SAR use common graphical

DSLs, Unified Modeling Language (UML) in most cases, for attaining a common under-

standing of the displayed data.

Different layouts and display styles in visualization can be used to emphasize different

aspects of the software architecture. For instance, a hierarchical view highlights the hier-

archical aspect of subsystems. The output of this phase is a visual representation of the

views.

2.2 Phase Data Extraction

For extracting data there exist two distinct classes of approaches, namely the static and

dynamic approaches [27, 28]. Static approaches basically provide an overview of static

information extracted from source code like classes or packages, for instance. Dynamic

approaches enable information extraction at runtime, for instance the constructor calls.

Both classes of approaches have their advantages and disadvantages. Static and dynamic

approaches can be too fine granulated to give a good comprehension of the system and the

dynamic approaches additionally do not always yield all data. Therefore, a combination

of static and dynamic approaches is used in practice. This gives the need of having a

merge between them. The merge of two views is called View Fusion. The remainder of

Section 2.2 presents different static and dynamic approaches.

5

2.3 Phase Repository Storing 2 APPROACHES TO SAR

2.2.1 Static Analysis

There are different static analysis methods which differ in precision, scalability, and ef-

fort. In practice mostly a mixture of them is used, to enable the best ratio between the

mentioned attributes. In the following the different static approaches are presented.

Manual analysis

The reverse engineer analyses the source code manually with only restricted tool support.

He looks at the source code by hand. Many data can be fetched from the system by

looking at the directory structure, for instance. However, in big projects the manual

analysis proves only partially useful because it is accompanied by a big effort.

Lexical analysis

Lexical analysis converts a given sequence of characters to tokens. There are many tools

available that perform lexical analysis. Grep searches for regular expressions, for example.

A regular expression or a so called lexical pattern is, for example, the keyword “include”

in C++.

Syntactic analysis

Syntactic analysis or in other words parsing defines the process of analyzing a given text,

made of tokens, to determine its underlying grammatical structure on the basis of a specific

formal grammar. The tools that perform this task are called parsers. They typically

construct a syntax tree. Then the user can query the syntax tree for certain patterns to

focus on different aspects of the result.

Semantical analysis

Semantical analysis can be done by parsing the context or variable names. After the

parsing the control and data flow analysis can help to improve the results.

2.2.2 Dynamic Analysis

In dynamic analysis different methods and tools can be used to get dynamic runtime in-

formation from the system. For example, there exist profiling tools (e.g. gprof) or code

instrumentation tools. Dynamic information can be very useful since static analysis can

not recover late bindings easily. Examples for late binding are polymorphism, function

pointers, and runtime parametrization. Dynamic information becomes essential in a mul-

tiprocess system that creates threads dynamically at runtime. Many tools can trace the

execution path of the program and analyze it. For instance, Kieker [33] is a tool for

continuous monitoring, analysis, and visualization of Java software behavior.

6

2.3 Phase Repository Storing 2 APPROACHES TO SAR

2.3 Phase Repository Storing

As mentioned earlier the input and output data formats should be used for the format

of the repository too and thus this Section describes data formats. At the beginning of

research in SAR nearly every developed SAR tool had its own data format. In the past

years different efforts to a common data interchange format have been made. There are

two major classes of data interchange formats, namely meta-models and graph based data

formats. KDM and FAMIX belong to the meta-models. Graph eXchange Language (GXL)

and Rigi Standard Format (RSF) are graph based data interchange formats. The Sections

2.3.1 to 2.3.4 describe the different data formats that were designed to become a common

data interchange format. In Section 4 an evaluation of these different data formats is

presented.

2.3.1 Knowledge Discovery Meta-Model

KDM was developed by the Object Management Group [17]. This consortium has already

specified the well known UML. KDM was designed with the goal of creating a common

data interchange format for SAR tools, where every element is clearly defined. Section 3

presents it in detail.

2.3.2 Graph eXchange Language

GXL is a standard data format for exchanging graph representations. The motivation

for creating GXL was to enable interoperability between different tools like extractors,

abstractors, and visualizers. With a common data interchange format a powerful reverse

engineering workbench can be built, for instance. At the Dagstuhl Seminar “Interoper-

ability of Reverse Engineering Tools” in January 2001, GXL was ratified as a standard

exchange format in reverse engineering [49].

Tuple Attribute Language (TA) [23], GRAph eXchange format (GraX) [12], and the

graph format of PROGRES [35] were merged to create GXL. Furthermore, the authors

added concepts for handling hypergraphs and hierarchical graphs. In addition, GXL in-

cludes different ideas from Relation Partition Algebra (RPA) [13] and RSF [19]. GXL was

influenced by several other formats used in graph drawing, e.g. daVinci now known as

uDraw(Graph) [16] and GML [22]. Thus, GXL can be seen as a generalization of these

formats.

GXL offers the possibility to exchange different kinds of graphs. These kinds may

be typed, attributed, directed, ordered graphs including hypergraphs, and hierarchical

graphs. Furthermore, the graph schemas can be exchanged as metaschemas. For example,

UML diagrams can be represented and exchanged by supplying the appropriate UML

metaschema, which defines the semantic description of UML. Therefore, GXL can handle

different types of graphs and its underlying semantic.

Figure 2 shows an example graph taken from Holt et al. [24]. This graph is an at-

tributed, typed, and directed graph with two types of edges and two types of nodes. The

7

2.3 Phase Repository Storing 2 APPROACHES TO SAR

Figure 2: GXL example graph

example can be interpreted as follows. On line 42 procedure P calls procedure Q. The

procedure P is stored in file main.c and procedure Q is stored in file test.c. P references

variable V in line 127 and Q references variable W in line 27. The variable V is defined

in line 255 and the variable W is defined in line 316. The edge (P,Q) has type call and a

line attribute with value 42.� �
1 <gx l>
2 <node id=”P” type=”Proc ”>
3 <a t t r name=”F i l e ” va lue=”main . c ”/>
4 </node>
5 <node id=”Q” type=”Proc ”>
6 <a t t r name ”F i l e ” va lue=” t e s t . c ”/>
7 </node>
8 <node id=”V” type=”Var ”>
9 <a t t r name ”Line ” value=”225 ”/>

10 </node>
11 <node id=”W” type=”Var ”>
12 <a t t r name ”Line ” value=”316 ”/>
13 </node>
14 <edge begin=”P” end=”Q” type=”Cal l ”>
15 <a t t r name ”Line ” value=”42 ”/>
16 </ edge>
17 <edge begin=”P” end=”V” type=”Ref ”>
18 <a t t r name ”Line ” value=”127 ”/>
19 </ edge>
20 <edge begin=”Q” end=”W” type=”Ref ”>
21 <a t t r name ”Line ” value=”27 ”/>
22 </ edge>
23 </ gx l>� �

Listing 1: ”GXL example XML”

Listing 1, again taken from Holt et al., displays the corresponding XML file of the

GXL example graph seen in Figure 2. Basically, there are 2 different types of elements.

The first one is the node type, which represents nodes in the graph. The second one is the

8

2.3 Phase Repository Storing 2 APPROACHES TO SAR

edge type, which stands for the edges in the graph. These types can contain attr subtags,

which indicate that the type has attributes.

This simple example does not use the full Document Type Definition (DTD) of GXL.

For more information about the possible tags and GXL refer to Winter et al. [49].

2.3.3 Rigi Standard Format

Rigi [51] is a workbench tool for SAR. The rigiedit component of the workbench specifics

a data import format. This format is called RSF [50]. RSF has two major dialects. These

are unstructured and structured RSF. Usually, external tools use the unstructured RSF

and rigiedit saves the provided graph as structured RSF.

RSF bases on tuples. The mainly used unstructured RSF is 3-tuple based. The

structure of the 3-tuple is: verb subject object. Three different cases are allowed.

The first case is representing an arc between two nodes. The structure looks like

arcType startNodeName endNodeName. Listing 2 presents an example for this structure.

The first line represents the fact that the main function calls the createArray function.

The last line shows that the createArray function creates or accesses the data ARRAY.

� �
1 call main createArray

2 data createArray ARRAY� �
Listing 2: ”RSF arc example”

Attributes binding is the second case for the allowed structure of 3-tuple based unstruc-

tured RSF. The structure is: nodeAttribute nodeName attributeValue. Listing 3 shows an

example for attribute bindings in RSF. The lines declare createArray occurred in a file

named array.c at line 10 in the file.

� �
1 file createArray ‘‘array.c’’

2 lineno createArray 10� �
Listing 3: ”RSF attribute binding example”

Node type binding is the last case for the allowed structure. The structure is defined

as: type nodeName nodeType. Listing 4 presents an example for types of node bindings

in RSF. The node createArray is binded to the type Function and the node ARRAY is

binded to the type Data.

� �
1 type createArray Function

2 type ARRAY Data� �
Listing 4: ”RSF node type binding example”

9

2.4 Phase Abstraction 2 APPROACHES TO SAR

With these 3 different types of 3-tuple based RSF a graph can be represented. Thus,

enabling the exchange of graph information. The structured RSF format is not described

here because it is basically only used internally by rigiedit.

2.3.4 FAMIX Meta-Model

The workbench tool Moose utilizes the FAMIX meta-model [9, 42]. FAMIX was developed

with the goal of describing object-oriented software systems at the program entity level.

The model has been designed for facilitating language independence, extensibility, and

information exchange.

The inventors developed FAMIX as an alternative to UML in version 1.2 for round-

trip engineering [8]. They claim that UML in version 1.2 has different shortcomings in

giving seamless integration between design diagrams and source code, between modeling

and implementation. Therefore, UML is lacking the ability of some important concepts

to generate source code from models and vice-versa. These concepts are namely “method

invocation” and “attribute access”. UML could have been extended at that time, but this

would make data exchange between different tools very complicated and not standardized.

The authors wanted to guarantee tool interoperability. Hence, they developed FAMIX.

FAMIX bases on the CDIF [15] transfer format. CDIF is an industrial standard for

transferring models and provides standard plain text encoding. Therefore, enabling hu-

man readability. XMI [18] was also considered for exchanging information but, when

development started, XMI was too premature.

Figure 3: FAMIX core model

Figure 3 taken from Demeyer et al. [9] represents the core model of FAMIX. The core

model consists of the main entities utilized in the object orientation paradigm. These are

class, method, attribute, and inheritance definition. Reengineering needs the invocation

and access entities. Invocation means that one method calls another method and access

represents the fact that a method accesses an attribute. These two extra entities are

needed by reengineering tools for dependency analysis, metrics computations, and other

10

2.4 Phase Abstraction 2 APPROACHES TO SAR

reegineering operations. For example, the invocation entity can be used for evaluating

which method is never invoked.

2.4 Phase Abstraction

Data extraction fetches a great amount of information, e.g. classes and functions. In a

big software system classes must be clustered to modules to get a better understanding

of the system, for instance. Software architecture building differentiates different views.

These views must be reconstructed. There are many definitions of the typical viewpoints

onto a system. The following Section uses the viewpoints categorization by Koschke [28]

that bases on the definition of Clements et al. [6]. This categorization was chosen because

some of these viewpoints, namely the configuration, conceptual, build, and files viewpoint,

can be directly mapped to the corresponding KDM package. The other viewpoints can be

mapped to parts of the code, action, and structure package of KDM. Thus, the selection

gives a first hint to generate KDM packages. The remainder of the Section describes these

different viewpoints and sketches some possible methods for reconstructing the viewpoints.

The Section is inspired by the survey of Koschke [28] that defines the used categorization

of viewpoints. In his survey many examples and references can be found. However,

this Section focuses on providing an overview for reconstructing the viewpoint and the

purpose of the reconstructed viewpoint in SAR. Thus, giving a hint when to reconstruct

each viewpoint.

2.4.1 Decomposition

The most research has been done in the derivation of the structural decomposition. An

example for this inference is the grouping at lower abstraction levels like classes, variables,

functions into modules. At higher levels, modules can be clustered to subsystems and

layers. For grouping, static dependencies, method calls, and variable accesses are used,

for example. Dynamic dependencies can be used too.

There are different approaches for grouping. Software clustering is the most popu-

lar one. Borrowed from biology the clustering of animals by similarity, the classes can

be clustered by different attributes. Different definitions of similarity lead to different

grouping. Other methods see grouping as a partitioning problem which can be solved

by minimizing coupling and maximizing cohesion between entities. Grouping bases on

semantic. Therefore, the process can only give suggestions for the best grouping based

on different assumptions. Thus, these methods are mostly incremental techniques. The

user has to interact with the process to find the best match for grouping. The purpose of

this viewpoint is to find components that can be clustered to less complex components.

This is done until different subsystems are visible. Thus, enabling an overview of the

reconstructed system.

11

2.4 Phase Abstraction 2 APPROACHES TO SAR

2.4.2 Class Hierarchies

At first view, class hierarchies can be trivially retrieved from object-oriented programming

languages. However, these class hierarchies may not be optimal. The optimal hierarchies

would only contain used methods and variables. By using dynamic approaches the unused

methods can be identified. There exist also approaches that build complex static method

call trees that can find the unused methods too. Class inheritances reveal the internal

structure of the classes. The concrete class can inherit from an abstract class which by

itself can inherit from another abstract class. Therefore, class hierarchies can be used to

understand the abstract base classes that many classes can inherit from. Thus, the class

hierarchies viewpoint can reduce the complexity and give an overview of the structure

again.

2.4.3 Class Diagrams

Class diagrams constitute another viewpoint. They have different association types like

aggregation or composition. Class diagrams display the dependencies between classes

beyond inheritance relation. There are different methods for reconstructing the class

diagrams from source code. For instance, a class diagram can be generated by parsing

the import statements of a class. Though, this example would need an object-oriented

programming language like Java. Nevertheless, class diagrams can even be extracted from

procedural languages by grouping functions to classes. For example, class diagrams are

useful when a layer of a software system has to be understood.

2.4.4 Interfaces

There exist different dependencies between modules. A module provides and requires

access to other modules. This is supported by the interface concept in Java, for instance.

Even if the interfaces are not explicit in a programming language, they can be fetched

from coarse import directives. Maybe not every import is used or not all exports are used.

