
Christian-Albrechts-University of Kiel

Department of Computer Science

Software Engineering Group

Automatic Conformance Checking

of C#-based Software Systems for

Cloud Migration

Master’s Thesis

2012-03-29

Written by: Christian Wulf

born in Kiel on 1986-12-20

Supervised by: Prof. Dr. Wilhelm Hasselbring

M.Sc. Sören Frey

Hiermit versichere ich, Christian Wulf, dass ich die Masterarbeit selbständig verfasst

und keine anderen als die angegebenen und bei Zitaten kenntlich gemachten Quellen

und Hilfsmittel benutzt habe und die Arbeit in keinem anderen Prüfungsverfahren

eingereicht habe.

Datum, Ort, Unterschrift

Abstract In recent years, cloud computing has emerged as a promising way

to cost-efficiently use resources and to rapidly scale up and down according to

the current workload. For this reason, many companies want to migrate their

software systems to the cloud. However, all available cloud providers impose

some restrictions on the systems that run within their cloud environments.

Moreover, to efficiently utilize the cloud, the system’s architecture often has

to be changed.

To assist in migrating software systems to the cloud, Frey and Hasselbring de-

veloped the CloudMIG approach. It constitutes a programming language and

cloud provider independent approach that utilizes the Knowledge Discovery

Meta-Model (KDM). It describes in six steps how to systematically trans-

form and adapt an existing system so that it is compatible with a given cloud

provider and efficient according to user-defined rating criteria, e.g., perfor-

mance or expenses. There also exists the application CloudMIG Xpress that

implements the approach. Support for particular programming languages and

cloud providers can be easily added by means of CloudMIG Xpress’ plug-in

architecture.

In this thesis, we add support for C#-based systems by providing a C#-to-

KDM transformation. The development of the transformation thereby repre-

sents the main part of the thesis. However, we also offer a cloud profile for

Microsoft Azure that describes the characteristics of the cloud provider, e.g.,

the pricing configuration, the supported programming languages, and the con-

straints already mentioned above. Furthermore, we implement an exemplary

C# constraint validator that checks for write accesses to the local file system.

Since Microsoft Azure discourages using the file system to store data, this val-

idator can be used to validate the conformance with this cloud environment.

Finally, we perform a performance and an accuracy analysis on the transfor-

mation and apply CloudMIG Xpress on an industrial example application the

first time.

I

II

CONTENTS

Contents

List of Figures VI

List of Tables VII

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.2.1 Goal 1: C#-to-KDM Transformation 2

1.2.2 Goal 2: Microsoft Azure Cloud Profile 2

1.2.3 Goal 3: C#-specific Constraint Validators 2

1.2.4 Goal 4: Evaluation of the Transformation and the Automatic

Conformance Analysis . 2

1.3 Structure of the Thesis . 3

2 Foundations and Technologies 5

2.1 Foundations . 5

2.2 Involved Technologies . 10

3 Building an Appropriate C# Grammar 19

3.1 Necessity of a C# Preprocessor . 19

3.2 Comparison of Available C# Grammars 22

3.3 Grammar Adaptation . 26

3.4 Definition of the Abstract Syntax Tree 37

4 The Transformation from C# to KDM 41

4.1 Overview . 41

4.2 The Mapping from C# to KDM . 42

4.3 Phases of the Transformation . 43

4.3.1 Necessity of Three Transformation Phases 43

4.3.2 Phase 1: Internal Type Transformation 45

4.3.3 Phase 2: Internal Member Declarations and Method Defini-

tions Transformation . 47

4.3.4 Phase 3: Statement Transformation 51

III

CONTENTS

4.4 Architecture of the Transformation Component 54

4.5 Own and Related Transformation Concepts 57

4.5.1 Name Resolution . 58

4.5.2 Loading External Libraries . 59

4.5.3 MoDisco’s Approach . 63

5 Integration of the Transformation Component 67

5.1 Plug-In for CloudMIG Xpress . 67

5.2 Plug-In for MoDisco . 69

6 Microsoft Azure Cloud Profile 71

6.1 Hardware Configuration . 71

6.2 Constraints . 72

6.3 Partitions . 72

7 Microsoft Azure Conformance Checking 75

8 Evaluation 79

8.1 Overview . 79

8.1.1 Methodology . 79

8.1.2 Nordic Analytics . 79

8.1.3 Other Used Applications . 80

8.2 Performance Analysis . 81

8.2.1 Goals . 81

8.2.2 Experimental Setting . 81

8.2.3 Scenarios . 81

8.2.4 Results . 82

8.2.5 Discussion of the Results . 84

8.2.6 Threats to Validity . 87

8.3 Accuracy Analysis . 88

8.3.1 Goals . 88

8.3.2 Experimental Setting . 89

8.3.3 Scenarios . 89

8.3.4 Results . 89

8.3.5 Discussion of the Results . 90

IV

CONTENTS

8.3.6 Threats to Validity . 90

8.4 Conformance Checking Analysis . 90

8.4.1 Goals . 90

8.4.2 Experimental Setting . 91

8.4.3 Scenarios . 91

8.4.4 Results . 91

8.4.5 Discussion of the Results . 91

8.4.6 Threats to Validity . 95

9 Related Work 97

10 Conclusions & Future Work 99

10.1 Conclusions . 99

10.2 Future Work . 99

References 101

Glossary 108

A The Class Expression i

B Attachments ii

V

LIST OF FIGURES

List of Figures

1 The CloudMIG Approach [13] . 8

2 Layers, packages, and concerns in the KDM [31] 15

3 The Abstract Syntax Tree (AST) Representation of the Expression 7

& 5 & 1 . 39

4 An Overview of Our Transformation Component 41

5 A UML Activity Diagram of the Transformation Phases 43

6 The Packages of Our Transformation Component as UML Package

Diagram . 55

7 The Core Types of the Transformation Component as UML Class

Diagram . 56

8 The Name Resolution Approach . 58

9 CloudMIG Xpress’ Plug-in Interface as Unified Modeling Language

(UML) Class Diagram . 67

10 MoDisco’s Plug-in Interface as UML Class Diagram 69

11 Azure’s ExtraSmall VM Size . 72

12 Azure’s LocalTransientStorageConstraint (simplified) 73

13 The Representation of Three Data Center Locations of Microsoft

Azure (simplified) . 74

14 CloudMIG Xpress’ Validator Interface for the Transient Storage Con-

straint as UML Class Diagram . 76

15 C# Method Calls That Are Responsible for Writing to the File System 77

16 C# Types That Are Responsible for Acessing the File System 77

17 Scenario 1 . 83

18 Scenario 2 . 83

19 Scenario 3 . 85

20 Scenario 4 . 85

21 Scenario 5 . 86

VI

LIST OF TABLES

List of Tables

1 Available C# Grammars . 22

2 C# to KDM Mapping Table . 42

3 Available C# Decompilers . 61

4 Available VM Sizes . 71

5 Other Open-Source Applications That We Use for the Evaluations . . 80

6 Basic Information about the Used Applications 82

7 Completeness Analysis of Nordic Analytics 89

VII

LIST OF TABLES

VIII

1 INTRODUCTION

1 Introduction

1.1 Motivation

Cloud Computing has emerged as a new computing model where resources are pro-

vided as utilities. The potential benefits of scalability, elasticity, and resource effi-

ciency are very attractive to many enterprises.

However, current software systems are often not designed to run in a cloud

environment. The architecture of a system might not be laid out to be scalable or

violates some constraints that the given cloud environment specification imposes.

For example, storing data permanently in Microsoft Azure [2] requires the use of

a Microsoft Azure drive because the local file system of a virtual machine (VM)

does not represent a persistent storage resource. Even worse, it is often not known

whether a software system is compatible with a given cloud environment at all.

In order to analyze and evaluate software systems to support cloud migration,

Frey and Hasselbring [13] developed the CloudMIG approach. It defines six steps to

semi-automatically transform a software system of any programming language to an

arbitrary cloud environment. For this purpose, CloudMIG makes extensive use of the

Knowledge Discovery Meta-Model (KDM) [17]. In the first step, it transforms the

given system to an appropriate KDM instance, for example. Moreover, it provides

an KDM-based Cloud Environment Model (CEM) that is able to describe arbitrary

cloud environments, such as Amazon EC2 and Microsoft Azure.

Another step of the CloudMIG approach involves a conformance checking anal-

ysis [14, 15] of the given software system with respect to the selected cloud environ-

ment. Thereby, specific validators that check for cloud environment constraints are

applied on the KDM representation of the system.

Frey and Hasselbring have already developed a prototype implementation

called CloudMIG Xpress that performs the six steps that are mentioned above.

Until now, it only supports Java-based software systems and two cloud profiles,

one for Amazon EC2 and one for Google App Engine for Java. Hence, in order

to demonstrate the generic applicability of this approach, we will integrate support

for C#-based software systems and for Microsoft’s cloud platform Azure. Since

CloudMIG Xpress has been only applied on open-source software systems so far, we

additionally carry out a first industrial case study.

1

1.2 Goals

1.2 Goals

The goal of the master’s thesis is to integrate support for C# in CloudMIG Xpress

and to evaluate CloudMIG’s constraint violation detection approach. For this pur-

pose, we develop a program that converts a C#-based software system into a corre-

sponding KDM instance. Furthermore, we build a cloud profile that describes the

constraints that the cloud provider Microsoft Azure defines.

Finally, we use this cloud profile and an example application, namely the finan-

cial risk assessment system Nordic Analytics (HSH Nordbank), to instruct Cloud-

MIG to check the corresponding KDM instance for Microsoft Azure conformance.

1.2.1 Goal 1: C#-to-KDM Transformation

We first construct a Java-based transformation that parses C# source code by

means of an appropriate ANTLR-conform C# grammar and transforms it into a

KDM-conform model (see Section 3 and 4). This model will serve as the input

for CloudMIG Xpress. Furthermore, our plug-in will also implement CloudMIG

Xpress’ and MoDisco’s plug-in interfaces in order to directly integrate it into them

(see Section 5).

1.2.2 Goal 2: Microsoft Azure Cloud Profile

In the next step, we build a cloud profile describing Microsoft’s Azure cloud envi-

ronment properties, especially its constraints (see Section 6). For this purpose, we

use the cloud environment meta-model specification of CloudMIG Xpress.

1.2.3 Goal 3: C#-specific Constraint Validators

Consecutively, we construct further constraint validators that are specific to C#

applications, e.g., constraints related to the read and write access to the operating

system’s file structure (see Section 7).

1.2.4 Goal 4: Evaluation of the Transformation and the Automatic Con-

formance Analysis

In the last step, we perform a performance and an accuracy analysis on the afore-

mentioned transformation (see Section 8). Moreover, we evaluate CloudMIG Xpress’

2

1 INTRODUCTION

conformance analysis by applying it on the financial risk assessment system Nordic

Analytics. We analyze the detection of the constraint violations by means of the

above steps.

1.3 Structure of the Thesis

The next section describes foundations and technologies that are necessary to under-

stand and implement our goals. Section 3 presents the steps to build the ANTLR-

conform grammar that is used to generate the C# parser and abstract syntax tree

in Java. Subsequently, the transformation from C# to KDM is described in de-

tail in Section 4. Section 5 introduces the plug-in interfaces for CloudMIG Xpress

and MoDisco. In Section 6 and 7, the cloud profile for Microsoft Azure and a corre-

sponding exemplary C#-specific constraint validator is described in detail. Section 8

evaluates the transformation described in Section 4 by performing a performance

analysis and an accuracy analysis on it. Furthermore, it presents a conformance

checking analysis of CloudMIG Xpress by means of Nordic Analytics. Afterwards,

in Section 9, we describe related work. Section 10 concludes the thesis and gives an

outlook on future work.

3

1.3 Structure of the Thesis

4

2 FOUNDATIONS AND TECHNOLOGIES

2 Foundations and Technologies

In the following, we describe the foundations and technologies that are used to

achieve the goals defined in Section 1.2.

2.1 Foundations

Migrating a software system to the cloud requires knowledge of several areas. Thus,

to get an understanding of them, we consider the most important ones in the next

five subsections.

Reverse Engineering

Reverse engineering [6] is the process of analyzing a given system in order to identify

its components and their associations, and to create appropriate representations or

views of it. Such views often represent an abstraction of the system to focus on a

particular aspect of the system.

Software architecture reconstruction (SAR) as part of the reverse engineering

process can help in understanding and restructuring the system’s architecture. It can

reveal the architecture style and allow the reengineer to compare the conceptual and

concrete architecture. [19] For such conformance checking analysis, the reengineer

can utilize different architecture views and viewpoints. Furthermore, SAR addition-

ally supports software evolution and maintenance, serves as foundations for reuse

investigations, and can be used to control the architectural drift resulting from the

co-evolution of the implementation and the conceptual architecture. [7]

In the context of this thesis, we reconstruct the architecture of C#-based soft-

ware systems and utilize KDM to perform a conformance checking analysis according

to the cloud environment Microsoft Azure.

Cloud Computing

Cloud Computing has evolved from the fact that most industrial data centers have

a low resource utilization. They often use only up to 20% of available resources [1]

while still consuming more than 50% of the energy necessary at peak times. Thus,

such data centers have a high degree of over-provisioning beyond the periods of

5

2.1 Foundations

peak workload. The more pronounced the variation of workload per time interval,

the more the waste of resources.

Cloud Computing [32, 39] provides a promising concept to minimize such waste

by offering the idle resources for further purposes. Depending on whether an organi-

zation offers their free resources to their subsidiaries and employees, to the general

public, or to both, it serves as private, public, or hybrid cloud, respectively.

In the following, we will use the definition of Cloud Computing and related

terms that Mell and Grance [22] propose and published at the National Institute of

Standards and Technology (NIST) . Although there are many other definitions, the

NIST definition becomes a de-facto standard.

Independent of the so-called cloud deployment model, the allocation of some

resources of an Infrastructure-as-a-Service (IaaS) cloud is usually realized by virtu-

alization. Thereby, a virtual machine (VM) represents an amount of resources, e.g.

two 2.4 GHz processor cores with 2 GB RAM and 10 GB space capacity. In this

way, a cloud user can consume such resources in isolation from other cloud users

and without considering the underlying hardware.

This example demonstrates the usage of IaaS. However, there are several other

so-called service models such as the Platform-as-a-Service (PaaS) and the Software-

as-a-Service (SaaS) model. The former represents not only the basic infrastructure,

but also a particular environment such as an Ubuntu operating system with an

installed integrated development environment. Thus, the cloud user’s scope of using

the allocated resources is bound to such an environment. In the context of SaaS,

the cloud user has only access to a particular software. Here, the resources are

represented as the application or Application Programming Interface (API) that is

provided by the so-called SaaS provider.

