
Christian-Albrechts-University Kiel

Department of Computer Science

Software Engineering Group

Diploma Thesis

Migration of Software Systems to
Platform as a Service based Cloud

Environments

Sören Fenner (sfe@informatik.uni-kiel.de)

October 15, 2011

Advised by: Prof. Dr. Wilhelm Hasselbring

M.Sc. Sören Frey

Abstract

Cloud computing technologies that have been developed over the last few years establish
new possibilities for both software as a service providers as well as for private and enter-
prise cloud users. These possibilities include, for example, scalable computing and storage
resources that are serviced over the network, whereby services are commonly provided on
a flexible pay-per-use basis. Therefore, the service consumer is released from adequate pro-
visioning of resources, which often leads to an economic benefit.
However, software has to be designed for supporting the specific cloud technologies, in

order to profit from the mentioned advantages. Thus, existing software systems either have
to be redeveloped from scratch or adjusted to conform the cloud environment through a
software migration. The migration of software from one environment to another implicates
two major challenges: the migrated system has to both exploit the potential advantages of
the target environment as well as meet its specification.
The latter issue is investigated in this thesis following the model-based CloudMIG ap-

proach. This approach uses models of both the application that is intended for migrating
to the cloud as well as the target cloud environment. Based upon these models, CloudMIG
identifies elements of the application that conflict with technical restrictions of the target
environment, referred to as constraint violations.
This thesis presents an analysis of the violation detection capabilities of CloudMIG by in-

vestigating an open-source application for a migration to a platform as a service based cloud
environment and verifying the detected violations by means of manual inspection. The re-
sults of this analysis indicate that CloudMIG’s validation mechanism offers high detection
precision and promises to be a useful approach for supporting reengineers in migrating
software systems. In addition, an evaluation of the model extraction process, which is an
essential component of the CloudMIG approach, is addressed as a minor goal. This evalu-
ation shows that the proposed tool for model extraction has several drawbacks and is not
completely reliable for CloudMIG’s purposes. Further, an inspection of major issues regard-
ing the manual migration substantiates that software migration to the cloud requires a high
level of effort and constitutes a serious challenge from a reengineer’s point of view.

iii

Contents

List of Figures vii

List of Tables ix

Listings xi

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 3

1.2.1 Evaluation of the CloudMIG CEC Violation Detection Mechanism . 3
1.2.2 Migration to PaaS: An Inspection of Significant Migration Challenges 3
1.2.3 Analysis of the KDM Extraction Process 4

1.3 Document Structure . 4

2 Foundations 7
2.1 Cloud Computing . 7
2.2 Software Migration . 11
2.3 CloudMIG . 14
2.4 Involved Technologies . 18

2.4.1 Eucalyptus . 18
2.4.2 Google App Engine . 19
2.4.3 AppScale . 21
2.4.4 ADempiere . 22
2.4.5 JForum . 23
2.4.6 Knowledge Discovery Meta-Model (KDM) 25
2.4.7 MoDisco . 26
2.4.8 CloudMIG Xpress . 27

3 Model Construction 29
3.1 Definition of the Cloud Profile . 29
3.2 Extraction of the Architectural Model . 32

3.2.1 Extraction of ADempiere’s Model . 32
3.2.2 Extraction of JForum’s Model . 36

v

Contents

3.2.3 Analysis of the KDM Extraction Process 37

4 CEC Violation Identification with CloudMIG 39
4.1 Overview of CEC Violations . 39
4.2 CloudMIG’s CEC Violation Detection Mechanism (Constraint Validators) . . 41
4.3 Implementation of a Model Import Feature in CloudMIG Xpress 44
4.4 Application of CloudMIG Xpress’ Violation Detection on JForum 45

5 An Inspection of Significant PaaS Migration Challenges 49

6 Analysis 53
6.1 CEC Violation Analysis . 53

6.1.1 Overview and Categorization of Violations 54
6.1.2 CEC Violation Inspection Template 58
6.1.3 Manual Inspection of Violations . 59

6.2 Evaluation of CloudMIG’s Violation Detection Capabilities 68

7 Related Work 71

8 Conclusion 73
8.1 Summary . 73
8.2 Discussion . 74
8.3 Future Work . 76

Appendices 77

A Source Code of the Command Line Program for ATL Model-to-Model Trans-
formation 79

B CEC Violations in JForum 83

C Distribution Diagrams of CEC Violations in JForum and Libraries 89

Acknowledgments 99

Declaration 101

vi

List of Figures

2.1 Overview of cloud computing actors and roles 7
2.2 NIST cloud definition framework . 9
2.3 Provisioning of resources . 11
2.4 Activities and components of CloudMIG . 15
2.5 The packages of CEM . 17
2.6 Design of a typical Eucalyptus cloud environment 19
2.7 Google App Engine service implementations 20
2.8 Overview of AppScale cloud deployment modes 21
2.9 AppScale Service implementations . 22
2.10 Overview of ADempiere Business Suite features 23
2.11 Screenshot of the forum listings view of JForum 24
2.12 Layered structure of the Knowledge Discovery Meta-Model 25
2.13 Overview of MoDisco’s reverse engineering process 26
2.14 Overview of CloudMIG Xpress . 27

3.1 ATL model-to-model transformation schema 34

4.1 Classes incorporated in CEC validation process 42
4.2 View of CloudMIG Xpress showing the new model import feature 45

5.1 jiql between a Java application and Google’s DataStore API 51

6.1 Template for CEC violation inspection . 59

C.1 Distribution diagram: CEC violations detected in JForum (w/o libs) per class 90
C.2 Distribution diagram: CEC violations detected in JForum per library 91

vii

List of Tables

3.1 Configuration of the desktop PC for model extraction 32
3.2 Configuration of the blade servers for model extraction 33

4.1 Generic and language-specific KDM-based constraint validation 43
4.2 Key figures of JForum and its referenced third-party libraries 47
4.3 Violation frequency in JForum classes . 48

6.1 Overview of CEC violations detected in JForum (inclusive libraries) 55
6.2 Overview of CEC violations detected in JForum (w/o libs) per class 57
6.3 Overview of CEC violations detected in JForum per library 58
6.4 Inspection of CEC violation V-13 . 61
6.5 Inspection of CEC violation V-35 . 62
6.6 Inspection of CEC violation V-101 . 63
6.7 Inspection of CEC violation V-102 . 64
6.8 Inspection of CEC violation V-109 . 65
6.9 Inspection of CEC violation V-117 . 66
6.10 Inspection of CEC violation V-2081 . 67

B.1 CEC violations detected in JForum (w/o libs) 87

ix

Listings

3.1 Excerpt of the App Engine cloud profile . 30
3.2 Source code excerpt of the command line program for ATL model-to-model

transformation . 35

6.1 Source code location excerpt of CEC violation V-13 61
6.2 Source code location excerpt of CEC violation V-35 62
6.3 Source code location excerpt of CEC violation V-101 63
6.4 Source code location excerpt of CEC violation V-102 64
6.5 Source code location excerpt of CEC violation V-109 65
6.6 Source code location excerpt of CEC violation V-117 66
6.7 Source code location excerpt of CEC violation V-2081 67

A.1 Source code excerpt of the command line program for ATL model-to-model
transformation (detailed) . 79

xi

1 Introduction

1.1 Motivation

Software systems in general are subject to continuous evolution. This arises for various

reasons, for example changing demands for functionality and increasing code complexity.

Lehman (1979-1980) famously declared the Laws of Program Evolution as intrinsic factors

for software evolution, as identified by his studies. This evolutionary process affects the

operation as well as the quality and maintainability of software systems, especially in a

long-term perspective.

Sometimes it is appropriate or even necessary to change components of the software, for

instance, to support new features or leverage a beneficial performance gain. Changes to

the involved personnel or to software or hardware in the systems’ environment may also

be factors leading to the demand for software reengineering activities (see Section 2.2). An

example of this could be losing technical experts or the decreasing availability of special

hardware components. In general scenarios the reengineering of some parts of the system

is often sufficient, while leaving wide areas of the code untouched. This process is often

iterated frequently, so that the system is continually modified over the years it exists.

Under certain conditions, especially if porting the existing system to a different hard-

ware or software environment is the most influential factor in a decision to reengineer, the

migration of a software system is generally a reasonable approach to attaining the desired

aims.

Thus, major challenges of software migration are based on the fact that the migrated ap-

plication’s environment changes. For example, software libraries differ, management and ac-

cess of data varies, and network configurations or communication protocols change. There-

fore, adjustments regarding the considered architecture often have to be made in order to

allow the application to execute correctly in the new context.

1

1 Introduction

In the recent past new ways of utilization for computing resources, such as flexible alloca-

tion on a pay-per-use basis, have emerged and now constitute the popular concept of cloud

computing. A variety of services is covered by cloud computing, hence it can be divided

into different service models (see Section 2.1). Platform as a Service (PaaS), represented by

Google’s App Engine (GAE) for Java, is a particular service model that will be focused on in

this thesis.

Based upon the flexibility of cloud services and business models provided, these possi-

bilities open up both for private users as well as for large public or enterprise software

consumers. Newly developed applications allow for the integration of these technologies

by incorporating them in the design phase. Running existing software systems in a cloud

environment to exploit the offered advantages is an important aim arising today.

The migration procedure often requires an enormous reengineering effort. Hence, it is an

interesting research field, offering potential for improvements both from a technical and an

economical point of view.

Resulting from recent work of the Software Engineering Group at the University of Kiel,

the model-based approach CloudMIG (see Section 2.3) will act as a major foundation during

this work. CloudMIG proposes a specific model representation for both the target cloud en-

vironment, named Cloud Environment Model (CEM) (instances of the CEM that represent

a specific cloud environment are referred to as cloud profiles), as well as for the software

considered as the migration candidate. Cloud Environment Constraints (CECs) are essential

elements of the cloud profile representing technical limitations of the target environment

that constitute potential obstacles regarding the migration process. For example, an ap-

plication is not allowed to write to the local file system in Google’s App Engine, which is

represented by a corresponding CEC instance in the GAE cloud profile. As a fundamental

component, CloudMIG provides a constraint violation detection mechanism that identifies

existing CECs by static analyses on prior obtained system models.

This thesis will address challenges concerning the migration of an enterprise software

system to a platform as a service-based cloud environment. In this context, especially the

violation detection as a major component of CloudMIG will be analyzed. Therefore, an

application will be investigated for CEC violations at first and the results will be verified by

manual inspection afterwards to evaluate CloudMIG’s validation quality. Although based

upon a single application, which is not generally regarded as representative, a quantitative

analysis is performed in order to get an impression of the number, type, and distribution

2

1.2 Goals

of the occurred violations. Further, the model extraction process, which is an important

prerequisite of the CloudMIG approach, is conducted and examined for vulnerabilities and

improvement potential.

1.2 Goals

This thesis will address several goals pertaining to the migration of software systems to

PaaS-based cloud environments. The major goals will be introduced in the following.

1.2.1 Evaluation of the CloudMIG CEC Violation Detection

Mechanism

A major goal of this thesis will be the structured comparison of constraint violations that

are statically determined by a violation detection pursuing the CloudMIG approach (see Sec-

tion 2.3) and actually verified violations by manually inspecting the indicated violations. An

important intention of CloudMIG is to establish a universal library of CEC validators to fa-

cilitate automatic violation detection capabilities. In order to evaluate the current efficiency

of CloudMIG’s violation detection under realistic circumstances, an open-source Java web

application is used for a migration case study.

CloudMIG Xpress (see Section 2.4.8) is a prototype tool that includes the violation detec-

tion component of the CloudMIG approach as an extensible framework of constraint val-

idators. In order to test the feasibility and to support the development, CloudMIG Xpress is

utilized for the violation detection in this work. In this context, expecting the detection com-

ponent of CloudMIG Xpress not to be completely perfect, some subsidiary improvements are

integrated when a reusable solution seems to be indicated.

1.2.2 Migration to PaaS: An Inspection of Significant Migration

Challenges

Besides the theoretical investigation of migrating software to the cloud, especially following

the CloudMIG approach in this case, this thesis serves as a case study that aims for obtain-

ing findings about the major challenges of migration from an reengineer’s point of view.

3

1 Introduction

Therefore, this thesis involves the manual realization of migration steps to a reasonable ef-

fort as well as the identification of significant issues that emerged. Chapter 5 points out

several significantly challenging problems that occurred regarding this specific manual mi-

gration along with their corresponding reasons and potential answers. Moreover, important

motives for executing a manual migration are discussed.

1.2.3 Analysis of the KDM Extraction Process

An essential component of the CloudMIG approach is the static analysis of the model of

the designated cloud environment in conjunction with the architectural system model of

the application considered for migration. The latter model unfolds in an extensive structure

corresponding to the level of complexity of the considered application. Therefore, an auto-

mated generation of an appropriate model is favoured over manual treatment. MoDisco (see

Section 2.4.7) is such a tool supporting the extraction of models that are based on Knowledge

Discovery Meta-Models (KDM) (see Section 2.4.6), the fundamental meta-model utilized by

CloudMIG, from a given software. MoDisco has recently been applied successfully by Frey

and Hasselbring (2011) to extract models for different applications. Provoked by critical dif-

ficulties that were revealed, for example, during the work of Pascal Löffler in his bachelor

thesis completed at the Software Engineering Group, University of Kiel, a further investiga-

tion of MoDisco’s capabilities regarding the extraction of large-sized KDM models is carried

out in this thesis (see Section 3.2.3).

1.3 Document Structure

The document is structured as follows. Chapter 2 introduces the foundations of this work.

Starting with a definition of cloud computing, a summary of software migration and its

justifications is given, and the CloudMIG approach, as a fundamental basis of this thesis is

described. The foundations are completed with a description of involved technologies.

The definition and construction of relevant models is provided in Chapter 3. Headed by

a description of the two essential models utilized by the violation detection, the definition

of the cloud environment model and the extraction of the architectural model for the con-

sidered applications is examined in more detail. Moreover, the performance of the model

extraction process is analyzed.

4

1.3 Document Structure

Chapter 4 contains the identification of constraint violations. First, an overview of rel-

evant violations is given before CloudMIG’s violation detection mechanism is explained in

detail. Then, the implementation of a new model import feature in CloudMIG Xpress is

presented, followed by a report and brief analysis of the application of CloudMIG Xpress’

violation detection on JForum.

An inspection of significant challenges regarding the execution of the manual migration

is described in Chapter 5.

Chapter 6 presents the detailed analysis of the detected violations. First, an overview and

quantitative examination of violations is given. With the help of a CEC violation inspection

template, which is defined before, the manual inspection of detected violations is conducted

and presented here. On the basis of this investigation, a critical review of CloudMIG’s vio-

lation detection capabilities is presented.

The following Chapter 7 gives an overview of related work.

Chapter 8 contains the conclusion of this thesis. It comprises a summary as well as a

discussion of the results and proposes future work.

The appendix contains additional resources which are referenced by the according sec-

tions of this document.

5

2 Foundations

2.1 Cloud Computing

Cloud computing can be described as a framework for provisioning resources as services that

are supplied over the network. Prevalent types of resources include for example storage and

processing capacities (e.g., AmazonWeb Services), security, and backup services or software

development environments with cloud-optimized APIs (e.g., Google App Engine, MS Azure).

Service computing, such as commonly established web applications (e.g., Google Docs) is

expanding in both complexity and diversity. It has already taken possession of the enterprise

sector (e.g., Salesforce.com) and is successively entering other huge domains, such as entire

desktop environments and operating systems (e.g., eyeOS) (see Hayes (2008)).

Figure 2.1: Overview of cloud computing actors and roles (Vaquero et al., 2009).

7

2 Foundations

Different actors that are involved in the cloud computing system have to be contemplated

in this context. Vaquero et al. (2009) distinguish between service providers (usually devel-

opers), service users (or consumers), and the infrastructure providers as the main actors

represented by the involved participants of the cloud computing layer being considered (see

Figure 2.1). A similar classification is described by Armbrust et al. (2009), who emphasize the

recursive roles of service providers who might be service users of other (third-party) cloud

services at the same time. This relationship can be in a product-independent way or with

direct relationship to the offered service, for example if the used service is incorporated as a

part of the offered service.

Cloud computing is a very young scientific research field and plenty of definitions have

recently been proposed by different authors. Consolidated standards and definitions will

most likely be established in the next few years. An accepted definition by Foster et al.

(2009) says that cloud computing is:

“A large-scale distributed computing paradigm that is driven by economies of scale,
in which a pool of abstracted, virtualized, dynamically-scalable, managed comput-
ing power, storage, platforms, and services are delivered on demand to external
customers over the Internet.”

The remainder of this section will give an overview of the Cloud Computing Model corre-

sponding to the definition of cloud computing that has been established by the NIST1 (see

Figure 2.2).

A first distinction can be made on the basis of the deployment model. The deployment

model characterizes how and by whom the service is hosted, provided, managed, and used.

(i) Private Cloud: The cloud infrastructure is designed exclusively for the cloud user. It

might be hosted and operated by the user or offered as a service by a cloud provider.

(ii) Community Cloud: Similar to the private cloud, this deployment is restricted to a spe-

cific group of users from different organizations, who share similar demands and in-

terests. It is either hosted and operated by the community itself or by a third-party

provider.

(iii) Public Cloud: This deployment model is aimed at the broader public. The infrastruc-

ture is commonly owned by the providing organization and sold to any user.
1National Institute of Standards and Technology, Agency of the U.S. Department of Commerce

8

2.1 Cloud Computing

(iv) Hybrid Cloud: A composition of multiple private, public, and community clouds is

called a hybrid cloud. Generally all individual clouds are mutually independent from

the users point of view but are often hosted on the same underlying infrastructure and

operated by the same provider.

Figure 2.2: NIST cloud definition framework (Mell and Grance, 2009a).

The provided resources in the cloud computing context can be categorized according to

service models (see Mell and Grance, 2009b, NIST) or layers of granularity (see Vaquero

et al., 2009), which are presented in the following:

(i) Software as a Service: The finest granularity is represented by software as a service

(SaaS), where a provided application is running on a cloud infrastructure. It is usually

accessed through a web browser. The consumer can generally use the service without

having to install, maintain, or manage any software or hardware resources.

(ii) Platform as a Service: The underlying layer, called platform as a service (PaaS), fa-
cilitates a wider foundation for both development and deployment purposes. Those

services incorporate a runtime environment including a broad software stack that pro-

9

2 Foundations

vides more flexibility to users for arranging their customized solutions. Since this layer

can be detached even from virtual hardware, no load-balancing or managing of com-

putational resources is required in these systems from a cloud user’s point of view.

(iii) Infrastructure as a Service: The computer hardware or infrastructure as a service (IaaS),
for example delivered as virtualized machines or flexible packages of computing, stor-

age, or network resources, forms the most low-level oriented layer of cloud computing

and is often considered as the basic layer. The consumer has control over the provided

resources (e.g., operating systems, storage, applications) without having to manage

the underlying infrastructure.