Here the problem of finding the optimal interface structure arises again.

Interfaces may define preconditions and postconditions and valid sequences of interac-

tion for correct collaboration of modules. This concept is also known as programming by

contract. A very important principle in a big system with different modules is to guarantee

proper invocation between subsystems. Thus, the interfaces viewpoint most often shows

the communication between modules.

2.4.5 Design Patterns

Design patterns are an essential concept for software engineering. First research enabled

only the detection of structural patterns. Later research included behavioral and creational

patterns too. Static approaches use pattern matching. The design pattern is matched in

a graph representation of the class model or abstract syntax tree. Automatic validation

12

2.4 Phase Abstraction 2 APPROACHES TO SAR

can then be done by utilizing dynamic execution traces. Pattern matching underlies the

NP hard problem of finding isomorphic subgraphs [1]. Therefore, approximative methods

have been proposed. In approximative methods false positive and the true negative match

exist. These false matches can be caught by interaction with the user. By detecting the

design patterns the reverse engineer gets a quick understanding of the module in which

the design pattern is used.

2.4.6 Conformance

Interesting for, e.g., maintenance purposes is the conformance between the implemented

architecture and the intended architecture. The intended architecture is often called the

hypothetical view. A popular approach for this is the reflexion model by Murphy et

al. [31]. They define the following states between the two models. A convergence is a

match between the hypothesized and concrete model. A divergence is an element which

is contained in the concrete model but not in the hypothesized model. An absence is

an element which is included in the hypothesized model but not in the concrete model.

With the conformance viewpoint the reverse engineer can detect architectural erosion and

violation of the used architectural style.

2.4.7 Feature Location

Many modules contribute to a product feature. Often it is unknown which modules realizes

which feature. To locate the implemented-by relation a global static dependency graph

can be built and the reverse engineer manually searches for the feature in the graph.

Dynamic analysis supports the reverse engineer with an execution trace when the feature

was executed. This trace provides hints to which module or class is associated to the

feature. With the feature viewpoint the reverse engineer can extract the modules that

take part in a feature and then migrate them to a new architecture, for instance.

2.4.8 Use Case

A Use Case can comprise many features. Therefore, the detection of Use Cases relates

to feature location. A static approach proposed by Lucca et al. [29] starts with an input

statement till it finds an output statement. The search creates a method-message graph.

A Use Case equals one path in it. Like in the feature location, the reverse engineer

can extract the modules that take part in a Use Case and then migrate them to a new

architecture, for example.

2.4.9 Configuration

Source code is often configured with preprocessor directives. This can lead to different

components at higher abstraction levels. The configuration viewpoint shows which line

of code is compiled with which directive. Especially, this viewpoint presents the elements

13

2.4 Phase Abstraction 2 APPROACHES TO SAR

that change on higher abstraction levels. It can be used to identify the components that

are included in a configuration, for instance.

2.4.10 Object Traces

A trace is a record of the execution of software that shows the sequence of operations

executed. This viewpoint can be reconstructed statically and dynamically. Dynamic

analysis simply records the execution of the program while running. Static approaches try

to find every possible execution path. The object trace viewpoint should be reconstructed,

e.g., if an object is created and passed multiple times to understand the processing of the

object.

2.4.11 Component Interaction

Components are modules that encapsulate a set of related concerns and they can interact

with other components. A component can be, for example, a database. The component

interaction viewpoint shows the concrete interaction with other components. Hence, this

viewpoint shows among other things the dependencies to other components. Prior to the

reconstruction of this viewpoint the components in the system have to be identified. The

interaction with other components can be analyzed by recording the interactions as a trace

in dynamic analysis. Other approaches can detect the interaction with static analysis by

following the call chain. The interaction between a component and another component

can be interesting, for example, for the purpose of replacing a component.

2.4.12 Process Interaction

Process interaction is coupled with the component interaction. However, process interac-

tion is harder to analyze statically because processes can be distributed. Nevertheless, the

interaction between processes can be easier reconstructed dynamically by recording the

communication. This viewpoint can be useful, e.g., when two different processes, which

were located on the same server, shall be run on two different machines.

2.4.13 Object Interaction

The object interaction viewpoint describes the messages that are sent between objects.

This kind of interaction can again be analyzed by static and dynamic analysis. The

dynamic analysis records a dynamic trace of the object interaction but this trace does not

need to be complete. This viewpoint can assist a reverse engineer to understand, e.g., the

dependencies of objects.

2.4.14 Conceptual

The conceptual viewpoint shows how the software functionality is mapped to components

and connectors. The implemented-by relation can be seen with this viewpoint. The con-

14

2.5 Further Approaches 2 APPROACHES TO SAR

ceptual viewpoint is used to understand how the software system is achieving conformance

with the specification.

2.4.15 Responsibility

Every source code file has at least one programmer as author and therefore this program-

mer is responsible for the file. The responsibility viewpoint contains a relation that maps

from a source code file to a developer. This relation can be reconstructed, e.g., by analyz-

ing the copyright notices like done by Bowman and Holt [3]. With the responsible relation

the expert for the file can be identified.

2.4.16 Build Process

The build process of a huge software system can become very complicated. The build

process viewpoint represents the configuration, data, activities, and strategy of the build

system. The build view was proposed originally by Tu and Godfrey [44]. With this

viewpoint the reverse engineer can understand the build process which becomes necessary

when a component has been refactored and the build process must be adapted, for instance.

2.4.17 Files

Every line of source code is saved in a file. The file viewpoint can be obtained by static

analysis. It represents the physical structure of source code and can be useful, when the

physical structure of the given source code should be refactored.

2.4.18 View Integration/Combination

The combination of two views can be prolific. For example, the static view can be combined

with a dynamic view resulting in more available information that perhaps one of these

views could have leaked. Thus, view integration can enable a better coverage of information

in a view.

2.5 Further Approaches

There are differing approaches to the common phases described in Section 2. Many of

these approaches add a new phase or aspect to the common phases. Symphony, Focus,

and Quality Attribute Driven SAR are examples for these differing approaches. Symphony,

described in Section 2.5.1, focuses on the prior problem elicitation activity in a SAR

process. Focus emphasizes the importance of incorporating architectural styles in SAR

and is illustrated in Section 2.5.2. Quality Attribute Driven SAR utilizes SAR for the

determination of quality requirements. Section 2.5.3 describes this approach.

15

2.5 Further Approaches 2 APPROACHES TO SAR

2.5.1 Symphony

Symphony [45] is a view-driven approach. The authors claim that most SAR approaches

do not provide information about when to reconstruct a specific view. This gap should be

filled by Symphony. Therefore, Symphony provides two different steps. The reconstruction

design step is the first step and the reconstruction execution step is the second step.

Both steps are used incremental. The reconstruction design step and execution step of

Symphony is illustrated in the following Figure 4 taken from van Deursen et al. [45].

Figure 4: Symphony design step and execution step

Design step

The left part of Figure 4 shows the design step and the right part of Figure 4 illustrates the

execution step. The outcome of the design step is a plan for reconstructing the software

architecture. It consists of problem elicitation and concept determination. The problem

elicitation activity collects all available information about the software architecture and

elaborates the problem statement. For this information gathering, workshops or interviews

with the available stakeholders that created the software are conducted in this activity.

In addition, the relevant high-level documentation is summarized. Then, the concept

determination activity identifies the viewpoints that need to be reconstructed and defines

the mapping rules for the reconstruction that will be made in the execution step.

Execution step

Figure 5, again taken from van Deursen et al. [45], presents the reconstruction execution

step of Symphony. This step consists of data gathering, knowledge inference, and informa-

tion interpretation. These tree activities map basically to the data extraction, abstraction,

and visualization phase described in 2.5. Though, in the knowledge inference activity the

abstraction mechanisms base on the rules and viewpoints defined in the design step.

16

2.5 Further Approaches 2 APPROACHES TO SAR

Figure 5: Symphony execution step

2.5.2 Focus

Focus is an approach from Medvidovic and Jakobac [30]. Medvidovic and Jakobac claim

that most SAR approaches are heavy-weighted because they want to completely recover the

software architecture. The authors of Focus wanted to provide a light-weight approach

for software architecture recovery that includes the reconstruction of the architectural

style. Their approach is semi-automatic and incremental. Focus has three unique facets.

The first one is the fact that Focus uses a system’s evolution requirements to isolate and

incrementally recover only the components which are effected by the evolution. Therefore,

enabling a focused view onto the system’s parts that shall be changed. Secondly, Focus

reconstructs not only the software components, but recovers the key architectural notions

of software connector and architectural style. The last facet is the ability of Focus to

refactor the system.

Focus conducts two different, interrelated steps. Theses are architectural recovery and

system evolution. The steps are displayed in Figure 6 and 7 and are described in the

remainder of the Section.

Architectural recovery step

The architectural recovery step is shown in Figure 6, which is taken from Medvidovic

and Jakobac [30]. This step has the purpose to recover the actual architecture based

on an idealized architecture in an incremental usage. The activities, described below,

are separated into two categories: logical and physical architecture recovery. The logical

architecture recovery starts with an idealized, high-level model of the software architecture,

which is, for instance, inferred from the prior selected architectural style, and tries to

refine the selected components by integrating more concrete details into the idealized

architecture. The physical architecture recovery starts with the source code and tries to

abstract it to get the actual components of the system. By incrementally applying the

step the architecture becomes more and more consistent with the actual architecture.

The step seen in Figure 6 is composed of six activities, namely Identify components,

Propose idealized architectural model, Map components onto architecture, Identify key Use

17

2.5 Further Approaches 2 APPROACHES TO SAR

Figure 6: Focus architectural recovery step

Cases, Analyze component interactions, and Generate refined architecture. At first the

Identify components activity gathers data need for the abstraction of components from

the source code. Then the Propose idealized architectural model activity chooses an ide-

alized architecture model. Different hints in the architecture, like GUI-based or Internet

communication, can yield the architectural style and thus the needed idealized architec-

ture model. Afterwards, the Map components onto architecture activity maps the identified

components from the first step onto the idealized architecture. After this activity the key

Use Cases are abstracted from the selected components in the Identify key Use Cases

activity. The following Analyze component interactions activity analyzes the component

interactions. Finally, the refined architecture is generated in Generate refined architecture.

System evolution step

The next step in Focus is the system evolution step shown in Figure 7, which is taken from

Medvidovic and Jakobac [30]. In this step Focus modifies the application to satisfy the new

requirement. The five activities, that are conducted in this step, are Propose idealized arch

evolution, Add / Modify components, Update component interactions, Generate evolved

architecture, and Set the new focus. These activities are all activities in a refactoring

setting, which is out of the scope of the thesis. Therefore, the activities are only described

briefly for completeness and understanding of the Focus approach.

The first activity Propose idealized arch evolution creates a high-level architecture

evolution plan. The Add / Modify components activity then carries out the first step

of the evolution plan in a semi-automatic way by interaction with the reverse engineer.

Then, the next activity Update component interactions checks the component interactions

and updates, if necessary, the interactions. After this activity the changes are integrated

18

2.5 Further Approaches 2 APPROACHES TO SAR

Figure 7: Focus system evolution step

into the original architecture. This is done in Generate evolved architecture. Finally, the

Set the new focus activity decides whether or not the generated architecture consists of

sufficient details to enable the implementation of the desired change. If the is not the case,

a new iteration of the recovery step with the changed components is triggered.

2.5.3 Quality Attribute Driven SAR

The goal of Quality Attribute Driven Software Architecture Reconstruction (QADSAR)

[39] is to provide information that enables the analysis of quality attributes of software.

The approach is motivated by the fact that business goals incorporate quality attributes.

In this context, Stoermer et al. [39] have developed a tool named ARMIN that is described

in Section 7.1.

QADSAR uses the notions of quality attribute scenarios and architecture tactics.

These are explained in the next paragraph.

Quality attributes are refined into quality attribute scenarios. A quality attribute

scenario is a quality attribute requirement of a system. For instance, a system must provide

an answer in at most 200 ms. That would create a quality attribute scenario in which a

performance requirement is stated. Those scenarios represent the input to a corresponding

quality attribute model like a performance model. An architecture tactic can then be

chosen by the software architect to accomplish this requirement. In the aforementioned

example the architect could choose the tactic reduce computational overhead.

Figure 8 taken from Stoermer et al. [39] shows the different steps in QADSAR. The

first three steps, namely Scope Identification, Source Model Extraction, and Source Model

Abstraction map roughly to the first three common phases described in Section 2.1. The

19

2.5 Further Approaches 2 APPROACHES TO SAR

Figure 8: QADSAR steps

only difference is the fact that their scope identification includes the identification of the

quality attribute scenario that should be reconstructed and the related architecture tactics.

Step four, namely Element and Property instantiation, describes the process of making

the entities and relations explicitly denoted as architecture elements with particular prop-

erties. The abstraction phase described in Section 2.4 includes this phase. Stoermer et

al. introduce a new step named Quality Attribute Evaluation. In this step the results of

the reconstruction process are evaluated on the basis of the identified quality attribute

scenario, quality attribute model, and the possible architecture tactics. For instance, as-

suming that the scope identification step identified a performance model and the possible

tactics to achieve this requirement and the SAR process is performed. If no tactics can be

identified in the results, the performance is expected to fail the requirement.

20

3.1 Structure of KDM 3 KNOWLEDGE DISCOVERY META-MODEL

3 Knowledge Discovery Meta-Model

KDM [17] defines different meta-data that play an important role in SAR. KDM maps

information about software assets, their associations, and operational environments into

one common data interchange format. Then, different analysis tools have a common

base for interchanging information. Thereby, the different architecture views, which every

analysis tool extracts, can be kept in one meta-model. For this purpose KDM provides

various levels of abstraction represented by entities and relations. Section 3.1 provides an

overview of the structure and organization of KDM. Afterwards, Section 3.2 presents an

example for a KDM-conform file.

3.1 Structure of KDM

Figure 9: The different layers of KDM

KDM consists of four different layers. These four layers are split into several different

packages (see Figure 9 which is based on a Figure from the KDM documentation [17]).