Resources are normally offered on a pay-for-use basis, i.e., the cloud user only

pays for the actual amount of allocated resources and the demanded period of time.

He himself controls the duration by starting and stopping his virtual machine or

cloud application, respectively. Hence, Cloud Computing is also characterized by

elasticity and flexibility. One can allocate resources on demand and release them

when they are not needed anymore. This feature supports especially start-up compa-

nies that have initially not the (financial) resources to sustain high peak workloads.

6

2 FOUNDATIONS AND TECHNOLOGIES

Such companies do not need an up-front commitment, but can utilize the cloud’s

dynamic resource allocation.

The possibility to choose the type and amount of resources suggests cloud

users of apparently infinite computing resources. Thus, they can utilize the cost

associativity of a cloud to save time. For example, they can choose to allocate one

server for 1,000 hours or 1,000 servers for one hour for the same price.

In conclusion, Cloud Computing does not try to only minimize resource wastage

of data centers, but also to provide a way of cost-efficient resource allocation for cloud

users.

Cloud Migration

Migrating an existing software system to the cloud requires several considerations

and changes [1, 14]. First, an enterprise has to take organizational issues into ac-

count such as new or changing responsibilities for the billing and maintenance of

the cloud instances. Second, sensible data are now no longer exclusively stored and

processed on premise. Thus, the enterprise management has to consider liability

and auditing issues. One way to handle these concerns it to identify such sensible

externally processed data and apply some sort of cryptography on it. Third, there

are several technical shortcomings of current cloud migration approaches. Most of

them are restricted to a particular cloud provider and offer only a limited degree of

automation. Moreover, only a few approaches focus on efficient resource allocation.

Other approaches provide, if at all, only limited automation support for scalability

evaluation at design time. Hence, a migration to the cloud requires an intensive

planning and evaluation phase and can be quite time-consuming.

The CloudMIG Approach

The CloudMIG [13, 15] approach aims to overcome some limitations of current

cloud migration approaches, namely the applicability, the level of automation, the

inefficient resource allocation, and the lack of scalability. Today’s solutions are most

often limited to particular cloud providers. They are thus not able to migrate to

an arbitrary cloud provider, but have to port to the given one. Furthermore, the

target cloud-conform architecture cannot be (semi-)automatically generated so far.

Additionally, the target architecture’s violations against the cloud environment’s

7

2.1 Foundations

Existing

System

A2

Actual

Architecture

A1

Utilization

Model

Cloud Environment

Model

Target

Architecture

Mapping

Model

A1

?

?

Constraint

Violations

A3

A4,A3

A5

Rating

A

B

C

A6

Migrated

System

A4,A3

Legend:

A1: Extraction

A2: Selection

A3: Generation

A4: Adaptation

A5: Evaluation

A6: Transformation

Optional

Mandatory

Figure 1: The CloudMIG Approach [13]

constraints are not recognized. Another obstacle is the resource inefficient design of

most applications. They do not leverage the cloud environments’ elasticity. Finally,

no approach analyzes the target architecture’s scalability at design time.

The CloudMIG approach defines six steps to migrate an arbitrary application

into a user-defined cloud environment. We briefly describe them below. Figure 1

illustrates the approach.

A1 - Extraction The first step results in architectural and utilization models of

the legacy system. For this purpose, the Knowledge Discovery Meta-Model (KDM)

and the Structured Metrics Meta-Model (SMM) of the Object Management Group

(OMG) are used as model specifications.

A2 - Selection The next step deals with selecting the target cloud provider by

choosing an appropriate CEM-compatible cloud profile candidate.

A3 - Generation In this step, a constraint violation model is generated by means

of the models from step 1 and the selected cloud profile from step 2. It describes the

current system’s violations against the constraints of the selected cloud environment.

8

2 FOUNDATIONS AND TECHNOLOGIES

It also serves as input for the generation of the target architecture. A mapping model

maps the elements of the models from step 1 to the target architecture model.

A4 - Adaption This step is left for manual adaptations to the target architecture

by a reengineer. Such non-automatic actions could be required if the removal of a

violation is too complex or needs additional knowledge.

A5 - Evaluation The penultimate step involves an evaluation of the target ar-

chitecture. For this purpose, static analysis and runtime simulation are applied.

Furthermore, the target architecture is evaluated according to a rating based on

specific, user-defined criteria.

A6 - Transformation The last step deals with the transformation from the gen-

erated and adapted target architecture to the selected cloud environment. This

transformation, however, needs to be perform manually by the reengineer.

Parser Generation

Parser generation [11, 34] describes the generation of a parser from a grammar

description. There are two popular types of parser generators, namely LL and LR

parser generators. For the sake of completeness, we also refer to Packrat [12] and

Generalized LR parsers [21].

LL parsers use parsing techniques that scan the input from left to right (the

first L of LL) and produce a leftmost derivation (the second L of LL) of the initial

grammar rule. A leftmost derivation strategy expands nonterminals (also called

grammar rules) from left to right. LR parsers use parsing techniques that also

scan input from left to right, but produce a rightmost derivation (the R of LR). A

rightmost derivation strategy expands nonterminals from right to left.

Usually, LL parsers do not accept left-recursive rules and LR parsers do not ac-

cept right-recursive rules. Otherwise, the deviation strategy would cause an infinite

rule invocation in both cases.

All generated parsers require some lookahead to decide which rule to choose

and to prevent infinite processing of left- and right-recursive rules. For this reason,

the type of a parser is appended by the maximal number of tokens that are used to

9

2.2 Involved Technologies

perform a lookahead. For example, an LL(2) parser additionally uses a maximum

of 2 tokens after the current one.

The first popular parser generator was Yacc [16], an acronym for Yet Another

Compiler-Compiler. Yacc is an LR parser, originally written in portable C, that

accepts some special LR(1) grammars.

2.2 Involved Technologies

We now consider the technologies that we use to implement the transformation, the

cloud profile, and the constraint validators.

ANTLR

ANother Tool for Language Recognition (ANTLR) [27, 28, 29] is a framework for

constructing parsers in target programming languages such as Java, C# , and

Python from grammar descriptions. Furthermore, ANTLR provides support for

tree construction, error recovery, and error reporting.

We use a C# grammar defined in ANTLR syntax in order to parse C# source

code. We additionally adapt it to let ANTLR automatically generate a correspond-

ing Abstract Syntax Tree (AST)in Java. In doing so, we can use Java to transform

the C# program into a KDM instance. We do not want to mix the ANTLR-based

grammar with Java syntax or XML/KDM notation and thus separate the processing

in multiple steps.

Lexer and Parser Grammars ANTLR provides three different grammar types,

namely lexer, parser, and tree grammars. The first is responsible for the lexical

analysis. The second defines the syntactical analysis. The third can be used to check

complex semantic constraints. However, tree grammars are rarely used because

their’s definition is more time-consuming. That is why we only describe the lexer

and parser grammar in more detail.

The lexer grammar defines what sequences of characters correspond to what

so-called tokens. Tokens are the input for the syntactical analysis, i.e., parser gram-

mars base on lexer grammars. Listing 1 demonstrates a simple lexer grammar that

recognizes the character sequences true and false as well as sequences of the numbers

0 to 9. Below, we discuss the example in more detail.

10

2 FOUNDATIONS AND TECHNOLOGIES

Listing 1: A Simple Lexer Grammar� �
1 lexer grammar Example;

2
3 options {

4 language = Java;

5 }

6
7 TRUE : ’true ’ ;

8 FALSE : ’false ’ ;

9 INTEGER_LITERAL :

DECIMAL_DIGIT+ ;

10 fragment DECIMAL_DIGIT :

’0’ | ’1’ | ’2’ | ’3’ |

’4’ | ’5’ | ’6’ | ’7’ |

’8’ | ’9’ ;� �

Listing 2: Valid and Invalid Lexer In-
puts� �

1 true // valid

2 falsetrue9684 // valid

3 fa // invalid

4 True // invalid

5 1234 true // invalid� �

The first non-comment-statement of a grammar defines the type (lexer, parser,

or tree1) and the name of it. The grammar’s name must correspond to it’s file name.

In our example, we define a lexer grammar with the name Example. In the options

section, we can specify options for the output generation. When executing ANTLR

on our lexer grammar, it will generate a complete so-called Lexer in the target

programming language Java because the options’ language attribute is set to Java.

Our lexer contains four rules (also called lexer rules). Lexer rules always start

with a capitalized letter. The first one, TRUE, in line 7 defines a new token of type

TRUE that is created each time the character sequence “true” is recognized by the

lexer. The second one, FALSE, in line 8 defines a new token of type FALSE that is

created each time the character sequence “false” is recognized. In line 9, the token

INTEGER_LITERAL is defined by means of another lexer rule called DECIMAL_DIGIT.

The + thereby denotes the positive closure, i.e., it matches the previous token one

or more times. There is also the Kleene closure operator * that matches zero or

more token occurrences. In our example, INTEGER_LITERAL is created each time

DECIMAL_DIGIT can be applied one or more times. The token DECIMAL_DIGIT is

created if the character ’0’, ’1’, ’2’, .., or ’9’ is detected. The keyword fragment

indicates that when matching DECIMAL_DIGIT no corresponding token should be

1Tree grammars base on parser grammars. Their inputs are parser rules. However, this type of
grammar is rarely used and not relevant for our purpose.

11

2.2 Involved Technologies

Listing 3: A Parser Rule for Namespace Declarations� �
1 namespace_declaration

2 : NAMESPACE qualified_identifier namespace_body SEMICOLON

?

3 ;� �
created. It is used for performance optimization reasons. In the following, we

sometimes call these lexer rules just fragments.

Listing 2 shows five different character sequences. The first and second ones are

valid with respect to our lexer grammar. true would be matched by the lexer rule

TRUE and transformed into a TRUE token. falsetrue9684 would be matched by the

lexer rules FALSE, TRUE, and INTEGER_LITERAL in that order and transformed into

the three corresponding tokens of the same name. The remaining three character

sequences, however, are not valid. There is no lexer rule that matches fa because

rules match completely or not at all. True cannot be matched either since rule

definitions are case-sensitive. Although 1234 is matched by INTEGER_LITERAL, there

is no rule for the following space character.

The parser grammar defines valid orders of tokens. The aim of the correspond-

ing parser is to verify the correctness of the given token sequence with respect to the

parser grammar. For this purpose, parser rules are used. Parser rules always start

with uncapitalized letters in contrast to lexer rules. Listing 3 illustrates a parser

rule that is responsible for matching C# namespaces.

The rule expects three to four symbols, each of them is either a terminal or

nonterminal symbol. As indicated by the capitalized initial letter, NAMESPACE is a

token, and therefore a terminal produced by the previous lexical analysis. qual-

ified_identifier and namespace_body represent parser rules, i.e., nonterminal

symbols.2 After correctly parsing the previous three symbols, the whole parser rule

namespace_declaration has already matched. The last terminal SEMICOLON is op-

tional as indicated by the question mark.

If both grammars are valid, ANTLR is able to automatically generate a lexer

and a parser from them in the user-defined target programming language.

2In this example, the definitions of the nonterminals are omitted for the sake of simplicity.

12

2 FOUNDATIONS AND TECHNOLOGIES

Listing 4: The ANTLR operators ˆ and !� �
1 enum_definition

2 : ENUM^ IDENTIFIER enum_base? enum_body SEMICOLON !?

3 ;� �
Listing 5: An Example Rule Using a Rewrite Rule� �

1 property_declaration

2 : member_name OPEN_BRACE accessor_declarations CLOSE_BRACE

3 -> ^(PROPERTY_DECL member_name accessor_declarations)

4 ;� �
AST Generation Let us consider the AST generation in more detail. ANTLR

offers a feature that automatically creates an AST while parsing when the output

attribute in the options section of the parser grammar is set to AST. For each token

the parser reads in, a new tree node is created. However, all nodes are arranged in

sequence, i.e., no node hierarchy is automatically produced. Consequently, the tree

consists of only two levels, one for the root node and one for all the token nodes.

Thus, we have to define subtrees and remove some sort of tokens that are irrelevant

for our purposes.

ANTLR provides two mechanisms to specify hierarchy and to remove nodes.

First, one can use the operators ˆ and ! on terminals and nonterminals. By using

ˆ after a token, ANTLR makes it the root node within the current subtree. If one

uses the root operator on a rule, the first token within this rule is set to the root.

The ! operator is responsible for removing tokens. When defined after a token,

that token is not created for the AST. If the operator is defined after a rule, all tokens

of the rule are not considered when building the AST.

Listing 4 shows an example application of the operators. The ENUM token is

set as the root containing all following tokens as children. As indicated by the !

operator, a corresponding SEMICOLON node is not created if it was parsed.

The other mechanism to define hierarchy and to suppress nodes in an AST

is implemented by so-called Rewrite Rules. A rewrite rule rewrites a sequence of

parsed terminals and nonterminals and creates the corresponding nodes within the

current subtree of the AST. Listing 5 illustrates an example.

13

2.2 Involved Technologies

The right-arrow causes the generated parser to build the AST on the basis

of the tokens and rules from the right-hand side instead of the left-hand side of

the arrow. The ^ symbol is again used to define hierarchy in a slightly different

way. In order to avoid adding a node for a particular token, one only needs to

omit writing the token on the right-hand side. In our example, the generated parser

would not build a corresponding node for the tokens OPEN_BRACE and CLOSE_BRACE.

Furthermore, rewrite rules allow to add additional imaginary tokens. An imaginary

token is a token that has no character representation. It is used to further group a

set of nodes in an AST. Here, PROPERTY_DECL is one example of an imaginary token.

Ecore

Ecore is an object-oriented meta-model specification developed as part of the Eclipse

Modeling Framework [9]. Eclipse Modeling Framework (EMF) provides sophisti-

cated tool support to create an Ecore-based model, parse a file containing an Ecore-

based model, and visualize an Ecore-based model.

There is also a KDM specification3 defined as an Ecore-based meta-model. We

use it in the extraction process to build the KDM representation of the C# example

application.

Moreover, CloudMIG’s cloud environment meta-model is also based on the

Ecore specification. We use it to build a cloud profile that reflects the constraints

of Microsoft’s Azure cloud environment.

Knowledge Discovery Meta-Model (KDM)

The KDM [26] is a specification for representing information related to existing

software systems. The OMG released the first version in 2008 and thereby provided

a common interchange format, i.e., a language-independent representation of the

source code, for instance.