(iv) Hardware as a Service: Although the physical hardware (HaaS) might be distinguished

as an independent layer (see Rimal et al. (2009) or Youseff et al. (2008)) we will restrict

our discussion to the former three with the focus on PaaS.

Regardless of the considered layer, the resource is serviced over a network connection. It

causes little or even no additional hardware requirements for the cloud users, which estab-

lishes a high compatibility and attaches seamlessly to the majority of existing IT structures.

One essential characteristic of cloud computing is the elasticity of service or resource allo-

cation.

The problem of efficient resource provisioning is illustrated in Figure 2.3. The graph (a)

shows the portion of excessive resource capacity (gray shaded area) that results in systems

which have been designed to satisfy rare peak loads. If the capacity is adjusted to cover an

average of the resource demand (see graphs (b) and (c)) there will be periods of underpro-

visioning where increased response times or even worse problems (e.g., system malfunction

and outages) might occur. Unlike physical equipment, the amount of “consumed” cloud

services is flexible over time and therefore can be requested and billed on demand. This

leads to an enormous economic benefit for cloud users who do not have to maintain over-

provisioned resources.

Another advantage in this context is that no precise peak capacity predictions have to be

made which would be required to align the resources according to the peak demands (see

graph (a)). In most scenarios it might not even be possible to determine an upper boundary

for the estimated capacity demand. Further, if a peak demand could be defined it would be

temporally limited in most cases, and would require expensive analysis and calculations to

10

2.2 Software Migration

Figure 2.3: Provisioning of resources (Armbrust et al., 2009).

identify its size. Furthermore, customers can take advantage of the scale effect that cloud

providers achieve through the operation of huge infrastructures. Another positive char-

acteristic of cloud computing is the high reliability of services, assuming that professional

cloud service providers apply superior arrangements, such as hardware redundancy or data

backup.

2.2 Software Migration

There are several reasons for modernizing or migrating a legacy software system. Aspects,

that are conventionally regarded as leading to the decision to modernize an application

cover the diminishing support of programming languages, software libraries, protocols, or

hardware platforms. Furthermore, a software system generally faces ongoing changes of

functional demands. This leads to an increasing amount of code and continuously increasing

size and complexity of the legacy application. Thus, a legacy system is usually subjected to

consecutive adjustments and modifications over time. Depending on their shape and extent,

these changes are assigned to different categories of system evolution (see Seacord et al.

(2003)):

• Maintenance: Maintenance describes minor modifications to the software system,

such as implementing bug fixes or small functional enhancements. It is considered as

an iterative progression without changing conceptual elements of the software.

11

2 Foundations

• Modernization: Modernization actions affect more extensive parts of the system. For

example, if system restructuring or major functional enhancements are required with-

out significantly changing the residual system. System modernization is sub-divided

in terms of the depth of required knowledge about the legacy system concerned:

– White-BoxModernization: Modernizations affecting structural changes of the

application that require detailed knowledge of the system internals are consid-

ered White-Box Modernizations. In many cases, reverse engineering actions are

applied to extract the required information.

– Black-Box Modernization: If only knowledge of the external interfaces of the

system is required for the modernization, it is considered Black-Box Moderniza-
tion. This kind of modernization is commonly based upon wrapping, which en-

capsulates a specific part of the legacy application, generally by attaching the

wrapper around the components’ interfaces. The wrapped components are usu-

ally left untouched but supplied with a new interface that conforms to adopted

external requirements.

• Replacement: If a legacy system suffers from significant deficiencies in serving busi-

ness objectives or supporting technological demands (e.g, performance, compatibility,

flexibility, security), that can not be resolved by Maintenance or Modernization, either
due to technical or economical reasons, Replacement may be the only solution.

Software migration is a reengineering process that can be considered a specific form of

software modernization. In comparison to other modernization activities, software migra-

tion aims to move the existing system to a different software or hardware environment

while preserving the application’s functionality and data instead of adding new business

functionality. Reasons for software migration are mostly based upon advantages that the

target environment provides compared to the old environment, for example increased hard-

ware power, less operational costs, a more flexible environment, or better maintainability

(see Seacord et al. (2003), Almonaies et al. (2010)).

The migration of legacy software systems has been of research interest for a long time.

As different application areas and a wide spectrum of reasons for software migration exist,

various approaches have been developed to cope with the specific issues.

12

2.2 Software Migration

Brodie and Stonebraker (1995) present an incremental migration technique, the Chicken
Little methodology for migrating legacy systems step-by-step. This methodology differs

from the Cold Turkey, also known as Big Bang strategy, that redevelops the new system from

scratch and replaces the legacy system in a final step (Big Bang). A significant characteristic

of the Chicken Little methodology is its requirement for data and information exchange

between the legacy and target system via so-called Gateways, since both systems need to be

operational and maintain consistent data until the migration is completed.

Bisbal et al. (1999) give an overview of existing research in legacy software migration,

particularly regarding Chicken Little and the Butterfly Methodology. The latter is presented
in Wu et al. (1997b) and Wu et al. (1997a). The Butterfly Methodology is an approach that

especially addresses the migration of systems in mission-critical environments that require

the parallel operation of the legacy and the target system during the migration until the

new system replaces the old one in a last migration step with a minimized out-time. In

comparison to the Chicken Little methodology, the Butterfly approach utilizes no Gateways,
since it does not require the provision of continuous data consistency between the legacy

and target system. Hence, it is called a gateway-free approach.
An approach to migrating integrated legacy systems to multi-tier architectures is pre-

sented by Hasselbring et al. (2004). They developed the Dublo pattern, named by the partial

DUplication of Business LOgic. The DUBLO approach supports a smooth migration path that

can be carried out step-by-step. This fact is based on the pattern design that allows both ele-

ments incorporated by the legacy code and the deployed target application server to provide

(partially duplicated) business logic.

In the recent past, model-driven techniques were investigated increasingly for software

migrating purposes. Fuhr et al. (2010) present a migration extension to IBM’s Service-

OrientedModeling and Architecture (SOMA) that utilizes model-driven strategies to transfer

legacy assets to Service Oriented Architectures. They provide a case study in which they

migrate one functionality of the Java application GanttProject into web a service by using

code analyses, service identification, and model transformation. This approach is at an early

stage and does not yet provide universal means for migration, as indicated by the authors,

for example, concerning the lack of support for languages other than Java. However, their

method served successfully as a technical proof-of-concept.

Fleurey et al. (2007) present another migration approach situated in the context of model-

driven engineering. The described migration process includes reverse engineering, transfor-

13

2 Foundations

mation, and code generation based on building and transformation of models. Major goals

of this approach aim for maximizing the automation as well as increasing the flexibility and

reliability of the migration process. Their description is accompanied by a case study con-

cerning the migration of a main-frame banking system to J2EE. This approach proposes a

rather generic migration-supporting instrument and is regarded as being directly related to

the CloudMIG approach considered in this thesis.

Today cloud computing establishes new motifs for software migration due to the aspects

described in Section 2.1. Depending on the extent that the software will be affected by

the migration, it has to be considered whether it is more feasible and appropriate to only

transform selected parts or to re-engineer the whole program. If the latter situation occurs,

it may be reasonable to reconsider rewriting the application from scratch.

One of the most challenging tasks in software migration is investigating the status quo

of the legacy system. A precise understanding of functional dependencies, communication

mechanisms, and storage structures for instance is obligatory to determining if a migration

is both feasible and rational.

As software ages inevitably over time (see Parnas, 1994), especially large systems differ

considerably from their original architecture and documentation. Therefore, an analysis

of the system in question has to head the migration process. In many cases this analysis

involves a reverse engineering activity. “Software reverse engineering aims to both iden-

tify the components and their interrelationships as well as giving a representation of the

considered system at a higher level of abstraction.” (see Chikofsky and II, 1990)

2.3 CloudMIG

Migration of applications to cloud environments as well as software migration in general

are often very complex processes, where essential reengineering activities form an extensive

part. CloudMIG is an approach designed to support software engineers at the reengineering

process in a semi-automated manner (see Frey and Hasselbring, 2010). Following a model-

based approach, CloudMIG aims at rearranging enterprise software systems to scalable and

resource-efficient PaaS and IaaS-based applications.

The basic activities and components of CloudMIG are illustrated in Figure 2.4 and will be

described in the following.

14

2.3 CloudMIG

Figure 2.4: Activities and components of CloudMIG (Frey and Hasselbring, 2010).

(i) A1 Extraction: Models that represent the application’s actual architecture and uti-

lization are required for further steps, especially in activity A3. In A1, these models

are extracted from the application.

(ii) A2 Selection: When the specific Cloud Environment Model (CEM) according to the

considered target cloud platform has not been created before, for example if the cloud

environment is investigated for the first time, it has to be created once at this point.

Otherwise the corresponding CEM is selected here.

(iii) A3 Generation: During this activity, the actual architecture has to be translated to

the target architecture. Therefore, all Cloud Environment Constraint (CEC) violations

are detected by a constraint validation mechanism. Further, a mapping model is cre-

ated that identifies unsuitable features from the actual architecture which have to be

converted to proper elements of the target architecture.

15

2 Foundations

(iv) A4 Adaptation: This activity allows manual adjustments of the target architecture to

match specific requirements of the reengineer’s concept.

(v) A5 Evaluation: The target architecture, provided by activities A3 and A4, is evaluated
by static and dynamic analysis. This evaluation activity combined with the preceding

activities A3 and A4 can be carried out iteratively to refine the resulting target archi-

tecture.

(vi) A6 Transformation: This activity describes the manual transformation of the system

from the generated target architecture to the cloud environment.

The models that result from activities A1 (architectural model) and A2 (cloud environment

model) are of particular importance for this thesis, therefore they are further described in

Section 3.2 and Section 3.1, respectively. A brief description is given in the following:

• Architectural model: The architectural model of the legacy system is required con-

ceptually by CloudMIG to allow the model transformation process between the legacy

and the target architecture. CloudMIG proposes the Knowledge Discovery Meta-

Model (KDM) (see Section 2.4.6), a specification defined by the Object Management

Group (OMG), as a model format for the applications’ architectural information. The

extraction of architectural information is achieved by running a software reverse engi-

neering process on the considered application. CloudMIG proposes the tool MoDisco

(see Section 2.4.7) for this activity.

• Cloud Environment Model: The Cloud Environment Model (CEM) represents the

specific characteristics of the target cloud system. These characteristics are grouped

to layered packages (see Figure 2.5). For example, the core package comprises basic

elements and abstract elements as a basis for elements in other packages. One of

the most relevant characteristics of a cloud system is the set of Cloud Environment

Constraints (CEC) that imposes technical limitations to applications running in the

target cloud environment. The constraint package defines these constraints for hosted
applications. An excerpt of an CEM instance for Google App Engine is presented in

Section 3.1. A more detailed view on the constraint package of CEM in terms of its

violations is given in Section 4.1.

16

2.3 CloudMIG

Figure 2.5: The packages of CEM (Frey and Hasselbring, 2010).

The CEM has to be instantiated once for each cloud environment. The model can be reused

for subsequent investigations on the same cloud environment. For this purpose CloudMIG

will provide a repository of existing CEMs in the future.

Besides the architectural model of the legacy system and the defined cloud profile, which

are main components for the functional mapping of the system towards the target architec-

ture, CloudMIG supports the possibility for taking a utilization model of the legacy system

into account. CloudMIG proposes the extraction of the legacy system’s utilization model ac-

cording to OMG’s Structured Metrics Meta-Model (SMM). Information about the utilization

of the system’s resources is used to design the target architecture in order to exploit general

performance potentials and assure that the migrated system can harness cloud elasticity.

The extraction of a utilization model is not intended here.

The model-based CloudMIG approach especially addresses the migration of enterprise

software systems to IaaS and PaaS-based clouds from a SaaS provider’s point of view. It

utilizes model-driven reengineering techniques and rule-based heuristics to support semi-

automatic generation of the target system architecture. One major activity of the CloudMIG

approach is the conformance analysis of the considered software regarding the potential

target cloud environment. This analysis is provided by an extensible framework of valida-

tors that examine model representations of the considered software system for violations

concerning the target environment. A case study that applies the CloudMIG approach to

investigate five open-source applications for a migration to Google App Engine for Java is

conducted as a proof-of-concept in Frey and Hasselbring (2011). The experiments show the

feasibility of the approach by introducing the prototype tool CloudMIG Xpress (see Sec-

tion 2.4.8) with an explicit focus on violation detection.

17

2 Foundations

2.4 Involved Technologies

2.4.1 Eucalyptus

Eucalyptus is an open-source infrastructure software for building and managing cloud com-

puting environments within computer clusters. The name Eucalyptus is an acronym for

“Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems.”

Originating from a research project (see Nurmi et al., 2009) at the University of California,

Santa Barbara in 2008, the project is now maintained by Eucalyptus Systems, Inc., founded by
the original authors of Eucalyptus to handle the incipient rapid growth of the product and

its community.

Eucalyptus operates on most common Linux distributions such as Ubuntu, Red Hat En-

terprise Linux (RHEL), CentOS, SUSE Linux Enterprise Server (SLES), OpenSUSE, Debian,

and Fedora. The standard interface is entirely compatible with AmazonWeb Services (AWS)

such as Elastic Computing Cloud (EC2), Elastic Block Storage (EBS), and Simple Storage

Service (S3).

Figure 2.6 illustrates the topology of a typical Eucalyptus cloud environment and the re-

lationships between its components. Eucalyptus consists of four main components, each

acting as a stand-alone web service. In the following, these components are described in

hierarchical order, beginning at the lowermost:

(i) Node Controller (NC) run on every node that hosts virtual machine (VM) instances.

A node controller controls the execution, inspection and, termination of instances.

(ii) Cluster Controller (CC) provide scheduling of VM executions over available node

controllers as well as network management facilities.

(iii) Storage Controller (Walrus) implement Amazon’s S3 interface for storing and ac-

cessing VM images and user data.

(iv) Cloud Controller (CLC) control the underlying components and provides resource

information to cloud users and administrators. Further, a cloud controller handles

authentication and exposes system management tools.

Eucalyptus is interchangeable with the Amazon environment, allowing customers to per-

form development and testing actions on their private cloud prior to actually deploying

18

2.4 Involved Technologies

Figure 2.6: Design of a typical Eucalyptus cloud environment (Nurmi et al., 2009).

their solutions into the Amazon cloud. Currently up-to-date hypervisors like Xen or KVM

are supported by default to act as underlying virtualization technology for virtual machine

instances.

Besides an open-source edition that includes the core elements of the system, an enter-

prise edition2 with additional features exists that supplies further hypervisors (e.g., VMware),
guest operating systems (e.g.,MSWindows), management options (users, quotas, and others)

and database bindings and other extensions. This work will concentrate on the open-source

solution as it satisfies all arising requirements.

2.4.2 Google App Engine

Google App Engine (GAE) is a software framework that allows the development and deploy-

ment of web applications. It runs applications on Google’s server infrastructure and can be

classified in the PaaS cloud computing domain. At the present time the GAE supports Java

2http://www.eucalyptus.com (September 20, 2011)

19

2 Foundations

and JVM runtime environment-based languages, for example Clojure, Groovy, or Scala as

well as dedicated Python and Go runtime environments.

Figure 2.7: Google App Engine service implementations.3

In order to enable scalability and to enhance the robustness and stability of services, the

scope of libraries that these languages are allowed to use is restricted by the framework.

These restrictions include, for example, communication constraints, limited access to the

local file system, interdiction of spawning background threads and response time limits for

web requests (see Chohan et al. (2010). In the context of this thesis, these restrictions have a

notable significance. In Section 3.1 for instance, restrictions will be defined in terms of cloud

environment constraints (CECs) describing essential characteristics of cloud environments.

In addition to standard programming language features the App Engine offers interfaces

to Google’s proprietary technologies (e.g., Google File System, BigTable, MapReduce, Mem-

Cache, GoogleMail, GoogleAuthentication). Figure 2.7 shows a partial overview of provided

services and its implementations in the App Engine.

3Figure taken from “Cloud services for your virtual infrastructure, Part 2”, published at IBM developerWorks,
Technical library, http://www.ibm.com/developerworks/opensource/library/ (September 20, 2011)

20

2.4 Involved Technologies

2.4.3 AppScale

AppScale is an open-source implementation of the Google App Engine APIs and is being

developed at the RACELab (Research on Adaptive Compilation Environments), which is a

research group of the University of California, Santa Barbara. AppScale is a platform-as-a-

service cloud runtime system, that can be operated on different underlying cluster resources

see (see Bunch et al., 2011). Besides popular cloud infrastructures, such as Amazon EZ2 and

Eucalyptus, AppScale can be deployed on individual private server clusters, supporting Xen

and KVM as virtualization technologies. Figure 2.8 shows different deployment modes that

are possible to operate with AppScale.

Figure 2.8: Overview of AppScale cloud deployment modes.4

Adding support for executing GAE applications over virtualized clusters as well as pro-

viding the first open-source PaaS system are the declared key objectives of AppScale.

To offer users and developers a comfortable researching and testing environment ac-

cording to their customed needs, AppScale implements the Google App Engine open APIs,

thereby adding support for underlying IaaS cloud systems like EC2 and Eucalyptus. This

allows developing, testing, debugging, and executing of GAE applications on the users’ own

clusters, focusing on scalability in particular. Existing GAE applications can be deployed to

AppScale without the requirement to make any modifications (see Bunch et al., 2009).

Compared to the App Engine (see Figure 2.7), AppScale supports different implementa-

4Figure taken from AppScale project homepage, http://code.google.com/p/appscale/ (Sep. 29, 2011)

21

2 Foundations

tions of the provided services as shown in Figure 2.9. For example, the GAE Datastore

API can be implemented using different underlying database technologies. This is provided

by an additional layer that links Google’s datastore API with both relational (e.g., MySQL,

Oracle) and key-value based (e.g., Voldemort, Cassandra, MongoDB) databases (see Bunch

et al., 2010). From a programmer’s point of view, the interface that connects to the Datastore

layer is still accessed in a NoSQL style.

Figure 2.9: AppScale Service implementations.5

2.4.4 ADempiere

ADempiere is a community-developed open-source business software suite. It consists of a

collection of business applications, including Enterprise Resource Planning (ERP), Customer

Relationship Management (CRM), Supply Chain Management (SCM), Financial Performance

Analysis as well as integrated Point of Sale (POS) andWeb Store solutions. Figure 2.10 shows

an overview of the key features ADempiere supplies to facilitate process management and

support business tasks.

5Figure taken from “Cloud services for your virtual infrastructure, Part 2”, published at IBM developerWorks,
Technical library, http://www.ibm.com/developerworks/opensource/library/ (September 20, 2011)

22

2.4 Involved Technologies

Figure 2.10: Overview of ADempiere Business Suite features.6

The ADempiere project was created in September 2006 as a fork of the Compiere open-

source ERP, which has been founded and mainly developed by Compiere Incorporated.