Each package, except the core and kdm package, defines one model. Thus, KDM has nine

models for representing knowledge about the software architecture. The remainder of the

Section describes the different packages of each layer of KDM.

Infrastructure layer

This layer describes the core components of KDM. Every model in other layers inherits

directly or indirectly from these components.

21

3.1 Structure of KDM 3 KNOWLEDGE DISCOVERY META-MODEL

• Core package: This package describes the basic meta-classes. For example, the basic

classes KDMEntity and KDMRelationship are defined here. Every element of KDM

inherits directly or indirectly from one of the core classes.

• kdm package: The kdm package provides static context shared by all KDM models.

• Source package: This package defines the source model. The source model represents

the physical structure of the existing software system. This structure includes the

directory structure and files of the file system.

Program layer

The program layer defines a language-independent representation of the existing source

code.

• Code package: Elements of programming languages are described in this package,

e.g. classes, data types, methods, and variables. Providing a maximum of language

independence is the intention of this package. Every case in which this is not pos-

sible the source code line is attributed with the dependent programming language

descriptor.

• Action package: The behavior and interactions of the instructions among each other

are covered here. Function calls and variable assignments are examples for the

behavior of a software system.

Resource layer

Higher-level knowledge about the existing software system is represented in this layer.

• Data package: The persistent data aspects of an application are handled in this

package.

• UI package: This packages represents the user-interface aspects of the existing soft-

ware system.

• Event package: In this package a common concept related to event-driven program-

ming is defined.

• Platform package: The artifacts which relate to the runtime platform are handled

here.

Abstraction layer

This layer contains even higher-level abstractions about the existing software system than

the resource layer.

• Conceptual package: This package is used for representing the business logic and

the domain-specific elements.

22

3.2 Example for KDM 3 KNOWLEDGE DISCOVERY META-MODEL

• Structure package: The logical organization in subsystems, components, and pack-

ages is covered here.

• Build package: The engineers view of the software system is represented here. With

the build package artifacts and processes in the build process can be described.

Figure 10: Structure of KDM

Figure 10, basing on a Figure from the KDM documentation [17], displays the struc-

ture of KDM with emphasize on the possible level of automatism of creating each package

model. At the bottom lie the core and kdm package that every model inherits from. On

a higher level is the source, code, and action package. These packages can be full auto-

matically extracted from the source code. The packages, displayed above them, can only

be partially extracted automatically. For these packages human interaction is required to

fully represent the information about the system. For example, the information concerning

the conceptual package is mainly included in the source code but it is nearly impossible to

extract all of the business logic automatically because it is only included implicit. Thus,

an human has to provide the input.

3.2 Example for a KDM-conform File� �
1 i n t main (i n t argc , char ∗ argv []) {
2 }� �

Listing 5: ”KDM simple C example”

Listing 5 shows a typical main procedure of a C program with an empty body. The

procedure is stored in the file simple.c.

The source code in Listing 5 is converted to a KDM-conform file. The result is depicted

in Listing 6, which bases on a hello world example by KDM Analytics [2]. At the lines

2 to 6 are the namespace imports. KDM bases on XML Metadata Interchange (XMI).

23

3.2 Example for KDM 3 KNOWLEDGE DISCOVERY META-MODEL

Therefore, it includes a version of XMI namespace. In addition, the example uses the code,

kdm, and source package and therefore, these namespaces must be included as well.� �
1 <?xml version=”1 .0 ” encoding=”UTF−8”?>

2 <kdm:Segment xmi :ve r s i on=”2 .1 ”

3 xmlns:xmi=”h t tp : //www. omg . org /XMI”

4 xmlns:code=”h t t p : //kdm. omg . org / code ”

5 xmlns:kdm=”h t t p : //kdm. omg . org /kdm”

6 xmlns : source=”h t t p : //kdm. omg . org / source ”

7

8 name=”SimpleExample ”>

9 <model xmi : id=”id . 0 ” xmi:type=”code:CodeModel ” name=”SimpleExample ”>

10 <codeElement xmi : id=”id . 1 ” xmi:type=”code :Compi lat ionUnit ” name=”

s imple . c ”>

11 <codeElement xmi : id=”id . 2 ” xmi:type=”code :Ca l l ab l eUn i t ” name=”

main ” type=”id . 4 ” kind=”r e g u l a r ”>

12 <source xmi : id=”id . 3 ” language=”C” sn ippet=” i n t main (i n t argc ,

char ∗ argv []) {} ”/>

13 <codeElement xmi : id=”id . 4 ” xmi:type=”code :S i gna tu r e ” name=”main

”>

14 <source xmi : id=”id . 5 ” sn ippet=” i n t main (i n t argc , char ∗ argv

[]) ; ”/>

15 <parameterUnit xmi : id=”id . 6 ” name=”argc ” type=”id .12 ” pos=”1 ”

/>

16 <parameterUnit xmi : id=”id . 7 ” name=”argv ” type=”id . 8 ” pos=”2 ”>

17 <codeElement xmi : id=”id . 8 ” xmi:type=”code:ArrayType ”>

18 <itemUnit xmi : id=”id . 9 ” type=”id .11 ”/>

19 </codeElement>

20 </ parameterUnit>

21 </codeElement>

22 </codeElement>

23 </codeElement>

24 <codeElement xmi : id=”id .10 ” xmi:type=”code:LanguageUnit ”>

25 <codeElement xmi : id=”id .11 ” xmi:type=”code :Str ingType ” name=”char

∗ ”/>

26 <codeElement xmi : id=”id .12 ” xmi:type=”code : IntegerType ” name=” i n t

”/>

27 </codeElement>

28 </model>

29 <model xmi : id=”id .13 ” xmi:type=”source : InventoryMode l ” name=”

SimpleExample ”>

30 <inventoryElement xmi : id=”id .14 ” xmi:type=”s o u r c e : S o u r c e F i l e ” name=

”s imple . c ” language=”C”/>

31 </model>

32 </kdm:Segment>� �
Listing 6: ”KDM simple example”

24

3.2 Example for KDM 3 KNOWLEDGE DISCOVERY META-MODEL

In line 9 a code model from the code package is begun. After this, the only file simple.c is

opened. The following line defines a callable unit. This unit is the main procedure from

the C example. Then, line 12 defines the original source code of the main procedure. It

attributes the source code as C code. This way special behavior of, for instance, variable

declarations in different programming languages can be modeled. The next lines 13 to 21

define the signature for the main procedure. The types of the parameters are modeled in

lines 24 to 27. Line 29 defines an inventory model from the source package. This model

represents the source files that are included. In the example there is only the simple.c file.

This file is represented in line 30.

25

4.1 Assessment Criteria
4 EVALUATION OF DIFFERENT INTERCHANGE FORMATS

FOR SAR

4 Evaluation of different Interchange Formats for

Software Architecture Reconstruction

KDM GXL RSF FAMIX
C1 Bases on XMI XML Tuples CDIF
C2 Completeness + + + +
C3 Evolvability + + + +
C4 Flexibility + + + +
C5 Formality + + + +
C6 Included predefined models + − − ±
C7 Scalability + + + +
C8 Several levels of abstraction + ± ± ±
C9 Solution reuse + + − +
C10 Static and dynamic dependencies + + + +

Legend: +: supported ±: minimal −: not at all

Table 1: Evaluation of different interchange formats

Table 1 summarizes the evaluation of the different common interchange formats for SAR.

GXL and RSF are examples from the class of data interchange formats with graph repre-

sentation. FAMIX is another meta-model based approach to evaluate the functionality of

KDM in its own equivalence class.

The legend reads like follows. Supported stands for full feature support. Minimal

stands for an only partially supported feature. Not at all stands for a feature that is not

supported at all.

The evaluation was conducted with KDM in version 1.1 [17], GXL in version 1.1

[24, 48, 49], RSF in version 5.4.4 (handbook’s version) [19, 46, 50, 51], and FAMIX in

version 2.0 [9, 11, 42].

Section 4.1 defines the different assessment criteria. Then, Section 4.2 to 4.5 describe

the results for the different formats in detail.

4.1 Assessment criteria

St-Denis et al. [37] propose the following assessment criteria for evaluation of interchange

formats. However, some aspects were omitted and added. This has been done to scope the

evaluation for SAR. The omitted criteria are transparency, simplicity, neutrality, popular-

ity, metamodel identity, legibility, and integrity. The added aspects are bases on, included

predefined models, several levels of abstraction, and static and dynamic dependencies.

C1 Bases on The underlying format is an important criterion and affects implicitly to

other criteria like scalability.

26

4.2 Knowledge Discovery Meta-Model
4 EVALUATION OF DIFFERENT INTERCHANGE FORMATS

FOR SAR

C2 Completeness All necessary components and algorithms should be specified. The

specification must provide explicit and unambiguous guidelines for the user. Hence, the

potential of incompatibility is reduced.

C3 Evolvability New requirements should be easy to implement. Thus, the interchange

format must provide an easy way to adapt new requirements.

C4 Flexibility The interchange format should be so flexible that different models,

tool-specific data, and language systems can be included.

C5 Formality The specification of the format should be formal and well-defined. Re-

sulting in a well understanding and a non conflicting interpretation. Hence, incompatibility

and information corruption is avoided.

C6 Included predefined models For easier interoperability the specification should

include predefined models for the representation of data. If there are no predefined models

included the format fails this criterion. If only one model is included, the format fulfills

the requirement only partially.

C7 Scalability The format should handle small and huge systems. Therefore, the

format must be able to deal with a great amount of information.

C8 Several levels of abstraction The interchange format should provide different

levels of abstraction. On a lower level of abstraction the source model should be contained

and at a higher stage the subsystem structure should be contained, for instance. If only one

level of abstraction is possible, the format fails the requirement. If it is possible to define

several levels of abstraction by extending the format, the criterion is partially fulfilled.

C9 Solution reuse Solution reuse consists of adapting and integrating standards,

tools, and other reusable concepts or mechanisms. The format should reuse these proven

technologies for a reduction of the error probability. The solution reuse criterion does not

include reused solutions which result from the base format.

C10 Static and dynamic dependencies Static and dynamic data should be repre-

sentable in the format.

4.2 Knowledge Discovery Meta-Model

KDM bases on (C1) XMI. XMI is a standard by the Object Management Group (OMG)

which combines the meta-meta-model (MOF) and a textual format, namely XML. For

KDM a documentation with a description, semantics, and special constraints of its el-

ements is available from its website [17]. Hence, KDM fulfills the completeness (C2)

requirement. Generic extensions of the existing models and the possibility of defining new

models make KDM evolvable (C3). New models can be implemented on the basis of the

core and kdm package and tool specific data can be added as annotations, for instance.

Thus, KDM is flexible (C4). The specification defines the semantic and constraints for

the KDM elements. Therefore, KDM fulfills the formality (C5) criterion. There are 9

27

4.4 Rigi Standard Format
4 EVALUATION OF DIFFERENT INTERCHANGE FORMATS

FOR SAR

predefined models included (C6) in KDM. These models are described in Section 3. XMI

is a verbose format but KDM scales up (C7) that is shown by KADis which can analyze

systems with millions of lines of code. The models included in KDM provide different

levels of abstraction (C8). For example, the code model contains classes and the structure

model can contain the structure of components of the software system. KDM reuses (C9)

ISO norms for primitive types, for instance. The static and dynamic dependencies (C10)

can be expressed, for example, by the code and action package of KDM.

4.3 Graph eXchange Language

GXL bases on (C1) the XML format. XML was chosen by the developers of GXL instead

of XMI to have a less verbose base format. Since GXL is specified comprehensively by a

DTD, it fulfills the completeness (C2) requirement. Graphs can be easily extended and

new requirements can be implemented by changing the semantic schema. In GXL not only

the graph is represented but its underlying schema definition is exchanged as a metaschema

with the graph representation. Hence, GXL provides evolvability (C3). Through changing

the metaschema, tools can provide their own specific data and models. Thus, GXL is

flexible (C4). The DTD for GXL provides a formal (C5) and well-defined specification for

the format. GXL has no included predefined models (C6). The format defines only a graph

representation. However, programs can define their own models with a metaschema but

the specification has none metaschema included. TA, GraX and PROGRES were merged

to create GXL. These formats have been proven in several large software analyses. For

instance, TA was successfully used at analyzing the Linux kernel and GCC C++ compiler.

Therefore, GXL scales up (C7) and can handle large software systems too. Nearly every

abstraction level can be represented as a graph. Only the underlying metaschema changes

at every abstraction level. This metaschema can be manipulated in GXL. Hence, GXL

provides the possibility of several levels of abstractions (C8) but none is included. GXL

evolved from different formats. Therefore, it reuses (C9) these solutions. Static and

dynamic dependencies (C10) can be represented by graphs. Hence, GXL can represent

them by altering the metaschema.

4.4 Rigi Standard Format

RSF bases on (C1) tuples. The tuple rules are described in Section 2.3.3. A specification

and examples for RSF are available from its handbook. Hence, RSF fulfills the complete-

ness (C2) requirement. Like in GXL, graphs can be easily extended and new requirements

can be implemented by changing the underlying semantic schema. Therefore, RSF is flex-

ible (C3). With the tuples in RSF it is possible to construct a graph. Graphs are evolvable

(C4) for new requirements. A formal (C5) definition of RSF is available from the Rigi

wiki [46]. RSF only defines a graph representation and no concrete models. Hence, there

are no included predefined models (C6). Rigi utilizes RSF and has been proven in large

scale systems of around 5 million lines of code. Therefore, RSF scales up (C7). Through

28

4.5 FAMIX Meta-Model
4 EVALUATION OF DIFFERENT INTERCHANGE FORMATS

FOR SAR

different graphs with a different underlying metaschema different levels of abstraction (C8)

can be achieved but only one is included. No solution reuse was described in the papers

and no solution reuse was obvious except the underlying base format. Therefore, RSF does

not reuse solutions (C9). Graphs can represent static and dynamic dependencies (C10).

Hence, RSF fulfills this requirement.