KDM is structured in a hierarchy of four layers. Figure 2 illustrates these

layers, their corresponding packages, and their concerns.

The lowest layer, called Infrastructure Layer, consists of the three packages

Core, KDM, and Source. It represents common meta-model elements for higher

3http://www.omg.org/spec/KDM/20090502/09-05-23.ecore, last access on 2011-09-13

14

http://www.omg.org/spec/KDM/20090502/09-05-23.ecore

2 FOUNDATIONS AND TECHNOLOGIES

Figure 2: Layers, packages, and concerns in the KDM [31]

layers and describes the physical artifacts of the software system, e.g., source code

and build files. This layer depends on none of the other layers.

The next overlying layer is called the Program Elements Layer. It represents

the abstraction from the original language syntax of the given software system to

the KDM language-independent format.

The Runtime Resource Layer defines patterns for representing the operating

environment in which the given software system runs. For this purpose, it can

also contain high-level knowledge, e.g., for some particular views that require some

manual expertise.

The Abstractions Layer represents domain-specific and application-specific ab-

stractions as well as artifacts concerning the build process. This layer defines the

three KDM packages Structure, Conceptual, and Build.

We will focus on the Infrastructure Layer and the Program Elements Layer,

especially on the source package, code package, and action package.

Source Package The source package provides model elements to represent the

physical structure of the software system. It offers a representation for directories

and several kind of files, for example source files, binary files, or image files. Addi-

tionally, it includes elements to link an element of a higher layer to a file or line in

a file.

15

2.2 Involved Technologies

Code Package The code package comprises elements that represent the source

code of the given software system independent of the used programming languages.

For instance, it provides representations of classes, methods, variables, inheritance

relationships, and modules.

Action Package The action package offers model elements that represent the

parts of the source code that are responsible for the behavior of the software sys-

tem. For this purpose, there are elements for operations, assignments, method calls,

read/write accesses, the control flow, and conditions, for example.

We utilize KDM within the CloudMIG approach. CloudMIG expects a KDM-

conform input model for the architecture of the considered software system to per-

form several analyses and architecture reconfigurations on it.

MoDisco

Many development tools are often specialized on generating one special model format

(e.g., UML) from a given input (e.g. source code) and vice versa. They do not

consider other model formats (e.g., XML, SQL, and KDM).

MoDisco [5], a Java framework for model-driven reverse engineering, aims at

overcoming this homogeneity by providing a generic and extensible architecture.

It offers flexible interfaces for all kinds of possible input legacy artifacts as well

as different types of outputs depending on the given reverse engineering objectives.

Furthermore, it allows to easily define a transformation from one or more input mod-

els to one or more output artifacts. Bruneliere et al. [5] call such a transformation

a discoverer.

Although MoDisco includes some input and output model implementations as

well as some discoverers today, it lacks in a discoverer that reads C# source code

and transforms it to a corresponding KDM instance. The implementation of such a

KDM discoverer is part of the master thesis.

Microsoft Azure

The Azure platform [2] is Microsoft’s cloud environment and follows the PaaS model.

It provides hardware, software, network, as well as storage resources and consists

16

2 FOUNDATIONS AND TECHNOLOGIES

of the three main components Windows Azure, SQL Azure, and the AppFabric.

The individual components are described in the next paragraphs. Developers can

build and deploy their applications on the Azure platform to utilize services such as

automatic resource and life cycle management as well as load balancing.

Windows Azure supports general-purpose windows applications, especially such

ones that are built on the .NET framework (e.g., using C# and managed C++) or

other languages such as PHP, Ruby, Python, or Java. Each application needs to be

assigned to one or more web role, worker role, and/or VM role instances.4 The former

role is customized for web application programming, e.g., it can accept HTTP(S) re-

quests and has already installed Microsoft’s Internet Information Services (IIS). The

worker role is not exclusively designed for web application programming. Instead

it can be used for common application development and may perform background

processing for a web role, for instance. The VM role represents a VM image that

can be deployed on Windows Azure. This role provides the most flexibility in con-

figuring and controlling the execution environment. While the web and worker role

run within a virtual machine, the VM role defines the virtual machine.

SQL Azure represents Microsoft’s database management system for the cloud

and is accessible via .NET and other windows interfaces. The AppFabric is respon-

sible for easily creating distributed applications.

All applications, virtual machines, and physical resources are monitored and

scaled by the so-called fabric controller. For this purpose, the user needs to upload an

XML-configuration file that describes what components and services the application

provides. By means of this file, the fabric controller decides on which servers the

application should run to provide optimal hardware utilization and fault tolerance.

.NET Framework

The .NET framework [25] constitutes Microsoft’s implementation of the Common

Language Infrastructure (CLI) specification and represents a programming model

that provides standard solutions to facilitate the development of Windows applica-

tions. It consists of a runtime environment, the so-called Common Language Run-

time (CLR), with a Just-In-Time (JIT) compiler, a collection of libraries, common

interfaces, and service applications. For example, the framework contains a class

4http://msdn.microsoft.com/en-us/library/windowsazure/gg432976.aspx (2012-03-28)

17

http://msdn.microsoft.com/en-us/library/windowsazure/gg432976.aspx

2.2 Involved Technologies

Listing 6: An HelloWorld Example in C#� �
1 namespace ExampleNamespace

2 {

3 class HelloWorld

4 {

5 static void Main(string [] args)

6 {

7 System.Console.WriteLine("Hello World!");

8 }

9 }

10 }� �
System.IO.File that provides methods for the creation, copying, deletion, moving,

and opening of files.

.NET-based applications are compiled to the Common Intermediate Language

(CIL), a hardware-independent intermediate code. In order to execution code in the

CIL format, the CLR needs to be installed on the target system. It handles the

loading, interpretation, and execution of CIL-based code. While executed, the CIL

code is finally compiled by the JIT compiler to the actual processor dialect.

Listing 6 shows an HelloWorld example in C# that makes use of the .NET

class System.Console.

As Windows Azure extensively uses the .NET framework for the communica-

tion and the access on I/O devices, it can pose some .NET-specific constraints. For

such constraints, we develop specific validators (see Section 7).

CloudMIG Xpress

There also exists a prototype implementation of the CloudMIG approach, called

CloudMIG Xpress. It supports the steps 1-5 and provides a flexible architecture to

add new cloud profiles, for example. The last step is not supported and therefore

needs manual operations.

18

3 BUILDING AN APPROPRIATE C# GRAMMAR

3 Building an Appropriate C# Grammar

In order to define a transformation that maps a C# application to a corresponding

KDM-conform representation, we must first be able to parse C# source files. For

this purpose, we need a Java-based C# parser because we finally want to integrate

the transformation into CloudMIG Xpress (see Section 1.2) that is implemented in

Java.

We choose the very popular and matured parser generator ANTLR that is able

to generate a parser in several programming languages including Java.5 We only need

a C# grammar file in an ANTLR-specific syntax. One candidate is the BNF-based

grammar defined in the C# specification. Although the ANTLR syntax is similar to

the Extended Backus–Naur Form (EBNF) [33] and hence also to BNF, it is not the

same. Furthermore, the C# grammar contains some informal rule definitions such

as phrases like “one of the following characters [...]” and “characters from unicode

class Z”. But even though it would conform to the syntax, one has further to consider

the fact that ANTLR is an LL(*) parser and thus does not accept left-recursive rule

definitions (see Section 2.1). That is why we cannot directly use it as input for

ANTLR.

Since C# has a complex semantics, we want to use a mature ANTLR-based

C# grammar instead of writing one completely by our own. Thus, we evaluate

available C# grammars in Section 3.2. But first, we want to motivate the need of a

C# preprocessor in addition to a grammar in Section 3.1. In Section 3.3, we then

discuss and describe further necessary adaptations and extensions to the grammar.

Subsequently, we define and build an ASTon the basis of the grammar in Section 3.4.

3.1 Necessity of a C# Preprocessor

Preprocessor directives are an integral part of C#. They enable conditional com-

pilation, let the programmer define convenient collapsible regions of source code,

and allow to specify custom compiler messages. Due to the first aspect, we require

a preprocessor in addition to the grammar. The following examples motivate this

necessity:

5We discuss alternative parser generators in Section 9.

19

3.1 Necessity of a C# Preprocessor

Listing 7: Simple example� �
1 #if COND_A

2 a = 0;

3 #elsif

4 a = 1;

5 #endif� �

Listing 8: Advanced example� �
1 if (cond) {

2 b = 0;

3 #if COND_B

4 } else {

5 b = 1;

6 }

7 #elsif

8 }

9 #endif� �
Both listings illustrate the use of conditional preprocessor directives. Listing 7

shows some C# source code that is compiled either to a=0; or a=1; depending on

the macro variable COND_A. In particular, it is not allowed to compile both state-

ments. A lexer that completely conforms to the C# specification would first evaluate

the condition of the if-directive and then generate the corresponding tokens. For ex-

ample, if COND_A is true, the lexer would generate the tokens a, =, 0, and ;. If

a lexer just skips all preprocessor directives and does not evaluate if-directives, it

would generate too many tokens concerning the C# specification. In the worst case,

this can lead to syntax errors (see discussion of Listing 8). In Listing 7, the parser

would get the tokens from line 2 and 4 from the lexer and detect two statements.

Hence, the snippet of source code would not be processed correctly, even though the

resulting tokens conform to the C# syntax.

Listing 8 shows an advanced example of conditional preprocessor directives.

Here, the body of the if-statement is closed depending on COND_B. According to the

C# specification, the source code snippet is interpreted as followed: Either the body

is closed and an else-statement is appended or it is simply closed without appending

an else-statement. If a non-conform lexer again just skips the preprocessor directives

without evaluating, the parser would complain about a syntax error. Both code

sections enclosed by the conditional directives contain the closing token } for the

if-statement (line 4 and 8).

Thus, in order to parse an arbitrary C# software system, we must also incor-

porate a preprocessor. Since a preprocessor must evaluate conditions while scanning

and producing tokens, we need some kind of logic in addition to the pure grammar

20

3 BUILDING AN APPROPRIATE C# GRAMMAR

Listing 9: Example of an Action Code Section� �
1 floating_point_type

2 : FLOAT

3 {System.out.println("parsed float token");}

4 | DOUBLE

5 {System.out.println("parsed double token");}

6 ;� �
Listing 10: A lexer’s if-directive rule� �

1 [...]

2 Pp_if_section

3 @init {Expression exprObj = new Expression ();}

4 : WHITESPACE? SHARP WHITESPACE? ’if’ WHITESPACE

Pp_expression[exprObj] Pp_new_line

5 {push(exprObj.isTrue ());}

6 ;

7 Pp_endif

8 : WHITESPACE? SHARP WHITESPACE? ’endif ’ Pp_new_line

9 {pop();}

10 ;

11 [...]� �
definition syntax of ANTLR. For this purpose, ANTLR provides the concept of the

so-called action code sections. Action code sections allow to embed arbitrary source

code in the target language into a grammar definition file. They can be inserted at

arbitrary positions, e.g., outside and inside grammar rules.

Listing 9 shows a parser rule that matches either exactly one FLOAT token

or exactly one DOUBLE token. Additionally, ”parsed float token” or ”parsed double

token” is displayed, respectively, due to the embedded method invocation of Sys-

tem.out.println.

By using ANTLR’s action code mechanism, we can insert the necessary logic

for a preprocessor to the preprocessor directive rules. Listing 10 shows a lexer rule

that is responsible for matching the if-directive and creating a corresponding token

named after the rule name, i.e., Pp_if_section. When the lexer checks whether the

Pp_if_section rule matches the next input sequence, it first processes the @init

action code section. Here, an instance of the class Expression is created. Second,

21

3.2 Comparison of Available C# Grammars

the lexer successively checks each subrule whether it matches or not. If not, it aborts

and checks the next lexer rule in the grammar file (in this case Pp_endif). Other-

wise, when reaching the Pp_expression subrule, the lexer passes the Expression

instance, created above, to the subrule before invoking it. Pp_expression in turn

executes its subrules that are responsible to match and evaluate expressions like

or, and, equal, unequal, not, true, false, boolean macro variables, and parentheses

expressions. The result is passed and saved in the given Expression instance. If

the Pp_if_section successfully invoked its subrule Pp_new_line, the subsequent

action code in line 5 is executed. Here, the Expression instance’s method isTrue

returns the evaluated expression as boolean value. The push method puts this value

onto a stack that realizes the evaluation of nested conditional directives. If later the

corresponding endif-directive is matched by the Pp_endif rule, the value is removed

from the stack by invoking the method pop within the action code section.

3.2 Comparison of Available C# Grammars

We searched the internet for free C# grammars in the ANTLR format by using

Google with the keywords antlr, C#, and grammar. Table 1 lists all grammars of

the first 100 results. The table’s order corresponds to the order of the results.

Supported
C#

Version

Required
ANTLR
Version

Contains
Preprocessor

Implementation?

Author URL
Last

Update

4 3.2-3.4 yes Andrew Bradnan a 2010-06-20

1 2.0 no Quentin Gregory b 2006-06-29

2 2.0 no Todd King c 2005-09-26

4 3.0-3.4 no Lucian Wischik d 2010-04-19

Table 1: Available C# Grammars

ahttp://antlrcsharp.codeplex.com/ (2012-03-10)
bhttp://www.antlr.org/grammar/1151612545460/CSharpParser.g (2012-03-10)
chttp://www.antlr.org/grammar/1127720913326/tkCSharp.g (2012-03-10)
dhttp://blogs.msdn.com/b/lucian/archive/2010/04/19/grammar.aspx (2012-03-10)

The first column describes what C# version is supported by the given gram-

mar. The second column shows the required ANTLR version to compile the gram-

22

http://antlrcsharp.codeplex.com/
http://www.antlr.org/grammar/1151612545460/CSharpParser.g
http://www.antlr.org/grammar/1127720913326/tkCSharp.g
http://blogs.msdn.com/b/lucian/archive/2010/04/19/grammar.aspx

3 BUILDING AN APPROPRIATE C# GRAMMAR

mar. Column number three describes whether the author also provides an imple-

mentation for the preprocessor. We discuss this point in the next paragraph in more

detail. The fourth and fifth column show the author and the source of the grammar,

respectively. The last column contains the date of the last update of the grammar.

