
Christian-Albrechts-University Kiel

Department of Computer Science

Software Engineering Group

Bachelorthesis

Modeling Usage and Architecture

Metrics for Software Systems Applying

OMG's KDM and SMM

Benjamin Schnoor

September 30, 2010

Supervised by: Prof. Dr. Wilhelm Hasselbring

M.Sc. Sören Frey

Declaration of Authorship

I Benjamin Schnoor hereby declare that this thesis and the work presented in it is entirely

my own. Where I have consulted the work of others, this is always clearly stated.

Kiel, 30. September 2010

�������������

(Benjamin Schnoor)

Abstract

In 1994, David Parnas remarked that most software systems age over time [18]. He

proposes reengineering in order to slow down software aging. Reengineering consists of

two phases. First, the software system must be analyzed to get di�erent representa-

tions of the existing system. Afterwards, the software system can be restructured in

order to improve internal software quality. The Object Management Group founded the

Architecture-Driven Modernization Task Force which should develop a set of moderniza-

tion standards. These standards aim to support the reengineering process throughout

both phases. The corresponding Software Metrics Meta-Model (SMM) and the Knowl-

edge Discovery Meta-Model (KDM) can be utilized in order to apply software metrics to

software systems. KDM is used to represent di�erent views on software systems while

SMM is used to model software metrics. According to the speci�cation, SMM instances

can be applied to KDM instances. However, J.L.C. Izquierdo and J.G. Molina remark

that, there does not exist a generic execution engine yet [13]. This thesis describes how

SMM can be utilized to model software metrics. We introduce a set of Eclipse plugins

which implement such an execution engine and contribute to the CloudMIG platform.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 2

1.3 Structure of the Thesis . 3

2 Related Work 6

2.1 Software Aging . 6

2.2 Reengineering versus Reverse Engineering 7

2.3 Software System Evolution . 8

2.4 Software Metrics . 9

3 OMG's Architecture-Driven Modernization Initiative 11

3.1 Knowledge Discovery Meta-Model (KDM) 12

3.2 Software Metrics Meta-Model (SMM) . 18

4 Contribution to the CloudMIG Platform 24

4.1 Architecture . 24

4.2 Metrics De�nition Plugin . 26

4.3 KDM Model Creation . 28

5 Process of applying generic SMM models 29

5.1 Flaws in the Speci�cation . 29

5.2 The Execution Engine . 31

6 Evaluation 35

6.1 Methodology . 35

6.2 Selected Metrics . 35

6.3 Analysis . 38

7 Conclusion and Future Work 40

A Attachments 44

List of Figures

1 KDM package structure. 13

2 The general structure of KDM packages illustrated by the example of the

code package. 15

3 SMM core classes. 19

4 Measure classes in the SMM. 20

5 Measurement classes in the SMM. 20

6 Control Flow Node count . 22

7 CloudMIG utilizationmodel extension point. 26

8 Architecture of the tool . 27

9 The execution engine's measurement process 34

10 Class Count Measure. 36

11 Lines of Code Measure. 37

12 Depth of Inheritance Tree . 38

13 Measurement results of the Evaluation . 39

14 Easiest Log File Meta-Model. 42

15 Webservice Request Count. 43

1 Introduction

1 Introduction

1.1 Motivation

Most software systems age over time. That is because of the constant change of the

existing systems due to varying requirements and new technologies. Often modi�cations

alter the original software architecture and make it more di�cult to maintain the system

(e.g., see [9]). At some point, there is no possibility to modify the existing software system

with acceptable costs because of the eroded software architecture and a migration to a

new target architecture is an option to modernize the system. Before an engineer can

start with software modernization, he needs information about the legacy system on

which he wants to work. These information measured o�er valuable clues to the quality

of the software system. Common examples for helpful information are:

� The complexity of the architecture

� The grade of cohesion and coupling of software components

� The depth of the inheritance tree

Another aspect for this work is the deployment of software systems in the cloud com-

puting domain [6]. There are many advantages of deploying applications to cloud en-

vironments, such as cloud-based applications often use only as much resources as they

need. Cloud environments enable a quick adjustment of resources, for example depend-

ing on the current workload [10]. For example, the under-provisioning of server resources

can be reduced and availability will be increased. Pricing often depends on resource con-

sumption and can also depend on the point in time when the services will be executed,

which means that consuming resources at night will probably be cheaper than consuming

resources at daytime. Therefore, resource e�ciency and intelligent load distribution be-

comes very important. However, to support this, it is required to understand the usage

of the established system. Important questions could be:

1

1 Introduction

� How often was a service called?

� Which resources were consumed?

� When were the resources consumed?

1.2 Goal

The Object Management Group (OMG) founded a task force which concentrates on mod-

ernizing legacy systems. Therefore, it suggests the Architecture-Driven Modernization

(ADM) process1. By this approach, it shall be ensured that users consider the mod-

ernization from an analysis and design perspective. This helps to prevent that obsolete

concepts will be retained in modern programming languages. ADM provides several stan-

dard packages to support the reengineering process from the beginning to the end. One of

these standards is the Software Metrics Meta-Model (SMM)2 which represents measures

and their measurements related to any MOF3 conform element. Another comprehensive

is the Knowledge Discovery Meta-Model (KDM)4 which facilitates the modeling of soft-

ware systems. In [13], the authors provide a case study, in which they use KDM and

SMM to restructure legacy Oracle Forms applications. The authors remark, that SMM

can represent the measures and the measurements, but it does not provide an execution

engine, which applies the measures to KDM instances.

We show how to utilize OMG's ADM standard SMM to model di�erent software met-

rics. Since the speci�cation of the Software Metrics Meta-Model is only available as an

early version (Beta 1.0), we want to discuss some problems of the current version, and

how to avoid resulting trouble. Furthermore, we develop an execution engine, which

1http://adm.omg.org, accessed 27-September-2010
2http://www.omg.org/spec/SMM/1.0/Beta1, accessed 2010-09-27
3http://www.omg.org/spec/MOF/2.0, accessed 2010-09-02
4http://www.omg.org/spec/KDM/1.1, accessed 2010-09-27

2

1 Introduction

can apply the de�ned SMM measures to KDM instances. To the best of our knowledge,

there does not exist a generic solution yet. So we show, how to translate the SMM el-

ements into source code. Finally, we provide Eclipse plugins which will be used by the

CloudMIG framework [10]. One plugin provides the generic de�nition of SMM-conform

models. This is required because it is unknown which software metrics will be important.

Another plugin implements the execution engine and therefore controls the application

of de�ned metrics to KDM instances.

The plugins operate on models which are EMF-conform. EMF5 is the Eclipse Modeling

Framework which provides means for code generation and utilizes the Ecore meta-model.

In addition, EMF provides tools and support to produce a set of Java classes which

facilitate the usage of model instances.

1.3 Structure of the Thesis

After this introduction, the thesis begins with an overview of related work in Section 2.

First, we deal with software aging. David Parnas analyzed this issue in 1994 the �rst

time. Then, we explain the terms �Reverse engineering� and �Restructuring�. Aftere-

wards, we will consider software systems evolution. Though, we talk about a possible

classi�cation of software changes. Finally, we deal with software metrics. We will intro-

duce an evaluation framework, which tries to ensure, that the engineer �nds adequate

measures. In addition, we will see the IEEE �Software Quality Metrics Methodology�

standard, which describes a procedure to apply software quality metrics to software sys-

tems. This standard can also be applied to other metrics.