4.5 FAMIX Meta-Model

FAMIX bases on (C1) CDIF. CDIF is an industrial standard that was chosen for FAMIX

due to its extensibility and standard plain text encoding. FAMIX is defined by a specifica-

tion with a description for each element. Therefore, it fulfills the complete (C2) criterion.

New requirements to the format can be implemented by inheriting from the abstract classes

defined in FAMIX. Hence, FAMIX is evolvable (C3). Tool specific data and own models

can be included in FAMIX by extending the abstract base classes. Thus, FAMIX is flexible

(C4). FAMIX is formal (C5) and well defined by its specification which describes the ele-

ments, their methods, and their attributes. A predefined model (C6) for the representation

of entities like methods, classes, or packages is contained in FAMIX. However, this is the

only one. Moose uses FAMIX for its data storing and Moose has provided adequate results

in SAR. Hence, FAMIX fulfills the scalability (C7) criterion. Several levels of abstraction

(C8) can be implemented in FAMIX. However, this would require an extension of the

FAMIX model. FAMIX reuses (C9) the common entities of object orientation to define

its abstract model. Static and dynamic dependencies (C10) can be represented in FAMIX.

The creators of FAMIX have focused on the fact that a SAR format needs invocation and

access entities.

29

5.3 Activities in KADis’ SAR process 5 DEVELOPMENT OF KADIS

5 Development of KADis

KADis is a new tool, which I developed within the scope of this thesis, to enable SAR

with the usage of KDM. It is implemented as an Eclipse-RCP application. The source

code of KADis and the tool itself can be downloaded from its website [14]. The future

work for further versions of KADis is described in Section 8.2. Section 5.1 and 5.2 present

an overview of the program by listing the features and the design of KADis. The last

Section 5.3 shows the different activities that are performed by KADis in its main feature

accomplishing the SAR process.

5.1 Features

KADis enables the reconstruction of software architectures and uses Source Navigator

NG [36] for the data extraction phase. Source Navigator NG is an open-source project

and thus enables further development and extension of the included parsers. In the first

version KADis only supports Java. However, interfaces for further implementation of other

languages are contained. Basically, classes, packages, and associations are reconstructed

by using the code- and structure package of KDM. The output of the SAR process in

KADis is an XML file in a KDM-conform format (see Section 3.2 for an example).

Appendix D contains the functional specification of KADis. It includes further infor-

mation about the features and other functional details of the program.

5.2 Design

The first version of KADis provides a basis for a powerful SAR tool utilizing the KDM.

Therefore, the main intention of the design is focused onto extensibility and exchangeability

of the created components. Thus, KADis implements the Model-View-Controller (MVC)

architectural pattern, which separates the view, controller, and model from each other.

For future versions it is planed that KADis should act in a self developed framework.

Therefore, the view has to be independent.

For more information about the design of KADis refer to the design specification in

Appendix E.

5.3 Activities in KADis’ SAR process

KADis covers the SAR phases which were defined in Section 2. Figure 11 shows the

different activities that are being performed by KADis in detail. The first activity is

scope identification. This activity is carried out by the user by selecting the files and

folders that the following SAR process should use. After the SAR process is started by

the user, KADis starts the parsing of the passed files and folders in the data extraction

activity with special focus on the information needed by the code and source package of

KDM. KADis uses Source Navigator NG for this task. Then, the results of the parsing

30

5.3 Activities in KADis’ SAR process 5 DEVELOPMENT OF KADIS

Figure 11: Activities in KADis’ SAR process

are saved into a database in the save into database activity. The developed database

schema is based on the KDM specification. After Source Navigator NG has finished, a

Java Abstract Syntax Tree (AST) is used to verify and complete the results. Then, a code

and source model instance of KDM are created from the database. Subsequently, KADis

abstracts the information gathered in the data extraction activity to create a structure

model instance of KDM. Finally, the program exports the three created model instances

as one KDM-conform XML file.

31

6.1 Evaluation with JPetStore 6 EVALUATION OF KADIS

6 Evaluation of KADis

This Section evaluates the functionality of KADis. The completeness evaluation is con-

ducted with JPetStore 5.0 and is described in Section 6.1. The following Section 6.2 shows

the performance evaluation of KADis.

6.1 Completeness Evaluation with JPetStore

JPetStore 5.0 [25] is a web store for pets published by iBatis. The program is a wide used

program for evaluation purposes. The generated output for JPetStore can be downloaded

from the KADis website [14].

KDM is a verbose format. A hello world example in KADis consists of 50 lines as

KDM format. Thus, only an evaluation summary in table 2 is shown for JPetStore. The

elements that were detected by KADis were measured by counting the occurrence of the

corresponding KDM elements type with a text tool. The words, which were searched for

each criterion, are contained in each criterion definition. The total number of the elements

present in JPetStore was counted manually and Appendix C shows a detailed table for the

calculation of the total number in the files. Section 6.1.1 defines the assessment criteria

and Section 6.1.2 discusses the results.

Found Total Percentage
E1 Directories 41 41 100 %
E2 Files 171 171 100 %
E3 Packages 6 6 100 %
E4 Classes 49 49 100 %
E5 Imports 220 220 100 %
E6 Inheritances 42 42 100 %
E7 Instance Variables 150 150 100 %
E8 Methods 421 421 100 %
E9 Local Variables 273 273 100 %

Table 2: Detected elements by KADis and total elements of JPetStore

6.1.1 Assessment Criteria

KADis’ output contains the three models from the source, code, and structure package.

These models have to be evaluated. The source package defines the inventory model

which represents the physical structure of the source code. Directories and files are mostly

contained in this model. For this purpose, E1 and E2 are chosen. The code model

represents the source code. KADis 1.0 only supports Java and is therefore only applicable

for object-oriented software. E3 to E9 define the main elements of an object-oriented

language. The structure model generated by KADis contains a textual description of the

32

6.1 Evaluation with JPetStore 6 EVALUATION OF KADIS

package dependencies in the system. For the package diagram, packages (E3) and imports

(E5) have to be correctly detected.

E1 Directories Directories are part of the physical organization of the source code.

KDM represents the directory structure by recursion. The first directory entry defines the

absolute path to the root source folder. The child directory entry defines the name of the

root source folder. The following directories are always child of these and always define

the relative location of the directory container. A directory in a KDM-file is of the type

source:Directory.

E2 Files Files are containers for different data. The type of a file in KDM can be

source:SourceFile, source:ResourceDescription, source:Image, source:ExecutableFile,

source:BinaryFile, or source:Configuration.

E3 Packages Packages are the Java specific representation of a module. Only the pack-

ages that contain source files are counted. In KDM the type of a package is code:Package.

E4 Classes Classes can be normal classes, interfaces, or enumerations here. Inner

classes are counted as a normal class. The corresponding types in KDM are code:ClassUnit,

code:InterfaceUnit, and code:EnumeratedType.

E5 Imports Imports define the usage of other classes and packages. The imports are

only counted once for a file. The type for imports in KDM is code:Imports.

E6 Inheritances An inheritance relation can be of two types, namely extends and

implements. These types are mapped by KDM to code:Extends and code:Implements.

E7 Instance Variables Instance variables are the global variables of a class. In KDM

variables are of the type code:StorableUnit and an instance variable is of the type global

or static.

E8 Methods In this context methods mean constructors and normal method declara-

tions. KDM defines the type code:MethodUnit for methods.

E9 Local Variables Local variables always belong to one method and are counted for

each declaration. Though anonymous variables, for example new Integer, are not counted.

KDM maps local variables to the type code:StorableUnit with the type local.

6.1.2 Discussion

The directory criterion definition already stated that KDM includes the path and name

of the root source folder. These two directories entries were subtracted from the result of

the search for source:Directory in the KDM-file.

The results show that KADis detects the basic elements of Java. Though looking at the

source code reveals different shortcomings which result from using Source Navigator NG.

Source Navigator NG fails to detect inner classes correctly and simply adds two classes

with the main class name. This can result in mismatching modifiers as happened in the

class ProductSqlMapDao which is a public class but is detected as a public static class,

33

6.2 Performance Evaluation 6 EVALUATION OF KADIS

for instance. Another shortcoming is the detection of package private modifiers. Source

Navigator NG detects this modifier as a private modifier. In future versions of KADis

these shortcomings shall be resolved.

An evaluation with one program is not necessarily generalizable. Though, the evalua-

tion shows that KADis detects a large part of main elements of Java.

6.2 Performance Evaluation

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000
0

5

10

15

20

25

30

JP
et

S
to

re
; 0

,2
K

A
D

is
; 0

,3

Ja
bR

ef
; 1

V
uz

e;
 8

JD
K

; 2
8

total lines of code

m
ea

n
tim

e
in

 m
in

ut
es

Figure 12: Performance evaluation

In the majority of cases SAR must provide a fast output despite handling a big amount

of data. Therefore, KADis was optimized for generating the output as fast as possible by

tuning the used database schema and the database itself, and by implementing different

threads in the linking ids step, which links the reference from an KDM element to another

KDM element. In addition, optimizations for memory usage were done by using a relational

database without an object-relational mapper to control the data that the RAM has to

hold.

The evaluation was done on an Intel Core 2 Duo E7200 2.53 GHz and 4 GB RAM

and a maximum heap size for the JVM of 1536 MB. The versions of the used programs

are JDK [32] 1.6 Update 18 (the contained src.zip), Vuze [47] 4.3.1.2, JabRef [41] SVN

34

6.2 Performance Evaluation 6 EVALUATION OF KADIS

revision 3161 of the main program, KADis 1.0 [14] and JPetStore 5.0. Source code written

in other languages than Java was removed before the reconstruction was accomplished.

Figure 12 shows the performance of KADis processing the aforementioned software.

The total lines of code (LOC) on the x-axis were measured by Metrics [34]. LOC shall

only be a hint for the size of the project here. The mean time in minutes were taken

from the displayed time in KADis after the reconstruction has finished. This time is the

difference between the click on the start reconstruction button and after the KDM-file is

written to the hard disk. To calculate the mean time, the SAR process for each program

was conducted 3 times and to guarantee the same conditions KADis was restarted after

each SAR process. The dashed curve defines an estimated mean time. The values behind

the items are the concrete mean time values in minutes for the item.

The curve in Figure 12 lets assume that KADis’ output generation is above linear time

but within square time. An explanation can be found in the underlying algorithms. The

link algorithms in KADis, for instance the former mentioned id linking step, have O(n∗m)

time where n stands for the number of elements that have to be linked from and m for

the number of available elements in the KDM instance. These algorithms, which form the

bottleneck here, have to be optimized in future versions by search trees, for example.

35

7.4 MoDisco 7 RELATED TOOLS IN SAR

7 Related Tools in Software Architecture Recon-

struction

There are many tools available that perform SAR. Section 7.1 to 7.3 list only a few tools

that were mentioned in other Sections of the thesis. An exception is made for MoDisco,

which is a framework which uses KDM to describe software architectures, and that is

covered in greater detail in Section 7.4.

7.1 Architecture Reconstruction and MINing

Architecture Reconstruction and MINing (ARMIN) [39] is a tool developed by the Software

Engineering Institute and Robert Bosch Corporation. It uses RSF for importing files

and provides configurable modeling and visualization. ARMIN is a successor of the Dali

architecture reconstruction workbench [26] and realizes the QADSAR approach, which is

described in Section 2.5.3.

7.2 Rigi

Rigi [19] is a semi automatic reverse engineering environment, which was developed at

the University of Victoria. It consists of several tools. These are parsers, command-line

utilities, and an interactive graph editor, which is the core of the system and is called

rigiedit. Graph models are stored and retrieved by this tool. It is programmable by using

the scripting language Tcl, which is a library of scripts supplied for performing common

reverse engineering tasks. The data is represented in its own format named RSF.

7.3 Moose

Moose [20] is a language-independent environment for reverse and re-engineering software

systems. The project started at the Software Composition Group in 1997. The tool is

an open source software and utilizes a Smalltalk implementation of FAMIX. Moose offers

a set of different services. The tool includes a common meta-model, visualization, and a

model repository, for instance. Moose was developed in the context of FAMOOS, which

was an European project whose goal was to support the evolution of first generation

object-oriented software towards object-oriented frameworks.

7.4 MoDisco

MoDisco [40] provides a framework to develop model-driven tools in different scenarios

of software modernization. These scenarios are mostly quality assurance, documentation,

improvement, and migration. In the quality assurance scenario it shall be verified whether

an existing system fulfills the quality requirements. The documentation scenario requires

extracting information from a system to support the process of understanding the system.

36

7.4 MoDisco 7 RELATED TOOLS IN SAR

The improvement scenario transforms an existing system to integrate, e.g., design patterns.

Finally, the migration scenario transforms an existing system to change, for instance, a

component.

For these purposes MoDisco provides different supporting components. Firstly, MoDisco

offers different meta-models to describe the existing system. Secondly, it includes discover-

ers for the automatic extraction of these models. Finally, the framework includes generic

tools to understand and transform the created models.

37

8.2 Future Work 8 CONCLUSION AND FUTURE WORK

8 Conclusion and Future Work

The remainder of the Section concludes the main aspects of the thesis in Section 8.1 and

defines the future work in Section 8.2.

8.1 Conclusion

Different approaches to SAR were shown in Section 2. These approaches were categorized

into a new categorization, which focuses on the basic phases of SAR and therewith the

understanding of SAR. The common data interchange formats for SAR were compared in

Section 4 to evaluate the suitability of KDM. The result of this evaluation is the fact that

KDM meets all defined requirements and is more formal defined than the existing FAMIX

format, which is widely used in similar contexts. Therefore, enabling better interoperabil-

ity between different tools. KADis, a new tool for SAR, was developed to evaluate the

practicability of KDM. The evaluation in Section 6 has shown that KADis generates the

expected output. Hence, KDM was practically utilized and thus KDM has proven useful

in SAR.

8.2 Future Work

Most of the future work lies in extending KADis. KDM is a huge specification. Therefore,

KADis only implements the core, source, kdm, code, and structure package at this time.

The other packages, namely action, data, event, platform, ui, conceptual, and build package,

have to be integrated to fully support KDM.