ADempiere is developed with JavaEE technologies, designed for the JBoss application Server.

Currently supported database sytems are Oracle and PostgreSQL.

2.4.5 JForum

JForum is an open-source discussion board software. Figure 2.11 shows a screenshot of a

typical web browser view of JForum with a forum listing. JForum is developed with Java

technologies and runs on any established Java application server, including Tomcat, JBoss,

and GlassFish. Several commonly accepted databases, such as MySQL, PostgreSQL, Oracle,

and HSQLDB are supported.

6Figure taken from ADempiere product homepage, http://www.adempiere.com/ (Sep. 29, 2011)

23

2 Foundations

Figure 2.11: Screenshot of the forum listings view of JForum.7

Some of characteristic features and advantages over similar products emphasized on the

project homepage include:

• Fast response times: Through the caching of frequently accessed data, excessive

database querying is avoided and the system remains fast and scalable.

• Multi-language support: Support for different languages with the ability to add new
languages easily.

• Customizability: Individual profiles, language settings, themes, and templates per

user.

• Security: Advanced HTML filter, highly customized permission control system on a

forum / category and group / user basis.

7Figure taken from JForum product homepage, http://www.jforum.net/ (Sep. 29, 2011)

24

2.4 Involved Technologies

2.4.6 Knowledge Discovery Meta-Model (KDM)

Knowledge Discovery Meta-Model (KDM) is a specification defined by the Object Manage-

ment Group (OMG). KDM represents architectural information (e.g., entities, attributes, re-

lationships) about the software considered as well as additional artifacts (e.g., operational

environment, components that interact with the software) (see Ulrich, 2004).

KDM uses a specific XML Metadata Interchange (XMI) model interchange format that is

also developed by OMG and that is based on Extensible Markup Language (XML). One of

the main characteristics of KDM is that it is independent of the programming language and

the runtime platform. Another key feature is the ability to extend the core components with

domain-, application-, and implementation-specific knowledge.8

KDM consists of four different layers that are built consecutively on top of each other.

Figure 2.12 shows the layered structure of KDM. Each layer comprises several packages (12

overall) that represent different specific elements of the entire knowledge about the system.

Figure 2.12: Layered structure of the Knowledge Discovery Meta-Model.8

8Taken from KDM technical overview web page, http://www.kdmanalytics.com/kdm/kdm_overview.html
(Sep. 29, 2011)

25

2 Foundations

2.4.7 MoDisco

MoDisco is a generic and extensible framework for model-driven reverse engineering. It

is primarily designed to support legacy software modernization. The MoDisco platform is

developed as an open-source project and is available as an Eclipse plug-in and part of the

Eclipse Modeling Project.

One of the main issues concerning modernization of legacy software is getting detailed in-

formation about the software system that has to be modernized. This problem is even more

relevant if no exact information about the system’s actual architecture exists. Incomplete or

obsolete information is not unusual, especially for software that is situated in environments

with successively changing demands or when the system underlies altering hardware in-

frastructure or software components. MoDisco aims to retrieve this information by reverse

engineering the application considered. A schematic overview of the reverse engineering

process is illustrated in Figure 2.13.

Figure 2.13: Overview of MoDisco’s reverse engineering process.9

In the first phase of this reengineering process, the source code or other data artifacts

of the applications are taken as input. This can be, for example, one specific discoverer

component of MoDisco, which extracts a unified model as basic output. The discoverer is

provided with a meta-model corresponding to the type of application that has to be reverse

engineered.

9Figure taken from MoDisco homepage, http://www.eclipse.org/MoDisco/ (Sep. 29, 2011)

26

2.4 Involved Technologies

The second phase is used for various refining activities, where the basic models from the

first phase are transformed and analyzed to obtain the desired target information, including

different model representations, metric computations, re-factoring, generation of code, and

documentation (see Bruneliere et al., 2010).

2.4.8 CloudMIG Xpress

CloudMIG Xpress is a prototype tool presented by Frey and Hasselbring (2011) that supports

reengineers in migrating software systems to the cloud following the CloudMIG approach

(see Section 2.3). It has a modular structure that allows for extension of its functional range

by attaching plug-in features. Figure 2.14 shows an overview of CloudMIG Xpress including

a set of possible plug-in components annotated with the respective corresponding activity.

Furthermore, the cloud profile should be mentioned as an additional artifact representing the

extensible repository of cloud profiles that are modeled in CloudMIG’s selection activity A2.

Figure 2.14: Overview of CloudMIG Xpress (Frey and Hasselbring, 2011).

An implementation of the architecture reconstruction component that is based on open-

source libraries of MoDisco (see Section 2.4.7) has already been realized by the authors of

CloudMIG. This component provides the extraction of architectural information from the

target application by means of a software reverse engineering process and supplies the re-

sult as a KDM-conform model. A supplementary feature that allows for importing already

27

2 Foundations

existing models to CloudMIG Xpress as an alternative to reconstruction has been imple-

mented in this thesis (see Section 3.2). Constraint validation, one of the central aspects of

CloudMIG’s activity A3 Generation, is designed to be carried out by additional constraint

validators, following a plug-in concept. Several constraint validator plug-ins have already

been implemented as well. The validation component is a component of significance in this

thesis as it is investigated for its detection capabilities in Section 6.2. Due to the fact that

CloudMIG Xpress only provides static analyses so far, it is not capable of detecting constraint

violations that only occur at runtime.

This thesis will focus on the features mentioned above. The remaining components (Uti-
lization Model Construction, Target Architecture Generation, Adaption, Simulation, and Analy-
sis) that are shown in Figure 2.14 are conceptually planned for further development but not

yet implemented.

28

3 Model Construction

According to the CloudMIG approach (see Section 2.3), several models are utilized to ac-

complish the generation of the target architecture as well as the detection of CEC violations.

These models represent essential elements of the migration process and are described in

more detail in the following:

• An instance (cloud profile) of the Cloud Environment Model (CEM) for the specific
AppScale cloud system describes the technical characteristics of the target environ-

ment. As the cloud environment imposes the constraints on the hosted applications,

the created CEM instance combined with the architectural model of the legacy system

allows the implemented constraint validators to identify constraints that would lead to
CEC violations if the application were to be deployed unchanged to the target cloud.

Based on a generic CEM proposed by CloudMIG, a specific instance is derived to rep-

resent the exact shape of the considered cloud environment. This activity is dealt with

in Section 3.1.

• The extraction of the Architectural Model (see Section 3.2) is proposed as being

performed with the aid of MoDisco, a software reconstruction tool, resulting in an

instance of the Knowledge Discovery Meta-Model (KDM). In the course of this process

an evaluation of the KDM extraction mechanism will be addressed as the minor goal

described in Section 1.2.3.

3.1 Definition of the Cloud Profile

The Cloud Profile of the AppScale system is a specific instance of the generic Cloud Envi-

ronment Model (CEM) Meta-Model proposed by CloudMIG. This model is constructed by

manually describing elements of the meta-model with matching specifications of the cloud

29

3 Model Construction

environment. As there are no tools available that support the reengineer in gathering these

characteristics automatically, one has to obtain the required information by examining the

system’s documentation or source code.

The documentation of AppScale lacks the essential information for describing the char-

acteristics and deriving specific constraints of the AppScale cloud environment. Further, no

related work exists that could deliver the corresponding data. An inspection of the source

code indicated that AppScale implements the open-source GAE SDK, that has been affirmed

by the developers as well. These facts led us to revert to the existing instance of the CEM

Model describing Google App Engine for Java SDK 1.3.6 as the basis for further steps. An

instance of the Google App Engine CEM has already been established by Frey and Hassel-

bring (2011) for the investigation of CEC violations of different applications performing the

CloudMIG approach.

Listing 3.1 shows an excerpt of the GAE cloud profile. It includes the description of

one cloud service (PersistenceCloudService (GAE Datastore) [lines: 7-11], three constraints

(FilesystemAccessConstraint (Write) [lines: 13-21], MethodCallConstraint (Systemexit) [lines:
22-28], and TypesWhitelistConstraint (AllowedJRETypes) [lines: 29-39]) and one type list

WhiteList (GAE JRE Type Whitelist) [lines: 41-47] that defines allowed types that are checked
by the TypesWhiteListConstraint validator.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <cloudprofile:CloudEnvironment xmi:version="2.0"
3 [...]
4 id="org.cloudmig.cloudprofiles.gae"
5 providerName="Google Inc." version="0.1">
6 <environmentConfiguration id="org.cloudmig.cloudprofiles.gae.java">
7 <cloudService xsi:type="iaas:PersistenceCloudService"
8 description="The App Engine datastore is a [...]"
9 id="org.cloudmig.cloudprofiles.gae.datastore"
10 name="Google App Engine Datastore"
11 [...] />
12 <constraintConfiguration name="Constraints">
13 <constraint xsi:type="constraint:FilesystemAccessConstraint"
14 id="org.cloudmig.cloudprofiles.gae.java.contraint.
15 filesystemaccess.nofilesystemwrite"
16 descr="An App Engine application cannot write to the
17 filesystem. [...]" name="No Filesystem Write"
18 violationSeverity="Critical">
19 <proposedSolution solution="Utilize the App Engine
20 Datastore for storing persistent data."/>
21 </constraint >
22 <constraint xsi:type="constraint:constraint:MethodCallConstraint"
23 id="org.cloudmig.cloudprofiles.gae.java.contraint.methodcall.
24 systemexit"
25 descr="The call to java.lang.System.exit() method does nothing
26 in App Engine."
27 [...]
28 </constraint >
29 <constraint xsi:type="constraint:TypesWhitelistConstraint"
30 id="org.cloudmig.cloudprofiles.gae.java.contraint.typeswhitelist.
31 allowedjretypes"

30

3.1 Definition of the Cloud Profile

32 descr="Access to the classes in the Java standard library (the
33 Java Runtime Environment , or JRE) is limited to the classes
34 in the App Engine JRE White List."
35 types="// @environmentConfiguration .0/ @constraintConfiguration .0/
36 @typeLists .0"
37 violationSeverity="Critical"
38 [...]
39 </constraint >
40 [...]
41 <typeLists id="org.cloudmig.cloudprofiles.gae.java.contraint.
42 typelist.whitelist" name="Google App Engine JRE Whitelist">
43 <type name="Boolean" package="java.lang"/>
44 <type name="Byte" package="java.lang"/>
45 <type name="StringReader" package="java.io"/>
46 [...]
47 </typeLists >
48 [...]
49 </constraintConfiguration >
50 </environmentConfiguration >
51 </cloudprofile:CloudEnvironment >

Listing 3.1: Excerpt of the App Engine cloud profile.

The definition of new cloud profiles is a complex and error-prone activity, as highlighted

by the following points:

• Since the information has to be extracted from different non-standardized sources,

such as documentation, case studies, and one’s own research, the data is not only

difficult to obtain but is, moreover, often vague and incomplete.

• The required information is basically provided in textual form, so that a translation to

the abstract elements of the cloud environment model has to be made. This circum-

stance often leads to a certain degree of inaccuracy, which is caused by the fact that

a model always provides only a limited representation of reality. Furthermore, this

translation depends on the subjective appraisal of the engineer.

• Both the information retrieval as well as the development of the model instance are

manual and non-standardized activities that are not subject to automated validation

mechanisms. As for every manually conducted process, errors are never completely

avoidable.

These drawbacks are diminished by the fact that a cloud profile, including its implemented

constraint validators, has to be developed only once for each target cloud system. Further,

to generate related profiles, an existing model can be (partly) adopted and enhanced to build

different shapes of the profiles. Therefore, CloudMIG aims at providing a public repository

of cloud profiles in the future to exploit the re-usability and benefits of cooperation.

31

3 Model Construction

3.2 Extraction of the Architectural Model

CloudMIG is designed to support reengineers in migrating software systems to PaaS- and

IaaS-based cloud environments. The goal is to identify potential obstacles that would impede

the application from running in the target cloud in order to be able to adjust the existing

system to match suitably with the cloud’s specifications. This intention requires a high level

of information about the considered software system. The desired application for migration

in this thesis has initially been the complex ERP software ADempiere (see Section 2.4.4).

The contemplated extraction procedure using MoDisco has not proven to be applicable. The

particular procedure and problems exposed will be addressed in Section 3.2.1, while a critical

examination and appraisal concerning this issue is covered in Section 3.2.3.

Since this risk has been conceivable from the beginning (see Section 1.2.3), JForum (see

Section 2.4.5) has been chosen as an alternative option from a pool of applications known

to be suitable for model extraction in order to proceed with the work. The model extraction

procedure of the fallback solution JForum is described in Section 3.2.2.

3.2.1 Extraction of ADempiere’s Model

A first attempt of extracting an architectural model of ADempiere was made on a typical

desktop PC platform. The system’s initial hardware and software configuration is listed in

Table 3.1.

Desktop PC
CPU: Intel Core2Duo E6750 2core 2.66GHz
RAM: 2x1GB DDR3-1066MHz
OS: MS Windows 7 64 Bit

JVM: Java HotSpot(TM) Server VM
Eclipse: Helios 64 Bit Modeling Package

MoDisco: Eclipse Plug-in (Version 0.8.2)

Table 3.1: Configuration of the desktop PC for model extraction.

The MoDisco Model Discovering task was launched with the default settings. After a few

hours of executing with full CPU utilization, the process ended up with an error message

32

3.2 Extraction of the Architectural Model

from the underlying JVM, indicating a heap overflow error. To avoid this problem, as a first

measure the procedure was repeated with an increased JVM heap size that exploited the

available memory of 2 GB. This attempt failed in the same way.

Thereafter, several settings of MoDisco were operated subsequently. None of the different

settings, which included an option to run the procedure incrementally, thereby intending to

occupy memory more economically, could avert the heap overflow error.

Next, the initial software and hardware setup was changed. The process still failed with

updated software versions (including Nightly Builds) of Eclipse and MoDisco as well as with

a larger amount of memory (4 GB RAM).

To take advantage of a further increased hardware environment utilizing the blade servers

of the Software Engineering Group at the Christian-Albrechts-University Kiel, the extraction

had to be released from the Eclipse IDE integration and carried out as an independent action,

executable from the command line of a common SSH shell. An overview of the provided

server configuration is given in Table 3.2.

Server
Blade 1

Type: X6270
CPU: 2xIntel Xeon E5540 4core 2.53GHz
RAM: 12x2GB DDR3-1066MHz ECC
OS: Solaris 10 (SunOS 5.10)

JVM: Java HotSpot(TM) Server VM
Blade 2

Type: X6270
CPU: 2xIntel Xeon E5540 4core 2.53GHz
RAM: 12x2GB DDR3-1066MHz ECC
OS: Linux Debian 2.6.26-2-amd64

JVM: OpenJDK 64-Bit Server VM
Blade 3

Type: T6340
CPU: 2xUltraSparcT2+ 8core 1.4GHz
RAM: 16x4GB FB DIMM
OS: Solaris 10 (SunOS 5.10)

JVM: Java HotSpot(TM) Server VM

Table 3.2: Configuration of the blade servers for model extraction.

33

3 Model Construction

The model extraction procedure of MoDisco is a combined procedure, in which a prior

generated intermediate model is transformed to the final KDM model. This two-stage tech-

nique maximizes flexibility for varying reverse engineering purposes. Besides the KDM-

based model representation of the application’s architecture that the CloudMIG approach

aims for, a reengineer might have other intentions that depend on different information

(see Section 2.4.7). Therefore, as a first step, the considered application source code and

additional artifacts (e.g., configuration files or database data) are examined for any relevant

information and a model is generated that gives a universal representation of the system

(see Bruneliere et al., 2010). The resulting intermediate model serves as a basis for further

information retrieval.

In our case, the first stage is detected as completing successfully whereas the second stage

causes the errors in Eclipse. Hence, the successfully obtained intermediate model is intended

to be retained and transformed by executing an ATL-based1 model-to-model transformation

on the blade servers. A schematic overview of the transformation principle, according to

Allilaire et al. (2006) is illustrated in Figure 3.1, where a modelMa is transformed to a model

Mb.

Figure 3.1: ATL model-to-model transformation schema (according to Allilaire et al., 2006).

1ATL: Atlas Transformation Language, http://www.eclipse.org/atl/ (Sep. 29, 2011)

34

3.2 Extraction of the Architectural Model

The source model Ma conforms to the meta-model MMa which defines the model specifi-

cation. On the target side, there is an analogues combination of the target model Mb and its

meta-model MMb. The ATL transformation engine, which defines a model transformation

meta-model ATL, is provided with a conform model transformation model MMa2MMb.atl
that describes the mapping of source elements to target elements. The Meta Object Facility

MOF, a standard of the Object Management Group (OMG), lies on top of the three meta-

models that each have to conform to the MOF.
Listing 3.2 shows a source code excerpt of the extracted model transformation procedure

that corresponds to the ATL model-to-model transformation described above.2 Initially, the

meta-model definitions of the source (javaModel) and target (kdmModel) models are initial-

ized and the source model (which is the intermediate model of the MoDisco model extrac-

tion) is loaded according to its meta-model from the local file system (inFilePath). Then,

a new instance (launcher) of the transformation launcher is supplied with the source and

target models, some configuration options (objects), and the transformation model (java-
ToKdm.asm). Afterwards the launcher is executed and the target model is exported to the

local file system (outFilePath).

1 [...]
2 // Get instances of the input and output models used
3 // during transformation and load (inject) input model
4 IModel javaModel = factory.newModel(javaMetaModel);
5 IModel kdmModel = factory.newModel(kdmMetaModel);
6 injector.inject(javaModel , inFilePath);
7
8 // Get an instance of the transformation launcher and
9 // add models to the transformation context
10 ILauncher launcher = new EMFVMLauncher ();
11 launcher.initialize(Collections.<String , Object > emptyMap ());
12 launcher.addInModel(javaModel , "IN", "java");
13 launcher.addOutModel(kdmModel , "OUT", "kdm");
14
15 // Set up options of the ATL -VM used for the
16 // transformation process
17 HashMap <String , Object > objects = new HashMap <String , Object >();
18 objects.put("step", "false");
19 objects.put("printExecutionTime", "true");
20 objects.put("allowInterModelReferences", "true");
21 objects.put("showSummary", "true");
22
23 // Set up the resource URL of the asm definition file
24 URL transformationResourceURL =
25 Java2Kdm.class.getResource("/javaToKdm.asm");
26

2A more detailed source code excerpt is given in Appendix A

35

3 Model Construction

27 // Launch the transformation using given parameters
28 launcher.launch(ILauncher.DEBUG_MODE , new NullProgressMonitor (),
29 objects , transformationResourceURL.openStream ());
30
31 // Export the KDM formatted model to output file
32 extractor.extract(kdmModel , outFilePath);
33 [...]