In the next Section 3, we will cover the Architecture-Driven Modernization approach

of the Object Management Group. Therefore, we will start with the consideration of all

5http://www.eclipse.org/emf/

3

1 Introduction

seven ADM components. We will show, which purpose each component serves. Subse-

quently, we will have a closer look at the KDM and SMM. We will explain the standard

Knowledge Discovery Meta-Model and we will show, how to model di�erent aspects of

software systems by using this standard. We will emphasize classes, which are very

important for architectural metrics. Afterwards, we will concentrate on the Software

Metrics Meta-Model. First, we will introduce the structure of the meta model and we

will describe all elements, especially, we will talk about the di�erent kinds of measures

and the related measurements. Furthermore, we will see how SMM instances can be

linked to other model instances. This section ends with an example. Therefore, we will

have a short consideration of the McCabe complexity metric and �nally, we will show

how to model this metrics with SMM.

In the fourth Section, we will introduce the developed tool. After a general description

of the architecture, we will present the two plugins in detail.

In Section 5, we will deal with the SMM execution engine. First, we will examine the

current version of design �aws of SMM, which may lead to misunderstandings. Because

of these �aws, we had to make some assumptions, which make it possible to implement

the execution engine. The most important question for the execution manager is: �How

to deal with generic measures?�. Each kind of measure needs its own work�ow and has

got its own operation characteristics, which must be considered separately.

The sixth Section deals with the evaluation of the implemented tool. Therefore, we

start with the de�nition of three di�erent architecture metrics. After that, we generate

KDM instances of a very simple Java program, of the NanoHTTPD webserver6, and of

6http://elonen.iki.�/code/nanohttpd/, accessed 2010-09-27

4

1 Introduction

the Ibatis JPetstore7 with the help of the MoDisco Eclipse plugin8. Subsequently, we

apply the metrics to the KDM models and save the results. In the next step, we apply

the same metrics with an established tool for comparison purposes. Finally, we evaluate

the results.

The �nal Section 7 presents the conclusion and the future work. We consider possible

extensions of this work. In particular, we focus on how to get information about the

usage of software systems.

7http://sourceforge.net/projects/ibatisjpetstore/
8http://www.eclipse.org/MoDisco, accessed 2010-09-27

5

2 Related Work

2 Related Work

2.1 Software Aging

In [18], the author talks about the aging of software. He remarks that software gets

older, in spite of software is a "mathematical product". He does not mean that software

looses its mathematical correctness, he rather notes that legacy software systems handi-

cap their owners over time. He compares the aging of software with the aging of humans

and comes to the result, that aging is unavoidable, but it can be retarded. Even if we

design software to meet new needs, we have to predict the future. But, this is only partly

possible. Hence, we cannot stop aging. It does not only concern poor software design as

Parnas states. He thinks, even �successful� systems get older.

He di�erentiates two causes of software aging. The �rst one is to miss reaction on chang-

ing requirements because of new business needs. Users get more and more sophisticated.

Decades ago, people waited several days until computation �nished for example, but

today, http-requests have to be responded within milliseconds. So programs, which were

common years ago, must be revised to keep relevant. Due to these changes, we get the

second cause. Usually, software is designed by using simple concepts like design patterns.

The original designer or programmer knows well these concepts. Extensions to existing

software systems are often made by a third party. Consequently, knowledge about the

design vanishes and changes will be inconsistent. If this is done many times, nobody

knows about the current design and this may lead to more bugs and a longer develop-

ment time.

Parnas mentions three issues which can slow down software aging. At design time, it

is important to apply software engineering principles like �information hiding�, �abstrac-

tion�, or �separation of concerns�. If software is well-modularized, changes will only a�ect

small pieces of the system and the original design can be kept. But it is not su�ciant to

use an object-oriented language for meeting the principles. Such languages can help to

6

2 Related Work

implement these rules, but the programmer is still responsible for the usage. The second

issue is about documentation. He is of the opinion that documentation is essential for

later changes. Although programmers often claim that their code is self-explanatory, it

is mandatory to write a detailed documentation. Unfortunately, this is often neglected,

since there is not a direct advantage. Finally, he recommends design reviews. At best,

the reviewer is a person who is responsible for the long-term future of the software.

These issues only help, if the project is started on a green �eld. But there are many

legacy systems, what can be done with them? First, the author suggests stopping the

decline. The issues just mentioned can be applied. Each change must be checked against

the origin design, must su�ce the software engineering priniciples, and every change must

be documented. The next step is to improve the existing documentation. This is not

the most favorite work for programmers, but the enhancement of the documentation will

upgrade next changes and therefore, the product owner should insist on a complete and

traceable documentation. The last step is modularization, code snippets which belong

together must be wrapped to modules.

2.2 Reengineering versus Reverse Engineering

[8] gives an overview about the used terminology. It is important to di�erentiate between

reverse engineering and reengineering.

The authors de�ne reverse engineering as a �process of analyzing a subject system to

identify the system's components and their interrelationships and create representations

of the system in another form or at a higher level of abstraction�. Reverse engineering

can be performed at any stage of the software lifecycle, while it is often applied on es-

tablished systems. The process does neither include any changes to the software system,

nor copying the base software system to create a new one. Reverse engineering will be

done in order to improve comprehension of the software system and to make it easier to

7

2 Related Work

change the system.

Reengineering, on the other hand, is �the examination and alteration of a subject system

to reconstitute it in a new form�. Hence, reverse engineering is rather the �rst part of

reengineering, followed by forward engineering or restructuring.

The authors de�ne forward engineering as �the traditional process moving from high-level

abstractions to physical implementations of the system."

Restructuring means the �transformation from one representation form to another at

the same relative abstraction level�. The most common restructurings are code-to-code

transformations to improve the structure of the code. Therefore, it is mostly not neces-

sary to know about the design of the subject system. For example, to transform a set

of �if� statements into a single �case� statement can be done without knowing about the

purpose of the program. Usually, restructuring is not done because of new requirements

but rather to improve the internal quality. So in general, restructuring does not change

the behavior of the software system.

The object-oriented variant of restructuring is called refactoring. [17] gives an overview

of refactoring activities. First, it is important to decide about the level of abstraction,

which shall be refactored (the code directly, or design artifacts). Refactorings can be

classi�ed by the quality attributes they e�ect. Since refactoring does not alter the be-

havior there is an activity needed which ensures this. After that, the refactorings can

be applied. Once this is done, the success must be evaluated. Finally, the consitency

between all software artifacts must be maintained.

2.3 Software System Evolution

In [20], the authors state that system evolution of software systems can be classi�ed

into three sections. The �rst section is called maintenance. During this step only small

8

2 Related Work

changes will be made to the system, for example bug corrections or small functional

enhancements. The second section is called modernization. This step contains major

changes but still preserves a considerable percentage of the software system. If the sys-

tem needs more invasive changes than can be done during maintenance, for example

restructuring, then the system will be modernized. Finally, the third step which is called

replacement deals with the rollout of a new system. This step must be used very carefully

because it holds serious risks. Replacement needs many resources for developing the new

software system. In contrast to established software systems, which are often well tested,

it is not guarenteed, that the new system runs just as reliable.

[19] suggests a smooth migration of legacy systems. The authors explain a couple of

reasons for this kind of migration. One reason is that it will not be possible for business

companies to go out of business for a long time just because of launching a new system.

The smooth migration supports an incremental replacement of business logic and client

software. In [11], the Dublo pattern is described and the authors report on their experi-

ence with the smooth migration process.

In [14], the authors deals with the question of how to ensure, that the correct attributes

are measured. Therefore, they propose an evaluation framework. Finally, they conclude

with a detailed analysis of the attributes that lead to more useful data.