Since the current versions of Nordic Analytics and SharpDevelop require C#

version 4, we cannot use the second and third grammar to parse and to build an

AST. Moreover, a simple evaluation shows that these two grammars contain bugs

and are restricted to particular use cases, for example, they do not include generics.6

Additionally, one grammar already contains some AST nodes, most of them are

not necessary for our purpose or contain insufficient information, i.e., they are too

abstract. Thus, we consider the two grammars that are left.

Analysis of the C# grammar by Andrew Bradnan

The grammar written by Andrew Bradnan looks promising since it not only im-

plements the full C# specification version 4, but also comes with a preprocessor

implementation. Furthermore the author delivers unit tests for his grammar includ-

ing his own small unit test framework.

Bradnan’s grammar is a combined grammar, i.e., it contains both the lexer

grammar and the parser grammar in one file. The target language is set to C#

since all action code sections consist of C# source code.

If we want to use this grammar, we would have to at least set the target

language to Java and translate the action code sections to Java equivalent state-

ments. The author uses action code for the preprocessor implementation in the

lexer section, for instance. However, he does not fully implement the preproces-

sor logic. For example, Listing 11 shows that in the action code of the lexer rule

PP_UNARY_EXPRESSION the current value on the stack is negated and then again

pushed onto the stack. This correctly implements a boolean not. Though, the rules

PP_OR_EXPRESSION and PP_AND_EXPRESSION do not contain any action code sections

that are responsible for boolean or and and processing, respectively.

Furthermore, the author changed the structure of the original C# grammar

specification not only to make it ANTLR-conform, but also for performance opti-

mization reasons. For this purpose, he splits some parser rules up, removes back-

6Generics are introduced in C# version 2.

23

3.2 Comparison of Available C# Grammars

Listing 11: Incomplete Preprocessor Implementation� �
1 PP_OR_EXPRESSION

2 : PP_AND_EXPRESSION TS* (’||’ TS* PP_AND_EXPRESSION

TS*)*

3 ;

4 PP_AND_EXPRESSION

5 : PP_EQUALITY_EXPRESSION TS* (’&&’ TS*

PP_EQUALITY_EXPRESSION TS*)*

6 ;

7 PP_UNARY_EXPRESSION

8 : PP_PRIMARY_EXPRESSION

9 | ’!’ TS* PP_UNARY_EXPRESSION { Returns.Push(! Returns.

Pop()); }

10 ;� �
tracking by using syntactic and semantic predicates instead, and generalizes some

other parser rules.

Listing 12 illustrates the most generalized and therefore most important rule

primary_expression for expression recognition in Bradnan’s grammar. Listing 13

shows the original version of this rule. Both versions are slightly simplified in syntax

and code size so that the reader can follow more easily.

If we compare both versions with each other, we can see that the single rule

creation_expression in line 2 of Listing 12 replaces the three original rules ob-

ject_creation_expression, delegate_creation_expression, and anonymous_ob-

ject_creation_expression in line 12-14 of Listing 13. Even more invasive is the

introduction of the two rules primary_expression_start and primary_expres-

sion_part. They contain the semantics of the original expressions from line 1 to 9.

In particular, the four original rules from line 4 to 7 are not explicitly declared any-

more. For example, a member access like System.Console.BufferHeight as well as

a method invocation like System.Console.OpenStandardError() is covered by the

same sequence of rules, namely one time primary_expression_start for the first

identifier and two times primary_expression_part for the dot followed by another

identifier.

All these adaptations make it very difficult to read and navigate in the grammar

and to later define AST nodes for the desired grammar rules.

24

3 BUILDING AN APPROPRIATE C# GRAMMAR

Listing 12: Bradnan’s primary_ex-

pression (simplified)� �
1 pr imary expre s s i on
2 : c r e a t i o n e xp r e s s i o n
3 | p r ima ry exp r e s s i on s t a r t

p r imary expr e s s i on par t ∗
4 | s i z e o f e x p r e s s i o n
5 | checked expre s s i on
6 | unchecked expres s ion
7 | d e f a u l t v a l u e e xp r e s s i o n
8 | anonymous method expression
9 ;

10 p r ima ry exp r e s s i on s t a r t
11 : p r ede f i n ed type
12 | (i d e n t i f i e r ’< ’) => i d e n t i f i e r

g en e r i c a r gumen t l i s t
13 | i d e n t i f i e r (’ : : ’ i d e n t i f i e r) ?
14 | ’ th i s ’
15 | ’ base ’
16 | paren expre s s i on
17 | t yp eo f e xp r e s s i on
18 | l i t e r a l
19 ;
20 p r imary expr e s s i on par t
21 : a c c e s s i d e n t i f i e r // r ep r e s en t s

’ . ’ i d e n t i f i e r
22 | bracket s or arguments
23 ;� �

Listing 13: Original primary_expres-

sion (simplified)� �
1 pr imary expre s s i on
2 : l i t e r a l
3 | pa r en th e s i z ed exp r e s s i on
4 | t yp eo f e xp r e s s i on
5 | simple name
6 | member access
7 | i n vo c a t i on exp r e s s i on
8 | e l ement acce s s
9 | t h i s a c c e s s

10 | ba s e a c c e s s
11 | po s t i n c r ement exp r e s s i on
12 | pos t dec r ement expre s s i on
13 | ob j e c t c r e a t i o n e xp r e s s i o n
14 | d e l e g a t e c r e a t i o n e xp r e s s i o n
15 | anonymous ob j e c t c r ea t i on expre s s i on
16 | checked expre s s i on
17 | unchecked expres s ion
18 | d e f a u l t v a l u e e xp r e s s i o n
19 | anonymous method expression
20 ;� �

Listing 14: True Negative Parsing Examples� �
1 if (value < 1) {}

2 if (value < 1 + 2) {}� �
Even worse, we found some valid C# source code that causes syntax errors

when using the lexer and parser generated from Bradnan’s grammar. Listing 14

shows two exemplary C# statements that are valid concerning the C# specification

but result in parsing errors when using his grammar.

The if-statements in line 1 and 2 cause the error message “no viable alternative

at input ’1’”. This means that the parser cannot find any rules within the current

context that is able to match the input ’1’.

At this point, we look more closely at the test framework that Bradnan deliv-

ers. We add new tests consisting of the statements from above and execute them

by means of Bradnan’s test framework. All tests wrongly pass without any error

message. Thus, we can not rely on the results anymore and from now on doubt

25

3.3 Grammar Adaptation

the correctness and completeness of the whole grammar. Perhaps, it would have

been better if the author had used the unit test framework gUnit for ANTLR-based

grammars instead of writing one by himself.7

Analysis of the C# grammar by Lucian Wischik

Since all the grammars above do not satisfy our requirements of a correct and com-

plete ANTLR-based implementation of the C# specification, we consider the gram-

mar of Lucian Wischik, an employee at Microsoft. It is an almost direct translation

of the grammar notation used in the C# and VisualBasic specification. The author

specifically builds a program that transforms notations like ruleopt and an-example-

rule from the specification to the corresponding ANTLR-conform notations rule?

and an example rule, respectively. To that extent, we already have an ANTLR-

based C# grammar that is correct and complete according to the specification.

However, the resulting grammar file as a whole does not yet conform to the

ANTLR format for the reasons already described at the beginning of this section.

There are still some informal phrases and left-recursive rules. Hence, we make some

adaptations to it so that it can serve as a valid input for ANTLR.

3.3 Grammar Adaptation

Since none of the ANTLR-conform grammars from above is a correct, complete, and

C# 4-compliant one, we rather choose the correct, complete, and C# 4-compliant

grammar from Wischik that, however, is not yet conform to ANTLR. Thus, we have

to make several changes and adaptations.

Dividing the Original Grammar

We start by dividing the single grammar file into two parts: One for the lexical

analysis and one for the syntactical analysis. In ANTLR, the first part is called the

lexer grammar, the second part is called the parser grammar.

The authors of the grammar defined in the C# specification do not consider

that the lexer and parser grammars are different and independent of each other

7http://www.antlr.org/wiki/display/ANTLR3/gUnit+-+Grammar+Unit+Testing (2012-03-
10)

26

http://www.antlr.org/wiki/display/ANTLR3/gUnit+-+Grammar+Unit+Testing

3 BUILDING AN APPROPRIATE C# GRAMMAR

Listing 15: Informal Phrases in Rule Whitespace_character� �
1 Whitespace character
2 : ’<Any Character With Unicode Class Zs>’
3 | ’<Hor i zonta l Tab Character (U+0009)>’
4 | ’<V e r t i c a l Tab Character (U+000B)>’
5 | ’<Form Feed Character (U+000C)>’
6 ;� �

Listing 16: Resolved Informal Phrases� �
1 Whitespace character
2 : UNICODE CLASS Zs //’<Any Character With Unicode Class Zs>’
3 | ’\ u0009 ’ //’<Hor i zonta l Tab Character (U+0009)>’
4 | ’\u000B ’ //’< V e r t i c a l Tab Character (U+000B)>’
5 | ’\u000C ’ //’<Form Feed Character (U+000C)>’
6 ;� �

(except for the fact that a parser grammar depends on a lexer grammar). For this

reason, the lexer grammar, as translated by Wischik’s program, contains some rules

that actually belong to the parser grammar (c.f. the diverse input* rules in the C#

specification). Furthermore, all rules are uncapitalized.

Changes to the Lexer

Hence, we move and remove some lexer rules. Moreover, we write a small program

that capitalizes each rule in the lexer grammar. We then manually prepend the

keyword fragment to those lexer rules that exist only for the sake of modularization

and readability. Additionally, we add an individual lexer rule for each C# keyword,

operator, and punctuator. In doing so, the parser can distinguish them by means of

their different token types. For resolving the informal phrases, we replace each one

with the corresponding tokens or fragments, respectively.

Listing 15 illustrates a lexer rule that is responsible for whitespace characters.

It represents the original version as it is defined in the C# specification. The rule

is specified only by informal phrases. Listing 16 shows our adapted version. In

contrast, we specify the corresponding characters in the formal ANTLR syntax.

27

3.3 Grammar Adaptation

Listing 17: The Unicode Character Class Z in ANTLR syntax (excerpt)� �
1 fragment UNICODE_CLASS_Zs

2 : ’\u0020 ’ // SPACE

3 | ’\u00A0 ’ // NO_BREAK SPACE

4 | [...]

5 | ’\u3000 ’ // IDEOGRAPHIC SPACE

6 | ’\u205F ’ // MEDIUM MATHEMATICAL SPACE

7 ;� �
Listing 18: A Left-Recursive Rule� �

1 namespace_or_type_name

2 : IDENTIFIER type_argument_list?

3 | namespace_or_type_name ’.’ IDENTIFIER type_argument_list?

4 | qualified_alias_member

5 ;� �
We left the previous informal phrases as comments at the right side. The

last three characters are almost direct translations of the previous phrases. For the

unicode character class Z, we add a fragment rule with the whitespace characters

defined in the unicode standard [36] (see Listing 17).

We further have to resolve the left-recursive rules. Although ANTLRWorks[4],

a special Integrated Development Environment (IDE) for ANTLR grammars, should

be able to remove simple left-recursion, it does not work with our grammar. In ad-

dition, many left-recursive rules are not simple, e.g., the recursion takes place in the

fourth or even deeper level of subrule invocation, especially in the parser grammar.

Thus, we wrote another program that transforms simple and more complicated left-

recursive rules into non-recursive rules by means of left-factoring. Listing 18 shows

an example of a non-trivial left-recursive rule that we discuss in more detail below.

The parser rule namespace_or_type_name has three possibilities to be matched.

The second one starts with a recursive call. In order to get a correct non-recursive

version, we first have to append the rest of the second possibility, namely ’.’ IDEN-

TIFIER type_argument_list?, to all other ones. Now we can remove the second

one. Subsequently, we only have to enclose the rests with parentheses and add the

Kleene closure operator to each of them. A slightly compacter non-recursive version

28

3 BUILDING AN APPROPRIATE C# GRAMMAR

Listing 19: The Transformed Non-Recursive Rule� �
1 namespace_or_type_name

2 : (IDENTIFIER type_argument_list?

3 | qualified_alias_member

4) (’.’ IDENTIFIER type_argument_list ?)*

5 ;� �
Listing 20: An Unoptimized Rule� �

1 fragment Input_characters

2 : Input_character

3 | Input_characters

Input_character

4 ;

5 // non -recursive version

6 fragment Input_characters

7 : Input_character (

Input_character)*

8 ;� �

Listing 21: The Optimized Version of
the Rule� �

1 fragment Input_characters

2 : Input_character+

3 ;� �

is demonstrated in Listing 19. Thereby, code duplication is avoided by means of

further parentheses around the two remaining possibilities.

For increasing readability, we also build a program that optimizes both the

lexer and the parser grammar. Besides having all capabilities of the EBNF stan-

dard, ANTLR grammars can additionally express some rules in a more compact

and therefore more readable way. Listing 20 shows the left-recursive lexer fragment

Input_characters and below a corresponding non-recursive version of it.

Listing 21 illustrates a further optimized version that utilizes ANTLR’s posi-

tive closure operator. Since the subrule Input_character must occur at least one

time, we are allowed to use + to replace the rule definitions from Listing 20 by the

semantically equivalent version from Listing 21.

Implementing the Preprocessor

Since our chosen grammar does not contain a preprocessor implementation, we have

to write one by ourselves. For this purpose, we also have to use some piece of Java

code to implement the corresponding logic already mentioned above.

29

3.3 Grammar Adaptation

Listing 22: A Rule matching Almost
Any Input� �

1 Input_character

2 : ~NEW_LINE_CHARACTER

//’<Any Unicode

Character Except A

NEW_LINE_CHARACTER >’

3 ;� �

Listing 23: The Preprocessor Root
Rule� �

1 Pp_directive

2 : (Pp_declaration

3 | Pp_conditional

4 | Pp_line

5 | Pp_diagnostic

6 | Pp_region

7 | Pp_pragma

8) {$channel=HIDDEN; }

9 ;� �
First, we have to sort our lexer rules. For a given input, ANTLR tries to match

it using the rules of the grammar in the order in which the rules are specified. For ex-

ample, if a rule such as Input_character illustrated in Listing 22 would be the first

rule defined in our grammar, the lexer would almost only produce Input_character

tokens because it matches any unicode character except a newline character.

In such situations, ANTLR complains with a similar warning message like

“The following token definitions can never be matched because prior tokens match

the same input.”

Since, preprocessor directives have the highest priority concerning to the C#

specification, we have to put the preprocessor directive root rule Pp_directive at

the top of the grammar. After ordering some other rules until ANTLR does not

complain anymore, we can begin implementing the preprocessor in a second step.