Listing 3.2: Source code excerpt of the command line program for ATL model-to-model
transformation.

The model transformation was executed on each of the three blades with the program

mentioned above. Even after several days of execution time with heavily utilized CPU and

peak memory usages of 13 GB, none of the processes had finished and it was decided to

interrupt them.

As a final effort concerning the memory issue, the individual packages of ADempiere

(e.g., base, util) were treated separately during the model discovery with MoDisco. Every

package, except the base package processed successfully with a maximum execution time

of a few hours. Regrettably, the base package showed the same deficiency as the entire

application did before.

Both our own initial investigations as well as confirming statements of MoDisco develop-

ers indicated the error source as residing in the ATL script used to translate the intermediate

model to KDM. In consideration of the residual goals of this thesis we decided not to proceed

with the investigation of this problem at this point, but to switch to the fallback application

JForum instead.

3.2.2 Extraction of JForum’s Model

JForum has been designated as the fallback application to examine instead of ADempiere,

which proved to be infeasible in this context, due to extraction errors with MoDisco (see

previous Section 3.2.1).

The extraction of the architectural model of JForum is described in this section. The

MoDisco Discoverer of the Eclipse plug-in was applied on JForum and its libraries. The

previously mentioned standard desktop PC (see Table 3.1) was used again and the Discoverer

was executed using default settings with the incrementally option activated. Both JForum’s

own sources as well as the libraries could be processed without errors.

36

3.2 Extraction of the Architectural Model

3.2.3 Analysis of the KDM Extraction Process

As the thesis of Pascal Löffler has already shown, difficulties might occur in the model ex-

traction process with MoDisco, especially when working with large applications. Being

aware of this threat, exposing potential issues and investigating solutions to keep following

up the intended strategy of the CloudMIG approach have been declared as minor goals of

this thesis.

Unfortunately, the raised concerns were well-founded and our attempt to extract the ar-

chitectural model of ADempiere with MoDisco failed (see Section 3.2.1). Different modifi-

cations with the intention of solving the problems arising from the lack of memory merely

bypassed the errors and caused a non-terminating extraction process, probably due to an

infinite execution loop.

Since the developers of MoDisco had not encountered such issues before, the consultation

did not provide a proper solution to the problem. Supposing that the memory problems were

caused by the huge sources of ADempiere, they recommended either reducing the extent of

relevant expressions and code elements by setting filters in the MoDisco Discovering action

or dividing the responsible base package of ADempiere into smaller parts. Both measures

seemed to be rather inadequate to our approach, because it would imply a grave loss of

information or an exaggerated amount of manual work that would massively weaken the

benefit of the CloudMIG Approach.

Taking the young history and active development of MoDisco into account, it might still

be reasonable to regard them as a promising candidate for providing the required KDM

models in the future.

We decided not to pursue further debugging actions concerning the extraction proce-

dure, such as uncovering endless loops, which may have been a reason for the erroneous

behaviour, as this would disregard the other goals and would go beyond the scope of this

examination.

37

4 CEC Violation Identification with
CloudMIG

Constraints describe limiting factors of the cloud environment that prevent technical actions

of guest applications from being executed correctly (see Frey and Hasselbring, 2011). These

constraints are imposed by the specific cloud characteristics, hence they will be specified

in the CEM instance. The according framework is represented by the CEM Constraints

package. To define a concrete constraint, a library of abstract constraints containing classes

like AbstractNetworkConstraint or AbstractTypeListConstraint is provided by the

CEM, which are inherited to match the particular attributes.

4.1 Overview of CEC Violations

The CloudMIG Approach defines a set of CECs (see Section 2.3 and Section 3.1). If a specific

CEC is not met by some part of the application it causes a CEC Violation, according to the

constraint it is based on.

A short description1 of several instantiated constraints (based on the constraint definition

of the CloudMIG Approach) for the GAE cloud profile and an example of a typical violation

for the according constraint is described in the following. Constraints that caused no vio-

lation (e.g., LanguageConstraint, FirewallPortRangeConstraint, RuntimeContainerLifetime-

Constraint) are not considered here.

• TypesWhiteList: Access to the classes in the Java standard library (the Java Runtime

Environment, or JRE) is limited to the classes in the App Engine JRE White List.

1The descriptions are adopted from the (sandboxed) App Engine Java API documentation,
http://code.google.com/intl/de-DE/appengine/docs/java/runtime.html (October 5, 2011)

39

4 CEC Violation Identification with CloudMIG

Example: Implementing the interface java.rmi.server.Skeleton. This interface is not

available in the App Engine and will cause a runtime error.

• TypesInstantiation: Java applications can create neither a new java.lang.Thread
nor a new java.lang.ThreadGroup. These restrictions also apply to JRE classes that

make use of threads. For example, an application cannot create a new java.util.Timer,
or a java.util.concurrent.ThreadPoolExecutor. An application can perform operations

against the current thread, such as Thread.currentThread().dumpStack().

Example: Instantiation of java.lang.Thread. This class is not available in the App En-

gine and will cause a runtime error.

• FilesystemAccess (Read): An App Engine application can read files, but only files

uploaded with the application code.

Example: Instantiation of java.io.File. If the instantiated file is not part of the uploaded
application content this operation is not allowed and will cause a runtime error.

• FilesystemAccess (Write): An App Engine application cannot write to the file sys-

tem. Applications must use the App Engine datastore for storing persistent data.

Example: Call of the method java.io.File.delete(). This method writes to the local file

system and will cause a runtime error.

• Reflection: An application is allowed full, unrestricted, reflective access to its own

classes. It may use java.lang.reflect.AccessibleObject.setAccessible(), query any private

members, and read/set private members. An application can also reflect on JRE and

API classes, such as java.lang.String and javax.servlet.http.HttpServletRequest. How-

ever, it can only access public members of these classes, not protected or private

members. An application cannot reflect against any other classes not belonging to

itself, and it can not use the setAccessible() method to circumvent these restrictions.

However, tests showed that reflecting is even possible on classes of imported libraries.

Example: Call of the method java.lang.reflect.Method.invoke(). If the reflected method

is not a member of an own class or a public member of any other class this method

call is not allowed and will cause a runtime error.

40

4.2 CloudMIG’s CEC Violation Detection Mechanism (Constraint Validators)

• MethodCall (SystemExit): The call to java.lang.System.exit() method does nothing

in the App Engine.

Example: Call of the method java.lang.System.exit(). This call does nothing, which

probably was not the developer’s intention.

• SocketOpening: Google App Engine-based applications cannot make socket connec-

tions directly.

Example: Instantiating java.net.Socket. The opening of sockets directly is not allowed

in the App Engine and will cause a runtime error.

CEC violations are assigned with a severity that specifies the complexity of resolving the

violation during the migration process. The CloudMIG approach proposes three levels of

severity (see Frey and Hasselbring, 2011) which, it should be noted, comprise a pessimistic,

subjective rating. The developer of a cloud profile has to classify the constraints by the

following severity levels:

(i) Warning violations need moderate adjustments for elimination.

(ii) Critical severity means that one can cope with these violations too, though extensive

actions are required to handle them.

(iii) Breaking violations prevent the migration from being carried out successfully.

4.2 CloudMIG’s CEC Violation Detection Mechanism

(Constraint Validators)

CloudMIG provides the detection of CEC violations as a fundamental part of the Generation
activity A3 (see Section 2.3). In that phase, all constraints have been defined as CEM ele-

ments in the considered cloud profile and a KDM-based architectural model of the system

to be migrated exists. CloudMIG allows the development and plugging-in of one or multiple

validator components for every constraint type. Figure 4.1 shows classes that are incorpo-

rated in the constraint validation design of CloudMIG Xpress. Each validator plug-in has to

41

4 CEC Violation Identification with CloudMIG

provide a subclass of AbstractConstraintValidator. Therefore, one of the already avail-

able abstract constraint validator classes can be extended. These classes are designed hier-

archically and represent common characteristics of recently developed validator types. Cur-

rently predefined abstract validators are AbstractStaticConstraintValidator (static

CEC validation), AbstractConstraintKDMValidator (static KDM-based CEC validation),

and AbstractConstraintSMMKDMValidator (static KDM-based CEC validation with SMM-

based metrics data).

Figure 4.1: Classes incorporated in CEC validation process (Frey and Hasselbring, 2011).2

2Updated version (Sep. 2011)

42

4.2 CloudMIG’s CEC Violation Detection Mechanism (Constraint Validators)

When the violation detection is started in CloudMIG Xpress, each validator that is both

suited for the programming language (isSuitedFor()) and relevant for any of the ex-

isting constraints (getConstraintTypeName()) is executed by calling initialize() and

validate(). The latter method returns a Boolean value, indicating whether the validation

holds or violations are identified. The getViolations()method delivers the corresponding

list of CEC violations identified by the validator (see Frey and Hasselbring, 2011).

Following the CloudMIG approach, the constraints are defined as CECs in KDM-based

cloud profiles. Even though the KDM specification allows the representation of architectural

information independent from the application’s programming language (see Section 2.4.6),

several validators require language-specific knowledge for the detection of particular con-

straint violations. Table 4.1 differentiates between constraints that depend on language-

specific analysis and constraints that generic analysis complies with.

Generic Language-specific
LanguageConstraint FileSystemAccessConstraint
MaxTotalNrOfFilesConstraint LocalTransientStorageConstraint
MethodCallConstraint ReflectionConstraint
SMMConstraint SocketOpeningConstraint
TypesInstantiationConstraint
TypesWhitelistConstraint

Table 4.1: Generic and language-specific KDM-based constraint validation.

43

4 CEC Violation Identification with CloudMIG

4.3 Implementation of a Model Import Feature in

CloudMIG Xpress

The current version of CloudMIG Xpress is based on the Eclipse Indigo framework and in-

corporates the Indigo release of MoDisco (0.9.x) components. With this particular version of

the MoDisco Discoverer component, the model extraction of JForum raised an error34 and no

KDM model could be generated successfully. As preceding work has shown, earlier Helios

releases of MoDisco (0.8.x) worked without errors when performing the model extraction

on JForum and a stand-alone copy of JForum’s KDM model was already available outside of

CloudMIG Xpress. A further investigation of the causes for this extraction error will not be

part of this thesis.

In order to exploit potential advantages of newer versions, CloudMIG Xpress should in

general utilize the most recently developed components. Furthermore, the development of

MoDisco bears several major API breaks from the Helios to the Indigo version, so that re-

incorporating the older component in CloudMIG Xpress would have required a substantial

reengineering effort.

As a result of these facts, the obligatory model extraction of CloudMIG Xpress was ex-

tended with a new import feature. This exhibits more flexibility in CloudMIG Xpress, for

example to be able to outsource the extraction process of huge applications on dedicated

high-performance servers or to re-use existing models. Figure 4.2 shows a model file se-

lection dialog of the new import feature, with the main screen of CloudMIG Xpress in the

background.

The import function loads the model resource from the local file system and integrates it

into the internal model database, the same way as on-the-fly extracted models are handled.

The current version provides no integrated validation check of the imported models, so that

the user is responsible for the imported model’s conformance to the required KDM model

specification. This would be a reasonable project for future releases in order to enhance the

reliability and usability of CloudMIG Xpress.

3Error Message: An internal error occurred during: "MoDisco discoverer
"org.eclipse.modisco.java.discoverer.javaProjectToKDM" in progress...".

4Exception Stack Trace: org.eclipse.m2m.atl.engine.vm.VMException: Feature type does not exist on
java!SingleVariableAccess at A.CreateUsesType(1 : Mjava!TypeAccess;) : ??#32(javaToKdm.atl[1886:10-
1886:18]) local variables = tgt=OUT!<unnamed>, src=IN!<unnamed>, self=javaToKdm : ASMModule local
stack = [OUT!<unnamed>, OUT!<unnamed>, javaToKdm : ASMModule]

44

4.4 Application of CloudMIG Xpress’ Violation Detection on JForum

Figure 4.2: View of CloudMIG Xpress showing the new model import feature.

4.4 Application of CloudMIG Xpress’ Violation Detection

on JForum

This section describes the investigation of JForum for constraint violations with the help of

the violation detection component of CloudMIG Xpress.

Architectural models (KDM source model) of JForum and its libraries had already been

extracted using the Eclipse Plug-in of MoDisco, described in Section 3.2.2. Furthermore,

the current model extraction component of CloudMIG Xpress showed problems with the

extraction process of JForum, due to inconsistencies in the underlying MoDisco Discoverer

module (see preceding Section 4.3). Hence, prior to the actual violation detection, a new

feature was added to CloudMIG Xpress to be able to import existing models.

After the successful implementation of the import feature, the violation detection process

of CloudMIG Xpress could be carried out successfully. An instance of Google App Engine

CEM was selected as the target cloud profile and the models of both JForum’s own sources

45

4 CEC Violation Identification with CloudMIG

and its libraries were subsequently loaded with the import feature and validated against the

cloud profile. Each validation procedure executed swiftly and the results were exported as

csv-based data into text files of the local file system without any difficulties.

Overall, the identification resulted in 4,716 (0 / 4,639 / 77)5 violations, of which the JForum

sources yielded 250 (0 / 173 / 77) violations and the libraries combined added up to 4,466

(0 / 4,466 / 0) violations.

Table 4.2 shows a quantitative overview of detected violations of JForum and its libraries.

Additionally, the number of violations is compared to the number of classes and lines of code

in order to obtain more significant information about violation frequencies. Some libraries’

source code was unfortunately not provided and the corresponding values (indicated with

’x’) are missing. Hence, adjusted summaries are given to prevent obscured data.

Table 4.3 gives a more detailed overview of violation frequencies in JForum’s own classes.

All classes that contain at least one violation are listed individually, provided with the num-

ber of violations, lines of code (LoC), and the according ratios for violations per 1,000 LoC.

A more detailed analysis of the detected violations is presented in Section 6.1.1.

5Sum (Breaking / Critical / Warning)

46

4.4 Application of CloudMIG Xpress’ Violation Detection on JForum

Violations Classes LoC6 V/C7 V/KLoC8

Source # % # % # %
JForum 250 5.30 340 10.13 31,865 7.53 0.74 7.85
Libraries 4,466 94.70
Libraries (adjusted)9 1,671 35.43 3,018 89.87 391,280 92.47 0.55 4.27
jboss-jmx 2,297 48.71 x x x x x x
jgroups-all-2.2.9-beta2 813 17.24 340 10.13 55,211 13.05 2.39 14.73
jboss-system 277 5.87 x x x x x x
log4j-1.2.12 259 5.49 176 5.24 15,314 3.62 1.47 16.91
jcaptcha-all-1.0-RC2.0.1 198 4.20 163 4.85 7,109 1.68 1.21 27.85
jboss-cache-1.2.4 179 3.80 x x x x x x
junit 134 2.84 77 2.29 3,118 0.74 1.74 42.98
htmlparser-1.5 113 2.40 232 6.91 35,073 8.29 0.49 3.22
postgresql-8.0-313.jdbc3 33 0.70 172 5.12 23,748 5.61 0.19 1.39
freemarker-2.3.9 28 0.59 284 8.46 40,018 9.46 0.10 0.70
mysql-connector-java-5.0.3-bin 26 0.55 110 3.28 37,825 8.94 0.24 0.69
activation 26 0.55 28 0.83 2,625 0.62 0.93 9.90
jboss-common 24 0.51 x x x x x x
ojdbc14 18 0.38 x x x x x x
mail 17 0.36 191 5.69 20,366 4.81 0.09 0.83
quartz-1.5.1 14 0.30 124 3.69 21,422 5.06 0.11 0.65
lucene-core-2.2.0 7 0.15 258 7.68 29,102 6.88 0.03 0.24
ehcache-1.1 2 0.04 13 0.39 2,045 0.48 0.15 0.98
concurrent 1 0.02 106 3.16 12,760 3.02 0.01 0.08
c3p0 0 0.00 250 7.44 25,317 5.98 0.00 0.00
tomcat-jasper 0 0.00 118 3.51 29,143 6.89 0.00 0.00
tomcat-servlet 0 0.00 113 3.37 4,269 1.01 0.00 0.00
commons-lang 0 0.00 77 2.29 16,921 4.00 0.00 0.00
tomcat-jsp 0 0.00 46 1.37 1,906 0.45 0.00 0.00
servlet-api 0 0.00 40 1.19 1,522 0.36 0.00 0.00
commons-io 0 0.00 39 1.16 3,301 0.78 0.00 0.00
tomcat-el 0 0.00 22 0.66 1,512 0.36 0.00 0.00
tomcat-annotations 0 0.00 20 0.60 220 0.05 0.00 0.00
lucene-highlighter 0 0.00 18 0.54 1,122 0.27 0.00 0.00
jargs 0 0.00 1 0.03 311 0.07 0.00 0.00

Total 4,716 100.00
Total (adjusted)10 1,921 40.73 3,358 100.00 423,145 100.00 0.57 4.54

Table 4.2: Key figures of JForum and its referenced third-party libraries.