2.4 Software Metrics

The IEEE standard for a Software Quality Metrics Methodology [1] shows an approach to

apply software quality metrics to software systems. It proposes the following �ve steps:

1. Establish software quality requirements

2. Identify software quality metrics

9

2 Related Work

3. Gain commitment to the metrics set

4. Analyze the software metrics results

5. Validate the software quality metrics

It seems to be a very useful process which can also be applied with other software metrics.

Another possibility to establish a software quality model is stated in [7]. The authors

give a short overview about the goal question metric (GQM) process and explain, that

a GQM model is structured hierarchically. They propose a top-down approach to �nd

appropriate metrics. First, goals must be de�ned. A goal contains information about the

purpose of the measure, the object, which shall be measured, the issue to be measured,

and the viewpoint from which the measure is taken [7]. Then, questions have to be found,

which re�ne the goals, e.g. resource consumption optimization. Finally, metrics will be

taken, which can answer the questions. Thereby, one metric can contribute to answer

di�erent questions.

10

3 OMG's Architecture-Driven Modernization Initiative

3 OMG's Architecture-Driven Modernization Initiative

The Object Management Group (OMG) founded an Architecture-Driven Modernization

(ADM) Task Force which should develop a set of modernization standards. The goal

was, for example, to ease the understanding and evolving of existing software assets as

well as consolidating best practices leading to successful modernization. It was founded

in June 2003 and �ve months later, the �rst standard was recommended.

The OMG mentioned in their �rst Legacy Transformation Whitepaper di�erent rea-

sons, why it is important to understand and evolve legacy systems. Some of this rea-

sons are software improvement, modi�cations, interoperability, refactoring, restructuring,

reuse, porting, migration, translation, integration, and service-oriented architecture de-

ployment. The union of these activities can be called Architecture-Driven Modernization.

In order to meet these needs, the task force aims to develop seven standard packages,

each package serves a special task in the modernization process:

� Knowledge Discovery Meta-Model (KDM)

� Abstract Syntax Tree Meta-Model (ASTM)

� Pattern recognition

� Software Metrics Meta-Model (SMM)

� Visualization

� Refactoring

� Transformation

Knowledge Discovery Meta-Model represents entire software systems. This means,

it does not represent only code but also structural and behavior elements. It is the base

11

3 OMG's Architecture-Driven Modernization Initiative

meta-model and other ADM standards depend on KDM.

Abstract Syntax Tree Meta-Model builds upon KDM. It aims at representing a

software system below the procedural level.

Pattern Recognition examines structural meta data to �nd out patterns and anti-

patterns within existing systems. These information can be used to determine refactoring

requirements and opportunities.

Software Metrics Meta-Model aims to apply metrics to KDM instances. The metrics

relate to di�erent aspects of existing software systems such as functional, technical, and

architectural issues.

Visualization focuses on ways to depict application meta-data.

Refactoring tries to de�ne how to use KDM to refactor applications. It includes in-

formation about structuring, modularizing, and other ways to improve existing software

systems.

Transformation de�nes mappings between KDM, ASTM, and a target architecture. So

it is the bridge between existing software systems and target architectures.

Unfortunately, the Architecture-Driven Modernization standards are in an early state

of development. Only the KDM is available in a stable version (V1.1). The SMM exists

as a beta version (1.0) which is very unstable. We will consider this in detail in the

next section. The ASTM also exists as a beta version (1.0). For all other standards only

drafts exist, which are only available for OMG members.

In the following, we cover only the KDM and the SMM more in detail, since these meta-

models are important for this thesis.

3.1 Knowledge Discovery Meta-Model (KDM)

The Knowledge Discovery Meta-Model speci�es a set of common concepts required for

understanding existing software systems. It is intended to represent information related

12

3 OMG's Architecture-Driven Modernization Initiative

Figure 1: KDM package structure.

to existing software assets, their relations, and operational environments. It is possible

to represent physical assets (e.g. source �les) and logical assets (e.g. classes) at various

levels of abstraction. Another goal is the exchange of models among a wide range of

development tools. The KDM is a MOF (de�ned in [3]) model. So the KDM has got an

XMI representation which can be exchanged.

Figure 1 (taken from [2], p. 11) shows how the Knowledge Discovery Meta-Model is

designed. KDM consists of several packages grouped by layers. A layer depends on its

underlying layers which means especially that all classes from packages above the core

package inherit directly or indirectly from classes of the core package.

Now, we will describe the layers and their packages. We will only explain concepts which

are important for this thesis. We do not want to create new kdm instances, rather we

want to utilize existing ones. In this case, it will not be necessary to know about for

example audit information represented by the KDM unit class like: �When was the model

13

3 OMG's Architecture-Driven Modernization Initiative

generated or who created this element?�

The �rst layer is called Infrastructure Layer. Since it is possible to model di�erent as-

spects of knowledge about existing software systems, the KDM is a large and complex

speci�cation. In order to handle this complexity, base concepts which are valid for all

packages were concentrated in this layer. The layer consists of three packages, which are

called core, kdm, and source.

Pursuant to the speci�cation, from the view point of meta-modelling, the KDM fol-

lows the entity-relationship (ER) representation. An ER-model has got two elements,

entities and relationships. Generally, an entity is a distinct identi�ed thing with signi�-

cance. Relating to software systems, an KDMEntity is an abstraction of an element of a

software system. A relationship can be generally considered as an association between

entities, which describes their interaction, their linkage, or their mutual dependence. So,

a KDMRelationship represents the correlation between elements of software systems. So

both classes are members of the core package.

The second package of this layer is the kdm package. This package contains elements

for constructing KDM repesentations of existing software systems. It describes some

elements which appear in every KDM instance. Every KDM instance is organized into

segments which contain other segments or models.

There are nine di�erent model types, which are all structured in the same manner.

Figure 2 shows the structure with the help of the code package. The model is de�ned in

the package of the same name, for example the CodeModel is de�ned in the code pack-

age. The model class is a concrete subclass of KDMModel. In the package an abstract

parent for all entities related to this model is also de�ned. In our example, it is called

AbstractCodeElement. The model class owns zero or more abstract elements. There

are some more similarities, which we will not consider. Both, KDMModel and Segment,

are specialized from KDMFramework. A segment contains a set of logically related KDM

14

3 OMG's Architecture-Driven Modernization Initiative

Figure 2: The general structure of KDM packages illustrated by the example of the code

package.

models, which collectively provide a useful view of an existing software system.

The last package of the infrastructure layer is called source package. It contains ele-

ments which describe the physical artifacts of existing software systems. It also features

the possibility to map KDM element instances to regions of source code. This is modeled

by the class SourceRef which contains SourceRegion elements which further belong to

a source �le.

Now, we will introduce the program elements layer, which is very important for archi-

tecture metrics. This layer is divided into two packages called code package and action

package. The code package provides a structural view on the existing software system,

while the action package gives a behavioral view.

15

3 OMG's Architecture-Driven Modernization Initiative

First, we want to consider the code package. It de�nes elements, which represent imple-

mentation level program elements and their associations. These program elements are for

example data types, data items, classes, and so on. Generally every code package element

belongs to a certain region of source code in one of the artifacts of the existing software

system. But there are two exceptions. First, the CodeModel class is only a container

for other code elements. Second, code elements, which represent certain abstractions of

programming languages, such as data types, do also not belong to a region in the source

code. This package is subdivided into �ve sections. The �rst section deals with code

elements, which represent modules. Moduls are discrete and identi�able program units,

for example a logical component of the software system. A concrete module is, for ex-

ample, a package in a Java program. The second section is about callable computational

objects. This is, for instance, a method or a procedure. The third section deals with

elements which represent datatypes. In this case, datatypes are primitive data types (for

example integer, char, boolean), or complex datatypes such as arrays or pointers. Finally

a class or an interface (for example de�ned in Java) are also datatypes in terms of the

Knowledge Discovery Meta-Model speci�cation. The fourth section is about preprocessor

directive elements. This is known from some programming languages, for example C++.