We start by inserting the action code $channel=HIDDEN; to all available pre-

processor directive rules (see Listing 23). All lexers and parsers generated by ANTLR

have the same base class BaseRecognizer that owns, among other things, the mem-

ber channel of type integer. The $ sign is ANTLR’s way of accessing member

variables from within a grammar. A channel represents the connection between a

lexer and a parser. A lexer produces tokens and sends them to a channel. A parser

reads tokens from a channel and processes them. The default channel for both the

lexer and the parser is set to 0. By setting the lexer’s channel to a different value

than 0 for a given rule, say 99 (HIDDEN is a constant for exactly this value), causes

the lexer to write the rule’s tokens to channel 99. Thus, a parser would never read

these tokens when reading channel 0. This channel concept can therefore be an

30

3 BUILDING AN APPROPRIATE C# GRAMMAR

Listing 24: Nested Preprocessor Directives� �
1 #define COND_A

2
3 #if COND_A

4 a

5 #if COND_B

6 = 0;

7 #elif COND_C

8 = 1;

9 #else

10 =

11 #endif

12 2;

13 #endif� �
effective mechanism for removing irrelevant tokens for the parser. However, there

is also a lexer method called skip that does not redirect a token via channels, but

really skips it to lower memory consumption.

Consider Listing 24. Line 1 contains a macro definition for the macro variable

COND_A. COND_B and COND_C are, however, not defined so that the else-case of the

conditional block from line 5 to 11 is chosen. Thus, the resulting code produced by

a valid preprocessor corresponds to a=2;.

This example demonstrates the nested logic that is necessary for implementing

conditional preprocessor directives. For this purpose, we choose a stack with the

operations push, pop, and peek on boolean values and integrate it into the lexer by

means of the action code section @members.8 Each time, the lexer has scanned a

condition of an if-directive, we instruct the lexer to evaluate it and then to decide

whether the if-body should be transmitted to the default channel or just be skipped.

In any case, the evaluated condition is pushed onto the stack.

Turning back to our example in Listing 24, the lexer’s stack initially contains

a single true indicating the preprocessor should not skip characters. In line 1, the

lexer detects the macro definition COND_A and stores it. When reaching line 3, the

lexer recognizes an if-directive and evaluates the condition. Since COND_A is defined,

the condition evaluates to true and is pushed onto the stack. When scanning for

8The ANTLR keyword @members represents an action code section that is automatically inserted
into the generated lexer class after the member declarations.

31

3.3 Grammar Adaptation

Listing 25: Ideal If-Directive Rule� �
1 fragment Pp_if_section

2 : WHITESPACE? SHARP WHITESPACE? ’if’ WHITESPACE

3 b=Pp_expression Pp_new_line

4 {push(b);}

5 ;� �
Listing 26: Our If-Directive Rule� �

1 fragment Pp_if_section

2 @init {Expression exprObj = new Expression ();}

3 : WHITESPACE? SHARP WHITESPACE? ’if’ WHITESPACE

Pp_expression[exprObj] Pp_new_line

4 {push(exprObj.isTrue ());}

5 ;� �
the next character, the lexer checks whether the current value on it’s stack is true or

false. If it is true, the token is passed to the current channel, otherwise it is skipped.

When reaching line 5, the lexer detects another if-directive, evaluates it’s condition

and pushes the resulting boolean value onto the stack. This time, false is pushed

because COND_B is not defined. From now on, every token is skipped until the lexer

reaches another preprocessor directive. Each value of the condition from another

if-directive of the same conditional block is combined with the current value on top

of the stack by applying the boolean and operator. This guarantees that exactly one

single body per conditional block is used. In our example, the else-case is chosen

because none of the two previous bodies are used.

Listing 25 shows the ideal lexer rule for matching C# if-directives. Pp_if_-

section matches if #if with a conditional expression ends with a newline character.

Then, the lexer pushes the return value from Pp_expression of type boolean saved

in a temporal variable b onto the stack. Unfortunately, lexer rules cannot return

values. We may also not use the parser grammar for this purpose because the C#

specification prescribes that the preprocessor logic has to be done within the lexical

analysis.

Lexer rules may, however, have parameters. Thus, we create and pass an object

that holds one single boolean value representing the return value. The corresponding

32

3 BUILDING AN APPROPRIATE C# GRAMMAR

Listing 27: The Primary Expression Rule for Preprocessor Expressions� �
1 fragment Pp_primary_expression[Expression exprObj]

2 : (TRUE) => TRUE {exprObj.set(true);}

3 | (FALSE) => FALSE {exprObj.set(false);}

4 | Conditional_symbol {exprObj.set(isDefined(

$Conditional_symbol.text)); }

5 | ’(’ Pp_expression[exprObj] ’)’

6 ;� �
class can be viewed in Appendix A. Listing 26 shows our ANTLR-conform solution.

We first instantiate an Expression object whose boolean value is initialized with

false. Then, we pass it to the Pp_expression rule. Finally, we access the poten-

tially updated boolean value by the object’s method isTrue() and push it onto the

stack.

We now have a look at the most important preprocessor rule that is responsible

for evaluating the primary preprocessor expressions. Listing 27 illustrates it.

The Pp_primary_expression is the bottom-most rule in terms of the evalu-

ation order of preprocessor expressions. When reading the token TRUE or FALSE,

it sets the boolean value of the given rule parameter exprObj to true or false,

respectively. Rule parameters are enclosed by square brackets after the rule name.

They need to be declared in the way the target programming language specifies it.

(TRUE) => represents a syntactic predicate. Since the rule Conditional_symbol

matches a sequence of arbitrary letters, we need syntactic predicates for TRUE and

FALSE to resolve the ambiguity with regard to macro variable identifiers. If Condi-

tional_symbol is successfully scanned, the resulting token text, a macro variable

identifier, is accessed by $Conditional_symbol.text. For looking up whether or

not a particular macro variable is defined in the current context, we define and use

the method isDefined. It takes the name of the variable and returns true if the

variable is defined, false otherwise.9 The result is then set to the boolean value of

the exprObj. The last alternative just passes the parameter to the Pp_expression

rule.

9For this purpose, isDefined accesses a set of macro variable identifiers that we have addition-
ally added to the lexer.

33

3.3 Grammar Adaptation

Listing 28: Overwriting the Lexer Method mTokens� �
1 @Override

2 public void mTokens () throws RecognitionException {

3 if (! ifStack.peek()) {

4 mSkiPped_section_part ();

5 } else {

6 super.mTokens ();

7 }

8 }� �
Listing 29: The Lexer Rule SkiPped_section_part� �

1 fragment SkiPped_section_part

2 : WHITESPACE? SkiPped_characters? NEW_LINE

3 | Pp_directive

4 ;� �
Now we know—by means of our stack—when to produce tokens and when to

skip their creation. We only have to instruct the lexer to switch to the corresponding

mode in the right situations. For this purpose, we overwrite the lexer method

mTokens as shown in Listing 28.

The lexer invokes mTokens for choosing the next proper lexer rule for the

current input sequence. The method effectively searches for the first matching lexer

rule in the order as defined in the lexer grammar. In our adapted mTokens method,

we directly use the lexer rule SkiPped_section_part instead when the current value

on top of the stack is false. Listing 29 demonstrates this lexer rule.

The rule either consumes a sequence of whitespaces, arbitrary non-newline

characters, and a newline character or a preprocessor directive to re-evaluate the

scanning mode. To avoid token creation, we add the fragment keyword to the

rule.10 Since we only want to invoke this rule from within our mTokens method,

we move it to the bottom of the grammar. All other rules above guarantee that

SkiPped_section_part will never be chosen.

10Alternatively, we can append the action code skip(); to each alternative.

34

3 BUILDING AN APPROPRIATE C# GRAMMAR

Listing 30: A More Complicated Ex-
ample of Left-Recursion� �

1 type

2 : value_type

3 | reference_type

4 | type_parameter

5 | type_unsafe

6 ;

7 value_type

8 : struct_type

9 | enum_type

10 ;

11 struct_type

12 : type_name

13 | simple_type

14 | nullable_type

15 ;

16 nullable_type

17 : non_nullable_value_type

INTERR

18 ;

19 non_nullable_value_type

20 : type

21 ;� �

Listing 31: The Left-Factored Version
of the Rule type� �

1 type

2 : (type_name

3 | simple_type

4 | enum_type

5
6 | class_type

7 | interface_type

8 | delegate_type

9
10 | type_parameter

11 | ’void ’ STAR

12) (INTERR | rank_specifier

| STAR)*

13 ;� �

Changes to the Parser

First, we define the dependency to the lexer by setting the tokenVocab attribute

in the options section to the name of the lexer grammar. Second, we replace all

literals by the corresponding tokens, e.g., ’true’ by TRUE. For this purpose, we

implemented a further program. Third, we resolve left-recursive rules. Although a

few of them can be transformed automatically by our corresponding program that

we have already used for the lexer rules, most of them have to be edited manually

because the left-recursions are located at the fourth or even deeper level of subrule

invocations. Listing 30 illustrates an example.

Here, the parser rule type is recursively invoked by the rule non_nullable_-

value_type. type calls value_type that in turn calls struct_type that in turn

calls nullable_type that in turn calls non_nullable_value_type that in turn re-

35

3.3 Grammar Adaptation

Listing 32: Examples for Incorrect Rule Definitions� �
1 member_access:

2 | primary_expression ’.’ identifier type_argument_list?

3 | predefined_type ’.’ identifier type_argument_list?

4 | qualified_alias_member ’.’ identifier

type_argument_list?

5 ;

6
7 base_access

8 : BASE DOT IDENTIFIER type_argument_list_opt

9 | BASE OPEN_BRACKET expression_list CLOSE_BRACKET

10 ;

11
12 interface_method_declaration:

13 | attributes? ’new ’? return_type identifier

type_parameter_list_opt ’(’ formal_parameter_list? ’)

’ type_parameter_constraints_clauses? ’;’

14 ;� �
cursively calls type. Listing 31 shows our non-recursive version that we obtain by

inlining some rules and performing left-factoring multiple times.

Fourth, we optimize the parser rules with the help of the optimization program

that we have already used for the lexer rules. Fifth, in case of grammar ambiguity,

we introduce syntactic and semantic predicates to decide and prioritize what rule

should be chosen.

On the one hand, in some cases resolving ambiguity and distinguishing two

syntactically identical rules would require an even more invasive change of the orig-

inal grammar structure. For this reason, we sometimes use a more general rule to

replace two specific ones that previously caused ambiguity. As a result, the parser

could now also match input that contradicts the C# specification. Hence, we assume

C#-conform syntax as input. This assumption is valid because our transformation is

not responsible for checking C# conformance, but just for transforming C# software

systems to appropriate KDM instances.

On the other hand, we sometimes introduce new, more specific rule definitions

to resolve ambiguity. This, however, does not affect the correctness in the specific

cases.

36

3 BUILDING AN APPROPRIATE C# GRAMMAR

Listing 33: The Original Parser Rule cast_expression� �
1 cast_expression

2 : OPEN_PARENS type CLOSE_PARENS unary_expression

3 ;� �
Listing 34: The Annotated cast_expression� �

1 cast_expression

2 : OPEN_PARENS type CLOSE_PARENS unary_expression

3 -> ^(CAST_EXPRESSION type unary_expression)

4 ;� �
Finally, we still find some rules that are not correct concerning the specification.

Listing 32 shows some examples. In all three cases, the italic text parts were missing

and thus were added by us. Perhaps Wischik has used an older version of the C# 4

specification or has not copied but transcribed it.

3.4 Definition of the Abstract Syntax Tree

Now that we have an ANTLR-conform lexer grammar with a preprocessor imple-

mentation and an ANTLR-conform parser grammar, we need to define an AST.

Since a parser only verifies the syntax, we need a way to specify and produce an

AST. In the following, we will build one on the basis of the parser grammar and will

therefore considerably change it. For this reason, we copy the pure parser grammar

and edit only the copy.

So far, the generated tree represents rather a concrete than an abstract syntax

tree. Thus, we use ANTLR’s two mechanisms to define node hierarchy and to remove

unwanted nodes.

Listing 33 and Listing 34 demonstrate the original and the annotated version

of the rule that is responsible for cast expressions.

This example is a very simple and readable one. As we can see, the original rule

is not changed in an invasive way. We solely add the line 3 in Listing 34. This rewrite

rule makes the imaginary token CAST_EXPRESSION to the root node of the current

subtree and puts the tokens resulting from the rules type and unary_expression

37

3.4 Definition of the Abstract Syntax Tree

Listing 35: The Original Parser Rule and_expression� �
1 and_expression

2 : equality_expression

3 (AMP equality_expression)*

4 ;� �
Listing 36: The Annotated and_expression� �

1 and_expression

2 : (e1=equality_expression -> $e1)

3 (AMP e2=equality_expression -> ^(AMP $and_expression $e2

))*

4 ;� �
under it. Thereby, the tokens OPEN_PARENS and CLOSE_PARENS are read, but not

added to the AST.

Listing 35 and Listing 36 represent a more complex AST creation example.

They show the original and, respectively, the annotated version of the rule that is

responsible for parsing binary and expressions.

The original version of and_expression either just forwards to equality_ex-

pression11 or it additionally consumes one or more AMP tokens (representing the

& character) with associated equality_expression rules. The annotated version

behaves as followed: As soon as an AMP token is detected (see line 3 in Listing 36),

it is set as the root node of the new subtree that consists of the AST , previously

created by the and_expression, and the associated equality_expression. For

example, if we parse the expression 7 & 5 & 1, the resulting AST would look like

the one depicted in Figure 3.

In this way, the rule and_expression returns either the root token of equal-

ity_expression or the root token AMP with two subtrees as children. The other

rewrite rule in line 2 of Listing 36 does effectively nothing. However, ANTLR re-

quires rewrite rules either for none of the terminals and nonterminals of a rule or

for all. That is why we have to add it for the first equality_expression, too.

11The equality_expression rule handles equal and unequal expressions and invokes further
expressions with lower precedence.

38

3 BUILDING AN APPROPRIATE C# GRAMMAR

&

& 1

7 5

Figure 3: The AST Representation of the Expression 7 & 5 & 1

39

3.4 Definition of the Abstract Syntax Tree

40

4 THE TRANSFORMATION FROM C# TO KDM

4 The Transformation from C# to KDM

In this section, we explain our transformation concept, the architecture of our trans-

formation component, and specific associated problems that we have to solve. Sec-

tion 4.1 gives an overview of our transformation concept. Subsequently, we describe

in Section 4.2 what C# element is mapped to what KDM element. In Section 4.3,

we consider it in more detail and especially describe the several transformation

phases. Subsequently, we describe the architecture of the transformation component

by means of Unified Modeling Language (UML) diagrams in Section 4.4. Finally

in Section 4.5, we consider some specific transformation problems and present our

corresponding solutions.