6Lines of code (pure source code without comments and blank lines), measured with CLOC V. 1.52,
http://cloc.sourceforge.net/ (Sep. 28, 2011)

7V/C: #Violations per class
8V/KLoC: #Violations per 1,000 LoC
9Libraries (adjusted): Only libraries with complete data are considered here
10Total (adjusted): Only sources with complete data are considered here

47

4 CEC Violation Identification with CloudMIG

Violations LoC11 V/KLoC12

Class # % # %
Classes w/o violations 0 0.00 25,729 80.74 0.00
Classes with violations 250 100.00 6,136 19.26 40.74
net.jforum.util.image.ImageUtils 68 27.20 165 0.52 412.12
net.jforum.util.legacy.commons.fileupload.disk.DiskFileItem 20 8.00 230 0.72 86.96
net.jforum.view.install.InstallAction 20 8.00 675 2.12 29.63
net.jforum.dao.MySQLVersionWorkarounder 15 6.00 194 0.61 77.32
net.jforum.sso.LDAPAuthenticator 14 5.60 83 0.26 168.67
net.jforum.view.forum.common.UserCommon 11 4.40 170 0.53 64.71
net.jforum.view.forum.common.AttachmentCommon 9 3.60 298 0.94 30.20
net.jforum.util.preferences.SystemGlobals 9 3.60 200 0.63 45.00
net.jforum.ConfigLoader 8 3.20 186 0.58 43.01
net.jforum.view.forum.common.UploadUtils 8 3.20 54 0.17 148.15
net.jforum.util.Captcha 5 2.00 125 0.39 40.00
net.jforum.util.I18n 5 2.00 196 0.62 25.51
net.jforum.C3P0PooledConnection 5 2.00 85 0.27 58.82
net.jforum.view.forum.UserAction 4 1.60 179 0.56 22.35
net.jforum.view.forum.PostAction 4 1.60 1,111 3.49 3.60
net.jforum.DataSourceConnection 4 1.60 40 0.13 100.00
net.jforum.view.admin.ConfigAction 4 1.60 123 0.39 32.52
net.jforum.util.FileMonitor 3 1.20 35 0.11 85.71
net.jforum.context.web.WebRequestContext 3 1.20 287 0.90 10.45
net.jforum.entities.UserSession 3 1.20 222 0.70 13.51
net.jforum.TestCaseUtils 3 1.20 53 0.17 56.60
net.jforum.view.install.ParseDBStructFile 2 0.80 70 0.22 28.57
net.jforum.entities.Attachment 2 0.80 65 0.20 30.77
net.jforum.view.install.ParseDBDumpFile 2 0.80 38 0.12 52.63
net.jforum.view.admin.SmiliesAction 2 0.80 93 0.29 21.51
net.jforum.repository.Tpl 2 0.80 42 0.13 47.62
net.jforum.util.legacy.commons.fileupload.DiskFileUpload 2 0.80 43 0.13 46.51
net.jforum.util.legacy.commons.fileupload.DefaultFileItemFactory 1 0.40 20 0.06 50.00
net.jforum.util.legacy.commons.fileupload.FileItem 1 0.40 27 0.08 37.04
net.jforum.util.legacy.commons.fileupload.disk.DiskFileItemFactory 1 0.40 36 0.11 27.78
net.jforum.view.admin.AdminAction 1 0.40 162 0.51 6.17
net.jforum.security.XMLPermissionControl 1 0.40 169 0.53 5.92
net.jforum.util.FileMonitor.FileMonitorTask 1 0.40 22 0.07 45.45
net.jforum.util.bbcode.BBCodeHandler 1 0.40 112 0.35 8.93
net.jforum.view.admin.LuceneStatsAction 1 0.40 137 0.43 7.30
net.jforum.tools.search.LuceneCommandLineReindexer 1 0.40 138 0.43 7.25
net.jforum.Command 1 0.40 70 0.22 14.29
net.jforum.JForumBaseServlet 1 0.40 87 0.27 11.49
net.jforum.util.legacy.commons.fileupload.DefaultFileItem 1 0.40 12 0.04 83.33
net.jforum.util.legacy.clickstream.config.ConfigLoader 1 0.40 82 0.26 12.20

Total 250 100.00 31,865 100.00 7.85

Table 4.3: Violation frequency in JForum classes.

11Lines of code (pure source code without comments and blank lines), measured with CLOC V. 1.52,
http://cloc.sourceforge.net/ (Sep. 28, 2011)

12V/KLoC: #Violations per 1,000 LoC

48

5 An Inspection of Significant PaaS
Migration Challenges

This chapter describes the major challenges of the actual migration of the guest application

towards the cloud environment, applying previously obtained information such as the prior

identified violations (see Chapter 3). It should be indicated in advance that the migration

could not be realized completely. However, several key issues should be discussed in order

to make reengineers aware of and to serve as an entry point for further investigations. Prior

to that, for exemplifying the motivation and intention for executing the migration, the major

motives are pointed out in the following:

(i) The CloudMIG approach promises to support the reengineer in migrating applications

to a cloud environment, the Google App Engine in this case. However, an actual

migration allowing the application to be deployed in the target environment has not

been executed in preceding studies so far. This migration aims to serve as a proof-of-

concept for the feasibility of the CloudMIG approach.

(ii) In order to enhance the basis for evaluating CloudMIG’s automatic CEC violation

detection capability, the application has to be migrated successfully to the desired

cloud environment. This procedure, combined with run-time tests, is intended in order

to bring up the full coverage of violations that are effectually existing. Therefore the

manual migration serves as a supporting measure for the pursued Goal 1.2.1.

(iii) Besides a theoretical examination of the migration, which is of course the more im-

portant aspect in this context, a real execution often offers useful information that

either helps to better understand theoretically obtained issues or allows for additional

findings.

49

5 An Inspection of Significant PaaS Migration Challenges

The remainder of this chapter describes key aspects of the migration efforts, regarding the

latter point. As the enormous amount of detected CEC violations in JForum and its libraries

of 250 and 4,716, respectively already indicates, extensive manual reengineering is required

to migrate JForum to the App Engine. Some of the attempts could not show successful

results, nevertheless their efforts provide interesting findings concerning major problems,

which are presented in the following:

• The most significant incompatibility of JForum regarding a migration to Google’s App

Engine is the different database model. The App Engine does not provide relational

databases, such as MySQL, PostgreSQL, or similar implementations, which are utilized

by JForum as its persistence layer. JForum on the other hand uses the JDBC driver

to connect to the database server and has no support for NoSQL-based databases,

that would offer using, for example, Google’s DataStore service. This is considered

a paradigm-breaking incompatibility that affects wide parts of the core logic and re-

quires serious adjustments.

One possible approach is to utilize an adapter that serves as an interface on an inter-

mediate layer between the SQL-based application (using JDBC) and Google’s NoSQL

datastore API. Therefore, the open-source tool jiql that addresses this problem seemed

a promising candidate. jiql is a Java library that primarily consists of a database engine

and a JDBC driver that act together as a JDBC wrapper, as illustrated in Figure 5.1. In

order to substitute the real database connection, jiql’s driver has to be loaded by the ap-
plication instead of the original JDBC driver. Then, all connections are made through

jiql’s JDBC interface and database requests, such as SQL statements are translated to

DataStore-conform commands by the internal database engine.

This promised to be a helpful attempt, but jiql could not solve the problem adequately,

due to technical limitations. It offers only a limited SQL support, for example SQL

data aggregation (by the keyword MAX), which is used in multiple SQL statements of

JForum, is not provided.

In order to be able to continue the migration of JForum, the database problem was by-

passed by means of utilizing the HSQLDB database configured in memory-only-mode.
Using this configuration allows for implementing a JDBC-based relational database in

the App Engine, because it requires no access to the local file system.

50

Figure 5.1: jiql between a Java application and Google’s DataStore API.1

This is acceptable for debugging and testing purposes, but is no realistic solution for

an actual migration, especially since a non-persistent database offers less reliability of

data.

• The extraction of ADempiere’s architectural model with the help of MoDisco could

not be realized successfully. Since there exists no appropriate alternative for obtaining

this model from the application by now, the migration of ADempiere was interrupted

and JForum was used as the alternative candidate for the migration. Section 3.2.1

describes the taken steps for obtaining the model from ADempiere in more detail.

• The debugging process of App Engine applications is complicated, due to multiple rea-

sons. Since the Google App Engine for Java dictates a maximum servlet response time

of 30 seconds, open requests have to be answered within this time to prevent losing

of information or further time-out errors. This circumstance is a potential source for

seemingly existing errors during debugging activities that are caused by breakpoints

or other delays arising from the debugging mechanism itself. Furthermore, Java ap-

plications that are intended to be deployed to the App Engine have to be debugged

on a substitute of the App Engine, for example the web server that is included in the

App Engine SDK for Eclipse. This substitute is required because the App Engine it-

self provides no debugging tools and therefore constitutes a risk for deviant behaviour

compared to the target environment as the debugging system is only a representation

of the actual App Engine.

1Figure taken from jiql project homepage, http://www.jiql.org/ (Oct. 10, 2011)

51

5 An Inspection of Significant PaaS Migration Challenges

• The deployment interface of the App Engine provides insufficient validation of up-

loaded source code. This fact allows for an error-free deploying of applications that

contain restricted code elements. These erroneous applications execute correctly until

a restricted element is effectively loaded, which then raises an error and causes the

interruption of the execution. Therefore, the reengineer is responsible for validat-

ing the conformance of the migrated application regarding the App Engine run-time

environment prior to deployment.

• Another notable finding is that the reengineer does not necessarily have to adjust all

the libraries to conform the target environment. Nowadays, existing applications often

still use libraries that have been developed before cloud computing became prevalent.

Hence, sometimes already updated versions or even App Engine adjusted implemen-

tations of these libraries are available. This situation has been the case, for exam-

ple for the open-source freemarker library. This particular library (freemarker Version
2.3.9) that was developed a few years ago, was incorporated by JForum in this case. It

caused several violations, due to restricted types (e.g., javax.swing.tree.TreeNode)

and usage of the Java reflection API. Since this incompatibilities have been reported by

other projects, a GAE-conform release of this library is already developed and avail-

able. Regarding JForum, the freemarker library could be exchanged with a fixed ver-

sion that conformed the App Engine and showed no violations. This circumstance

might recur in many migration scenarios, especially when dealing with open-source

software, as there often exists a large and active developing communities, that have

encountered and already solved the discrepancies.

52

6 Analysis

This chapter aims primarily to give a quantitative and qualitative analysis of the CEC vio-

lations identified during the investigation of JForum. This analysis will be described in

Section 6.1. The subsequent Section 6.2 gives an evaluation of the detection capabilities of

the detection mechanism of CloudMIG Xpress.

Section 6.1.1 begins with an overview of the entirety of violations determined by Cloud-

MIG Xpress during the identification procedure described in Chapter 4. In Section 6.1.2,

a template is presented, which is designed to support a structured data acquisition in the

study of violations. Using this template for the following manual inspection of violations in

Section 6.1.3, a selection of violations will be examined in more detail. This data collection

forms the basis for further analyses regarding the detection mechanism of CloudMIG Xpress

in Section 6.2.

6.1 CEC Violation Analysis

This section gives a detailed analysis of the CEC violations considered during the migration.

In this context we will generally distinguish between two main categories of violations:

(i) Automatically identified violations that have been detected by applying CloudMIG

Xpress, as described in Chapter 4 and

(ii) Manually identified violations that have been determined by manual inspection (see

Section 6.1.3).

At the beginning of Section 6.1.1 all violations of the first category will be gathered and

compared quantitatively to get an overview of the amount and structure of violations. It

will be differentiated as to whether the violations originate from JForum’s sources or its

53

6 Analysis

third-party libraries. The comparison will further be divided into the constraint severities

and the different CEC types.

At this point there is still no certainty that the violations detected by CloudMIG Xpress

are actually violations. The verification of whether the violations of the first category are

classified correctly is done by the manual inspection of violations in Section 6.1.3.

The second category, the manually identified violations, represents the set of actually

existing violations of JForum regarding the App Engine environment. Here it should be

noted that violations of the second category will be considered primarily during the analysis

of violations of the first category with the intention of their verification. Correctly identified

violations are also referred to as true positives.

A complete investigation of existing violations not included in the first category (this is

referred to as the set of false negatives) has not been performed in this thesis for reasons of

scope, but is proposed as future work. An entire set of violations of the second category

would allow identification of further statistical measures such as sensitivity (hit rate) or false
negative rate (miss rate). In addition to a fully conducted migration, including the fixing

of all CEC violations, extensive functional tests with a maximized coverage would have to

be applied to the migrated application in the target runtime environment to ensure that no

undiscovered violations are left.

6.1.1 Overview and Categorization of Violations

A first basic quantitative examination of all violations detected by CloudMIG Xpress is

shown in Table 6.1. This aggregation displays the own sources of JForum as well as the

third-party libraries separately. The violations are grouped according to severity (see Sec-

tion 4.1) and the corresponding CEC types, which are their main differentiating attributes.

Some particular values and relations with significant informative relevance are pointed out

in the following:

(i) There are no violations with Breaking severity. Currently, the only CEC with Breaking
severity is the LanguageConstraint. Since JForum is written in Java, it conforms to the

language support of the App Engine for Java.

(ii) The clearly larger number of violations lies within the libraries (≃ 95%). The ratio of

the violations of the JForum sources and the libraries is 250/4,466 ≃ 1/18.

54

6.1 CEC Violation Analysis

Violations
JForum Libraries Sub Total

Severity / Constraint Type # % # % # %
Critical 173 69.20 4,466 100.00 4,639 98.37

TypesWhiteList 140 56.00 4,380 98.07 4,520 95.84
TypesInstantiation 3 1.20 76 1.70 79 1.68
FilesystemAccess (Write) 24 9.60 - - 24 0.51
Reflection 6 2.40 9 0.20 15 0.32
SocketOpening - - 1 0.02 1 0.02

Warning 77 30.80 - - 77 1.63
FilesystemAccess (Read) 76 30.40 - - 76 1.61
Method Call (SystemExit) 1 0.40 - - 1 0.02

Total 250 100.00 4,466 100.00 4,716 100.00

Table 6.1: Overview of CEC violations detected in JForum (inclusive libraries).

(iii) Violations of Critical severity are remarkably more strongly represented thanWarning.
In JForum’s own sources the percentage is 69.20% for Critical violations compared to

30.80% forWarning. In the libraries, only Critical violations were detected. The overall
Critical /Warning percentages are 98.37% / 1.63%, which is a ratio of 60/1.

(iv) TypesWhiteListConstraint is, as expected, the dominant CEC type causing violations

both in the JForum’s own sources as well as in the libraries. They mark percent-

ages of 140/250 ≃ 56% in JForum’s own sources, 4,380/4,466 ≃ 98% in the libraries, and
4,520/4,716 ≃ 96% collectively. This is due to the numerous instances that this con-

straint forms, since it is produced by a high number of different types that are not

covered by the type white-lists of the GAE.

Table 6.2 provides a detailed perspective of the distribution of violations over the classes of

JForum’s own sources.1 Only classes comprising at least one violation are included, while

violation-free classes are omitted. The quota of JForum classes and the corresponding lines

of code (LoC) that raised violations is 40 (6,136 LoC) from a total of 340 classes (31,865

LoC), which is a percentage of ≃ 11.76% (19.26%). The violations are grouped according to

severity and the underlying CEC type.

1A diagram that illustrates the distribution is given in Appendix C

55

6 Analysis

Considering the distribution (also with regard to Table 4.3 on page 48) there are some

remarkable findings that are pointed out in the following:

(i) One single class (ImageUtils) comprises 68 of 250 violations, which is the biggest part

of all violations by far with a percentage of ≃ 27.20%. Considering the Critical vi-
olations exclusively, the quotient is still higher with about 65/173 ≃ 37.57%, though

this class only consists of 165 LoC, which constitutes ≃ 0.52% of overall LoC. This

class has a high V/KLoC ratio of 68/165 ≃ 412.12 compared to an overall average of
250/31,865 ≃ 7.85.

(ii) Grouping the four highest-ranked classes, which represent only 4/340 ≃ 1.18% of all

classes and 1,264/31,865 ≃ 3.97% of JForum’s LoC results in a summarized fraction of
123/250 ≃ 49.20% overall and 105/173 ≃ 60.69% of the Critical violations.

Table 6.3 describes the quantitative structure of violations in the libraries used by JFo-

rum.2 As with the class analysis before, only libraries with at least one violation are dis-

played. Eleven (≃ 37%) of the 30 used libraries show no violations at all and are therefore

omitted. Due to partially missing data regarding the libraries’ size in terms of lines of code,

no corresponding quotas can be stated here. The table partitions the violations into CEC

types which establishes the following distribution characteristics:

(i) All discovered violations have Critical severity.

(ii) The distribution of violations is very unbalanced. 3,110 of 4,466 (≃ 70%) violations fall

upon only 2 of 30 (≃ 7%) of the libraries. Considering the highest ranked library jboss-
jmx solely, it covers 51.43% of all violations. Added up with jgroups-all-2.2.9-beta2,
these two classes comprise - excluding the single SocketOpeningConstraint violation -

more than half of the violations of every individual CEC type.

2A diagram that illustrates the distribution is given in Appendix C

56

6.1 CEC Violation Analysis

#Violations
Critical Warning Class Total

Class Ty
pe
sW

hi
te
Li
st

Fi
le
sy
st
em

A
cc
es
s
(W

ri
te
)

R
efl
ec
ti
on

Ty
pe
sI
ns
ta
nt
ia
ti
on

C
ri
ti
ca
lS
ub

To
ta
l

Fi
le
sy
st
em

A
cc
es
s
(R
ea
d)

M
et
ho

dC
al
l(
Sy

st
em

Ex
it
)

W
ar
ni
ng

Su
b
To

ta
l

%
net.jforum.util.image.ImageUtils 65 - - - 65 3 - 3 68 27.20

net.jforum.util.legacy.commons.fileupload.disk.DiskFileItem 8 6 - - 14 6 - 6 20 8.00
net.jforum.view.install.InstallAction 9 5 - - 14 6 - 6 20 8.00

net.jforum.dao.MySQLVersionWorkarounder 9 3 - - 12 3 - 3 15 6.00
net.jforum.sso.LDAPAuthenticator 14 - - - 14 - - - 14 5.60

net.jforum.view.forum.common.UserCommon 7 2 - - 9 2 - 2 11 4.40
net.jforum.view.forum.common.AttachmentCommon 3 3 - - 6 3 - 3 9 3.60

net.jforum.util.preferences.SystemGlobals 3 1 - - 4 5 - 5 9 3.60
net.jforum.ConfigLoader 2 - - - 2 6 - 6 8 3.20

net.jforum.view.forum.common.UploadUtils 6 2 - - 8 - - - 8 3.20
net.jforum.util.Captcha 5 - - - 5 - - - 5 2.00

net.jforum.util.I18n - - - - - 5 - 5 5 2.00
net.jforum.C3P0PooledConnection - - 5 - 5 - - - 5 2.00
net.jforum.view.forum.UserAction - - - - - 4 - 4 4 1.60
net.jforum.view.forum.PostAction - - - - - 4 - 4 4 1.60
net.jforum.DataSourceConnection 4 - - - 4 - - - 4 1.60

net.jforum.view.admin.ConfigAction 2 - - - 2 2 - 2 4 1.60
net.jforum.util.FileMonitor - - - 2 2 1 - 1 3 1.20

net.jforum.context.web.WebRequestContext - 1 - - 1 2 - 2 3 1.20
net.jforum.entities.UserSession 3 - - - 3 - - - 3 1.20

net.jforum.TestCaseUtils - - - - - 3 - 3 3 1.20
net.jforum.view.install.ParseDBStructFile - - - - - 2 - 2 2 0.80

net.jforum.entities.Attachment - - - - - 2 - 2 2 0.80
net.jforum.view.install.ParseDBDumpFile - - - - - 2 - 2 2 0.80

net.jforum.view.admin.SmiliesAction - 1 - - 1 1 - 1 2 0.80
net.jforum.repository.Tpl - - - - - 2 - 2 2 0.80

net.jforum.util.legacy.commons.fileupload.DiskFileUpload - - - - - 2 - 2 2 0.80
net.jforum.util.legacy.commons.fileupload.DefaultFileItemFactory - - - - - 1 - 1 1 0.40

net.jforum.util.legacy.commons.fileupload.FileItem - - - - - 1 - 1 1 0.40
net.jforum.util.legacy.commons.fileupload.disk.DiskFileItemFactory - - - - - 1 - 1 1 0.40

net.jforum.view.admin.AdminAction - - - 1 1 - - - 1 0.40
net.jforum.security.XMLPermissionControl - - - - - 1 - 1 1 0.40
net.jforum.util.FileMonitor.FileMonitorTask - - - - - 1 - 1 1 0.40

net.jforum.util.bbcode.BBCodeHandler - - - - - 1 - 1 1 0.40
net.jforum.view.admin.LuceneStatsAction - - - - - 1 - 1 1 0.40

net.jforum.tools.search.LuceneCommandLineReindexer - - - - - - 1 1 1 0.40
net.jforum.Command - - 1 - 1 - - - 1 0.40

net.jforum.JForumBaseServlet - - - - - 1 - 1 1 0.40
net.jforum.util.legacy.commons.fileupload.DefaultFileItem - - - - - 1 - 1 1 0.40

net.jforum.util.legacy.clickstream.config.ConfigLoader - - - - - 1 - 1 1 0.40
Total 140 24 6 3 173 76 1 77 250 100

Table 6.2: Overview of CEC violations detected in JForum (w/o libs) per class.