The last section contains some code elements, which can not be assigned to any of the

previous sections, for example the Comment class.

The second package in the program elements layer is called action package. This pack-

age extends the code package. So it does not provide a separate model class, rather it

uses the CodeModel class from the code package. The main element in this package is

called AbstractActionElement. Each action element is a unit of behavior. These ele-

ments can, similar to code elements, be mapped to regions in the source code of software

systems. Action elements can contain other action elements. Such elements are called

composite actions.

16

3 OMG's Architecture-Driven Modernization Initiative

The most important concept in this package is the possibility to describe control �ows

between action elements. Therefore, it contains the ControlFlow class, which links two

action elements. Another important concept in this package is the representation of ex-

eptions.

The third layer is called Runtime Resource layer. It consists of the platform, the ui,

the event, and the data package. The ui package provides elements, which contain infor-

mation about user interfaces, for example their composition, their sequence of operation,

and their relationships to the existing software systems. The main class is UIResource,

which is an AbstractUIElement and contains other AbtractUIElements. This could be

a screen, for example a webpage, which contains text�elds or buttons. Since it is possible

to model the sequence of operation, the �ow between AbstractUIElements can also be

modeled. The event package provides elements for the high-level behavior representation

of software systems. The elements represent states, transistions, and events. An example

for a state is a step of a protocol that involves a messaging resource. Transitions will be

performed, after events have been executed in a certain state. The platform package deals

with the representation of the runtime operating environments. The runtime platform is

responsible for many di�erent tasks. The platform could provide a middletier to access

the database. The operating system is responsible to schedule the processes and must

manage the access on the �lesystem. The last package in this layer is the data package.

It provides a view on the organization of the data in existing software systems. It uses

parts of the code package related to the representation of simple datatypes. But ele-

ments of this package represent complex data repositories, such as record �les, relational

databases, or XML schemas.

The topmost layer is called abstraction layer. Since it is not important for this thesis,

we only want to mention that this layer exists. It consists of three packages, which

are called conceptual, build, and structure. Generally, this layer contains elements which

17

3 OMG's Architecture-Driven Modernization Initiative

represent domain-speci�c and application-speci�c abstractions. In the structure package,

elements are de�ned, which model the architecture of the software system. In this context,

a software system consists of subsystems, layers, or components. By using the build

package, it is possible to give an engineering view of a particular system. This package

also provides elements, which represent the artifacts which are generated by the build

process. The last package of this layer is called conceptual package. It supports the

creation of conceptual models during the analysis phase of knowledge discovery from

existing software systems.

3.2 Software Metrics Meta-Model (SMM)

The main goal for creating the Software Metrics Meta-Model is to provide an extendable

meta-model establishing a standard for the interchange of software-related measurements

covering the entities modeled by MOF-conform meta-models. The SMM includes ele-

ments representing the concepts needed to express a wide range of software measures.

The metrics convey technical, functional, and architectural issues which concern static

as well as dynamic aspects. Furthermore, the meta-model contains a library of measures

which does not constitute a standard, but rather conduces to show how to apply the

SMM. This meta-model is also a MOF model itself. Hence, the meta-model has got an

XMI representation which can be exchanged.

In the following we will explain the structure and the more important classes of the

meta-model. Figure 3 (based on [4], p. 6) shows these classes. Every class in SMM with

the exception of the measurands are specializations of the SMM_Element class.

The meta-model is intended to characterize special attributes of entities, e.g. complexity

of software modules. Therefore, measures will be used to assess the traits and assign

comparable values (numeric or symbolic) to the entities. A trait can be characterized by

di�erent measures which di�er for example in the dimension. Each measure has got a

18

3 OMG's Architecture-Driven Modernization Initiative

Figure 3: SMM core classes.

scope that comprises the set of entities to which the measure is applicable. Measures can

be classi�ed into di�erent categories. For example �Lines of Code� can be related to the

category �Length Measures�. Furthermore, a measure can be re�ned by another measure

which lastly means the re�nement subsitutes the measure.

A measurement is a value assigned to an entity according to a measure. The measure-

ment class represents the results of applying the associated measure to the associated

measurand. Both Measure class and Measurement class are abstract and are extended

by a couple of classes.

Every measurement is described by an observation which contains additional informa-

tion, e.g. the date when the measurement was accomplished.

According to the meta-model, measurands can be any MOF object. This is a very im-

portant fact because the KDM is MOF-conform. So we can associate measurements to

elements of the KDM by applying measures.

Figure 4 (based on [4], p. 10 and p. 16) shows how Measures are structured. First,

a measure can be a DimensionalMeasure or a Ranking. Rankings represent range-

19

3 OMG's Architecture-Driven Modernization Initiative

Figure 4: Measure classes in the SMM.

Figure 5: Measurement classes in the SMM.

20

3 OMG's Architecture-Driven Modernization Initiative

based gradings such as low, medium, high. Therefore, a Ranking has at least one

RankingInterval. So, a range of numerical values can be mapped to an interval. The

intervals can overlap or can have gaps. This means, if a ranking results in an particular

interval, it will not exclude, that the ranking could result in another interval. Usually, a

ranking measure hase got a baseMeasure. But, it do not necessarily have a baseMeasure.

This happens, if the measure represents a qualitative attribute, which does not need a

quantitative evaluation. One example is the classi�cation of the used programming lan-

guage.

DimensionalMeasures can be split into four groups: Members of the �rst group are

BinaryMeasures, which have two baseMeasures. The BinaryMeasure applies the functor

to the baseMeasures. The specialized class RatioMeasure takes the result of baseMeasure1

and divides it by baseMeasure2. For example, let baseMeasure1 be the result of count-

ing all methods in a module and baseMeasure2 the result of counting all classes in the

module. If we apply the RatioMeasure, the result will be a methods per class measure-

ment. The second group consists of DirectMeasures. These measures will be applied

directly to measured entities. The given operation has to return a numeric value. If the

DirectMeasure is a Counting, then the result hast to be 1 or 0, depending on whether

the measured entity was recognized, or more precise whether the measured entity is an

instance of the class de�ned in the scope of the Counting class. A common example for

the Counting measure is to count methods in a module. If a method was found, the

Counting class will return 1 and the sum of all Counting results is the method count.

The third group contains NamedMeasures, which do not need an operation as the mea-

sure can simply be speci�ed by the given name. We will see the utilization in Section

7. The last group consists of CollectiveMeasures. If a measured entity is an instance

of the class de�ned in the scope, then the baseMeasure will be applied to this entity

and to all contained entities. Then the n-ary accumulator will be applied to all base

measurements and the result will be assigned to the measurement of this entity. We will

21

3 OMG's Architecture-Driven Modernization Initiative

Figure 6: Control Flow Node count

give an example at the end of this Section.

Now, we examine measurements in greater detail. For every measure, there is de�ned

an adequate measurement. Hence, the reader can see in Figure 5 the same hierarchy as

for measures. In the speci�cation it is explicitly de�ned, that the measure associated to

a BinaryMeasurement must be a BinaryMeasure. This is analogically valid for all other

measurements.