4.1 Overview

Figure 4 illustrates the involved transformation parts and steps when transforming

a C# system to an appropriate KDM instance.

ANTLR

reads produces

uses

KDM modelTransformation

uses

reads produces

C# source code

C# grammar Ecore-based KDM specification

Abstract syntax tree

CloudMIG Xpress MoDisco

Plugin interfaces

Figure 4: An Overview of Our Transformation Component

We first use ANTLR to parse the system’s C# source files and to build the cor-

responding AST. For this purpose, we use the lexer and parser grammar developed

41

4.2 The Mapping from C# to KDM

C# element KDM element

source code file CompilationUnit

namespace Namespace

class ClassUnit

interface InterfaceUnit

struct ClassUnit

enum EnumeratedType

inheritance Extends

implementation Implements

member MemberUnit

static member StorableUnit

method MethodUnit

method parameter ParameterUnit

local variable StorableUnit

statement ActionElement

Table 2: C# to KDM Mapping Table

in Section 3. Then, if the AST is established, we use our Java-based transformation

component to map the AST nodes to appropriate KDM elements. Thereby, we use

the EMF-based KDM specification to create KDM elements in Java. To be able to

integrate our component into CloudMIG Xpress and MoDisco, we also implement

the plug-in interfaces that they offer.

4.2 The Mapping from C# to KDM

Before we consider the transformation process in detail, we first have a look at the

mapping from C# syntax to KDM model entities. Table 2 presents an overview of

the C# and KDM elements that our transformation supports.

Concerning the C# specification, a C# software project consists of several

compilation units each of them logically represents a C# source file. A compilation

unit owns all types that are defined within the corresponding file. Hence, we add

each class, interface, struct, and enum to its compilation unit.

In contrast to Java packages, C# namespaces are not integrated into the logical

structure to this extent. One reason for this is that namespaces can be declared

beyond directory boundaries. We therefore collect the namespaces in a KDM Module

called Namespaces and append this module to the corresponding code model. The

42

4 THE TRANSFORMATION FROM C# TO KDM

namespace hierarchy is ensured by adding child elements to the groupCode list that

each namespace holds.

All kinds of C# statements are mapped to the KDM ActionElement. This is

due to the fact that we want to be compatible to MoDisco’s interpretation of the

KDM specification. For more information, we refer to Section 4.5.3.

4.3 Phases of the Transformation

We use three transformation phases P1-P3 to transform a C#-based software system

to an appropriate KDM instance. Each phase builds upon the previous one with the

exception of the first phase. Figure 5 depicts the phases as UML activity diagram.

P1: Type

Transformation

P2: Member & Method

Transformation

P3: Statement

Transformation

Figure 5: A UML Activity Diagram of the Transformation Phases

4.3.1 Necessity of Three Transformation Phases

Before describing the individual phases in detail, we first want to explain why the

use of three phases is necessary. For this purpose, we look at the example C# source

file in Listing 37.

Let us assume, we would use a transformation that behaves differently to the

one we use. It would try to map the C# source code directly in one single phase

by using on-demand type and identifier loading. After parsing the file and building

the AST out of it, this transformation would recognize the CLASS token with an

IDENTIFIER token containing the class’ name A. Then, the transformation would

instantiate a new KDM ClassUnit element. When reaching the member z of type

Zoom, it would create a KDM MemberUnit element of name z and type Zoom. Let us

further assume, the source file that contains the type Zoom would be available but

not parsed so far and Zoom would be located within the same namespace as class

A. Thus, while mapping the AST of the first file, the transformation would have to

look up the current KDM code model for the type Zoom. Since this type would not

43

4.3 Phases of the Transformation

Listing 37: The Contents of an Example C# Source File� �
1 us ing System . IO ;
2
3 namespace ExampleNamespace {
4 c l a s s A {
5 Zoom z ; // Type Zoom i s conta ined in namespace ExampleNamespace
6 F i l e f ; // Type F i l e i s conta ined in namespace System . IO
7
8 void execute () {
9 z = doZoom () ;

10 }
11
12 Zoom doZoom () {
13 [. . .]
14 }
15 }
16 }� �

yet be included due to our assumption, the transformation would have to search all

source files for it that have not been parsed so far.12 If it has finally found it, a

corresponding KDM type representation could be created, e.g., an InterfaceUnit,

an EnumeratedType, or again a ClassUnit. Note that for mapping Zoom completely,

the transformation would have to potentially repeat the look-up process. In short,

the considered transformation would require a recursive on-demand look-up mecha-

nism.

However, this way of processing can lead to problems. First, consider the

method execute in line 8. It invokes the method doZoom whose KDM representation

has not yet been built at this point because it is defined later in line 12. To solve

this problem, the transformation could behave similar to the on-demand look-up

mechanism as described above. In doing so, it additionally needs to save and restore

its current position within the current AST. The same applies to class members that

are directly initialized at their declarations.

Second, the required logic is intrinsically complex and complicated. In the

worst case, for transforming the first parsed source file, we have to load and transform

all other source files. In particular, the transformation does not allow to produce an

12In contrast to the Java, C# does not require that the name of a source file corresponds to the
name of the contained type.

44

4 THE TRANSFORMATION FROM C# TO KDM

intermediate KDM representation, e.g., one that just contains the KDM elements of

the KDM code package without the KDM action package.

Third, introducing efficient parallel processing is almost impossible due to the

high degree of dependencies. Although we could use two or more copies of the

transformation and distribute them over distinct sets of source files, one needs access

to source files of others to resolve type names and other identifiers in general.

Hence, we do not use a single-phase transformation. Instead, we map a C#

software system in a three-steps approach that is described in the next three subsec-

tions. In this way, we are able to handle the problems mentioned above in a modular

and simpler way that is also easier to implement.

As indicated by Figure 5, phase 1 transforms the type definitions. Afterwards,

phase 2 handles the mapping from member declarations and method definitions to

appropriate KDM elements. Finally, phase 3 transforms the C# statements to the

corresponding elements of KDM’s action package. In the following, the three phases

are described in more detail.

4.3.2 Phase 1: Internal Type Transformation

In the first transformation phase, our transformation component parses all C#

source files of the given software system. It utilizes the AST that is produced

while parsing to only transform namespaces and type definitions (e.g., classes, in-

terfaces, and structs) with their corresponding modifiers and names. Especially, it

intentionally does not transform any inheritance relations, for example, since this

would require a look-up mechanism whose disadvantages we want to avoid.

If we again consider Listing 37, our transformation would produce an XML

Metadata Interchange (XMI) file with the simplified contents shown in Listing 38.

We omit the Extensible Markup Language (XML) attributes of the XML element

Segment in line 2 and the contents of the inventory model in line 4 for the sake of

simplicity.

The KDM instance contains the inventory model (see line 3 to 5) and the code

model (see line 6 to 26). The latter owns a KDM Module element and a KDM

CompilationUnit element.

The Module element holds all namespaces that are newly defined by the pro-

cessed source files. Since the example from Listing 37 defines the namespace Ex-

45

4.3 Phases of the Transformation

Listing 38: The simplified Phase-1 KDM Representation of the Source Code from
Listing 37� �

1 <?xml ve r s i o n=”1 .0 ” encoding=”UTF−8”?>
2 <kdm: Segment [. . .] >
3 <model x s i : type=”source : InventoryModel ” name=”source r e f e r e n c e s ”>
4 [. . .]
5 </model>
6 <model x s i : type=”code : CodeModel ” name=”I n t e r n a l CodeModel ”>
7 <codeElement x s i : type=”code : Module ” name=”Namespaces ”>
8 <codeElement x s i : type=”code : Namespace ” name=”g l o b a l ” groupedCode=

”//@model . 1/ @codeElement .0/ @codeElement . 1 ”>
9 <a t t r i b u t e tag=”FullyQual i f iedName ” value=””/>

10 </codeElement>
11 <codeElement x s i : type=”code : Namespace ” name=”ExampleNamespace ”

groupedCode=”//@model . 1/ @codeElement .1/ @codeElement . 0 ”>
12 <a t t r i b u t e tag=”FullyQual i f iedName ” value=”ExampleNamespace ”/>
13 </codeElement>
14 </codeElement>
15 <codeElement x s i : type=”code : CompilationUnit ” name=”example . c s ”>
16 <source>
17 <r eg i on f i l e=”//@model . 0/ @inventoryElement .0/ @inventoryElement

. 0 ”/>
18 </source>
19 <codeElement x s i : type=”code : ClassUnit ” name=”A” i sAbs t ra c t=” f a l s e

”>
20 <a t t r i b u t e tag=”FullyQual i f iedName ” value=”g l o b a l .

ExampleNamespace .A”/>
21 <source>
22 <r eg i on s t a r t L i n e=”4 ” s t a r t P o s i t i o n=”1 ”/>
23 </source>
24 </codeElement>
25 </codeElement>
26 </model>
27 </kdm: Segment>� �

46

4 THE TRANSFORMATION FROM C# TO KDM

ampleNamespace, a corresponding KDM Namespace element is present in line 11

in Listing 38. The global namespace (see line 8) represents the root namespace as

defined in the C# specification.

The CompilationUnit represents the logical element of the example file. In the

first phase, it only holds a reference to the corresponding inventory model element

(see line 17) and the file’s type definitions. Since the example from Listing 37 defines

a class A, it is represented by a KDM ClassUnit element in line 19 in Listing 38.

Additionally, our transformation adds the fully qualified name as a KDM attribute

as well as the start row and column of the class definition within the source file.

4.3.3 Phase 2: Internal Member Declarations and Method Definitions

Transformation

The second transformation phase is responsible for transforming member declara-

tions and method definitions but again without any member initializers and method

bodies.

In the following, we name types internal types if they are defined by the con-

sidered software system itself, i.e., such types are especially not defined by external

libraries. After completing the first phase, the KDM representations of exactly these

internal types are available. We call types external types if they are defined by for-

eign or external libraries from which often only the binary executables and not the

source code exist on the file system.

Member declarations comprise all declarations at the class level including C#

properties, fields, constants, indexer, and events with their corresponding types.

Since all internal types are already present in the code model, they are directly

accessible and can be referenced. Our transformation has to look up external types

only. Moreover, we limit the look-up process to the transformation phases P1 and

P2 to reduce complexity. In Section 4.5.1, we describe our whole look-up mechanism

in detail.

Let us turn back to the second phase. As mentioned before, our transformation

also transforms method definitions in this phase. Apart from the method’s name,

even its modifiers, return type, type parameters, and formal parameters are mapped

to corresponding KDM elements. Listing 39 illustrates another source code example

that consists of, among other things, a member f and a method Read.

47

4.3 Phases of the Transformation

Listing 39: Another C# Source Code Example� �
1 using System.IO;

2
3 namespace ExampleNamespace {

4 class B {

5 File f; // Type File is contained in namespace System.IO

6
7 public char Read(string s) {

8 System.Console.WriteLine(s);

9 }

10 }

11 }� �
If we apply our transformation to this source code, we get an XMI file with

the contents shown in Listing 40. Here, we again omit some details for the sake of

simplicity.

Besides the KDM elements that have resulted from phase 1, we can now also

find a KDM Imports element in line 14, a KDM MemberUnit element in line 20,

and a KDM MethodUnit element in line 23.

The Imports element represents the using directive from line 1 in Listing 39.

Its XML attributes from and to refer to the parent CompilationUnit element and,

respectively, the Namespace element representing System.IO.

Since we do not want to mix internal and external types and namespaces, we

use another KDM CodeModel element to store external KDM representations. That

is why the namespaces System, System.IO, and the class System.IO.File is located

in the external code model (see line 36 to 51 in Listing 41).

The MemberUnit element represents the member f of type File. Thus, the

XML attribute type refers to the external type System.IO.File. Modifiers are

represented by the child KDM attribute element with the tag export. As defined

in Listing 39, the KDM attribute’s value of member f is set to none.

The MethodUnit element represents the method Read. Its XML type attribute

refers to the method’s child KDM element Signature that contains the return type

and the formal parameters, representing both as KDM parameterUnits. To differ-

entiate between the return type and the parameters, the return type’s XML attribute

kind is set to return. Its type attribute refers to the KDM representation of the

48

4 THE TRANSFORMATION FROM C# TO KDM

Listing 40: The Simplified Phase-2 KDM Representation of the Source Code from
Listing 39� �

1 <?xml ve r s i o n=”1 .0 ” encoding=”UTF−8”?>
2 <kdm: Segment [. . .] >
3 <model x s i : type=”source : InventoryModel ” name=”source r e f e r e n c e s ”>
4 [. . .]
5 </model>
6 <model x s i : type=”code : CodeModel ” name=”I n t e r n a l CodeModel ”>
7 <codeElement x s i : type=”code : Module ” name=”Namespaces ”>
8 [. . .]
9 </codeElement>

10 <codeElement x s i : type=”code : CompilationUnit ” name=”example2 . c s ”>
11 <source>
12 <r eg i on f i l e=”//@model . 0/ @inventoryElement .0/ @inventoryElement

. 0 ”/>
13 </source>
14 <codeRe lat ion x s i : type=”code : Imports ” to=”//@model . 2/ @codeElement

.0/ @codeElement . 2 ” from=”//@model . 1/ @codeElement .0/
@codeElement . 0 ”/>

15 <codeElement x s i : type=”code : ClassUnit ” name=”B” i sAbs t r a c t=” f a l s e
”>

16 <a t t r i b u t e tag=”FullyQual i f iedName ” value=”g l o b a l .
ExampleNamespace .B”/>

17 <source>
18 <r eg i on s t a r t L i n e=”4 ” s t a r t P o s i t i o n=”1 ”/>
19 </source>
20 <codeElement x s i : type=”code : MemberUnit ” name=” f ” type=”//@model

. 2/ @codeElement . 1 ”>
21 <a t t r i b u t e tag=”export ” va lue=”none ”/>
22 </codeElement>
23 <codeElement x s i : type=”code : MethodUnit ” name=”Read ” type=”//

@model . 1/ @codeElement .1/ @codeElement .0/ @codeElement .1/
@codeElement . 0 ”>