SAR processes are mostly iterative and incremental and performed semi-automatically.

Different points come up with this circumstance. Firstly, the user has to interact with

the SAR program. Hence, a graphical domain-specific language, that represents KDM

elements, has to be developed. With this graphical representation the reverse engineer

can make changes to the software system, for instance. Secondly, the reconstructed KDM-

conform files have to be merged at the end of each iteration. Therefore, KADis has to

provide a merge system that allows the user to decide whether or not to adopt the made

changes. Thirdly, an easy scripting language for presenting only special points of interest,

for instance only names which start with add, of the architecture has to be developed

and integrated into KADis. In addition, the GUI can support the process of writing

such queries. Lastly, the computation of an iteration should complete as fast as possible.

Therefore, further threads should be implemented in the data gathering and abstraction

phase to meet this requirement, for instance.

Source Navigator NG has different shortcomings in parsing, since it only supports Java

1.0. I have added elements like enumerations by the usage of a Java AST implementation

from the Eclipse package org.eclipse.jdt.core.dom. Although, some elements are still not

being detected correctly. These elements are inner classes, generics, overloaded methods,

and annotations in methods. In future versions these wrongly parsed elements must be

38

8.2 Future Work 8 CONCLUSION AND FUTURE WORK

detected and then be resolved by, for example, the Java AST. An alternative would be

that the Java AST should be the only parser for Java.

Many huge software systems are written in more than one programming language.

Thus, other programming languages than Java have to be supported in KADis, too. This

raises the problem of interoperability between different languages. Many of the old soft-

ware systems are written in procedural languages, like COBOL. Therefore, an abstraction

mechanism that finds classes has to be implemented in KADis.

For a large system there may be more than one reverse engineer involved in SAR.

Therefore, the project system must be extended to save all relevant data, e.g. source files

and resource files, and to provide the possibility of an easy interchange. In a system with

million lines of code and other resource files, like build scripts, the project file can be very

large. The problem of finding an efficient way to save the data by compression or dummy

files, for instance, must be solved.

39

REFERENCES REFERENCES

References

[1] Approximation Algorithms for NP-Hard Problems. SIGACT News, 28(2):40–52, 1997.

ISSN 0163-5700.

[2] KDM Analytics. KDM examples. http://kdmanalytics.com/kdmexamples, 2010-

02-16.

[3] Ivan T. Bowman and Richard C. Holt. Reconstructing Ownership Architectures To

Help Understand Software Systems. Technical report, University of Waterloo, 1999.

[4] Gerardo Canfora and Aniello Cimitile. Software Maintenance. Technical report,

University of Sannio, 2000.

[5] Gerardo Canfora and Massimuliano Di Penta. Frontiers of Reverse Engineering: a

Conceptual Model. Technical report, University of Sannio, Benevento, Italy, 2008.

[6] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,

Robert Nord, and Judith Stafford. Documenting Software Architecture: Views and

Beyond. Addison-Wesley, 2002.

[7] Reidar Conradi. Software Engineering mini glossary. http://www.idi.ntnu.no/

grupper/su/publ/ese/se-defs.html, 2010-02-16.

[8] Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. Why FAMIX - Shortcom-

ings of UML for Round-trip Engineering. Technical report, University of Berne, 1999.

[9] Serge Demeyer, Sander Tichelaar, and Patrick Steyaert. FAMIX 2.0 The FAMOOS

Information Exchange Model. Technical report, University of Berne, 1999.

[10] Stéphane Ducasse and Damien Pollet. Software Architecture Reconstruction: A

Process-Oriented Taxonomy. Technical report, Centre de Recherche Inria Lille, 2009.

[11] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. MOOSE: an Extensible

Language-Independent Environment for Reengineer Object-Oriented Systems. Tech-

nical report, University of Berne, 2000.

[12] Jürgen Ebert, Bernt Kullbach, and Andreas Winter. GraX - An Interchange Format

for Reenginieering Tools. In in Sixth Working Conference on Reverse Engineering.

IEEE Computer Society, Los Alamitos, pages 89–98. IEEE Computer Society Press,

1999.

[13] Loe Feijs, René Krikhaar, and Rob van Ommering. A Relational Approach to Support

Software Architecture Analysis. Software, Practice Experience, 28(4):371–400, 1998.

[14] Florian Fittkau. KADis. http://sourceforge.net/projects/kadis/, 2010-02-16.

40

http://kdmanalytics.com/kdmexamples
http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html
http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html
http://sourceforge.net/projects/kadis/

REFERENCES REFERENCES

[15] Rony G. Flatscher. Metamodeling in EIA/CDIF—meta-metamodel and metamodels.

ACM Trans. Model. Comput. Simul., 12(4):322–342, 2002. ISSN 1049-3301.

[16] Bernd Krieg-Brückner’s Group. uDraw(Graph). http://www.informatik.

uni-bremen.de/uDrawGraph, 2010-02-16.

[17] Object Management Group. Knowledge Discovery Meta-Model. http://www.omg.

org/spec/KDM/1.1/, 2010-02-16.

[18] Object Management Group. XML Metadata Interchange. http://www.omg.org/

spec/XMI/2.1.1/, 2010-02-16.

[19] Rigi Group. Rigi Website. http://www.rigi.csc.uvic.ca, 2010-02-16.

[20] Software Composition Group. Moose Homepage. http://www.moosetechnology.

org/, 2010-02-16.

[21] George Yanbing Guo, Joanne M. Atlee, and Rick Kazman. A Software Architec-

ture Reconstruction Method. Technical report, University of Waterloo and Carnegie

Mellon University, Pittsburgh, 1999.

[22] Michael Himsolt. GML: A portable Graph File Format. Technical report, University

of Passau, 1997.

[23] Richard C. Holt. An Introduction to TA: The Tuple-Attribute Language. Technical

report, University of Waterloo, 1997.

[24] Richard C. Holt, Andreas Winter, and Andy Schürr. GXL: Toward a Standard Ex-

change Format. Technical report, University of Waterloo and University of Koblenz-

Landau and University Bw, Muenchen, 2000.

[25] iBATIS team. JPetstore. http://mirror.synyx.de/apache/ibatis/binaries/

ibatis.java/JPetStore-5.0.zip, 2010-02-16.

[26] R. Kazman and S.J. Carrière. Playing Detective: Reconstructing Software Architec-

ture from Available Evidence. Technical report, 1999.

[27] Rick Kazman, Liam O’Brien, and Chris Verhoef. Architecture Reconstruction Guide-

lines, Third Edition. Technical report, Carnegie Mellon University, Pittsburgh,

November 2003.

[28] Rainer Koschke. Architecture Reconstruction, Tutorial on Reverse Engineering to

the Architectural Level. Technical report, University of Bremen, 2009.

[29] Giuseppe Antonio Di Lucca, Anna Rita Fasolino, and Ugo de Carlini. Recovering

Use Case Models from Object-Oriented Code: A Thread-Based Approach. Reverse

Engineering, Working Conference on, 0:108, 2000. ISSN 1095-1350.

41

http://www.informatik.uni-bremen.de/uDrawGraph
http://www.informatik.uni-bremen.de/uDrawGraph
http://www.omg.org/spec/KDM/1.1/
http://www.omg.org/spec/KDM/1.1/
http://www.omg.org/spec/XMI/2.1.1/
http://www.omg.org/spec/XMI/2.1.1/
http://www.rigi.csc.uvic.ca
http://www.moosetechnology.org/
http://www.moosetechnology.org/
http://mirror.synyx.de/apache/ibatis/binaries/ibatis.java/JPetStore-5.0.zip
http://mirror.synyx.de/apache/ibatis/binaries/ibatis.java/JPetStore-5.0.zip

REFERENCES REFERENCES

[30] Nenad Medvidovic and Vladimir Jakobac. Using software evolution to focus archi-

tectural recovery. Technical report, University of Southern California, 2006.

[31] Gail Murphy, David Notkin, and Kevin Sullivan. Extending and Managing Software

Reflexion Models. Technical report, University of British Columbia and University of

Washington and University of Virginia, 1997.

[32] Oracle. JDK website. http://java.sun.com/javase/downloads/index.jsp, 2010-

02-16.

[33] Matthias Rohr, Andre van Hoorn, Jasminka Matevska, Nils Sommer, Lena Stoever,

Simon Giesecke, and Wilhelm Hasselbring. Kieker. http://kieker.sourceforge.

net/, 2010-02-16.

[34] Frank Sauer. Metrics website. http://sourceforge.net/projects/metrics/, 2010-

02-16.

[35] Andy Schürr, Andreas Winter, and Albert Zündorf. The Progres Approach: Language

And Environment. Technical report, University of München and University of Aachen

and University of Paderborn, 1999.

[36] sourcenav NG development group. Source Navigator NG. http://sourcenav.

berlios.de/, 2010-02-16.

[37] Guy St-Denis, Reinhard Schauer, and Rudolf K. Keller. Selecting a Model Interchange

Format, The Spool Case Study. Technical report, University of Montreal, 2000.

[38] Christoph Stoermer, Anthony Rowe, Liam O’Brien, and Chris Verhoef. Model-centric

software architecture reconstruction. Technical report, Robert Bosch Corporation,

Pittsburgh and Carnegie Mellon University, Pittsburgh and Software Engineering

Institute, Pittsburgh and Free University of Amsterdam, 2000.

[39] Christoph Stoermer, Liam O’Brien, and Chris Verhoef. Moving Towards Quality

Attribute Driven Software Architecture Reconstruction. Technical report, University

of Bremen, 2009.

[40] AtlanMod Team. MoDisco. http://wiki.eclipse.org/MoDisco, 2010-02-16.

[41] JabRef team. JabRef website. http://sourceforge.net/projects/jabref/, 2010-

02-16.

[42] Sander Tichelaar, Stéphane Ducasse, and Serge Demeyer. FAMIX and XMI. Technical

report, University of Berne and University of Antwerp, 2000.

[43] S. Tilley and D. B. Smith. Perspective on Legacy System Reengineering. Technical

report, Carnegie Mellon University, 1995.

42

http://java.sun.com/javase/downloads/index.jsp
http://kieker.sourceforge.net/
http://kieker.sourceforge.net/
http://sourceforge.net/projects/metrics/
http://sourcenav.berlios.de/
http://sourcenav.berlios.de/
http://wiki.eclipse.org/MoDisco
http://sourceforge.net/projects/jabref/

REFERENCES REFERENCES

[44] Qiang Tu and Michael W. Godfrey. The Build-Time Software Architecture View.

Technical report, University of Waterloo, 2001.

[45] Arie van Deursen, Christine Hofmeister, Rainer Koschke, Leon Moonen, and Clau-

dio Riva. Symphony: View-Driven Software Architecture Reconstruction. Technical

report, University of Technol., Netherlands, 2004.

[46] Eelco Visser. Rigi RSF. http://www.program-transformation.org/Transform/

RigiRSF, 2010-02-16.

[47] Vuze Inc. Vuze website. http://www.vuze.com/, 2010-02-16.

[48] Andreas Winter. Exchanging Graphs with GXL. Technical report, University of

Koblenz-Landau, 2002.

[49] Andreas Winter, Bernt Kullbach, and Volker Riediger. An Overview of the GXL

Graph Exchange Language. Technical report, University of Waterloo and University

of Koblenz-Landau and University Bw, Muenchen, 2002.

[50] Kenny Wong. Rigi User’s Manual. Technical report, University of Victoria, 1998.

[51] Kenny Wong, Scott R. Tilley, Hausi A. Mueller, and Margaret-Anne D. Storey. Struc-

tural Redocumentation: A Case Study. Technical report, University of Victoria,

January 1995.

43

http://www.program-transformation.org/Transform/RigiRSF
http://www.program-transformation.org/Transform/RigiRSF
http://www.vuze.com/

A ACRONYMS A ACRONYMS

Appendices

A Acronyms

AST

Abstract Syntax Tree

DTD

Document Type Definition

FAMIX

FAMOOS Information Exchange Model

GXL

Graph eXchange Language

KADis

KDM Architecture Discoverer

KDM

Knowledge Discovery Meta-Model

QADSAR

Quality Attribute Driven Software Architecture Reconstruction

RSF

Rigi Standard Format

SAR

Software Architecture Reconstruction

TA

Tuple Attribute Language

UML

Unified Modeling Language

XMI

XML Metadata Interchange

i

B GLOSSARY B GLOSSARY

B Glossary

Software architecture

Architecture is the fundamental organization of a system embodied in its compo-

nents, their relationships to each other, and to the environment, and the principles

guiding its design and evolution. [IEEE Std 1471-2000]

Software artifact

Any piece of software [..] developed and used during software development and

maintenance. Examples are requirements specifications, architecture and design

models, source and executable code (programs), configuration directives, test data,

test scripts, process models, project plans, various documentation etc. [taken from

“Software Engineering mini glossary” [7]]

View

A view is a representation of a whole system from the perspective of a related set

of concerns. [ISO/IEC 42010:2007]