For all measurements, which possibly can have baseMeasurements, there is de�ned an

attribute which is called isBaseSupplied. If we look at Figure 4 again, we see, that

a CollectiveMeasure has got mandatorily a baseMeasure. CollectiveMeasurements

do not have this restriction. Let us assume, that the class which is in the scope of the

CollectiveMeasure does not contain any class which is in the scope of the baseMeasure,

then, there will not exist a measurement for the baseMeasure and consequentially, there

is no baseMeasurement for the CollectiveMeasurement.

Figure 6 shows an example and �gures out how to model measures. It is part of the

library which is de�ned in the speci�cation ([4], p. 47). It de�nes a measure which

counts the nodes of a control �ow modeled in KDM. This measure is one necessary part

of McCabe's cyclomatic complexity [16]. The classes Counting and AdditiveMeasure

22

3 OMG's Architecture-Driven Modernization Initiative

are specializations of the Measure class. Every measure has got a Scope which indicates

on which elements the measure can be applied. In the example, the measure is related

to the ActionElement class which is de�ned in the action package of the KDM. Finally,

every measure has got a Characteristic which describes the purpose of the measure.

23

4 Contribution to the CloudMIG Platform

4 Contribution to the CloudMIG Platform

CloudMIG is an approach for the migration of existing software systems to the cloud and

provides an accompanying identically named Eclipse Rich Client Platform application

(RCP). Eclipse was originally only an Integrated Development Environment (IDE) which

supported building Java programs. Later, all components of the IDE which are generally

necessary for standalone clients were extracted and combined to the Rich Client Platform.

Thus, it is the minmal set of plugins supplying a general infrastructure for desktop clients.

RCP based applications are independent from the original IDE but they are still using

the Eclipse UI and dynamic plugin-model. Generally, Eclipse-based applications can be

extended by plugins to enlarge the functionality. A plugin can be seen as a component

of the software. Since it is desirable to have loose coupling between components, Eclipse

provides a generic mechanism of extensions and extension points. When a plugin allows

to extend or customize some of its functions, then it provides an extension point, which

declares a contract, usually a combination of XML9 markup and Java interfaces or classes.

If a plugin wants to connect to this extension point, it must de�ne an extension and has

to implement the contract [12]. We used this mechanism to contribute our plugins to the

CloudMIG platform.

4.1 Architecture

In order to apply metrics to given resources, such as KDM instances, log �les or to import

externally applied metrics, CloudMIG provides one important extension point, called uti-

lizationmodel. It will be extended through all plugins which contribute to the application

of software metrics. This includes plugins, which support the de�nition of metrics, further

it includes plugins which apply metrics and it includes plugins which support this process.

The extension point de�nes domain-speci�c elements and to every element belongs an

interface or class must respectively can be realized or rather extended. Figure 7 shows the

9Extensible Markup Language

24

4 Contribution to the CloudMIG Platform

abstract classes which must be extended through our plugins. The �rst element is manda-

tory and is called Control and the related class is AbstractCloudMIGPluginControl. It

manages the lifecycle of the plugin. Therefore, the class provides abstract methods for

initializing, activating, deactivating, and shutting down the plugin. The next element

must only be implemented by plugins which need access to the user interface. The ele-

ment is called Perspective and relates to the class AbstractCloudMIGPerspective. The

plugin can register views and editors with the method fillPerspective(IPageLayout

layout). Finally, there is again a mandatory choice between three elements. It indicates

of which type the plugin is. The �rst element is KDMBasedCreation. Plugins which use

this element, extend the class AbstractKDMBasedUtilizationModelCreation. They are

responsible for the application of the metrics, thus the class has the methods (among

others) applyAllCharacteristics(String definedMetricsID) and

applyCharacteristic(String definedMetricsID, String characteristicName).

The second element is called MetricsDe�nition. It is not necessary for this element

to extend a class. Plugins which use this element, facilitate the de�nition of metrics.

De�nedMetrics is the last element. If this element was chosen by a plugin, the class

AbstractCloudMIGUtilizationModelDefinedMetrics was extended. Plugins which use

this element contain de�ned metrics saved as a SMM instance. Furthermore, the plugins

contain a helper class which expands the SMM model instance.

In Figure 8 the plugins we provide are shown and how they are linked. The notation

of the diagram is according to UML10 component diagrams. In this case the port corre-

sponds to an Eclipse extension point which will be extended throug all plugins of the tool.

We implemented one plugin called Metrics De�nition, which allows the user to de�ne

SMM conform software metrics. Therefore, it contains an editor. This plugin creates

new plugins which contain the de�ned models and a helper class. Finally, we provide a

10http://www.uml.org/, accessed 2010-09-27

25

4 Contribution to the CloudMIG Platform

Figure 7: CloudMIG utilizationmodel extension point.

plugin, which applies de�ned metrics to given KDM instances. Its main component is

the Metrics Computation component.

4.2 Metrics De�nition Plugin

This plugin facilitates the de�nition of metrics. We use the terminology �full metric def-

inition�, if we talk about an Eclipse plugin which consists of a SMM instance and of a

helper class. As we are in the Eclipse domain, the helper class is a POJO11. The helper

class consists of methods which can be referenced in the SMM instance, for example as

an operation to be executed. So, the plugin needs two editors, one for de�ning SMM

instances and one for editing the Java class.

11Plain Old Java Object

26

4 Contribution to the CloudMIG Platform

Figure 8: Architecture of the tool

Since Eclipse was originally a Java IDE, it comes with a Java editor out of the box

which supports, among other things, syntax highlighting or code completion. Further-

more, Eclipse facilitates the programmatic generation of so called projects, especially

Eclipse plugins. It simpli�es the programmatic plugin generation process as we will see

below. Fortunately, there exists an EMF-conform SMM implementation which is pro-

vided by MoDisco. As mentioned earlier, EMF provides tools for code generation which

facilitate the usage of model instances. Hence, we can use it to generate a tree-based

editor, which makes it very easy to de�ne SMM models. It also provides a validator

which checks the de�ned model against the speci�cation. However, it does not cover the

full speci�cation, as the model provided by Modisco is not complete.

The plugin supports the creation of new metrics de�nitions as well as the editing of

existing ones or the import of external SMM instances. We have to di�erentiate the last

two ones, because, as mention above, a metrics de�nition is a complete plugin while the

27

4 Contribution to the CloudMIG Platform

import refers to a single SMM instance. This plugin also supports the generation of a

JAR12 package which contains the de�ned metrics. These archives can be moved into

the plugin folder of the CloudMIG Platform and then, they can be used for the metrics

application.

4.3 KDM Model Creation

This plugin is responsible for the application of metrics. The main component of this

plugin is the execution engine which we will describe in detail in Section 5.2. CloudMIG

assigns all metrics de�nitions, which are located in the classpath of CloudMIG, to this

plugin. The plugin itself provides a user interface which allows the user to select SMM

characteristics which are de�ned in the metrics de�nition plugins.

Another con�guration which must be done, concerns external libraries. A KDM in-

stance usually contains a CodeModel object which is named externals. It contains infor-

mation about external libraries which are used in the actual project. If a SMM instance is

applied to this KDM instance, it will comprise this CodeModel object. This may contort

the result and therefore, we provide the possibility to ignore the external data.

After con�guring the computation, the execution engine will be invoked. It applies the

de�ned metrics and creates a result model. This model is also a SMM instance which

contains measures and their measurments. Furthermore, the execution engine creates a

mapping between the measurements and the measured KDM elements as this relation is

de�ned in the SMM speci�cation but is not implemented in the meta-model provided by

MoDisco.