57

6 Analysis

Violations
TypesWhiteList TypesInst. Reflection SocketOp. Sub Total

Library # % # % # % # % # %
jboss-jmx 2,291 52.31 1 1.32 5 55.56 - - - 2,297 51.43
jgroups-all-2.2.9-beta2 764 17.44 49 64.47 - - - - 813 18.20
jboss-system 273 6.23 3 3.95 1 11.11 - - 277 6.20
log4j-1.2.12 253 5.78 6 7.89 - - - - 259 5.80
jcaptcha-all-1.0-RC2.0.1 198 4.52 - - - - - - 198 4.43
jboss-cache-1.2.4 175 4.00 4 5.26 - - - - 179 4.01
junit 134 3.06 - - - - - - 134 3.00
htmlparser-1.5 111 2.53 2 2.63 - - - - 113 2.53
postgresql-8.0-313.jdbc3 31 0.71 - - 2 22.22 - - 33 0.74
freemarker-2.3.9 28 0.64 - - - - - - 28 0.63
mysql-connector-java-5.0.3-bin 25 0.57 - - - - 1 100.00 26 0.58
activation 26 0.59 - - - - - - 26 0.58
jboss-common 23 0.53 - - 1 11.11 - - 24 0.54
ojdbc14 16 0.37 2 2.63 - - - - 18 0.40
mail 17 0.39 - - - - - - 17 0.38
quartz-1.5.1 9 0.21 5 6.58 - - - - 14 0.31
lucene-core-2.2.0 6 0.14 1 1.32 - - - - 7 0.16
ehcache-1.1 - - 2 2.63 - - - - 2 0.04
concurrent - - 1 1.32 - - - - 1 0.02
Total 4,380 100.00 76 100.00 9 100.00 1 100.00 4,466 100.00

Table 6.3: Overview of CEC violations detected in JForum per library.

6.1.2 CEC Violation Inspection Template

A huge number (4,716) of violations has been identified performing the violation detection

with CloudMIG Xpress. To allow a homogeneous and clearly represented analysis of the

violations in Section 6.1.3, a template is introduced here. An empty template is shown in

Figure 6.1. The fields of the template that will describe the inspected violations are explained

in the following:

• CEC Violation ID: Each violation gets a unique ID. This ID consists of the prefix

“V-” and the number that represents the sequence the violations have been saved after

identification during the recognition by CloudMIG Xpress.

• CEC Type: The type of the violation that corresponds to the underlying Cloud Envi-

ronment Constraint is specified here. A definition of CECs is given in the GAE cloud

profile by the CloudMIG approach (see Listing 3.1). An excerpt of CEC types that are

relevant for this analysis is considered in Section 4.1.

• Violation Severity: The severity (see Section 6.1.1) of the violation according to the

58

6.1 CEC Violation Analysis

CEC Violation ID: V-#
CEC Type: . . .
Violation Severity: Warning / Critical / Breaking
Source Location: . . .
Violation Context: . . .
Validation Correctness: Correct / False
Justification / Appraisal: . . .

Figure 6.1: Template for CEC violation inspection.

constraint type of the violation is given here.

• Source Location: The location of a violation is described by the class in the source

code of JForum, where the Constraint Validator has determined the origin of the raised

violation.

• Violation Context: In order to get a better understanding of the situation, this point

outlines the semantic context in which the violation cause is situated.

• Validation Correctness: The correctness of the violation will be investigated and it

will be ascertained as to whether the detected violation has been identified correctly

by CloudMIG Xpress or not.

• Justification / Appraisal: Reasons that explain the violation relevance and verify the

correctness, for example, IDE validation support, code reviews, and tests.

6.1.3 Manual Inspection of Violations

In this section the manual inspection of violations will be conducted and results will be

recorded with the help of the inspection template. Due to the enormous amount of 4,716

violations, an execution of the inspection procedure is not possible for the entire set of

violations at this point. However, all 250 violations of JForum’s own sources and several ad-

ditional violations of its libraries have been inspected. The results of the manual inspection

including a critical evaluation of CloudMIG’s violation detection capabilities is presented in

Section 6.2. The remainder of this section addresses several violation inspections and tries

to select adequate violations that cover representative sets of violations to allow a maximum

59

6 Analysis

of generic analysis regarding the Validation Correctness in particular. The fact that many

violations are of the same CEC Type and furthermore situated in a similar Violation Context
and Source Location allows for the assumption of conclusions concerning groups of related

violations.

60

6.1 CEC Violation Analysis

Manual Inspection of Violation V-13

CEC Violation ID: V-13
CEC Type: FilesystemAccessConstraint (Write)
Violation Severity: Critical
Source Location: net.JForum.util.legacy.commons.fileupload.disk.DiskFileItem
Violation Context: Every request that triggers handling of a servlet multipart con-

tent creates temporary files (e.g., picture or attachment file up-
loads). The finalize() method is called by the garbage collection
when there is no existing reference to the file object left.

Validation Correctness: Correct
Justification / Appraisal: Manual code review (see Listing 6.1) verified that this method calls

File.io.delete(), which is not allowed in the App Engine Java Envi-
ronment by definition. Temporary files, as well as uploaded files in
JForum, are saved in the web server’s local file system. This data
management is conceptually not supported by the App Engine.

Table 6.4: Inspection of CEC violation V-13.

1 package net.jforum.dao; [...]
2 public class MySQLVersionWorkarounder { [...]
3 /**
4 * Removes the file contents from the temporary storage.
5 */
6 protected void finalize () {
7 File outputFile = dfos.getFile ();
8 if (outputFile != null && outputFile.exists ()) {
9 outputFile.delete ();
10 }
11 }
12 }

Listing 6.1: Source code location excerpt of CEC violation V-13.

61

6 Analysis

Manual Inspection of Violation V-35

CEC Violation ID: V-35
CEC Type: FileSystemAccess (Read)
Violation Severity: Warning
Source Location: net.JForum.entities.Attachment
Violation Context: The hasThumb() method of the Attachment type tests whether

thumbnails for picture attachments in posts are enabled in the
global configuration of JForum and if the actual attachment has
a physical thumbnail file in the local file system.

Validation Correctness: Correct
Justification / Appraisal: Manual code review (see Listing 6.2) verifies the instantiation of

a java.io.File in a local file system folder for attachments, which
is set in the global configuration of JForum. Instantiating a file
object in the local file system is not allowed in the App Engine.

Table 6.5: Inspection of CEC violation V-35.

1 package net.jforum.entities; [...]
2 public class Attachment { [...]
3 public boolean hasThumb () {
4 return SystemGlobals.getBoolValue(
5 ConfigKeys.ATTACHMENTS_IMAGES_CREATE_THUMB)
6 && new File(SystemGlobals.getValue(
7 ConfigKeys.ATTACHMENTS_STORE_DIR)
8 + ’/’
9 + this.info.getPhysicalFilename () + "_thumb"). exists ();
10 }
11 }

Listing 6.2: Source code location excerpt of CEC violation V-35.

62

6.1 CEC Violation Analysis

Manual Inspection of Violation V-101

CEC Violation ID: V-101
CEC Type: MethodCallConstraint (SystemExit)
Violation Severity: Warning
Source Location: net.JForum.tools.search.LuceneCommandLineReindexer
Violation Context: The printUsage() method is part of an administrative tool to man-

age database indexing. The administrator of the JForum deploy-
ment executes this as a command line program. If the arguments
are not properly passed, a help message is displayed that shows
how to pass the arguments. Afterwards, the program exits with
System.exit().

Validation Correctness: Correct
Justification / Appraisal: Manual code review (see Listing 6.3) verifies the call of a Sys-

tem.exit(). This tool is designed to be executed on a shell aiming
to re-index the SQL database of the JForum deployment. Usage of
this tool is inappropriate in the App Engine context anyway.

Table 6.6: Inspection of CEC violation V-101.

1 package net.jforum.tools.search; [...]
2 public class LuceneCommandLineReindexer { [...]
3 private void printUsage () {
4 System.out.println("\nUsage: LuceneCommandLineReindexer \n"
5 + " --path full_path_to_JForum_root_directory \n"
6 + " --type {date|message} \n"
7 + " --firstPostId a_id \n"
8 + " --lastPostId a_id \n"
9 + " --fromDate dd/MM/yyyy \n"
10 + " --toDate dd/MM/yyyy \n"
11 + " [--recreateIndex]\n"
12 + " [--avoidDuplicatedRecords]");
13 System.exit (1);
14 }
15 }

Listing 6.3: Source code location excerpt of CEC violation V-101.

63

6 Analysis

Manual Inspection of Violation V-102

CEC Violation ID: V-102
CEC Type: TypesInstantiationConstraint
Violation Severity: Critical
Source Location: net.JForum.view.admin.AdminAction
Violation Context: The functionality to listen for POP e-mails starts a new thread that

runs in the background.
Validation Correctness: Correct
Justification / Appraisal: Manual code review (see Listing 6.4) verifies the instantiation of a

java.lang.Thread. Instantiating a new thread is not allowed in the
App Engine.

Table 6.7: Inspection of CEC violation V-102.

1 package net.jforum.view.admin; [...]
2 public class AdminAction extends Command { [...]
3 public void fetchMail () throws Exception {
4 new Thread(new Runnable () {
5 public void run() {
6 try {
7 new POPListener (). execute(null);
8 }
9 catch (Exception e) {
10 e.printStackTrace ();
11 }
12 }
13 }). start ();
14 this.main ();
15 }
16 }

Listing 6.4: Source code location excerpt of CEC violation V-102.

64

6.1 CEC Violation Analysis

Manual Inspection of Violation V-109

CEC Violation ID: V-109
CEC Type: ReflectionConstraint
Violation Severity: Critical
Source Location: net.JForum.Command
Violation Context: The Command type is an abstract class that is extended by all functional

classes that process presentation actions. Reflection is used to invoke a
dynamically determined method of the Command extending class.

Validation Correctness: False3

Justification / Appraisal: Manual code review (see Listing 6.5) showed that this is not an actual
violation. Depending on what module is loaded when executing the ser-
vice() method of the corresponding servlet, the appropriate method for
the requested action is determined and invoked by the reflection method
java.lang.reflect.Method.invoke(). The reflection target is conceptually its
own class, as the class is defined by module-mapping properties.

Table 6.8: Inspection of CEC violation V-109.

1 package net.jforum; [...]
2 public abstract class Command { [...]
3 public Template process(RequestContext request ,
4 ResponseContext response , SimpleHash context) {
5 this.request = request;
6 this.response = response;
7 this.context = context;
8 String action = this.request.getAction ();
9 if (!this.ignoreAction) {
10 try {
11 this.getClass (). getMethod(action , NO_ARGS_CLASS).
12 invoke(this , NO_ARGS_OBJECT);
13 }
14 catch (NoSuchMethodException e) {
15 this.list ();
16 }
17 catch (Exception e) {
18 throw new ForumException(e);
19 }
20 } [...]
21 }
22 }

Listing 6.5: Source code location excerpt of CEC violation V-109.

3A further discussion of this specific violation and the violations regarding ReflectionConstraint in general is
presented in Section 6.2.

65

6 Analysis

Manual Inspection of Violation V-117

CEC Violation ID: V-117

CEC Type: TypesWhiteListConstraint

Violation Severity: Critical

Source Location: net.JForum.util.Captcha

Violation Context: The Captcha module uses constants of the java.awt.Color type to
generate graphical elements in Captchas.

Validation Correctness: Correct

Justification / Appraisal: Manual code review (see Listing 6.6) verified the usage of
java.awt.Color. This type is not available in the Java App Engine
environment.

Table 6.9: Inspection of CEC violation V-117.

1 package net.jforum.util; [...]
2 public class Captcha extends ListImageCaptchaEngine { [...]
3 protected void buildInitialFactories () {
4 this.initializeChars ();
5 this.backgroundGeneratorList = new ArrayList ();
6 this.textPasterList = new ArrayList ();
7 this.fontGeneratorList = new ArrayList ();
8 int width = SystemGlobals.getIntValue(ConfigKeys.CAPTCHA_WIDTH);
9 int height = SystemGlobals.getIntValue(ConfigKeys.CAPTCHA_HEIGHT);
10 int minWords = SystemGlobals.getIntValue(ConfigKeys.CAPTCHA_MIN_WORDS);
11 int maxWords = SystemGlobals.getIntValue(ConfigKeys.CAPTCHA_MAX_WORDS);
12 int minFontSize = SystemGlobals.getIntValue(ConfigKeys.CAPTCHA_MIN_FONT_SIZE);
13 int maxFontSize = SystemGlobals.getIntValue(ConfigKeys.CAPTCHA_MAX_FONT_SIZE);
14 this.backgroundGeneratorList.add(new GradientBackgroundGenerator(
15 new Integer(width), new Integer(height), Color.PINK , Color.LIGHT_GRAY));
16 [...]
17 }
18 }

Listing 6.6: Source code location excerpt of CEC violation V-117.

66

6.1 CEC Violation Analysis

Manual Inspection of Violation V-2081

CEC Violation ID: V-2081
CEC Type: SocketOpeningConstraint
Violation Severity: Critical
Source Location: com.mysql.jdbc.NamedPipeSocketFactory.NamedPipeSocket
Violation Context: In the Java MySQL Connector Library, a connection to the MySQL

Server is initialized by instantiating a Socket directly to the server.
Validation Correctness: Correct
Justification / Appraisal: Manual code review (see Listing 6.7) verifies the instantiation of

a java.net.Socket. Instantiating a socket is not allowed in the App
Engine.

Table 6.10: Inspection of CEC violation V-2081.

1 package com.mysql.jdbc; [...]
2 public class NamedPipeSocketFactory implements SocketFactory { [...]
3 private Socket namedPipeSocket;
4 public Socket connect(String host , int portNumber /* ignored */,
5 Properties props) throws SocketException , IOException {
6 String namedPipePath = props.getProperty(NAMED_PIPE_PROP_NAME);
7 if (namedPipePath == null) {
8 namedPipePath = "\\\\.\\ pipe\\MySQL"; //$NON -NLS -1$
9 } else if (namedPipePath.length () == 0) {
10 throw new SocketException(Messages
11 .getString("NamedPipeSocketFactory .2") //$NON -NLS -1$
12 + NAMED_PIPE_PROP_NAME
13 + Messages.
14 getString("NamedPipeSocketFactory .3")); //$NON -NLS -1$
15 }
16 this.namedPipeSocket = new NamedPipeSocket(namedPipePath);
17 return this.namedPipeSocket;
18 }
19 }

Listing 6.7: Source code location excerpt of CEC violation V-2081.

67

6 Analysis

6.2 Evaluation of CloudMIG’s Violation Detection

Capabilities

The automatic violation detection mechanism is an important core component of the Cloud-

MIG approach. This procedure relies on models which are described in Chapter 3. The

precise configuration of the cloud profile in particular, where constraints are defined, is a

decisive factor influencing the output of the violation detection phase. Based upon these

constraint definitions, the validators check the architectural model of the considered ap-

plication for existing violations. When a manual migration including conformance tests

is completed successfully, two sets of violations exist: the statically analyzed violation set

produced by CloudMIG and the set of violations that were discovered during the migration

and tests. These sets have to be compared in terms of coverage and structure of violations

contained in order to identify reasons for potential differences, such as insufficiencies of the

CEM constraint classes (e.g., regarding the constraint validators).

Since a constraint either holds or fails, the validation process is considered a binary classi-

fication test. Hence, a reasonable approach to evaluate the quality of CloudMIG’s detection

mechanism is to calculate measures that describe the performance of a binary classification

test.

Precision

As described before (see Section 6.1), a full migration has not been executed for the reasons

mentioned. Due to this fact, the analysis will not cover further qualitative indicators such as

miss rate, sensitivity (recall), specificity or prevalent combined measures, which rely on the

former results.

We will focus on the determination of the precision, also referred to as positive predictive
value (PPV), restricted to the violations that have been identified in JForum’s own sources.

A complete list of all 250 violations in JForum including their underlying CEC type, the

severity and a short description is given in Appendix B.

The result of the violation detection can be divided into two disjoint sets of violations.

Violations that are both identified by the detection mechanism as well as verified to be

correct by manual inspection are referred to as true positives (tp). Those violations that have
been identified by mistake and proven to be wrong by manual inspection constitute the set

68

6.2 Evaluation of CloudMIG’s Violation Detection Capabilities

of false positives (fp). Combined, the two sets form the complete set of violations.

The precision represents the quota of violations that are detected correctly (tp) compared

to the complete set of detected violations (tp+fp), hence:

Precision = tp
tp+fp

.

Apart from one exception, which will be considered in particular, the manual inspec-

tion of the complete set of violations that CloudMIG Xpress has detected in JForum’s own

sources proved to be identified throughout correctly. The manual inspection process includ-

ing several exemplary inspections of different violation types is described in Section 6.1.3.

The violation V-109 (see page 65), which is based on the underlying ReflectionConstraint, is

the only violation that is identified as False. This is rather due to an incorrect interpretation

of the vague information about restrictions of the App Engine’s JVM that is incorporated

in the constraint definition of the cloud profile than to an erroneous validation mechanism.

The description of the sandbox environment included in the on-line documentation of the

App Engine4 indicates that reflection is only allowed for “own” classes. Both the deployment

as well as run-time tests showed that reflection of classes that belong to deployed libraries

is also feasible. Thus, assuming that an adjusted constraint definition in the cloud profile

would correct those reflection violations, the precision of CloudMIG’s violation detection

mechanism regarding JForum’s own sources shows a percentage of 100%.