Viewpoint

A viewpoint is an abstraction that yields a specification of the whole system re-

stricted to a particular set of concerns. [IEEE Std 1471-2000]

ii

C JPETSTORE ELEMENTS C JPETSTORE ELEMENTS

C JPetStore elements

File name Pack Cla Imp Inh InstV Met LocV

Account.java domain 1 1 1 18 36 0

BeanTest.java domain 1 11 1 1 2 9

Cart.java domain 1 5 1 2 10 11

CartItem.java domain 1 2 1 4 9 0

Category.java domain 1 1 1 3 7 0

DomainFixture.java domain 1 2 0 0 2 4

Item.java domain 1 2 1 13 27 0

LineItem.java domain 1 2 1 7 16 0

Order.java domain 1 6 1 27 57 3

Product.java domain 1 1 1 4 9 0

Sequence.java domain 1 1 1 2 6 0

AccountDaoTest.java persistence 1 3 1 1 4 5

BasePersistenceTest.java persistence 1 2 1 1 1 0

CategoryDaoTest.java persistence 1 1 1 1 2 0

DaoConfig.java persistence 1 8 0 2 3 8

ItemDaoTest.java persistence 1 5 1 4 5 3

OrderDaoTest.java persistence 1 4 1 3 2 5

PersistenceFixture.java persistence 1 6 0 5 2 3

ProductDaoTest.java persistence 1 1 1 1 3 0

SequenceDaoTest.java persistence 1 1 1 1 1 4

AccountDao.java iface 1 1 0 0 4 0

CategoryDao.java iface 1 2 0 0 2 0

ItemDao.java iface 1 3 0 0 4 0

OrderDao.java iface 1 2 0 0 3 0

ProductDao.java iface 1 2 0 0 3 0

SequenceDao.java iface 1 0 0 0 1 0

AccountSqlMapDao.java sqlmapdao 1 3 2 0 5 1

BaseSqlMapDao.java sqlmapdao 1 2 1 1 1 0

CategorySqlMapDao.java sqlmapdao 1 4 2 0 3 0

ItemSqlMapDao.java sqlmapdao 1 8 2 0 5 7

OrderSqlMapDao.java sqlmapdao 1 5 2 0 4 3

ProductSqlMapDao.java sqlmapdao 2 7 2 1 6 2

SequenceSqlMapDao.java sqlmapdao 1 4 2 0 2 2

AbstractBean.java presentation 1 2 1 5 1 0

AccountBean.java presentation 1 8 1 10 28 3

AccountBeanTest.java presentation 1 8 1 0 11 38

iii

C JPETSTORE ELEMENTS C JPETSTORE ELEMENTS

CartBean.java presentation 1 7 1 4 14 8

CartBeanTest.java presentation 1 7 1 0 7 21

CatalogBean.java presentation 1 5 1 12 31 0

CatalogBeanTest.java presentation 1 8 1 0 8 18

OrderBean.java presentation 1 9 1 9 22 10

OrderBeanTest.java presentation 1 12 1 0 14 65

AccountService.java service 1 4 0 1 6 1

AccountServiceTest.java service 1 5 1 0 4 8

CatalogService.java service 1 10 0 3 10 1

CatalogServiceTest.java service 1 10 1 0 8 16

OrderService.java service 1 8 0 4 6 2

OrderServiceTest.java service 1 9 1 0 4 12

Overall 6 49 220 42 150 421 273

Table 3: Elements of JPetStore

Legend for table 3

File name: The file name which is unique in JPetStore.

Pack: Pack stands for package declaration. To count the distinct packages the package

declaration name is displayed in the table.

Cla: Classes, interface, and enumerations are counted in this column.

Imp: Imp are all import statements included in the file.

Inh: Inh stands for the inheritances declared by implement and extend statements.

InstV: InstV are the instance variables in the file.

Met: The methods in the file.

LocV: LocV are the local variables in the file. Variable declarations in for statements are

not counted as local variables because they have a special purpose for indexing elements.

iv

D FUNCTIONAL SPECIFICATION D FUNCTIONAL SPECIFICATION

D Functional Specification

Functional Specification:

KDM Architecture Discoverer
(KADis)

State: 2010-02-15

Version: 1.0

Author:

Florian Fittkau

v

CONTENTS CONTENTS

Contents

1 Purpose 1

1.1 Required features . 1

1.2 Desired features . 1

1.3 Optional features . 2

2 Scope 3

2.1 Application range . 3

2.2 Target group . 3

3 Minimum Requirements 4

3.1 Software . 4

3.2 Hardware . 4

4 Product Overview 5

5 Actors 6

6 Product Functions 7

6.1 User Use Cases . 7

6.1.1 Manage projects . 7

6.1.2 Manage data for reconstruction 8

6.1.3 Set output folder for KDM-file 9

6.1.4 Perform architecture reconstruction 10

6.1.5 Filter log messages . 11

6.2 System Use Cases . 12

6.2.1 Parse artifacts . 12

6.2.2 Get results from external parser 13

7 Product Data 14

7.1 Projects . 14

7.2 KDM-files . 14

8 Product Performance 15

9 Graphical User Interface 16

9.1 Main window . 16

9.2 Dialogues . 17

9.3 Layout . 17

9.4 Eclipse integration . 17

I

CONTENTS CONTENTS

10 Software System’s Attributes 18

11 Test Cases 19

11.1 Hello World program . 19

11.2 More complex test program . 19

11.3 JPetStore . 19

12 Development Environment 20

12.1 Software . 20

12.2 Hardware . 20

References 21

A Acronyms i

B Glossary ii

II

1 PURPOSE

1 Purpose

KDM Architecture Discoverer (KADis) is an Eclipse-RCP application, which enables

the user to reconstruct the architecture of a given program on basis of its source

code. Section 1.1 to 1.3 outline the features of KADis. For a definition of the

different feature types refer to the glossary.

1.1 Required features

• Enabling software architecture reconstruction from Java source code and other

system artifacts. The reconstructed architecture is saved in a Knowledge Dis-

covery Meta-Model (KDM)-conform format into a file.

• Using Source Navigator NG [4] for parsing the given source code.

• The Java parser in Source Navigator NG understands Java 1.0 and upwards.

If there are needed symbols that can not be parsed and are essential, they will

be added by extending the Java parser.

• Basically classes, packages, and associations will be reconstructed by using

code- and structure package from KDM. For details refer to the KDM specifi-

cation [3].

• Project-system: The user can open a new or existing project, which saves the

added folders and files in a list. After program start a new unnamed project

is open.

• Folders and files with system artifacts can be added or removed from an in-

ternal list. Items in the list are used for the architecture reconstruction.

• While the system is busy with the reconstruction, a progress-bar is shown

with information about the progress and in which phase of reconstruction the

system is currently working.

• After the reconstruction has finished the reconstructed architecture is opened

with an XML Editor.

• Extension mechanism that lays the foundations for applying different program-

ming languages and further abstraction mechanisms.

1.2 Desired features

• Different language support (English and German)

1

1.3 Optional features 1 PURPOSE

1.3 Optional features

• Graphical representation of the reconstructed architecture

• A scripting language which enables configuration of the items mapped to KDM

(for instance, filtering of components with special names)

• Support for different functional programming languages as input (namely

COBOL, FORTRAN and ANSI C)

• Support for different object-oriented programming languages as input (namely

C++)

• Adding more supported programming languages as input by writing own parser

for Source Navigator NG.

2

2 SCOPE

2 Scope

2.1 Application range

KADis can be used for reconstruction of a software architecture from source code.

It is aimed that different object-oriented languages will be supported.

2.2 Target group

The target group mostly consists of software engineers and software reengineers but

every person with knowledge about programming can use this tool.

3

3 MINIMUM REQUIREMENTS

3 Minimum Requirements

3.1 Software

• Java Runtime Environment (at least version 1.6 update 18)

• Any operating system that supports Java

• Eclipse (version 3.5)

3.2 Hardware

• Personal computer with minimum requirements:

– CPU: at least Pentium 4 with 2 GHz

– RAM: at least 2 GB

– Graphic-card: at least DirectX 9 compatible

– Free HDD space for the resulting KDM-file (min. 500 MB)

4

4 PRODUCT OVERVIEW

4 Product Overview

Figure 1 gives an overview of User Use Cases and System Use Cases. The User

Use Cases define the possible interaction between the user and KADis. Section

6.1 describes them in detail. The System Use Cases define the interaction between

KADis and external services. For a specific description refer to Section 6.2. All

displayed Use Cases are required features.

Figure 1: Overview of User Use Cases and System Use Cases

5

5 ACTORS

5 Actors

The following actors interact with KADis. They relate to the Use Cases described

in Section 6.

Actor Description Related Use Cases

User

Manages projects,

folders and files.

Starts the architec-

ture reconstruction

process.

• V-1 Manage projects

• V-2 Manage data for reconstruction

• V-3 Set output folder for KDM-file

• V-4 Perform architecture reconstruction

• V-5 Filter log messages

System

Works with the ex-

ternal parser and

conducts the archi-

tecture reconstruc-

tion process.

• S-1 Parse artifacts

• S-2 Get results from external parser

6

6 PRODUCT FUNCTIONS

6 Product Functions

6.1 User Use Cases

The Use Cases listed below are described in the following:

• V-1 Manage projects

• V-2 Manage data for reconstruction

• V-3 Set output folder for KDM-file

• V-4 Perform architecture reconstruction

• V-5 Filter log messages

6.1.1 Manage projects

Use Case number V-1

Use Case name Manage projects

Primary actor User

Other actors -

Description The user creates a new project or, opens or saves an

existing project.

Precondition -

Postcondition The created or chosen project is open.

Functionality of Use Case Steps:

1. The user chooses ”New project“ from the file

menu.

2. The user enters a name for the new project.

Alternatives

to 1) The user chooses ”Open project“ from the file

menu.

to 2) The user chooses ”Save project“ from the file

menu.

Exception The user did not enter a valid project name.

Used Use Cases -

7

6.1 User Use Cases 6 PRODUCT FUNCTIONS

6.1.2 Manage data for reconstruction

Use Case number V-2

Use Case name Manage data for reconstruction

Primary actor User

Other actors -

Description The user manages the data used for reconstruction.

Precondition -

Postcondition The selected data was added to or removed from the

data list.

Functionality of Use Case Steps:

1. The user clicks on ”Add folder“.

2. The user chooses a folder in the opening dia-

logue.

Alternatives

to 1) The user clicks on ”Add file“.

to 1) The user clicks on ”Remove“.

Exception -

Used Use Cases -

8

6.1 User Use Cases 6 PRODUCT FUNCTIONS

6.1.3 Set output folder for KDM-file

Use Case number V-3

Use Case name Set output folder for KDM-file

Primary actor User

Other actors -

Description The user sets the output folder in which the created

KDM-file will be saved.

Precondition -

Postcondition The output path is set to a valid location.

Functionality of Use Case Steps:

1. The user clicks on ”Change“ beneath the dis-

played output folder.

2. The user chooses a folder in the opening dia-

logue.

Alternatives -

Exception -

Used Use Cases -

9

6.1 User Use Cases 6 PRODUCT FUNCTIONS

6.1.4 Perform architecture reconstruction

Use Case number V-4

Use Case name Start architecture reconstruction

Primary actor User

Other actors System

Description The user performs the software architecture recon-

struction process and the system executes the recon-

struction.

Precondition -

Postcondition A new KDM-file is stored in the output folder. The

name of the file is the project name and a timestamp

of the start time of the reconstruction process. The

created KDM-file was opened in a XML Editor.

Functionality of Use Case Steps:

1. The user clicks on ”Start reconstruction“.

2. The system starts the external parser (6.2.1)

3. The system processes the results from the ex-

ternal parser (6.2.2)

Alternatives -

Exception No data was selected for reconstruction.

Used Use Cases S-1 and S-2 (see Section 6.2.1 and 6.2.2)

10

6.1 User Use Cases 6 PRODUCT FUNCTIONS

6.1.5 Filter log messages

Use Case number V-5

Use Case name Filter log messages

Primary actor User

Other actors -

Description The user filters different types of log messages.

Precondition The check-box with the desired filter is unchecked.

Postcondition The log window displays only the filtered messages.

Functionality of Use Case Steps:

1. The user clicks on the checkbox ”Errors“.

Alternatives

1. to 1) The user clicks on the checkbox ”Warn-

ings“.

2. to 1) The user clicks on the checkbox ”Normal“.

Exception -

Used Use Cases -

11

6.2 System Use Cases 6 PRODUCT FUNCTIONS

6.2 System Use Cases

The following Use Cases are described in the subsequent Sections 6.2.1 and 6.2.2:

• S-1 Parse artifacts

• S-2 Get results from external parser

6.2.1 Parse artifacts

Use Case number S-1

Use Case name Parse artifacts

Primary actor System

Other actors -

Description The system parses the artifacts.

Precondition -

Postcondition The parser ran and a result file is available.

Functionality of Use Case Steps:

1. The system starts parsing the artifacts.

Alternatives -

Exception The parser was not found.

Used Use Cases -

12

6.2 System Use Cases 6 PRODUCT FUNCTIONS

6.2.2 Get results from external parser

Use Case number S-2

Use Case name Get results from external parser

Primary actor System

Other actors -

Description The results from parsing step are fetched from a result

file.

Precondition The parser ran and a result file is available.

Postcondition The results of the parser are loaded in the system.

Functionality of Use Case Steps:

1. The system opens the result file and reads it.

Alternatives -

Exception Result file could not be read.

Used Use Cases -

13

7 PRODUCT DATA

7 Product Data

The following Section declares all data and data structures that KADis saves and

uses:

7.1 Projects

Different projects for different reconstructions can be defined. The data saved for

every project is:

• Name

• Folders and files as paths that were added

• Output folder for the created KDM-file

• The path to the last reconstructed KDM-file (if there is one)

7.2 KDM-files

The reconstructed architecture is stored in a file. For the specific data, which is

stored, refer to KDM specification [3]. The output includes an inventory model, a

code model, and a structure model from KDM.

14

8 PRODUCT PERFORMANCE

8 Product Performance

Scoping: By adding own folders and files the user can determine which data will

be used for architecture reconstruction. In this way the user has control over

the artifacts to focus on. For instance, only one subsystem can be selected and

reconstructed to focus on this special subsystem.

Abstraction: In a system with multi million lines of source code it is not adequate

to view every single class. Instead of this, the classes must be clustered to

components, for instance. The different views of the architecture must be

reconstructed. Abstraction mechanisms make this possible. The software will

make basic abstraction (namely by simple clustering) of the system artifacts.

Other abstraction mechanisms can be implemented through an interface.

15

9 GRAPHICAL USER INTERFACE

9 Graphical User Interface

This Section provides an overview and first impression of the Graphical User Inter-

face of KADis. The sketched Graphical User Interface is only a prototype for showing

the functionality and constitutes a coarse overview of the final user interface.