Finally, CloudMIG can access this data through the de�ned extension of the plugin. So

this data can be used for further computation.

12Java Archive

28

5 Process of applying generic SMM models

5 Process of applying generic SMM models

5.1 Flaws in the Speci�cation

Since the Software Metrics Meta-Model is only available as a very early version, many

�aws exist in the current version 1.0 Beta of the speci�cation. We want to discuss the

most signi�cant ones and try to give advices how to cope with the problems.

Consistency

While reading the speci�cation, many mistakes appear. It starts with simple �copy and

paste� errors like on page 18: In the constraints part of the class AdditiveMeasure, there

is the context MaximalMeasure, which was simply copied from the MaximalMeasure class.

It proceeds with wrong headlines of the sections. In our opinion, section 10 deals with

DimensionalMeasures, whereat the mentioned CollectiveMeasure is only a subsection.

Furthermore, examples are wrong. In Figure 7 int the speci�cation, there is an association

between Characteristic and Scope. Pursuant to Figure 3 in the document, there is

not a direct association between these classes, rather they are linked by the Measure

class. Finally, there are classes, which are not de�ned. Usually, every class which is

mentioned in a class diagram is de�ned in a text. In Figure 8 in the speci�cation, the

class AggregatedMeasure is mentioned, but there is not a de�nition about this class.

It is not clear, if the class diagram contains obsolete elements, or if the de�nition was

forgotten. We decided not to implement this class, as we can only guess about the

functionality.

Overhead

The class CollectiveMeasure is subclassed by AdditiveMeasure and MaximalMeasure.

They only di�er in their accumulator. Hence, we suggest to create an Enumeration

29

5 Process of applying generic SMM models

Accumulator, which contains the di�erent accumulators as elements. Then, only the class

CollectiveMeasure with the attribute accumulator is needed. This is not necessarily a

�aw, rather an improvement in order to implement the execution engine. Each additional

measure leads to a more complex execution engine, because each measure needs its own

work�ow. Moreover, this meets the next problem:

Operations

This problem relates to all measures, which allow operations, functors, accumulators,

or aggregators. The library suggests to de�ne a DirectMeasure with the following op-

eration: operation=endLine-startLine+1 in which startLine and endLine relates to

the KDM element SourceRegion. It could seem that nothing more must be done, but

it is not su�cient. This can only be an id for a operation, that the user has to de�ne

seperately. Alternatively, this can be an OCL13 statement. Unfortunately, this is not

clearly speci�ed.

Insu�cient Description

The entry point for the application of measures is the de�ned characteristic. A charac-

teristic has got di�erent measures. As we have seen, after application of the measures,

every measure relates to a measurement result. But which measurement result repre-

sents the result for the characteristic. This is unfortunately de�ned nowhere. After we

analyzed the library of the speci�cation, we assume, that the measure which is not a base

measure for any other measure, belongs to the measurement which contains the result

for the characteristic. Furthermore, the modeler must be assure, that there is exactly

one measure which has this property. We included these assumptions in the execution

engine.

The last problem we want to mention, is the description of the measurement process

13www.omg.org/spec/OCL/2.0/, accessed 2010-09-27

30

5 Process of applying generic SMM models

for collective measures. The speci�cation explains, that the base measure has to be ap-

plied to each contained element. It is unclear, what is meant by �contained element�. It

could be the directly contained elements or also the recursively contained elements. We

implemented the latter, as it is used in the library that way.

5.2 The Execution Engine

In this Section, we want to explain the operating principle of the execution engine's mea-

surement process. This process will be executed once for each characteristic which was

selected in the user interface. Generally, this process can be applied to all MOF-conform

model instances. In order to describe the process more understandable, we assume that

the model which will be measured is a KDM instance. The process can be divided into

three phases, the �initialization phase�, the �recursive measure application phase�, and

the �assignment phase�.

During the �rst phase, the engine has to discover di�erent elements. As mentioned above,

there exists a measure which is not the baseMeasure for any other measure. In the fol-

lowing, we will call this measure �main measure�, because this measure is the entry point

to get the measurement results for a characteristic. In order to �nd the measure, the

execution engine has to search all measures which are associated to the characteristic.

During the initialization phase, the second step is to �nd all elements to which the main

measure will be applied. To each measure exactly one scope element is assigned. The

scope element has got an attribute which is called class. It de�nes the type of the ele-

ments to which the measure will be applied. So, the execution engine has to get the class

and after that it searches the complete KDM instance to discover all elements of this type.

After that is done, the second phase starts and the main measure will be applied to all

discovered elements. The same work�ow must be processed for every measure. Figure 9

shows this work�ow which consists of two parts. First, an adequate measure must be cre-

31

5 Process of applying generic SMM models

ated. As we have seen in Section 3.2, to each measure belongs exactly one measurement

type. So this is meant by �adequate�. If the measure is an instance of Ranking, then the

adequate measurement will be an instance of Grade, for example. The second part deals

with the application of the measure. Here, it must be distinguished beetween the type of

the measure, because a Counting needs another treatment than a CollectiveMeasure.

We will see the di�erent treatments later in this Section.

Prior, we deal with the third phase. After the measure was applied, the result of the

application must be assigned to the measurement. Furthermore, it is necessary to create

and assign an observation object to the measurement. An observation contains some

meta data such as date of the execution or the person who invoked the measurement

process. Finally, the mapping between the measurement and the measurand must be

realized.

In the following, we will describe the treatments of the di�erent measures. Therefore,

we assume that we apply a measure M to an element E. It is important that the order

of the type checking will be the same as in Figure 9.

Counting

First, it must be checked, if M is an instance of Counting. In this case the de�ned

operation will be applied to the given element E. The operation returns a result

which can be assigned to the related Count element. If no operation was de�ned, then

the result is always 1.

DirectMeasure

If M is an instance of DirectMeasure, the application is the same as for Counting with

the exception that the result will be assigned to a DirectMeasurement and the result

can be any numerical value.

32

5 Process of applying generic SMM models

RatioMeasure

If M is an instance of RatioMeasure, �rst the baseMeasure1 will be applied to the

given element E. This means that the measurement process we described before must

be executed recursively. Then, the baseMeasure2 will be applied analogically. Finally,

the result of baseMeasure1 will be divide by the result of baseMeasure2.

BinaryMeasure

If M is a BinaryMeasure, the same work�ow as for RatioMeasure is valid, with the

exception that the last step is more general. It is only speci�ed that the de�ned functor

will be applied to the results.

CollectiveMeasure

If M is an instance of CollectiveMeasure, then the baseMeasure must be applied

recursively to all contained elements of E. What is meant by �contained elements� was

described before. After the execution engine �nished the recursive application, the results

must be aggregated. This will be done by using the de�ned accumulator. For example,

if the accumulator has the value sum, then all computed results will be added.

RescaledMeasure

In the case that M is an instance of RescaledMeasure, �rst the baseMeasure must be

applied recursively to the element E. After that, the formula will be applied to the

computed result.

Ranking

Finally, if M is an instance of Ranking, �rst the baseMeasure, if existent, will be re-

cursivly applied to the element E. After that, the execution engine will look up an

33

5 Process of applying generic SMM models

Figure 9: The execution engine's measurement process

RankingInterval matching to the result. Then, the value of the interval will be as-

signed to the measurement.

This execution engine can be extended in order to support new measures. Only the

work�ow must be integrated in the execution engine and the creation of an adequate

measurement must be customized. It is required that the new measure will be integrated

at the right place. Generally, the most specialized measures must be checked �rst and the

most general measures must be checked at the end. Hence, Figure 9 shows the current

order of the execution engine. First it will be checked if the measure is an instance of

Counting which is a specialized measure. At the end, one of the most general measures

will be checked.