Improvement Potentials

Besides calculable measures, several findings that result from the manual inspection are

presented here. Two areas of potential improvement and the motivations behind the manual

inspection of CloudMIG and the proposed tool CloudMIG Xpress are pointed out in the

following:

• Until now, solely static violation detection has been provided by CloudMIG Xpress. In

order to improve both the accuracy and the coverage of its violation detection mech-

anism, dynamic analyses need to be appended. For example, potential violations that

reside in dead code and hence will not raise an error in the target environment are not

4GAE documentation: http://code.google.com/intl/de-DE/appengine/docs/java/runtime.html#The_Sandbox
(October 14, 2011)

69

6 Analysis

distinguished from those that actually cause violations at target run-time. Another

aspect affects the level of quality that the violation detection offers for reengineers in

locating and fixing the identified violations. For example, calling a restricted method

that indicates a violation has to be traced back in a debugging activity to find out which

component is the responsible caller of the method. A dynamic analysis could identify

possible scenarios, control flows, and stack traces leading to the violation. Further, vi-

olations based on time-relevant constraints, such as maximal response times for web

requests, are not identifiable by exclusively static analyses.

• It is recommended, that the responsible element or call that causes a violation be

supplied with enhanced additional information (e.g., explicit line in the source code,

variable name, and calling component) to the violation indication (besides its underly-

ing CEC type and containing class) in order to help the reengineer to locate the exact

code location more efficiently. The incorporation of this improvement in CloudMIG

Xpress is already intended in the near future.

• Violations are detected by different independent validators. Under specific circum-

stances multiple violations are raised for the same element. For example, the statement

<import java.io.FileOutputStream;> raises one FilesystemAccess (Write) viola-
tion and also one TypesWhiteList (Import) violation. In order to yield more precise

quantitative measures of detected violations and to provide better support for reengi-

neers, those violations should be combined. They could be counted as one violation,

as they arise from the same statement, but attached with additional information that

represents the different violation causes.

Another issue concerning a potential source for false negatives was noticed during the

inspection of violations. The instantiation of types outside of methods or constructors (of a

Java class) is, in contrast to those inside, assigned to the external model (as API and library

elements) of the application’s KDM model during the model extraction process of MoDisco.

This leads to undiscovered violations, unless particular attention is given by the violation

detection component.

70

7 Related Work

When a software system is considered for migration to a cloud environment - for whatever

reason - the required effort and cost are generally important items affecting the decision

of whether the migration project is both feasible and rational. Traditional approaches for

software effort estimation are not quite appropriate because of the different circumstances

of software development and reengineering regarding the cloud computing domain.

Tran et al. (2011a) investigate the migration of a sample application (.Net PetShop, the .Net
counterpart of Java PetStore) to Microsoft’s Azure cloud platform. They performed a manual

migration for the application as a case study to define a taxonomy of the examined mi-

gration tasks with additional attention to distinguishing the cost-effective factors between

different task categories. The identification and definition of typical migration tasks, includ-

ing a Function Point-based analysis of estimated efforts and recorded overheads, gives an

overview of potential migration challenges. Although this case study is an interesting expe-

rience report, it provides no systematical methodology for supporting a reengineer with the

migration process.

A new approach, especially for size estimation of cloud migration projects is also pre-

sented by Tran et al. (2011b). Their methodology is called Cloud Migration Point (CMP) and

is based on the established software size estimation model Function Point. They showed the

CMP model to provide reliable size estimations. Therefore, they evaluated their model both

theoretically by means of size metric validation as well as empirically by cross-validating

several small-scale projects. Though CMP delivers significant information about a migration

project’s effort, it is not appropriate for supporting a reengineer who plans and practically

conducts the migration in identifying and handling the technical reasons for the effort.

Khajeh-Hosseini et al. (2011b) present two tools: the first tool supports the estimation of

costs that would result from a software migration to the cloud, and the second tool helps to

investigate potential benefits and risks regarding a migration to an IaaS-based cloud. Case

studies showed that both tools were able to assist the user in obtaining useful information

71

7 Related Work

to contemplate the migration decision.

The related paper Khajeh-Hosseini et al. (2011a) discusses the challenges of organizations’

decision makers when trading-off a cloud migration. They consider not only the cost esti-

mation, but also further aspects (referred to as socio-technical factors) that influence the

decision. Furthermore, they present a collection of tools and a framework for organizing

the decision process (Cloud Adoption Toolkit) where the provided tools are matched to the

according concerns of the focused activity.

Zhou et al. (2010) present an ontology-based approach to support enterprise software mi-

gration to the cloud. It aims at understanding and decomposing a considered software sys-

tem into cloud-conform service candidates by an ontology development process. Therefore,

an initial ontology of the legacy software system is built by means of reverse engineering

and model transformation techniques. This ontology, representing concepts and relations

of the system, is used to identify potential service candidates that are applicable for cloud

environments.

72

8 Conclusion

This chapter presents the conclusion of this thesis. First, a summary of the previous chapters

is given in Section 8.1. The discussion in Section 8.2 emphasizes main issues and findings of

this thesis before Section 8.3 proposes future work.

8.1 Summary

Cloud computing, software migration, and the CloudMIG approach were the main founda-

tions required for our investigations regarding the migration of software systems to PaaS-

based cloud environments and have been described in the beginning of this thesis. In ad-

dition, the involved technologies including different cloud platforms (Eucalyptus, Google

App Engine, and AppScale), migration candidates (ADempiere and JForum), and supporting

tools, for example, MoDisco for model extraction and CloudMIG Xpress for violation detec-

tion, have been presented. We constructed the essential models proposed by the CloudMIG

approach and performed a critical analysis of the KDM extraction process. With the help

of CloudMIG Xpress, these models were investigated for CEC violations. The resulting set

of violations detected by CloudMIG Xpress has been presented and saved for further anal-

yses. In addition to the theoretical examination, we conducted the migration of JForum to

some extent for pointing out significant migration challenges that occurred in this specific

case. Based upon the set of violations provided by CloudMIG Xpress, several quantitative

analyses of the detected violations, grouped according to violation severity or underlying

constraint type are presented. In order to evaluate the violation detection capabilities of

CloudMIG, and the correctness of CloudMIG’s constraint validators in particular, the de-

tected violations have been subject to a manual inspection. For this purpose, a template has

been defined that allowed for a uniform examination of a selection of violations.

73

8 Conclusion

8.2 Discussion

This thesis aimed at investigating the migration of software systems to PaaS-based cloud

environments. Since the CloudMIG approach was appointed to serve as the major founda-

tion for our investigations, several essential components of CloudMIG have been subject to

closer examinations and are discussed in the remainder of this section. Further, the major

migration challenges that have been experienced in this context are reconsidered.

Overall, the goals stated in Section 1.2 could be achieved. Several obstacles, especially in

the early stages of this thesis, required higher efforts than scheduled beforehand. For exam-

ple, both the unsolvable model extraction problem with ADempiere and the huge amount

and grave importance of existing violations in JForum impeded further evaluations of the

completely migrated application as well as analyses of the violation detection.

Another finding that emerged during the entire period of this thesis was the rapid devel-

opment of tools and technologies in the cloud migration context. For example, incorporated

third-party products, such as the MoDisco framework, the AppScale platform, and Google’s

App Engine had new major version releases in the last few months. Furthermore, the Cloud-

MIG approach and its proto-type tool CloudMIG Xpress are under continuing development

and will hopefully obtain useful insights through this thesis.

Model Construction

The CloudMIG approach and its model-based violation detection and mapping from the ap-

plication’s actual architecture to the target architecture promises a reliable and flexible ap-

proach for supporting software reengineers in migrating applications to PaaS-based clouds.

However, the model-extracting tool, MoDisco shows several shortcomings:

• The unsolved problem performing the extraction of ADempiere’s architectural model

indicates errors in MoDisco’s model discoverer and ATL transformation.

• Since MoDisco utilizes the source code of an application for its model extraction, the

level of detail of models of libraries without attached source is limited and might leave

out relevant information. This is especially a disadvantage for proprietary libraries,

which generally do not provide source code.

74

8.2 Discussion

Either these drawbacks have to be resolved in cooperation with MoDisco’s developers to

match CloudMIG’s requirements, or an alternative tool for the model extraction has to be

established that allows for substituting MoDisco.

Violation Identification

The violation detection was executed with CloudMIG Xpress. Though it already offers help-

ful support, this tool is still in a prototype stage and exhibits several areas of potential im-

provement:

• Refined characterization of detected CEC violations, for example, with additional in-

formation about the location of the violation regarding the source code and responsi-

ble trigger of the violation.

• Sharpened definition of constraint types that provide more precise details of the un-

derlying instance, for example, in order to distinguish between occurrences of viola-

tions as type imports, type instantiation, and return types.

• Improved presentation of detected violations, for example, by offering additional graph-

ical views, providing basic statistics, and supporting different output formats.

Migration Challenges

One of the main problems concerning the specific migration considered in this thesis has

been the different database paradigms. JForum, the application that was chosen as the migra-

tion candidate, utilizes a relational database (e.g., MySQL, PostgreSQL, Oracle), but the App

Engine, representing the target cloud environment only provides Google’s NoSQL-based

DataStore. As discussed in Chapter 5, this circumstance requires an elaborated solution. At

the end of the period of this thesis, Google announced that the App Engine for Java had

been enhanced by an integrated service that allows applications to use a relational database,

referred to as Google Cloud SQL1. This new service, assumed that it offers acceptable per-

formance and scalability, highly increases the potential for migrating enterprise software

systems, which often use relational databases, to the App Engine.

1http://code.google.com/intl/de-DE/apis/sql/ (October 13, 2011)

75

8 Conclusion

8.3 Future Work

A full migration, including comprehensive test coverage, is proposed as an essential future

project. As described in Section 6.2, this would allow for measuring the performance of

CloudMIG’s violation detection by means of evaluating the quality of its validators as binary

classifiers to a greater extent.

The successful migration is also the basis for performance analyses of a migrated applica-

tion. The performance evaluation of migrated systems is an interesting field that represents

the essential factor in decisions as to whether a migration is rational or not.

Regarding the violation detection capabilities of CloudMIG, a major goal will be to incor-

porate enhanced violation detection mechanisms. For example, adding dynamic analyses

would extend the possibilities for implementing constraint validators that allow for identi-

fying new violation categories, such as run-time specific violations.

76

Appendices

77

A Source Code of the Command Line
Program for ATL Model-to-Model
Transformation

1 package java2kdm;
2 import [...]
3 public class Java2Kdm {
4
5 // Absolute paths will be set as program ’s arguments
6 private static String inModelPath = "blank.javaxmi";
7 private static String outModelPath = "blank.kdm";
8
9 public static void main(String [] args) {
10 Java2Kdm main = new Java2Kdm ();
11 if (args.length != 2) {
12 System.out
13 .println("Please set input and output model"
14 + "absolut filepaths as arguments");
15 } else {
16 // Set absolute path descriptors of input and
17 // output models
18 inModelPath = "file ://" + args [0];
19 outModelPath = "file ://" + args [1];
20
21 // Prompt starting time of the translation
22 System.out.println("Transformation started at: "
23 + getDateTime () + "\nPlease be patient!");
24
25 // Display a progress bar at the console to
26 // indicate that the translation is still executing
27 ClassicalShellProgressBar myprogressbar =
28 new ClassicalShellProgressBar ();
29 myprogressbar.start ();
30
31 // Set the level of the ATL Logger
32 ATLLogger.getLogger (). setLevel(Level.INFO);
33
34 // Start the model to model translation with

79

A Source Code of the Command Line Program for ATL Model-to-Model Transformation

35 // path informations of input and output models
36 main.transform(inModelPath , outModelPath);
37
38 // Translation has finished , hence stop the
39 // progress bar and prompt a finish message
40 myprogressbar.showProgress = false;
41 System.out.println("\nModel translation finished."
42 + "Thank you for your patience!");
43 }
44 }
45
46 /**
47 * Process executing a ATL Model -to-model transformation
48 *
49 * @param inFilePath Absolute path to input model file
50 * @param outFilePath Absolute path to output model file
51 */
52 public void transform(String inFilePath ,
53 String outFilePath) {
54 try {
55 // Get instances of model(de -) serializers
56 IInjector injector = new EMFInjector ();
57 IExtractor extractor = new EMFExtractor ();
58
59 // Set up input and output meta -models for
60 // translation with the specific meta -model
61 // descriptions (java.ecore / kdm.ecore)
62 ModelFactory factory = new EMFModelFactory ();
63 IReferenceModel javaMetaModel =
64 factory.newReferenceModel ();
65 IReferenceModel kdmMetaModel =
66 factory.newReferenceModel ();
67 injector.inject(javaMetaModel , Java2Kdm.class
68 .getResource("/java.ecore"). toString ());
69 injector.inject(kdmMetaModel , Java2Kdm.class
70 .getResource("/kdm.ecore"). toString ());
71
72 // Get instances of the input and output models used
73 // during transformation and load (inject) input model
74 IModel javaModel = factory.newModel(javaMetaModel);
75 IModel kdmModel = factory.newModel(kdmMetaModel);
76 injector.inject(javaModel , inFilePath);
77
78 // Get an instance of the transformation launcher and
79 // add models to the transformation context
80 ILauncher launcher = new EMFVMLauncher ();
81 launcher.initialize(Collections
82 .<String , Object > emptyMap ());
83 launcher.addInModel(javaModel , "IN", "java");
84 launcher.addOutModel(kdmModel , "OUT", "kdm");
85
86 // Set up options of the ATL -VM used for the
87 // transformation process

80

88 HashMap <String , Object > objects =
89 new HashMap <String , Object >();
90 objects.put("step", "false");
91 objects.put("printExecutionTime", "true");
92 objects.put("allowInterModelReferences", "true");
93 objects.put("showSummary", "true");
94
95 // Set up the resource URL of the asm definition file
96 URL transformationResourceURL =
97 Java2Kdm.class.getResource("/javaToKdm.asm");
98
99 // Launch the transformation using given parameters
100 launcher.launch(ILauncher.DEBUG_MODE ,
101 new NullProgressMonitor (), objects ,
102 transformationResourceURL.openStream ());
103
104 // Export the KDM formatted model to output file
105 extractor.extract(kdmModel , outFilePath);
106
107 } catch (ATLExecutionException atlEx) {
108 atlEx.printStackTrace ();
109 } catch (Exception e) {
110 e.printStackTrace ();
111 }
112 }
113
114 /**
115 * Get the date and time as a formatted String
116 *
117 * @return Returns the current date and time as a
118 * formatted String
119 */
120 private static String getDateTime () {
121 [...]
122 }
123 }
124
125 /**
126 * A classical progress bar for displaying progressing
127 * status in an ascii console
128 *
129 * @author sfe
130 */
131 class ClassicalShellProgressBar extends Thread {
132 [...]
133 }

Listing A.1: Source code excerpt of the command line program for ATL model-to-model
transformation (detailed).

81

B CEC Violations in JForum

ID CEC Severity Description
1 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
2 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
3 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
4 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
5 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
6 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
7 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
8 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
9 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
10 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
11 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
12 FilesystemAccess (Write) Critical Instantiation of "java.io.FileOutputStream".
13 FilesystemAccess (Write) Critical Call of method "java.io.File.delete".
14 FilesystemAccess (Write) Critical Call of method "java.io.File.delete".
15 FilesystemAccess (Write) Critical Call of method "java.io.File.delete".
16 FilesystemAccess (Write) Critical Call of method "java.io.File.delete".
17 FilesystemAccess (Write) Critical Call of method "java.io.File.delete".
18 FilesystemAccess (Write) Critical Call of method "java.io.File.delete".
19 FilesystemAccess (Write) Critical Call of method "java.io.File.delete".
20 FilesystemAccess (Write) Critical Call of method "java.io.File.delete".
21 FilesystemAccess (Write) Critical Call of method "java.io.File.mkdir".
22 FilesystemAccess (Write) Critical Call of method "java.io.File.mkdirs".
23 FilesystemAccess (Write) Critical Call of method "java.io.File.mkdirs".
24 FilesystemAccess (Write) Critical Call of method "java.io.File.renameTo".
25 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
26 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
27 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
28 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
29 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
30 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
31 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
32 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
33 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
34 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
35 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
36 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
37 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
38 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
39 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
40 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
41 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
42 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
43 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
44 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
45 FilesystemAccess (Read) Warning Instantiation of "java.io.FileReader".

83

B CEC Violations in JForum

46 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
47 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
48 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
49 FilesystemAccess (Read) Warning Instantiation of "java.io.FileReader".
50 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
51 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
52 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
53 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
54 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
55 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
56 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
57 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
58 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
59 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
60 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
61 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
62 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
63 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
64 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
65 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
66 FilesystemAccess (Read) Warning Instantiation of "java.io.FileReader".
67 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
68 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
69 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
70 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
71 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
72 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
73 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
74 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
75 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
76 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
77 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
78 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
79 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
80 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
81 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
82 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
83 FilesystemAccess (Read) Warning Instantiation of "java.io.FileReader".
84 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
85 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
86 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
87 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
88 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
89 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
90 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
91 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
92 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
93 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
94 FilesystemAccess (Read) Warning Instantiation of "java.io.File".
95 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
96 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
97 FilesystemAccess (Read) Warning Instantiation of "java.io.FileReader".
98 FilesystemAccess (Read) Warning Instantiation of "java.io.FileReader".
99 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
100 FilesystemAccess (Read) Warning Instantiation of "java.io.FileInputStream".
101 MethodCall (SystemExit) Warning Call of method "java.lang.System.exit".
102 TypesInstantiation Critical Instantiation of "java.lang.Thread".
103 TypesInstantiation Critical Instantiation of "java.util.Timer".
104 TypesInstantiation Critical Instantiation of "java.util.Timer".
105 Reflection Critical Call of method "java.lang.reflect.Method.invoke".
106 Reflection Critical Call of method "java.lang.reflect.Method.invoke".