9.1 Main window

Figure 2: Main window

Figure 2 shows the main window. The button ”Change“ changes the output

folder (Use Case: V-3 Set output folder for KDM-file). The buttons ”Add folder“,

”Add files“ and ”Remove“ realize the adding and removing of folders and files used

for reconstruction (Use Case: V-2 Manage data for reconstruction). The ”Start

reconstruction“ button starts the reconstruction process (Use Case: V-4 Perform

architecture reconstruction). The log window displays normal text in black, warnings

in a dark blue and errors in a dark red color. The filter options under the log window

filter the log messages (Use Case: V-5 Filter log messages). Status at the bottom

shows statuses like ”Reconstruction started“ or in which phase the reconstruction

process currently is. The progress-bar at the lower right shows the overall progress

of reconstruction process.

16

9.2 Dialogues 9 GRAPHICAL USER INTERFACE

9.2 Dialogues

Figure 3: File menu

Figure 4: Info menu

1. The file menu contains the items shown in Figure 3. The first two items,

namely ”New project“ and ”Open project“, realize the project-system as de-

scribed in the Use Case V-1 Manage projects. The ”Exit“ item closes the

application.

2. The info menu consists of the items shown in Figure 4. The ”About“ item

opens a new window with details about KADis (e.g., version and author).

9.3 Layout

To enable an intuitive user interaction with the program, the layout will be guided

by programming-guidelines for designing an user interface for desktop applications

like [2].

9.4 Eclipse integration

Eclipse integration will be made to enable users a familiar handling with the pro-

gram. The program will be implemented as an Eclipse-RCP application. The de-

tailed integration is still under examination.

17

10 SOFTWARE SYSTEM’S ATTRIBUTES

10 Software System’s Attributes

very important important less important unimportant
robustness x
reliability x
maintainability x
extensibility x
user friendliness x
efficiency x
portability x
compatibility x

Table 1: Software system’s attributes

18

11 TEST CASES

11 Test Cases

The following scenarios will be tested to verify system functionality:

11.1 Hello World program

A simple ”Hello World program“ will be created in Java with two classes and an asso-

ciation between them. They will be located in a package called helloWorldPackage.

The information has to be present in the created KDM-file.

11.2 More complex test program

A more complex test program will be created in Java. This program will consist of

two classes in one package called firstPackage and two classes in another package

called secondPackage. The classes will call each other. The information must be

contained in the created KDM-file either.

11.3 JPetStore

JPetStore [1] will be used to test the program. All of the static information in

JPetStore must be contained in the created KDM-file.

19

12 DEVELOPMENT ENVIRONMENT

12 Development Environment

12.1 Software

• Platform:

– Java

– Subversion

• Tools:

– Eclipse

– Adobe Acrobat Reader

– LATEX

– Visual Paradigm

– NetBeans with UML plugin

• Operating system:

– Windows 7

12.2 Hardware

• One personal computer that meets the minimum requirements listed in Sec-

tion 3 with Internet access.

20

REFERENCES REFERENCES

References

[1] iBATIS. JPetstore. http://apache.linux-mirror.org/ibatis/binaries/

ibatis.java/JPetStore-5.0.zip, 2010-02-15.

[2] Microsoft. Microsoft Inductive User Interface Guidelines. http://msdn.

microsoft.com/en-us/library/ms997506.aspx, 2010-02-15.

[3] Object Management Group. Knowledge Discovery Meta-Model. http://www.

omg.org/spec/KDM/1.1/, 2010-02-15.

[4] sourcenav NG development group. Source Navigator NG. http://sourcenav.

berlios.de/, 2010-02-15.

21

A ACRONYMS

Appendices

A Acronyms

KADis

KDM Architecture Discoverer

KDM

Knowledge Discovery Meta-Model

i

B GLOSSARY

B Glossary

Desired feature

The implementation of this feature is not critical but should be implemented.

Optional feature

The feature will be implemented only if there is enough time.

Required feature

A feature that is critical and has to be implemented.

System artifact

System artifacts are things like source code, build files, configuration files etc.

System Use Cases

Use Cases that have the system as their primary actor.

User Use Cases

Use Cases that have the user as their primary actor.

ii

E DESIGN SPECIFICATION E DESIGN SPECIFICATION

E Design Specification

Design Specification:

KDM Architecture Discoverer
(KADis)

State: 2010-02-15

Version: 1.0

Author:

Florian Fittkau

xxxii

CONTENTS CONTENTS

Contents

1 Introduction 1

1.1 References . 1

1.2 Overview . 1

2 System Overview 2

2.1 Packages . 2

2.2 Components . 3

3 Packages 4

3.1 View . 4

3.1.1 EclipseRCP . 4

3.1.1.1 MenuHandler . 4

3.1.1.2 Preferences . 4

3.1.1.3 XMLEditor . 4

3.2 Model . 4

3.2.1 ObserverInterfaces . 4

3.2.2 Repository . 4

3.3 Controller . 4

3.3.1 Abstraction . 5

3.3.2 Cache . 5

3.3.2.1 Cache Model . 5

3.3.2.2 Cache Types . 5

3.3.3 Parser . 5

3.3.3.1 Parser Helper . 5

3.3.3.2 SourceNav . 5

3.3.3.3 SourceNav Handler 5

3.3.3.4 SourceNav Models 5

3.3.4 SARManager . 5

3.3.5 Tools . 6

4 Classes 7

4.1 View (Section B.1) . 7

4.1.1 EclipseRCP (Section B.1.1) 7

4.1.1.1 MenuHandler (Section B.1.1.1) 8

4.1.1.2 Preferences (Section B.1.1.2) 8

4.1.1.3 XMLEditor (Section B.1.1.3) 8

4.2 Model (Section B.2) . 9

I

CONTENTS CONTENTS

4.2.1 ObserverInterfaces (Section B.2.1) 10

4.2.2 Repository (Section B.2.2) . 10

4.3 Controller (Section B.3) . 10

4.3.1 Abstraction (Figure B.3.1) . 10

4.3.2 Cache (Section B.3.2) . 10

4.3.2.1 CacheModel (Section B.3.2.1) 11

4.3.2.2 CacheTypes (Section B.3.2.2) 11

4.3.3 Parser (Section B.3.3) . 11

4.3.3.1 Parser Helper (Section B.3.3.1) 12

4.3.3.2 SourceNav (Section B.3.3.2) 12

4.3.3.3 SourceNav Handler (Section B.3.3.3) 12

4.3.3.4 SourceNav Models (Section B.3.3.4) 13

4.3.4 SARManager (Section B.3.4) 13

4.3.5 Tools (Section B.3.5) . 13

5 Dynamic Diagrams 14

5.1 V-1 Manage projects . 14

5.2 V-2 Manage data for reconstruction 15

5.3 V-3 Set output folder for KDM-file 16

5.4 V-4 Perform architecture reconstruction 17

5.5 V-5 Filter log messages . 18

5.6 S-1 Parse artifacts . 19

5.7 S-2 Get results from external parser 20

References 21

A Acronyms i

B Class Diagrams ii

B.1 View class diagram . ii

B.1.1 EclipseRCP class diagram . iii

B.1.1.1 MenuHandler class diagram iv

B.1.1.2 Preferences class diagram v

B.1.1.3 XMLEditor class diagram vi

B.2 Model class diagram . vii

B.2.1 ObserverInterfaces class diagram viii

B.2.2 Repository class diagram . ix

B.3 Controller class diagram . x

B.3.1 Abstraction class diagram . xi

B.3.2 Cache class diagram . xii

II

CONTENTS CONTENTS

B.3.2.1 CacheModel class diagram xiv

B.3.2.2 CacheTypes class diagram xv

B.3.3 Parser class diagram . xvi

B.3.3.1 Parser Helper class diagram xvii

B.3.3.2 SourceNav class diagram xviii

B.3.3.3 SourceNav Handler class diagram xix

B.3.3.4 SourceNav Models class diagram xx

B.3.4 SAR Manager class diagram xxi

B.3.5 Tools class diagram . xxii

III

1 INTRODUCTION

1 Introduction

This document represents a documentation of the design of KDM Architecture Dis-

coverer (KADis). It is written particularly for people who want to develop KADis

further. For this purpose the understanding of the underlying design is essential.

There already exists a functional specification [3], which describes the fundamental

functions of the application. Furthermore, the different Use Cases are defined in the

functional specification, which give a more precisely overview of the planed program

features.

1.1 References

To enable an easy development and an open project format Eclipse is used as IDE.

Eclipse [1] is a free platform, which has native Java support. Furthermore, the

application is designed and implemented as an Eclipse RCP application.

KADis is developed with Java 1.6. Thus, it is assumed that the reader is familiar

with Java. Java is a free programming language which was developed by Sun Mi-

crosystems. More information about Java and Sun Microsystems can be obtained

from the official website [7].

For modeling the system the Unified Modelling Language (UML) plug-in for

NetBeans is used. This plug-in for the free IDE NetBeans is specialized for the

creation of UML diagrams. NetBeans plug-ins and further information can be found

on the NetBeans website [5].

The design utilizes some design patterns that are described by Gamma et al [4].

For data collection the tool Source Navigator NG is used. More information

about this tool is available on its website [8].

To compensate the shortcomings of Source Navigator NG KADis features a Java

AST implementation from the Eclipse project [2].

1.2 Overview

Section 2 gives a short, abstract overview of the structure of the system. In Section 3

the description of the packages follows. Section 4 displays the classes and Section 5

describes the dynamic behavior of the system on the basis of its Use Cases.

1

2 SYSTEM OVERVIEW

2 System Overview

2.1 Packages

KADis implements the MVC pattern. Therefore, KADis consists of three packages,

namely a view, a model and a controller package (Figure 1). In the view package

all graphical components are contained. The controller package covers the logical

aspects and tasks. All data of KADis is held in the model package and when this

data has changed, the view is informed by it.

Figure 1: Packages of KADis

2

2.2 Components 2 SYSTEM OVERVIEW

2.2 Components

Figure 2 sketches the components of KADis. The MVC components described in

Section 2.1 can be found here again.

Figure 2: Components of KADis

3

3 PACKAGES

3 Packages

This Section describes the different packages of KADis.

3.1 View

The view package realizes the graphical user interface.

3.1.1 EclipseRCP

This package realizes the displaying of a user interface in an Eclipse RCP application.

3.1.1.1 MenuHandler

All menu handlers are contained in this package. A menu handler is called by a click

on an item in the menu bar of KADis.

3.1.1.2 Preferences

This package holds the preferences dialog and constants for it.

3.1.1.3 XMLEditor

In this package the XML editor is contained. The XML editor is created with a

template example of Eclipse RCP applications.

3.2 Model

The model holds all data in KADis.

3.2.1 ObserverInterfaces

The observer interfaces for the view are contained in this package.

3.2.2 Repository

The repository package contains the different representations of the final output of

the Software Architecture Reconstruction (SAR) process.

3.3 Controller

The controller handles all requests from the view.

4

3.3 Controller 3 PACKAGES

3.3.1 Abstraction

This package contains the elements involved in the abstraction phase of the SAR

process.

3.3.2 Cache

The CacheOOPFacade is hold in this package. It realizes a common database for

all SAR phases.

3.3.2.1 Cache Model

The cache model package contains the models generated from the different tables in

the common database.

3.3.2.2 Cache Types

The cache type package contains the types that are shared by the different models

in the common database.

3.3.3 Parser

The parser package holds all parsers that are used in KADis. These are at this time

Source Navigator NG and Java AST.

3.3.3.1 Parser Helper

This package contains helper classes for common parser jobs.

3.3.3.2 SourceNav

The sourcenav package holds all classes that get and convert results from Source

Navigator NG.

3.3.3.3 SourceNav Handler

The different table handlers for Source Navigator NG are contained here.

3.3.3.4 SourceNav Models

The different models for Source Navigator NG are held by this package.

3.3.4 SARManager

The SAR manager handles the correct sequence of the different phases in the SAR

process.

5

3.3 Controller 3 PACKAGES

3.3.5 Tools

Different tools, for instance for accessing the local file system, are contained in this

package.

6

4 CLASSES

4 Classes

This Section lists the classes of KADis. The class diagrams of each package can be

found in appendix B.

4.1 View (Section B.1)

- EclipseRCPGUIFacade: Realizes the IGUIFacade interface to enable an

Eclipse RCP Application GUI.

- IGUIFacade: Defines the required methods of the GUI for KADis.

4.1.1 EclipseRCP (Section B.1.1)

- Activator: The activator class controls the plug-in life cycle and is automat-

ically created for an Eclipse RCP application.

- ApplicationActionBarAdvisor: An action bar advisor is responsible for

creating, adding, and disposing of the actions and is automatically created for

an Eclipse RCP application.

- ApplicationWorkbenchAdvisor: The workbench advisor handles settings

for the created workbench and is automatically created for an Eclipse RCP

application.

- ApplicationWorkbenchWindowAdvisor: The workbench window advisor

handles settings for the main window in the workbench and is automatically

created for an Eclipse RCP application.

- ChangeOutputPanel: This panel is for displaying the change output related

components.

- LogPanel: The log panel shows the log and the check boxes used for filtering.

- MainView: The main view brings all other visible components together and

creates the menu bar.

- ManageDataPanel: The manage data panel handles the displayed data used

for SAR and has a button for starting the SAR process.

- Perspective: The default perspective is created because KADis has only one.

- StatusBar: The bottom bar that shows the current status and the overall

progress.

7

4.1 View (Section B.1) 4 CLASSES

4.1.1.1 MenuHandler (Section B.1.1.1)

- AboutHandler: The about handler opens the about dialog.

- DeleteProjectHandler: The delete project handler opens the delete project

dialog.

- ExitHandler: This handler closes the application.

- LoadProjectHandler: Creates an open dialog and loads the selected dialog.

- NewProjectHandler: The new project handler creates a new project wizard.

- NewProjectWizard: The wizard that enables the creation of a new project.

- NewProjectWizardPage: The concrete page of the new project wizard.

- SaveProjectAsHandler: Opens a save as dialog.

- SaveProjectHandler: Saves the open project at its current location.

- XMLEditorHandler: Opens the XML editor.

4.1.1.2 Preferences (Section B.1.1.2)

- kadisPreferencePage: The concrete preference page of KADis.

- PreferenceConstants: Constants used for identifying the selected items.

- PreferenceInitializer: Creates the preference page.