24 <a t t r i b u t e tag=”export ” va lue=”pub l i c ”/>
25 <codeElement x s i : type=”code : S ignature ” name=”Read ”>
26 <parameterUnit name=”return type ” type=”//@model . 1/

@codeElement .3/ @codeElement .15 ” kind=”return ”/>
27 <parameterUnit name=”s ” type=”//@model . 1/ @codeElement .3/

@codeElement . 2 ” pos=”0 ”/>
28 </codeElement>
29 </codeElement>
30 </codeElement>
31 </codeElement>
32 <codeElement x s i : type=”code : LanguageUnit ” name=”Common C#

prede f i ned types ”>
33 [. . .]
34 </codeElement>
35 </model>� �

49

4.3 Phases of the Transformation

Listing 41: The Simplified Phase-2 KDM Representation of the Source Code from
Listing 39 (cont.)� �

36 <model x s i : type=”code : CodeModel ” name=”External CodeModel ”>
37 <codeElement x s i : type=”code : Module ” name=”Namespaces ”>
38 <codeElement x s i : type=”code : Namespace ” name=”g l o b a l ” groupedCode=

”//@model . 2/ @codeElement .0/ @codeElement . 1 ”>
39 <a t t r i b u t e tag=”FullyQual i f iedName ” value=””/>
40 </codeElement>
41 <codeElement x s i : type=”code : Namespace ” name=”System ” groupedCode=

”//@model . 2/ @codeElement .0/ @codeElement . 2 ”>
42 <a t t r i b u t e tag=”FullyQual i f iedName ” value=”System ”/>
43 </codeElement>
44 <codeElement x s i : type=”code : Namespace ” name=”IO” groupedCode=”//

@model . 2/ @codeElement . 1 ”>
45 <a t t r i b u t e tag=”FullyQual i f iedName ” value=”System . IO”/>
46 </codeElement>
47 </codeElement>
48 <codeElement x s i : type=”code : ClassUnit ” name=”F i l e ” i sAbs t r a c t=”

f a l s e ”>
49 <a t t r i b u t e tag=”FullyQual i f iedName ” value=”System . IO . F i l e ”/>
50 </codeElement>
51 </model>
52 </kdm: Segment>� �

50

4 THE TRANSFORMATION FROM C# TO KDM

Listing 42: Our KDM Representation of the Common C# Predefined Types� �
1 <codeElement xsi:type="code:LanguageUnit" name="Common C#

predefined types">

2 <codeElement xsi:type="code:Datatype" name="object"/>

3 <codeElement xsi:type="code:Datatype" name="dynamic"/>

4 <codeElement xsi:type="code:StringType" name="string"/>

5 <codeElement xsi:type="code:OctetType" name="sbyte"/>

6 <codeElement xsi:type="code:IntegerType" name="short"/>

7 <codeElement xsi:type="code:IntegerType" name="int"/>

8 <codeElement xsi:type="code:IntegerType" name="long"/>

9 <codeElement xsi:type="code:OctetType" name="byte"/>

10 <codeElement xsi:type="code:IntegerType" name="ushort"/>

11 <codeElement xsi:type="code:IntegerType" name="uint"/>

12 <codeElement xsi:type="code:IntegerType" name="ulong"/>

13 <codeElement xsi:type="code:FloatType" name="float"/>

14 <codeElement xsi:type="code:FloatType" name="double"/>

15 <codeElement xsi:type="code:BooleanType" name="bool"/>

16 <codeElement xsi:type="code:CharType" name="char"/>

17 <codeElement xsi:type="code:DecimalType" name="decimal"/>

18 <codeElement xsi:type="code:VoidType" name="void"/>

19 </codeElement >� �
C# type char. Analogously, the type attribute of the parameter s points to the

KDM representation of C#’s string type.

Since primitive types and other types, such as object and string, are a part of

the Common Language Runtime (CLR) and not of any library, they cannot be loaded

and transformed from the file system. Thus, we create one KDM LanguageUnit

element and manually add them to it. Listing 42 demonstrates our LanguageUnit

element for C# software systems.

4.3.4 Phase 3: Statement Transformation

The final third transformation phase is responsible for mapping C# statements,

i.e., especially member initializers and method bodies are transformed. Listing 43

demonstrates the method body of the Read method from Listing 39 resulting from

the transformation after all three phases.

51

4.3 Phases of the Transformation

Listing 43: The KDM Body Representation of the Method Read from Listing 39� �
1 <codeElement xsi:type="code:MethodUnit" name="Read" type="//

@model .1/ @codeElement .1/ @codeElement .0/ @codeElement .1/

@codeElement .0">

2 [...]

3 <codeElement xsi:type="action:BlockUnit" kind="method body"

>

4 <codeElement xsi:type="action:ActionElement" name="

expression statement" kind="expression statement">

5 <codeElement xsi:type="action:ActionElement" name="

method invocation" kind="method invocation">

6 <codeElement xsi:type="action:ActionElement" name="

variable access" kind="variable access">

7 <actionRelation xsi:type="action:Reads" to="//

@model .1/ @codeElement .1/ @codeElement .0/

@codeElement .1/ @codeElement .0/ @parameterUnit .1"

from="// @model .1/ @codeElement .1/ @codeElement .0/

@codeElement .1/ @codeElement .1/ @codeElement .0/

@codeElement .0"/>

8 </codeElement >

9 <actionRelation xsi:type="action:Calls" to="// @model

.2/ @codeElement .2/ @codeElement .0" from="// @model .1/

@codeElement .1/ @codeElement .0/ @codeElement .1/

@codeElement .1/ @codeElement .0/ @codeElement .0"/>

10 </codeElement >

11 </codeElement >

12 </codeElement >

13 </codeElement >� �

52

4 THE TRANSFORMATION FROM C# TO KDM

Listing 44: An Excerpt of the External Code Model Resulting from the Transfor-
mation of Listing 39� �

1 <model xsi:type="code:CodeModel" name="External CodeModel">

2 <codeElement xsi:type="code:Module" name="Namespaces">

3 [...]

4 </codeElement >

5 <codeElement xsi:type="code:ClassUnit" name="File"

isAbstract="false">

6 <attribute tag="FullyQualifiedName" value="System.IO.

File"/>

7 </codeElement >

8 <codeElement xsi:type="code:ClassUnit" name="Console"

isAbstract="false">

9 <attribute tag="FullyQualifiedName" value="System.

Console"/>

10 <codeElement xsi:type="code:MethodUnit" name="WriteLine

"/>

11 </codeElement >

12 </model >� �
Since we want to be compatible to MoDisco’s implementation of the KDM

specification, we adapt its action package conventions. For more information about

MoDisco’s conventions, we refer to Section 4.5.3.

If we look at line 3, we see a KDM BlockUnit that represents the method body.

It contains all statements as KDM ActionElements. System.Console.WriteLine is

not only a method invocation, but also generally an expression statement. Thus, the

method invocation ActionElement in line 5 is embedded in the ActionElement ex-

pression statement. A method invocation ActionElement owns an ActionElement

variable access for each argument passed to the method. The target method that is

invoked is represented by the KDM Calls element. Its XML from attribute refers

to the method invocation ActionElement, its to attribute points to the Method-

Unit that represents the method System.Console.WriteLine. Since this method

is extracted from the .NET framework, it is contained in the external code model

as illustrated in line 10 of Listing 44.

Generally, when transforming an external method invocation, our transforma-

tion first has to look up the external code model. Then, if it does not find the

KDM MethodUnit, it searches the file system for the corresponding class and trans-

53

4.4 Architecture of the Transformation Component

forms it including the considered method. For more information about the look-up

mechanism, we refer to Section 4.5.1.

In conclusion, the three phases introduce a modular transformation strategy

that effectively and efficiently implements the mapping from C# source code ele-

ments to KDM model elements. In Section 8, we verify our statement by providing

accuracy and performance analyses.

Furthermore, our transformation strategy overcomes all three disadvantages

that we discussed in Section 4.3.1. First, when transforming statements, all inter-

nal types, member declarations, and method definitions are resolved and can be

referenced. Second, we simplified the transformation process by introducing three

modular transformation phases, each of them is responsible for transforming par-

ticular elements. As a result, we also gain two intermediate models, one after the

first, the other after the second transformation phase. Finally, our transformation

can easily be adapted to run in parallel by parallelizing the individual phases. In

each phase, we can use several copies of our transformation that share the work.

Since phase 1 requires no look-up, these transformations need not to synchronize

themselves. In phase 2 and 3, only the access to the external code model has to be

synchronized.

4.4 Architecture of the Transformation Component

In the following, we describe the software architecture of our Java-based transfor-

mation component. We begin with considering the five main packages that are also

depicted as a UML package diagram in Figure 6.

We adopt the package names source, code, and action from the KDM specifica-

tion. As Figure 6 indicates, these packages have the same dependency relationships

as described in the KDM specification.

The source package includes the logic for transforming the physical structure of

the given C# project. It especially contains classes and interfaces that are respon-

sible for creating and traversing the inventory model. The code package includes

everything that is necessary for the implementation of the first two transformation

phases P1 and P2. It especially contains transformation helper classes for loop

statements, type definitions, operator statements, and member declarations to re-

duce the file size of the P1-P3 transformation classes. For mapping AST nodes to

54

4 THE TRANSFORMATION FROM C# TO KDM

mapping

source

action

code util

project

Figure 6: The Packages of Our Transformation Component as UML Package Dia-
gram

corresponding KDM elements, each of these three classes uses a switch-statement.

The code package, however, also provides classes that are responsible for resolving

identifiers and loading external types. The former is described in more detail in Sec-

tion 4.5.1. The action package only contains a small amount of classes for the third

transformation phase P3 because most of the logic of the code package is also used

by this package. We, however, add a class MicroKDM consisting of a few MicroKDM

string constants that can be used to implement the Micro KDM standard. For more

information about the MicroKDM standard, we refer to the Annex A of the KDM

specification.

The util package contains several helper and utility classes to create and search

for KDM elements. Furthermore, it includes a class ANTLRFileStreamWithBOM that

is able to detect and skip the Byte Order Marker (BOM) of UTF encoded files. We

have to implement it by our own because Java does not deliver a file stream that has

this feature. Without skipping the BOM, the lexer would complain about unknown

characters.

55

4.4 Architecture of the Transformation Component

+AbstractTransformator(InternalCodeModel, ExternalCodeModel)

+transform(AST)

AbstractTransformator

TypeTransformator

MemberMethodTransformator

StatementTransformator

+beforeWalk()

+visitSourceFile(SourceFile)

+afterWalk()

<<Interface>>

SourceFileVisitor

TypeTransformatorVisitor

MemberMethodTransformatorVisitor

StatementTransformatorVisitor

+InventoryModelWalker(InventoryModel)

+walk(SourceFileVisitor)

InventoryModelWalker

-transformator : AbstractTransformator

-parser : CSharpParser

-internalCodeModel : CodeModel

-externalCodeModel : CodeModel

TransformatorVisitor

+parse() : AST

<<generated>>

CSharpParser

<<use>>

Figure 7: The Core Types of the Transformation Component as UML Class Diagram

The project package includes two classes that are responsible for extracting the

external library names from a Visual Studio project file. This allows to automatically

find and load necessary external types from the file system on demand.

We now have a deeper look at the transformation component. Let us consider

the UML class diagram depicted in Figure 7. It shows the classes and interfaces

including their associations that are most important for the transformation process.

In the following, we describe what the transformation component does starting

from reading the first C# source file of an example C# software system and finishing

with the complete KDM instance. For this purpose, we assume that we have already

extracted the inventory model of an example C# software system.

For each transformation phase, we use a different transformation class, each of

them, however, inherits from the same abstract class TransformatorVisitor. This

base class implements the interface SourceFileVisitor and holds a transformator

of the type AbstractTransformator, a parser of the type CSharpParser, and two

instances of the KDM type CodeModel representing the internal and the external

code model.

56

4 THE TRANSFORMATION FROM C# TO KDM

For the first phase P1, the transformation creates an instance of the Type-

TransformatorVisitor whose transformator variable is initialized with a new in-

stance of the class TypeTransformator passing both a new internal and a new

external CodeModel to the constructor. This transformator contains the code that

transforms C# types to the corresponding KDM elements illustrated in Table 2. The

passed code models are also stored in the corresponding members of the TypeTrans-

formatorVisitor. The parser is assigned with an instance of the class CSharp-

Parser that was generated by ANTLR in advance.

To start the transformation, an instance of the InventoryModelWalker is cre-

ated with the InventoryModel. Then, the walk method of this instance is invoked

with the TypeTransformatorVisitor instance from above as argument. In this way,

the parser and subsequently the transformator is executed, each time the Inven-

toryModelWalker detects a KDM SourceFile element of the language C#. More

precisely, the transformator’s method transform receives the AST’s root node re-

turned by the parser’s method parse and transforms the AST nodes that represent

type definitions.

For the second and third phase, P2 and P3, respectively, instead of creating

an object of TypeTransformatorVisitor, an instance of the type MemberMethod-

TransformatorVisitor and, respectively, StatementTransformatorVisitor is in-

stantiated. The transformator member is initialized by a new instance of Mem-

berMethodTransformator and StatementTransformator, respectively. The other

members are set to the ones passed from the SourceFileVisitor of the previous

phase.

After completing all three phases, the internal and external code model repre-

sent the given C# software system in KDM notation.

4.5 Own and Related Transformation Concepts

Below, we discuss three specific transformation concepts in more detail. The first

two deal with resolving types and identifiers. The third concerns MoDisco’s inter-

pretation of the KDM specification.

57

4.5 Own and Related Transformation Concepts

local variables
method

parameters

iterative

parent class

members

parent super class

members

parent super class

members

iterative

parent namespace

members

parent namespace

usings members

parent namespace

aliases

parent namespace

aliases

parent namespace

usings members

parent class

members

parent namespace

members

Figure 8: The Name Resolution Approach

4.5.1 Name Resolution

Basically, the goal of our transformation is to transform text to model entities.

In our case, we want to transform C# source files to appropriate KDM elements.

The latter should especially represent the semantic associations that the whole C#

system implies.

Hence, we may not just perform a simple 1-to-1 transformation from the cur-

rent C# element to the corresponding KDM element. We also have to consider the

relationships and other dependencies that exist between different files and folders. In

order to resolve such dependencies, it is necessary to navigate through fully qualified

names. Transforming the full logical structure of the considered software system is

therefore not an easy task.

Below, we present our algorithm to resolve (fully qualified) names. It is applied

to find and load internal and external namespaces, types, and methods on the basis

of the C# source code.