34

6 Evaluation

6 Evaluation

6.1 Methodology

This Section describes the evaluation of the developed plugins. We decided to compare

the results computed by our tool to the results computed by an established tool. The

reference tool is an Eclipse plugin called Metrics14. It provides a set of metrics, which

can not be changed or extended. We took three di�erent metrics which can be computed.

The �rst one is called ClassCount, the second one is Lines of Code and �nally, we apply

the metric Depth of Inheritance Tree. The three metrics will be applied to three di�erent

software systems. The �rst one is a simple program without any practical use. The second

software system will be NanoHTTPD which is a simple HTTP server also written in Java.

It consists of only one Java �le which contains one regular class and two nested classes.

Finally, we apply the metrics to the iBATIS JPetStore which is a Java web application.

It is an online shop where the user can buy di�erent pets. This is a more complex

software system compared to the other examples. We utilized MoDisco in order to get

KDM instances of the software systems. Unfortunately, these instances did not contain

any SourceRefs which made it impossible to apply the lines of code measure. Hence, we

used a further tool which creates also KDM representations of software systems. This

tool is called KADis15.

6.2 Selected Metrics

ClassCount

This measure simply counts all classes in the project. It is not a very complex metric

but it can provide information about the size of the software system.

14http://metrics.sourceforge.net/
15http://sourceforge.net/projects/kadis/

35

6 Evaluation

Figure 10: Class Count Measure.

Figure 10 shows the representation of this measure in SMM. In KDM, a class is rep-

resented by a ClassUnit which is a subclass of AbstractCodeElement. These elements

are contained directly or indirectly in a CodeModel element. �Directly� means that the

ClassUnit element is a child of the CodeModel element, whereas �indirectly� means that

the element is not a child but rather a descendant of the CodeModel.

First, the execution engine has to �nd all CodeModel elements in the KDM instance.

Then, the Counting measure will be applied to all directly or indirectly contained el-

ements of the discovered code models which are of the type AbstractCodeElement. If

such an element is found, the de�ned operation will be applied to this element. If the

element is of type ClassUnit, the result will be 1 otherwise it will be 0. Finally all results

related to the CodeModel element will be accumulated.

Lines of Code

The second measure accumulates the lines of code of the software system. The result of

this measure strongly depends on di�erent parameters, such as the used programming

36

6 Evaluation

Figure 11: Lines of Code Measure.

language and the habit of the programmer. Hence, the result must be carefully inter-

preted.

Figure 11 (taken from [4], p. 42) shows the SMM representation of this measure. Every

AbstractCodeElement represents a software artifact which can be mapped to a region in

the source code. Therefore, each element has got a child which is of type SourceRef. In

such an element, there is a SourceRegion element de�ned, which repesents among other

things the startline and the endline of the code snippet.

Hence, the execution engine has to �nd all AbstractCodeElement elements in the KDM

instance. Afterwards, the execution engine applies the baseMeasure to all children, if

they are of the type SourceRef. Then the Counting measure will be applied to all

children of the SourceRef element which are of type SourceRegion. If such an element

is found, the operation will be applied to this element and the result is the number of

lines related to the code element.

37

6 Evaluation

Figure 12: Depth of Inheritance Tree

Depth of Inheritance Tree

The third measure computes the depth of the inheritance tree for a software system.

This measure provides information about the level of abstraction.

Figure 12 shows the related SMM instance. It is similar to the classcount measure.

First, the execution engine has to �nd all code model classes and has to apply the

baseMeasure to all directly and indirectly contained elements.

Hence, the execution engine has to �nd all code models to which the main measure

can be applied. Then, it has to discover all ClassUnits and has to apply the de�ned

operation to this element. The result of the operation will be the depth of inheritance

for this class. Finally, the maximum for all classes will be selected.

6.3 Analysis

After the de�nition of the measures, we apply them to the software systems. Figure

13 shows the results of the application. Most of the measurement results match but

38

6 Evaluation

Project CC LOC DIT

Simple Java Project
6*

6**

81*

25**

2*

2**

NanoHTTPD
3*

3**

-

-

1*

1**

iBATIS JPetStore
36*

36**

-

-

5*

5**

* Computed by Metrics

** Computed by the developed tool

Figure 13: Measurement results of the Evaluation

we see also a di�erence in the computation of lines of code. After a closer look at the

provided source KDM instance the problem was discovered. Unfortunately, the instance

does not represent the software system completely. Many action elements do not contain

SourceRefs. For this reason many code snippets have not been included. For example

the import instructions for a class were not mapped to the source code. This leads to

the mismatch between the measurement results. Hence, we did not apply the measure

to the other projects as the results would also be wrong.

So, we can conclude that the tool will work as expected, assumed thatMetrics provides

correct results. We have seen that 6 of 7 tests supplies the expected results. Only one

test fails because of the underlying KDM instance was not su�cient. This means, if we

have a suitable KDM instance, it seems that the results will be correct.

However, we have to remark, that we only could test a restricted number of measures

and projects. Hence, the evaluation has a limited validity.

39

7 Conclusion and Future Work

7 Conclusion and Future Work

As we have seen, software aging is an important issue, but it is possible to slow it down.

This is closely connected with the topic software reengineering which is a combination

of reverse engineering followed by forward engineering or restructuring. The OMG tries

to support this process by introducing its Architecture-Driven Modernization approach.

ADM conduces to facilitate the whole modernization process and hence, it contains of a

set of standards, which are helpful. We described the Knowledge Discovery Meta-Model

which aims to represent di�erent views of a software system. Furthermore, we covered

the Software Metrics Meta-Model which can be used to represent measures and their

measurement results. Unfortunately, the SMM speci�cation is only available as an early

version and for this reason, it is partially inconsistent or unclear. Nevertheless, it can

be used to apply metrics programmatically. We introduced our execution engine and we

described how to handle the existing �aws. It is necessary to de�ne some restrictions in

order to use SMM, because it is not possible to translate every generally de�ned attribute

into adequate software snippets. We remarked, that every measure, de�ned in the SMM,

must be speci�cally handled which means that the execution engine consists of di�erent

routines for the measures. We used the SMM to represent metrics and their results

after applying these metrics. Moreover, we contributed Eclipse plugins to the CloudMIG

platform. These plugins support the complete process of metrics application. This starts

with the de�nition of metrics, proceeds with the choice of appropriate metrics, and ends

with the application of the chosen metrics. Finally, we evaluated the execution engine

by dint of the established Eclipse plugin Metrics and several open source systems. If

the used KDM instance supplies the needed information then our tool returns the same

results like the Metrics plugin with di�erent grades of complexity. However, in contrast

to Metrics, our tool is easily extensible by providing a universal execution engine which

can handle arbitrary SMM-conform metrics.

40

7 Conclusion and Future Work

Currenty, it is only possible to apply metrics to KDM instances. This implies that

either the KDM instance exists or the source code is available and the KDM instance

can be computed. If none of the two is possible, there are maybe other alternatives to get

measured information about the software system. There are many other tools which com-

pute metrics and maybe such results exist for the software system. These results could be

integrated in a SMM instance very easily. As we have seen in Section 3.2, NamedMeasure

can represent externally computed measurement results. In order to use this functionality

in CloudMIG, we suggest to create a new Eclipse plugin which also extends the extension

point utilizationmodel by using the attribute ExtCompMetricsBasedCreation. This plu-

gin must supply a mechanism to parse externally computed metrics results. Furthermore,

it has to create a new SMM instance, add a set of NamedMeasures which represent the

names of the metrics and add a set of NamedMeasurements which represent the results of

the metrics. An important question in this context is, if it possible to provide a generic

solution for a parser.