4.1.1.3 XMLEditor (Section B.1.1.3)

- ColorManager: Automatically created from an Eclipse template for display-

ing an XML editor.

- IXMLColorConstants: Automatically created from an Eclipse template for

displaying an XML editor.

- MyXMLEditorInput: The input provider for the XML editor is defined

here.

- NonRuleBasedDamagerRepairer: Automatically created from an Eclipse

template for displaying an XML editor.

- TagRule: Automatically created from an Eclipse template for displaying an

XML editor.

8

4.2 Model (Section B.2) 4 CLASSES

- XMLConfiguration: Automatically created from an Eclipse template for

displaying an XML editor.

- XMLDocumentProvider: Automatically created from an Eclipse template

for displaying an XML editor.

- XMLDoubleClickStrategy: Automatically created from an Eclipse tem-

plate for displaying an XML editor.

- XMLEditor: Automatically created from an Eclipse template for displaying

an XML editor.

- XMLPartitionScanner: Automatically created from an Eclipse template

for displaying an XML editor.

- XMLScanner: Automatically created from an Eclipse template for displaying

an XML editor.

- XMLTagScanner: Automatically created from an Eclipse template for dis-

playing an XML editor.

- XMLWhitespaceDetector: Automatically created from an Eclipse tem-

plate for displaying an XML editor.

4.2 Model (Section B.2)

- EGUILanguage: Enumeration for the different languages of the GUI.

- ELogMessageType: The different types of log messages are defined in this

enumeration.

- LogMessage: The log message class which enables sending log messages to

the view.

- ModelFacade: Facade that provides all external services of the model.

- Project: The project class for managing data associated with a project.

- SaveSettings: Realizes settings that are saved and loaded when KADis shuts

down or starts.

9

4.3 Controller (Section B.3) 4 CLASSES

4.2.1 ObserverInterfaces (Section B.2.1)

- IChangeOutputObserver: The observer interface for recognizing that the

output path has changed.

- IDataHasChanged: The observer interface for recognizing that the data

used for SAR has changed.

- ILogMessageObserver: The observer interface for receiving log messages.

- IProgressObserver: The observer interface for the progress bar.

- IProjectHasChangedObserver: The observer interface for the title of the

window which contains the project name.

- IReconstructionEndedObserver: The observer interface for the enabling

and disabling of the start reconstruction button.

- IStatusObserver: The observer interface for receiving status messages.

4.2.2 Repository (Section B.2.2)

- IRepository: The interface for repositories

- KDMClasses: A repository implementation by direct mapping to KDM

Classes.

4.3 Controller (Section B.3)

- ControllerFacade: Provides all needed methods for the view.

4.3.1 Abstraction (Figure B.3.1)

- AbstractionManager: Manages the abstraction process.

- IAbstraction: Interface for different abstraction mechanisms

- IAbstractionManagerObs: The observer interface for the abstraction man-

ager.

- PackageAbstractor: Implements the IAbstraction interface and provides

basic package abstraction.

4.3.2 Cache (Section B.3.2)

- CacheOOPFacade: Provides a common database for all phases of the SAR

process.

10

4.3 Controller (Section B.3) 4 CLASSES

4.3.2.1 CacheModel (Section B.3.2.1)

- ClassModel: A model for a class entity

- FileModel: A model for a file entity

- ImportModel: A model for an import entity

- InheritanceModel: A model for an inheritance entity

- MethodModel: A model for a method entity

- PackageModel: A model for a package entity

- VariableModel: A model for a variable entity

4.3.2.2 CacheTypes (Section B.3.2.2)

- EAccess: Enumeration for the different kinds of access to a variable (read,

write,...)

- EAttribute: Enumeration for the modifier of classes/methods/variables (pub-

lic, private,...)

- ELanguage: Enumeration for the concrete programming language (java, c,...)

- EType: Enumeration for the type of the entity if it is dynamically associated

(class, method,...)

- Position: Position defines the start and end position of a declaration.

- TypeHelper: Converts from the string representation to a enumeration and

vice versa.

4.3.3 Parser (Section B.3.3)

- IParser: Interface for different external parsers

- IParserManagerObs: Observer interface for the parser manager.

- JavaAST: Provides a Java abstract syntax tree.

- KDMCodeModelCreator: Creates the Knowledge Discovery Meta-Model

(KDM) [6] code model.

- KDMInventoryModelCreator: Creates the KDM inventory model.

- ParserManager: Manages the parser phase.

- SourceNavigator: Implements the IParser interface and provides the possi-

bility to use source navigator as external parser.

11

4.3 Controller (Section B.3) 4 CLASSES

4.3.3.1 Parser Helper (Section B.3.3.1)

- ExternalCommandExecuter: Executes external programs.

- IExternalProgrammFinishedObserver: Observer interface which is called

when an external program has finished

- InputStreamGobbler: Defines a stream thread for getting the results from

an external program.

- IResultObserver: Observer interface for receiving the results from the input

stream of an external program.

4.3.3.2 SourceNav (Section B.3.3.2)

- SNMainTableManager: Creates and executes the Source Navigator query

script for each Source Navigator table.

- SNResultTupleParser: Converts the result of the query to a string array

representation.

4.3.3.3 SourceNav Handler (Section B.3.3.3)

- ClassHandler: Handles the result of the classes table query.

- IncludesHandler: Handles the result of the includes table query.

- InheritanceHandler: Handles the result of the inheritances table query.

- InstanceVariablesHandler: Handles the result of the instance variables ta-

ble query.

- LocalVariablesHandler: Handles the result of the local variables table query.

- MethodDefintionsHandler: Handles the result of the method definitions

table query.

- MethodImplementationsHandler: Handles the result of the method im-

plementations table query.

- ProjectFilesHandler: Handles the result of the project files table query.

- ReferredByHandler: Handles the result of the referred-by table query.

- RefersToHandler: Handles the result of the refers-to table query.

- SymbolsOfFilesHandler: Handles the result of the symbols-of-files table

query.

12

4.3 Controller (Section B.3) 4 CLASSES

4.3.3.4 SourceNav Models (Section B.3.3.4)

- ReferredByModel: A model that contains all referred-by relations. It should

be saved into the common database in further versions.

- RefersToModel: A model that contains all refers-to relations. It should be

saved into the common database in further versions.

4.3.4 SARManager (Section B.3.4)

- SARManager: Manages in which sequence the phases are executed in the

SAR process.

4.3.5 Tools (Section B.3.5)

- Filesystem: Implements the IFilesystem interface and provides the possibility

to save and load data from local hard disk.

- IDGenerator: A generator for unique IDs.

- JDBCLogic: Provides the communication to a database.

- LanguageStrings: The different strings for the currently selected language

are fetched from this class. For instance, “Rekonstruktion” for reconstruction

if German is the selected language.

- PreferredMapper: Enables correct mapping of XML namespaces.

- XML: A class for marshalling and unmarshalling XML files.

13

5 DYNAMIC DIAGRAMS

5 Realization of Use Cases: Dynamic Diagrams

The following Sections 5.1 to 5.5 describe the dynamic of the software on the basis

of the Use Cases defined in the functional specification.

5.1 V-1 Manage projects

Figure 3: Create a new project

14

5.2 V-2 Manage data for reconstruction 5 DYNAMIC DIAGRAMS

5.2 V-2 Manage data for reconstruction

Figure 4: Add a folder to the data that is used for reconstruction

15

5.3 V-3 Set output folder for KDM-file 5 DYNAMIC DIAGRAMS

5.3 V-3 Set output folder for KDM-file

Figure 5: Change output folder

16

5.4 V-4 Perform architecture reconstruction 5 DYNAMIC DIAGRAMS

5.4 V-4 Perform architecture reconstruction

Figure 6: Perform architecture reconstruction

17

5.5 V-5 Filter log messages 5 DYNAMIC DIAGRAMS

5.5 V-5 Filter log messages

Figure 7: Filter log messages

18

5.6 S-1 Parse artifacts 5 DYNAMIC DIAGRAMS

5.6 S-1 Parse artifacts

Figure 8: Start external parser

19

5.7 S-2 Get results from external parser 5 DYNAMIC DIAGRAMS

5.7 S-2 Get results from external parser

Figure 9: Get results from external parser

20

REFERENCES REFERENCES

References

[1] Eclipse Foundation. Eclipse. http://www.eclipse.org/, 2010-02-15.

[2] Eclipse Foundation. Java AST. http://help.eclipse.org/help32/nftopic/

org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/

package-summary.html, 2010-02-15.

[3] Florian Fittkau. KADis. http://sourceforge.net/projects/kadis/, 2010-

02-15.

[4] Gamma, Erich and Helm, Richard and Johnson, Ralph and Vlissides, John. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley

Longman, 1995.

[5] NetBeans community. NetBeans. http://www.netbeans.org, 2010-02-15.

[6] Object Management Group. Knowledge Discovery Meta-Model. http://www.

omg.org/spec/KDM/1.1/, 2010-02-15.

[7] Oracle. Java. http://www.java.com/, 2010-02-15.

[8] sourcenav NG development group. Source Navigator NG. http://sourcenav.

berlios.de/, 2010-02-15.

21

A ACRONYMS

Appendices

A Acronyms

DSL

Domain-specific Language

KADis

KDM Architecture Discoverer

KDM

Knowledge Discovery Meta-Model

SAR

Software Architecture Reconstruction

UML

Unified Modelling Language

i

B CLASS DIAGRAMS

B Class Diagrams

For the specific meaning of attributes and methods refer to the JavaDoc in the source

code of KADis [3].

B.1 View class diagram

Figure 10: View class diagram

ii

B.1 View class diagram B CLASS DIAGRAMS

B.1.1 EclipseRCP class diagram

Figure 11: EclipseRCP class diagram

iii

B.1 View class diagram B CLASS DIAGRAMS

B.1.1.1 MenuHandler class diagram

Figure 12: MenuHandler class diagram

iv

B.1 View class diagram B CLASS DIAGRAMS

B.1.1.2 Preferences class diagram

Figure 13: Preferences class diagram

v

B.1 View class diagram B CLASS DIAGRAMS

B.1.1.3 XMLEditor class diagram

Figure 14: XMLEditor class diagram

vi

B.2 Model class diagram B CLASS DIAGRAMS

B.2 Model class diagram

Figure 15: Model class diagram

vii

B.2 Model class diagram B CLASS DIAGRAMS

B.2.1 ObserverInterfaces class diagram

Figure 16: ObserverInterfaces class diagram

viii

B.2 Model class diagram B CLASS DIAGRAMS

B.2.2 Repository class diagram

Figure 17: Repository class diagram

ix

B.3 Controller class diagram B CLASS DIAGRAMS

B.3 Controller class diagram

Figure 18: Controller class diagram

x

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.1 Abstraction class diagram

Figure 19: Abstraction class diagram

xi

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.2 Cache class diagram

Figure 20: Cache class diagram part 1

xii

B.3 Controller class diagram B CLASS DIAGRAMS

Figure 21: Cache class diagram part 2

xiii

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.2.1 CacheModel class diagram

Figure 22: CacheModel class diagram

xiv

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.2.2 CacheTypes class diagram

Figure 23: CacheTypes class diagram

xv

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.3 Parser class diagram

Figure 24: Parser class diagram

xvi

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.3.1 Parser Helper class diagram

Figure 25: Parser Helper class diagram

xvii

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.3.2 SourceNav class diagram

Figure 26: SourceNav class diagram

xviii

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.3.3 SourceNav Handler class diagram

Figure 27: SourceNav Handler class diagram

xix

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.3.4 SourceNav Models class diagram

Figure 28: SourceNav Models class diagram

xx

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.4 SAR Manager class diagram

Figure 29: SAR Manager class diagram

xxi

B.3 Controller class diagram B CLASS DIAGRAMS

B.3.5 Tools class diagram

Figure 30: Tools class diagram

xxii

F ATTACHMENTS F ATTACHMENTS

F Attachments

- One DVD labeled Bachelorthesis attachment - Florian Fittkau containing the source

code for KADis, created documents in pdf-format, used external test applications,

and generated KDM outputs for the used test applications

lxxx

	1 Introduction
	2 Approaches to Software Architecture Reconstruction
	2.1 Common Phases in Software Architecture Reconstruction Processes
	2.2 Phase Data Extraction
	2.2.1 Static Analysis
	2.2.2 Dynamic Analysis

	2.3 Phase Repository Storing
	2.3.1 KDM
	2.3.2 GXL
	2.3.3 RSF
	2.3.4 FAMIX

	2.4 Phase Abstraction
	2.4.1 Decomposition
	2.4.2 Class Hierarchies
	2.4.3 Class Diagrams
	2.4.4 Interfaces
	2.4.5 Design Patterns
	2.4.6 Conformance
	2.4.7 Feature Location
	2.4.8 Use Case
	2.4.9 Configuration
	2.4.10 Object Traces
	2.4.11 Component Interaction
	2.4.12 Process Interaction
	2.4.13 Object Interaction
	2.4.14 Conceptual
	2.4.15 Responsibility
	2.4.16 Build Process
	2.4.17 Files
	2.4.18 View Integration/Combination

	2.5 Further Approaches
	2.5.1 Symphony
	2.5.2 Focus
	2.5.3 Quality Attribute Driven SAR

	3 Knowledge Discovery Meta-Model
	3.1 Structure of KDM
	3.2 Example for a KDM-conform File

	4 Evaluation of different Interchange Formats for Software Architecture Reconstruction
	4.1 Assessment criteria
	4.2 KDM
	4.3 GXL
	4.4 RSF
	4.5 FAMIX

	5 Development of KADis
	5.1 Features
	5.2 Design
	5.3 Activities in KADis' SAR process

	6 Evaluation of KADis
	6.1 Completeness Evaluation with JPetStore
	6.1.1 Assessment Criteria
	6.1.2 Discussion

	6.2 Performance Evaluation

	7 Related Tools in Software Architecture Reconstruction
	7.1 ARMIN
	7.2 Rigi
	7.3 Moose
	7.4 MoDisco

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	References
	A Acronyms
	B Glossary
	C JPetStore elements
	D Functional Specification
	E Design Specification
	F Attachments