84

107 Reflection Critical Call of method "java.lang.reflect.Method".
108 Reflection Critical Call of method "java.lang.reflect.Method.invoke".
109 Reflection Critical Call of method "java.lang.reflect.Method.invoke".
110 Reflection Critical Call of method "java.lang.reflect.Method.getName".
111 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
112 TypesWhiteList Critical Usage of "javax.imageio.ImageIO". (Import).
113 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
114 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
115 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
116 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
117 TypesWhiteList Critical Usage of "java.awt.Color". (Import).
118 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
119 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
120 TypesWhiteList Critical Usage of "java.awt.Image". (Call).
121 TypesWhiteList Critical Usage of "java.awt.Image".
122 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Create).
123 TypesWhiteList Critical Usage of "javax.naming.Context".
124 TypesWhiteList Critical Usage of "java.awt.Image". (Call).
125 TypesWhiteList Critical Usage of "javax.naming.AuthenticationException". (Import).
126 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Import).
127 TypesWhiteList Critical Usage of "javax.imageio.stream.ImageInputStream". (Call).
128 TypesWhiteList Critical Usage of "java.io.FileOutputStream".
129 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Create).
130 TypesWhiteList Critical Usage of "java.awt.Dimension". (Write).
131 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
132 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
133 TypesWhiteList Critical Usage of "java.awt.image.PixelGrabber". (Call).
134 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Create).
135 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
136 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
137 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
138 TypesWhiteList Critical Usage of "java.io.FileOutputStream".
139 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
140 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Create).
141 TypesWhiteList Critical Usage of "javax.naming.directory.InitialDirContext". (Create).
142 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
143 TypesWhiteList Critical Usage of "javax.imageio.ImageWriter". (Call).
144 TypesWhiteList Critical Usage of "javax.imageio.ImageIO". (Call).
145 TypesWhiteList Critical Usage of "javax.naming.directory.Attribute". (Import).
146 TypesWhiteList Critical Usage of "javax.naming.Context". (Call).
147 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
148 TypesWhiteList Critical Usage of "java.awt.Image".
149 TypesWhiteList Critical Usage of "javax.naming.directory.InitialDirContext". (Import).
150 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Import).
151 TypesWhiteList Critical Usage of "javax.imageio.ImageWriteParam". (Call).
152 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Import).
153 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
154 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Read).
155 TypesWhiteList Critical Usage of "java.awt.Dimension". (Write).
156 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
157 TypesWhiteList Critical Usage of "javax.naming.AuthenticationException".
158 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
159 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
160 TypesWhiteList Critical Usage of "java.awt.image.ColorModel". (Call).
161 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
162 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Create).
163 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
164 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Import).
165 TypesWhiteList Critical Usage of "javax.imageio.ImageIO". (Import).
166 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
167 TypesWhiteList Critical Usage of "javax.imageio.ImageWriter". (Call).

85

B CEC Violations in JForum

168 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Import).
169 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
170 TypesWhiteList Critical Usage of "javax.imageio.stream.ImageOutputStream".
171 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Read).
172 TypesWhiteList Critical Usage of "javax.imageio.IIOImage". (Import).
173 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
174 TypesWhiteList Critical Usage of "java.util.Map.Entry". (Call).
175 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Import).
176 TypesWhiteList Critical Usage of "java.util.Map.Entry". (Call).
177 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
178 TypesWhiteList Critical Usage of "javax.imageio.IIOImage". (Call).
179 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
180 TypesWhiteList Critical Usage of "javax.naming.InitialContext". (Import).
181 TypesWhiteList Critical Usage of "javax.imageio.ImageWriteParam".
182 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
183 TypesWhiteList Critical Usage of "java.awt.Image". (Import).
184 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
185 TypesWhiteList Critical Usage of "javax.naming.directory.InitialDirContext". (Call).
186 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
187 TypesWhiteList Critical Usage of "javax.imageio.stream.ImageOutputStream". (Import).
188 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
189 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Import).
190 TypesWhiteList Critical Usage of "java.awt.Dimension".(Read).
191 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Read).
192 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
193 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Create).
194 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
195 TypesWhiteList Critical Usage of "java.io.FileOutputStream".
196 TypesWhiteList Critical Usage of "javax.imageio.ImageWriteParam". (Import).
197 TypesWhiteList Critical Usage of "java.awt.Dimension".
198 TypesWhiteList Critical Usage of "java.awt.image.PixelGrabber".
199 TypesWhiteList Critical Usage of "javax.naming.directory.DirContext".
200 TypesWhiteList Critical Usage of "javax.naming.NamingException".
201 TypesWhiteList Critical Usage of "javax.naming.Context". (Import).
202 TypesWhiteList Critical Usage of "javax.imageio.ImageWriter". (UsesType).
203 TypesWhiteList Critical Usage of "java.awt.image.PixelGrabber". (Call).
204 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
205 TypesWhiteList Critical Usage of "java.io.FileOutputStream".
206 TypesWhiteList Critical Usage of "java.util.Map.Entry". (Call).
207 TypesWhiteList Critical Usage of "javax.naming.directory.Attribute".
208 TypesWhiteList Critical Usage of "javax.imageio.stream.ImageInputStream". (Call).
209 TypesWhiteList Critical Usage of "javax.imageio.ImageWriter".
210 TypesWhiteList Critical Usage of "javax.imageio.ImageWriteParam". (Call).
211 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
212 TypesWhiteList Critical Usage of "javax.imageio.ImageIO". (Call).
213 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
214 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
215 TypesWhiteList Critical Usage of "java.io.FileOutputStream".
216 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Import).
217 TypesWhiteList Critical Usage of "javax.naming.Context". (Import).
218 TypesWhiteList Critical Usage of "javax.naming.directory.DirContext". (Import).
219 TypesWhiteList Critical Usage of "java.awt.Dimension". (Import).
220 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Import).
221 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
222 TypesWhiteList Critical Usage of "java.awt.Image". (Import).
223 TypesWhiteList Critical Usage of "javax.imageio.ImageWriter". (Call).
224 TypesWhiteList Critical Usage of "javax.naming.NamingException". (Import).
225 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage".
226 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
227 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
228 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (UsesType).

86

229 TypesWhiteList Critical Usage of "java.util.Map.Entry". (Call).
230 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Read).
231 TypesWhiteList Critical Usage of "javax.naming.Context". (Call).
232 TypesWhiteList Critical Usage of "javax.imageio.plugins.jpeg.JPEGImageWriteParam". (Import).
233 TypesWhiteList Critical Usage of "java.io.FileOutputStream".
234 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
235 TypesWhiteList Critical Usage of "javax.naming.NamingException".
236 TypesWhiteList Critical Usage of "javax.imageio.ImageIO". (Call).
237 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Create).
238 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
239 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
240 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Import).
241 TypesWhiteList Critical Usage of "java.awt.image.BufferedImage". (Call).
242 TypesWhiteList Critical Usage of "javax.imageio.ImageWriter". (Import).
243 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
244 TypesWhiteList Critical Usage of "java.io.FileOutputStream".
245 TypesWhiteList Critical Usage of "javax.imageio.IIOImage". (Create).
246 TypesWhiteList Critical Usage of "java.io.FileOutputStream". (Call).
247 TypesWhiteList Critical Usage of "javax.imageio.ImageIO". (Import).
248 TypesWhiteList Critical Usage of "java.awt.Dimension". (Read).
249 TypesWhiteList Critical Usage of "java.awt.image.PixelGrabber". (Import).
250 TypesWhiteList Critical Usage of "java.util.Map.Entry". (Call).

Table B.1: CEC violations detected in JForum (w/o libs).

87

C Distribution Diagrams of CEC
Violations in JForum and Libraries

89

C Distribution Diagrams of CEC Violations in JForum and Libraries

Figure
C
.1:D

istribution
diagram

:C
EC

violations
detected

in
JForum

(w
/o

libs)per
class.

90

Fi
gu

re
C
.2
:D

is
tr
ib
ut
io
n
di
ag
ra
m
:C

EC
vi
ol
at
io
ns

de
te
ct
ed

in
JF
or
um

pe
r
lib

ra
ry
.

91

Bibliography

F. Allilaire, J. Bézivin, F. Jouault, and I. Kurtev. ATL - Eclipse Support for Model Transfor-

mation. In Proc. of the Eclipse Technology eXchange Workshop (eTX) at ECOOP, 2006.

A. A. Almonaies, J. R. Cordy, and T. R. Dean. Legacy System Evolution towards Service-

Oriented Architecture. International Workshop on SOA Migration and Evolution SOAME
2010, pages 53–62, 2010.

M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, et al. Above the clouds: A Berkeley View of Cloud Computing. EECS
Department, University of California, Berkeley, Tech. Rep. UCBEECS-2009-28, 2009.

J. Bisbal, D. Lawless, B. Wu, and J. Grimson. Legacy Information Systems: Issues and Direc-

tions. Software, IEEE, 16(5):103 –111, sep/oct 1999. ISSN 0740-7459. doi: 10.1109/52.795108.

M. L. Brodie and M. Stonebraker. Migrating Legacy Systems: Gateways, Interfaces & the
Incremental Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

ISBN 1-55860-330-1.

H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. MoDisco: A Generic and Extensible Frame-

work for Model Driven Reverse Engineering. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, ASE ’10, pages 173–174, New York, NY,

USA, 2010. ACM. ISBN 978-1-4503-0116-9. doi: 10.1145/1858996.1859032.

C. Bunch, N. Chohan, S. Pang, M. Nagy, S. Sunil, R. Wolski, and C. Krintz. AppScale Design

and Implementation. Technical report, University of California, Santa Barbara, Feb. 2009.

C. Bunch, N. Chohan, C. Krintz, J. Chohan, J. Kupferman, P. Lakhina, Y. Li, and Y. Nomura.

An Evaluation of Distributed Datastores Using the AppScale Cloud Platform. Cloud Com-
puting, IEEE International Conference on, 0:305–312, 2010. doi: 10.1109/CLOUD.2010.51.

93

Bibliography

C. Bunch, N. Chohan, and C. Krintz. AppScale: Open-Source Platform-As-A-Service. Tech-

nical report, University of California, Santa Barbara, Jan. 2011.

E. J. Chikofsky and J. H. C. II. Reverse Engineering and Design Recovery: A Taxonomy. IEEE
Software, 7(1):13–17, 1990.

N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R. Wolski. App-

Scale: Scalable and Open AppEngine Application Development and Deployment. In

D. R. Avresky, M. Diaz, A. Bode, B. Ciciani, E. Dekel, O. Akan, P. Bellavista, J. Cao,

F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. S. Shen, M. Stan,

J. Xiaohua, A. Zomaya, and G. Coulson, editors, Cloud Computing, volume 34 of Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications En-
gineering, pages 57–70. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-12636-9. doi:

10.1007/978-3-642-12636-9.

F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M. Jézéquel. Model-Driven Engineering

for Software Migration in a Large Industrial Context. In G. Engels, B. Opdyke, D. Schmidt,

and F. Weil, editors, Model Driven Engineering Languages and Systems, volume 4735 of

Lecture Notes in Computer Science, pages 482–497. Springer Berlin / Heidelberg, 2007. doi:

10.1007/978-3-540-75209-7_33.

I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud Computing and Grid Computing 360-Degree

Compared. ArXiv e-prints, 901, Dec. 2009.

S. Frey and W. Hasselbring. Model-Based Migration of Legacy Software Systems to Scalable

and Resource-Efficient Cloud-Based Applications: The CloudMIG Approach. In Proceed-
ings of the First International Conference on Cloud Computing, GRIDs, and Virtualization
(Cloud Computing 2010), pages 155–158, Lisbon, Portugal, Nov. 2010. ISBN 978-1-61208-

001-7.

S. Frey and W. Hasselbring. An Extensible Architecture for Detecting Violations of a

Cloud Environment’s Constraints During Legacy Software System Migration. In T. Mens,

Y. Kanellopoulos, and A. Winter, editors, Proceedings of the 15th European Conference on
Software Maintenance and Reengineering (CSMR 2011), pages 269–278. IEEE Computer So-

ciety, Mar. 2011. ISBN 978-0-7695-4343-7. doi: 10.1109/CSMR.2011.33.

94

Bibliography

A. Fuhr, T. Horn, and A. Winter. Model-Driven Software Migration. In G. Engels, M. Luckey,

and W. Schäfer, editors, Software Engineering 2010: Fachtagung des GI-Fachbereichs
Softwaretechnik 22.-26.02. 2010 in Paderborn, volume P-159, pages 69–80, Bonn, 2010.

Gesellschaft für Informatik.

W. Hasselbring, R. Reussner, H. Jaekel, J. Schlegelmilch, T. Teschke, and S. Krieghoff. The

Dublo Architecture Pattern for Smooth Migration of Business Information Systems: An

Experience Report. In In Proceedings of the 26rd International Conference on Software En-
geneering (ICSE-04), Los Alamitos, California, May23-28 2004. IEEE Computer Society, pages
117–126, 2004.

B. Hayes. Cloud Computing. Commun. ACM, 51:9–11, July 2008. ISSN 0001-0782. doi:

10.1145/1364782.1364786.

A. Khajeh-Hosseini, D. Greenwood, J. W. Smith, and I. Sommerville. The Cloud Adoption

Toolkit: Supporting Cloud Adoption Decisions in the Enterprise. Software: Practice and
Experience, 2011a. ISSN 1097-024X. doi: 10.1002/spe.1072.

A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and P. B. Teregowda. Decision Support Tools

for Cloud Migration in the Enterprise. CoRR, abs/1105.0149, 2011b.

M. M. Lehman. On Understanding Laws, Evolution, and Conservation in the Large Program

Life Cycle. Journal of Systems and Software, 1:213 – 221, 1979-1980. ISSN 0164-1212. doi:

10.1016/0164-1212(79)90022-0.

P. Mell and T. Grance. Effectively and Securely Using the Cloud Computing Paradigm, Oct.

2009a.

P. Mell and T. Grance. The NIST Definition of Cloud Computing. National Institute of
Standards and Technology, 53(6):50, 2009b.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov.

The Eucalyptus Open-Source Cloud-Computing System. In CCGRID, pages 124–131, 2009.
doi: 10.1109/CCGRID.2009.93.

95

Bibliography

D. L. Parnas. Software Aging. In Proceedings of the 16th international conference on Soft-
ware engineering, ICSE ’94, pages 279–287, Los Alamitos, CA, USA, 1994. IEEE Computer

Society Press. ISBN 0-8186-5855-X.

B. P. Rimal, E. Choi, and I. Lumb. A Taxonomy and Survey of Cloud Computing Systems.

Proceedings of the 2009 Fifth International Joint Conference on INC, IMS and IDC, pages
44–51, 2009. doi: 10.1109/NCM.2009.218.

R. C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing Legacy Systems: Software Technolo-
gies, Engineering Process and Business Practices. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2003. ISBN 0321118847.

V. Tran, J. Keung, A. Liu, and A. Fekete. Application Migration to Cloud: A Taxonomy of

Critical Factors. In Proceeding of the 2nd international workshop on Software engineering
for cloud computing, SECLOUD ’11, pages 22–28, New York, NY, USA, 2011a. ACM. ISBN

978-1-4503-0582-2. doi: 10.1145/1985500.1985505.

V. Tran, K. Lee, A. Fekete, A. Liu, and J. Keung. Size Estimation of Cloud Migration Projects

with Cloud Migration Point (CMP). In The Fifth International Symposium on Empirical
Software Engineering and Measurement, Banff, Alberta, Canada, September 2011b.

W. Ulrich. A Status on OMG Architecture-Driven Modernization Task Force. In Proceed-
ings of the 8th International IEEE Enterprise Distributed Object Computing Conference. IEEE
Computer Society Digital Library, Sept. 2004.

L. M. Vaquero, L. Rodero-Merino, J. Caceres, andM. Lindner. A Break in the Clouds: Towards

a Cloud Definition. SIGCOMM Comput. Commun. Rev., 39(1):50–55, 2009. ISSN 0146-4833.

doi: 10.1145/1496091.1496100.

B. Wu, D. Lawless, J. Bisbal, and J. Grimson. Legacy System Migration : A Legacy

Data Migration Engine. In Proceedings of the 17th International Database Conference
(DATASEM’97), pages 129–138, 1997a.

B. Wu, D. Lawless, J. Bisbal, and R. Richardson. The Butterfly Methodology : A Gateway-

free Approach for Migrating Legacy Information Systems. In Proceedings of the 3rd IEEE
Conference on Engineering of Complex Computer Systems (ICECCS’97, pages 200–205. IEEE
Computer Society Press, 1997b.

96

Bibliography

L. Youseff, M. Butrico, and D. Da Silva. Toward a Unified Ontology of Cloud Computing.

In Grid Computing Environments Workshop, 2008. GCE ’08, pages 1–10, Nov. 2008. doi:

10.1109/GCE.2008.4738443.

H. Zhou, H. Yang, and A. Hugill. An Ontology-Based Approach to Reengineering Enterprise

Software for Cloud Computing. Computer Software and Applications Conference, Annual
International, 0:383–388, 2010. ISSN 0730-3157. doi: 10.1109/COMPSAC.2010.46.

97

Acknowledgments

I’d like to thank:

• Sören Frey and the Software Engineering Group of Prof. Dr. W. Hasselbring,

• my wife, my children, my parents and my whole family (thx Berlin!),

• my boss during my former apprenticeship,

• Br35 Ba56, Simon Posford & the Kalkbrenner Brothers,

• and both last and least the incredible Egusi Crew aka Die Dünnbrettbohrer.

99

Declaration

I hereby declare that I have completed the present thesis independently, making use only of

the specified literature and aids. Sentences or parts of sentences quoted literally are marked

as quotations; identification of other references with regard to the statement and scope of

the work is quoted. The thesis in this form or in any other form has not been submitted to

an examination body and has not been published.

Kiel, October 15, 2011

Sören Fenner

101

	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.2.1 Evaluation of the CloudMIG CEC Violation Detection Mechanism
	1.2.2 Migration to PaaS: An Inspection of Significant Migration Challenges
	1.2.3 Analysis of the KDM Extraction Process

	1.3 Document Structure

	2 Foundations
	2.1 Cloud Computing
	2.2 Software Migration
	2.3 CloudMIG
	2.4 Involved Technologies
	2.4.1 Eucalyptus
	2.4.2 Google App Engine
	2.4.3 AppScale
	2.4.4 ADempiere
	2.4.5 JForum
	2.4.6 Knowledge Discovery Meta-Model (KDM)
	2.4.7 MoDisco
	2.4.8 CloudMIG Xpress

	3 Model Construction
	3.1 Definition of the Cloud Profile
	3.2 Extraction of the Architectural Model
	3.2.1 Extraction of ADempiere's Model
	3.2.2 Extraction of JForum's Model
	3.2.3 Analysis of the KDM Extraction Process

	4 CEC Violation Identification with CloudMIG
	4.1 Overview of CEC Violations
	4.2 CloudMIG's CEC Violation Detection Mechanism (Constraint Validators)
	4.3 Implementation of a Model Import Feature in CloudMIG Xpress
	4.4 Application of CloudMIG Xpress' Violation Detection on JForum

	5 An Inspection of Significant PaaS Migration Challenges
	6 Analysis
	6.1 CEC Violation Analysis
	6.1.1 Overview and Categorization of Violations
	6.1.2 CEC Violation Inspection Template
	6.1.3 Manual Inspection of Violations
	Manual Inspection of Violation V-13
	Manual Inspection of Violation V-35
	Manual Inspection of Violation V-101
	Manual Inspection of Violation V-102
	Manual Inspection of Violation V-109
	Manual Inspection of Violation V-117
	Manual Inspection of Violation V-2081

	6.2 Evaluation of CloudMIG's Violation Detection Capabilities

	7 Related Work
	8 Conclusion
	8.1 Summary
	8.2 Discussion
	8.3 Future Work

	Appendices
	A Source Code of the Command Line Program for ATL Model-to-Model Transformation
	B CEC Violations in JForum
	C Distribution Diagrams of CEC Violations in JForum and Libraries
	Acknowledgments
	Declaration