Another question is how to incorporate external information about the usage of a soft-

ware system. We have seen, that SMM can be used to model a wide range of metrics, this

includes usage metrics. We can use our developed tool to model usage metrics (see the

example in Figure 15). Now, it is necessary to apply these metrics to existing sources.

An exemplary source of usage data are log �les. They often contain information about

method calls or webpage calls. We suggest the creation of a meta-model which represents

log �les. If this meta-model would be MOF conform, it had been possible to apply SMM

instances to this model. Unfortunately, log �les often do not su�ce a standard, which

makes it di�cult do �nd a generic solution. Hence, it will be a challenge to �nd an

appropriate meta-model. If such a model was found, the execution engine, presented in

Section 5.2, could be applied to the model.

41

7 Conclusion and Future Work

Figure 14: Easiest Log File Meta-Model.

Figure 14 shows a very easy meta-model of a log �le. In this case, a log �le consists of

many entries. An entry itself, represents di�erent kinds of log �le entries. Let us assume,

that webservice requests will be logged, then every entry which represents a webservice

request is of type WebserviceRequest.

Now, we can de�ne a metric called WebserviceRequestCount which counts all webservice

requests logged in a �le. Figure 15 shows the SMM instance. It is anlogically de�ned to

the ClassCount measure in the Section 6. Every occurence, of a webservice request will

increase the number of total webservice requests.

42

7 Conclusion and Future Work

Figure 15: Webservice Request Count.

43

A Attachments

A Attachments

We have attached a CD which contains four folders. In the folder �analyzed projects�

there are the three projects which we have used for the evaluation. The folder �De�ned

Metrics� contains the metrics we used for the evaluation. The folder �Eclipse plugins�

contains the two plugins we contributed to the CloudMIG platform. Finally the last

folder which is called �plugins� contains additional plugins which are used by our own

plugins.

44

References

References

[1] IEEE Standard for a Software Quality Metrics Methodology, December 1992.

[2] Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model

(KDM) OMG Adopted Speci�cation, January 2009. URL http://www.omg.org/

spec/KDM/1.1/. [Online; accessed 2010-09-27].

[3] Meta Object Facility (MOF) Core Speci�cation, January 2006. URL http://www.

omg.org/spec/MOF/2.0/. [Online; accessed 2010-09-02].

[4] Architecture-Driven Modernization (ADM): Software Metrics Meta-Model (SMM),

March 2009. URL http://www.omg.org/spec/SMM/1.0/Beta1/. [Online; accessed

2010-09-27].

[5] IEEE Standard for a Software Quality Metrics Methodology. IEEE Std 1061-1998,

page i, dec. 1998. doi: 10.1109/IEEESTD.1998.243394.

[6] M. Armbrust, A. Fox, R. Gri�th, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,

D. A. Patterson, A. Rabkin, and M. Zaharia. Above the clouds: A berkeley view of

cloud computing. Technical report, 2009.

[7] V. R. Basili, G. Caldiera, and H. D. Rombach. The goal question metric approach.

In Encyclopedia of Software Engineering. Wiley, 1994.

[8] E. Chikofsky and I. Cross, J.H. Reverse engineering and design recovery: a taxon-

omy. Software, IEEE, 7(1):13 �17, jan. 1990. ISSN 0740-7459. doi: 10.1109/52.43044.

[9] H. Fahmy and R. C. Holt. Software architecture transformations. In ICSM '00:

Proceedings of the International Conference on Software Maintenance (ICSM'00),

page 88, Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0753-0.

[10] S. Frey and W. Hasselbring. Model-based migration of legacy software systems into

the cloud: The CloudMIG approach. In Proc. WSR 2010, 2010.

45

http://www.omg.org/spec/KDM/1.1/
http://www.omg.org/spec/KDM/1.1/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/SMM/1.0/Beta1/

References

[11] W. Hasselbring, R. Reussner, H. Jaekel, J. Schlegelmilch, T. Teschke, and

S. Kriegho�. The dublo architecture pattern for smooth migration of business

information systems: An experience report. In In Proceedings of the 26rd Inter-

national Conference on Software Engeneering (ICSE-04), Los Alamitos, California,

May23�28 2004. IEEE Computer Society, pages 117�126, 2004.

[12] M. Hennig and H. Seeberger. Einführung in den extension point mechanismus von

eclipse. Java Spektrum, 1:19 � 25, 2008.

[13] J. Izquierdo and J. Molina. An architecture-driven modernization tool for calculating

metrics. Software, IEEE, 27(4):37 �43, jul. 2010. ISSN 0740-7459. doi: 10.1109/

MS.2010.61.

[14] C. Kaner, S. Member, and W. P. Bond. Software engineering metrics: What do

they measure and how do we know? In In METRICS 2004. IEEE CS. Press, 2004.

[15] Marcus Engelhardt, Christian Hein, Tom Ritter, Michael Wagner. Generation of

Formal Model Metrics for MOF based Domain Speci�c Languages, 2009. URL

http://modeling-languages.com/events/OCLWorkshop2009/papers/7.pdf. [On-

line; accessed 2010-09-02].

[16] T. McCabe. A complexity measure. IEEE Transactions on Software Engineering,

2:308�320, 1976. ISSN 0098-5589. doi: http://doi.ieeecomputersociety.org/10.1109/

TSE.1976.233837.

[17] T. Mens and T. Tourwe. A survey of software refactoring. IEEE Trans. Softw. Eng.,

30(2):126�139, February 2004. ISSN 0098-5589. doi: 10.1109/TSE.2004.1265817.

URL http://dx.doi.org/10.1109/TSE.2004.1265817.

[18] D. L. Parnas. Software aging. In ICSE '94: Proceedings of the 16th international

conference on Software engineering, pages 279�287, Los Alamitos, CA, USA, 1994.

IEEE Computer Society Press. ISBN 0-8186-5855-X.

46

http://modeling-languages.com/events/OCLWorkshop2009/papers/7.pdf
http://dx.doi.org/10.1109/TSE.2004.1265817

References

[19] R. Reussner and W. Hasselbring, editors. Handbuch der Software-Architektur.

dpunkt, Heidelberg, 2. edition, 2008. ISBN 978-3-89864-559-1.

[20] Santiago Comella-Dorda, Kurt Wallnau, Robert C. Seacord, John Robert. A Survey

of Legacy System Modernization Approaches, April 2000.

[21] T. Systä, A. Electronica, and U. Tamperensis. Static and dynamic reverse engineer-

ing techniques for java software systems, 2000.

47

	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Structure of the Thesis

	2 Related Work
	2.1 Software Aging
	2.2 Reengineering versus Reverse Engineering
	2.3 Software System Evolution
	2.4 Software Metrics

	3 OMG's Architecture-Driven Modernization Initiative
	3.1 Knowledge Discovery Meta-Model (KDM)
	3.2 Software Metrics Meta-Model (SMM)

	4 Contribution to the CloudMIG Platform
	4.1 Architecture
	4.2 Metrics Definition Plugin
	4.3 KDM Model Creation

	5 Process of applying generic SMM models
	5.1 Flaws in the Specification
	5.2 The Execution Engine

	6 Evaluation
	6.1 Methodology
	6.2 Selected Metrics
	6.3 Analysis

	7 Conclusion and Future Work
	A Attachments