If our transformation is in phase 2 and recognizes an AST node representing

a type, e.g., of a member or parameter declaration, it first searches the internal

code model. If it does not find the corresponding type, it searches the external code

model. If it still does not find the type, it searches the external libraries.

Figure 8 depicts our full name resolution approach. In phase 2, however, we do

not check local variables and method parameters because a type can only be defined

as a child of a type or of a namespace.

58

4 THE TRANSFORMATION FROM C# TO KDM

The look-up process within the internal code model works as follows.

First, the requested type is searched in the members of the parent’s class because

it could have been defined as nested type. Second, it is recursively searched in

the inheritance hierarchy of the parent class. After that, it is searched in the set

of alias definitions that the parent namespace defines. Then, it is searched within

the namespaces that the parent namespace offers by means of its using directives.

Subsequently, the requested type is searched in the types that the parent namespace

contains. If the type is still not found, the last three steps are repeated for the

parent’s parent namespace until reaching the global namespace. If the type is not

defined in the source code of the software system, it is searched in the external code

model.

The look-up process within the external code model works analogous. If the

type is still not found in the end, it is searched in the external libraries of the given

C# project and then added to the external code model. Since external libraries

are often not delivered as C# source code but as precompiled Dynamic Link Li-

brary (DLL) files in the Common Intermediate Language (CIL) format, we need a

mechanism to search and read such libraries.

4.5.2 Loading External Libraries

We identify two approaches. The first utilizes a CIL-to-C# decompiler to transform

a library to its original C# source code. In this way, we can re-use our parser and

some parts of our transformation component. The second approach makes use of

the C# Reflection API. Below, we discuss both approaches in more detail.

The Decompiler Approach By using a decompiler, we are able to re-use the

lexer and parser that are generated from the C# grammar by means of ANTLR.

We first let the decompiler decompile all external libraries into one directory and

then let our transformation parse them on demand. Most decompilers thereby map

the namespace hierarchy to a corresponding directory hierarchy. For the mapping

process, we can also re-use some transformation helpers. Although we limit the

extraction of external libraries to type definitions, member declarations, and method

definitions, it is possible to easily add support for further C# constructs such as

getters and setters of properties or particular statements.

59

4.5 Own and Related Transformation Concepts

One advantage of the decompiler approach is the independence from the .NET

framework. The system that performs the transformation does not need the .NET

framework to be installed. It only needs the corresponding decompiled source code.

The re-use of already available transformation code turned out to be not as

advantageous as we thought at the beginning. In contrast to using the Reflection

API, the transformation has to look up the C# artifacts by its own. In particular,

finding a nested type is more complex than finding a namespace or a non-nested

type because most decompilers13 only generate one file for each root type. Hence,

a nested type is contained in the file of its root type. Moreover, reconstructing the

inheritance hierarchy of an external type requires recursively searching in multiple

types—and thus potentially in multiple files—as already mentioned in the previous

section. That is why we implemented additional, partially complex algorithms that

can handle these cases.

When using a decompiler, one should consider the licenses that are delivered

with the external libraries. Many licenses, especially the ones of commercial libraries,

prohibit the decompilation or restrict it to particular C# artifacts. In such cases,

one has to think of the alternative approach via the Reflection API.

Finally, all available decompilers do not always produce syntactically correct

C# source code. Most problems occur by generating the special class constructor

.cctor() and complex statements. On average, we have measured one syntax error

per 500 generated files after we have decompiled the .NET 4.0 framework with

several different decompilers. Table 3 lists these decompilers and gives additional

information about them.

Analysis of Available Decompilers We searched the internet by using Google

with the keywords NET, C#, and decompiler. We consider all decompilers that are

provided on the first 40 links of this search.14

The first column contains the name of the company and the decompiler. The

column “License” describes whether the decompiler is free or commercial. For our

transformation, we only want to use free decompilers. The third column shows

what kind of decompilation formats are supported by the corresponding decompiler.

13The rest of available decompilers cannot generate source code at all. More on this later in the
next paragraph.

14We performed the search on 2011-11-11.

60

4 THE TRANSFORMATION FROM C# TO KDM

Name License Produces
Accessable
via CL

Telerik JustDecompile Free C# and more yes

ILSpy Free C# no

DevExtra CodeReflect Free C# and more
(only in assembly
browser)

yes

JetBrains dotPeek Free C# (only in
assembly
browser)

yes

monodis respectively Cecil Free CIL yes

.NET Reflector Commercial C# ?

Salamander .NET Decompiler* Commercial C# and more ?

DisC# .NET Decompiler* Commercial C# and more ?

Spices.Net Decompiler Commercial C# and more ?

Table 3: Available C# Decompilers

61

4.5 Own and Related Transformation Concepts

Since we are only interested in C# source code, we abbreviate other output formats

than C# with “and more.” Some decompilers can generate but only display the

decompiled source code in an assembly browser. In such cases, we append “only

in assembly browser” to the output formats. The last column indicates whether

the decompiler is executable by means of the command line. This information

is especially important if the decompilation should be automatically triggered on

demand by the transformation. So far, we decompile all necessary libraries before

executing our transformation though.

When we try to decompile the .NET libraries that are required by the ap-

plications used in the evaluation in Section 8, all decompilers encounter at least

one decompilation error for a particular library. Furthermore, we find syntax er-

rors within multiple decompiled source files. Thus, we use a combination of all free

decompilers and additionally adapt the resulting source code files that still contain

syntax errors by hand. In doing so, we finally get C#-conform decompilates of the

external libraries.

The Reflection Approach An alternative to the decompiler approach is using

the CLR’s Reflection API15 similar to Java’s Reflection API.16 For this purpose, we

need to write a .NET program that reads a DLL file, extracts the required infor-

mation (e.g., type name, type member, and type methods) via the Reflection API,

and saves the information to a file in an appropriate format (e.g., C# source code

or CSV). In this way, the transformation component is able to read the information

and use it to build the external code model. Alternatively, the .NET program and

the transformation component could communicate via sockets or shared memory.

When using this approach, we do not need to implement, test, and update

additional algorithms to resolve external types and methods. The Reflection API

internally provides a CIL parser, can look up other dependencies, and thus is able to

build an AST that we can use to extract required information. Moreover, since we

do not directly generate source code and additionally extract only a limited subset

of each library, it is often compatible to common licenses.

One disadvantage is the restriction to the windows operating systems. Al-

though the CIL format represents platform-independent code, it partially contains

15http://msdn.microsoft.com/en-us/library/ms173183%28v=vs.100%29.aspx
16http://docs.oracle.com/javase/tutorial/reflect/TOC.html

62

http://msdn.microsoft.com/en-us/library/ms173183%28v=vs.100%29.aspx
http://docs.oracle.com/javase/tutorial/reflect/TOC.html

4 THE TRANSFORMATION FROM C# TO KDM

Listing 45: Modifiers in KDM Notation� �
1 <codeElement xsi:type="code:MemberUnit" name="

generatedNameNumber" type="id:17" export="public">

2 </codeElement >� �
a .NET wrapper to a DLL that contains platform-dependent code. Furthermore,

the CLRs for other operating systems, such as iOS, Solaris, and Unix, do not sup-

port the .NET 4 and partially even the .NET 3 framework. Another disadvantage

is the fact that we need an interchange format and possibly another programming

language.

4.5.3 MoDisco’s Approach

As we want to integrate our transformation component into MoDisco, we have to

be compatible to MoDisco’s custom KDM format. This format is used in MoDisco’s

Java-To-KDM transformation, for example. Actually, the KDM specification pro-

vides specific elements with well-defined semantics, e.g., to represent the control

flow and the access to variables within method bodies. Moreover, it recommends

several conventions for representing specific operations such as equals, subtract, and

remove.17 For more information concerning recommendations and conventions, we

refer to the corresponding section“MicroKDM”in the KDM specification [17, Annex

A].

MoDisco mostly uses generic KDM elements with under-specified semantics.

To be able to represent the underlying specific programming language constructs, it

adds additional model elements and introduces an own semantics.

In the following, we consider two examples of MoDisco’s custom KDM imple-

mentations. The first one deals with modifiers such as private or static. List-

ing 45 and Listing 46 show the notation recommended by the KDM specification

and MoDisco’s version, respectively.

For representing the modifier of a member variable, the KDM specification

proposes the MemberUnit’s attribute export. In Listing 45, this attribute is set to

public. MoDisco uses an KDM Attribute element with the tag export instead.

17on list types

63

4.5 Own and Related Transformation Concepts

Listing 46: Modifiers in MoDisco’s Notation� �
1 <codeElement xsi:type="code:MemberUnit" name="

generatedNameNumber" type="id:17">

2 <attribute tag="export" value="public "/>

3 </codeElement >� �
Listing 47: Method Invocation in KDM Notation� �

1 <codeElement xmi:id="id.2" xsi:type="action:BlockUnit" kind="

Compound">

2 <entryFlow from="id.2" to="id.3" />

3 <codeElement xmi:id="id.3" xmi:type="action:ActionElement"

kind="MethodCall">

4 <actionRelation xmi:type="action:Reads" to="id.85" from="

id.3"/>

5 <actionRelation xmi:type="action:Calls" to="id.81" from="

id.3"/>

6 </codeElement >

7 </codeElement >� �
The value is then set to the modifier. In Listing 46 the export attribute’s value is

set to public.

Another example is illustrated by Listing 47 and Listing 48. Both listings

represent the same method call with one actual parameter.

Since KDM is an entity-relationship model, the order of elements has no seman-

tics. For representing order, KDM offers control flow elements. Line 2 in Listing 47

shows the EntryFlow element that represents the control flow from the method body

(id.2) to the method call (id.3). In line 3, the ActionElement’s kind attribute is set

to MethodCall to indicate that this Actionelement represents a method call (c.f.

the MicroKDM specification [17, Annex A]). The Reads relation in line 4 represents

the access from the method call (id.3) to the actual parameter (id.85). The latter

is not shown in the listing. The Calls relation in line 5 represents the target of the

method call (id.81). Here, the target is also not shown in the listing.

MoDisco wraps everything in a new ActionElement. For this reason, we can

also see an ActionElement of kind expression statement in line 2 in Listing 48.

Originally, MoDisco’s Java-To-KDM transformation only creates the Calls relation

64

4 THE TRANSFORMATION FROM C# TO KDM

Listing 48: Method Invocation MoDisco’s notation� �
1 <codeElement xmi:id="id.2" xsi:type="action:BlockUnit" kind

="method body">

2 <codeElement xsi:type="action:ActionElement" name="

expression statement" kind="expression statement">

3 <codeElement xsi:type="action:ActionElement" name="

method invocation" kind="method invocation">

4 <codeElement xmi:id="id.3" xsi:type="action:

ActionElement" name="variable access" kind="

variable access">

5 <actionRelation xsi:type="action:Reads" to="id.85"

from="id.3"/>

6 </codeElement >

7 <actionRelation xsi:type="action:Calls" to="id.81"

from="id.3"/>

8 </codeElement >

9 </codeElement >

10 </codeElement >� �
without the ActionElement of kind variable access from line 4 to 6. In this way,

MoDisco is not able to represent method call arguments. That is why we additionally

build the ActionElement containing a Reads relation to the parameter. Further-

more, MoDisco assumes that the order of the elements in the model represents the

control flow.

65

4.5 Own and Related Transformation Concepts

66

5 INTEGRATION OF THE TRANSFORMATION COMPONENT

+initialize(systemCodeFolders : String [], thirdPartyLibsFolders : String [], tempFolder : IFolder, logger : ILogger) : void
+cleanUp() : void
+extractSystemKDMModel(IProgressMonitor progressMonitor) : Resource
+getConsideredFileExtensionsForOwnCodeArtifacts() : Collection<String>
+getConsideredFileExtensionsForThirdPartyLibraries() : Collection<String>
+getLastExtractionErrorMessage() : String
+lastExtractionSuccessful() : boolean
+extractNextThirdPartyLibraryKDMModel(IProgressMonitor progressMonitor) : Pair<String, Resource>
+getNrOfThirdPartyLibraries() : int
+resetThirdPartyLibraryIterator() : void

AbstractKDMDiscoverer

+getSupportedLanguage() : SupportedProgrammingLanguage
+getVendorName() : String

AbstractLanguageRelatedPlugin

Figure 9: CloudMIG Xpress’ Plug-in Interface as UML Class Diagram

5 Integration of the Transformation Component

In this section, we present the plug-in interfaces of CloudMIG Xpress and MoDisco

because we want to integrate our transformation into both frameworks. As already

mentioned in Section 2.2, CloudMIG Xpress assists in migrating a system to the

cloud, whereas MoDisco helps to reconstruct and understand legacy systems by

means of model-driven reverse engineering. MoDisco terms a transformation that

transforms one language into another one, e.g., Java to KDM, a discoverer. Since

CloudMIG Xpress adapts this term, we will use it, too.

5.1 Plug-In for CloudMIG Xpress

Figure 9 shows CloudMIG Xpress’ plug-in interface as a UML class diagram. An

implementation of this interface needs to inherit the abstract class AbstractKD-

MDiscoverer and its super class AbstractLanguageRelatedPlugin.

First, we implement the two methods that the class AbstractLanguageRe-

latedPlugin offers. The method getSupportedLanguage() returns an enum value

of the type SupportedProgrammingLanguage that indicates for what programming

language the discoverer can be applied. Thus, our implementation returns the

enum value SupportedProgrammingLanguage.CSHARP. The other method getVen-

67

5.1 Plug-In for CloudMIG Xpress

dorName() returns a unique description of the specific transformation component

in order to distinguish multiple transformations that are applicable on the same

programming language.

Second, we implement the methods provided by the class AbstractKDMDiscov-

erer. Since our transformation loads the individual required types of the external

libraries on demand and not in advance, we do not use the interface methods ex-

tractNextThirdPartyLibraryKDMModel(), getNrOfThirdPartyLibraries(), and

resetThirdPartyLibraryIterator() for handling external libraries.

We begin with implementing the methods initialize() and cleanUp(). The

former is the entry point of the plug-in and receives the folders as parameters that

contain the system’s source code and the external libraries. Furthermore, a tempo-

rary folder and a logger object are passed. Since we do not need to store temporary

files or folders for our transformation, we do not use the temporary folder. We,

however, use the logger object to display some progress information on CloudMIG

Xpress’ visual progress list while the transformation is being executed. Within the

method initialize(), we save the required parameters as fields in order to use

them for the transformation later. When the transformation has terminated, there

is nothing to clean up. For this reason, we let the method cleanUp() empty.

The methods getConsideredFileExtensionsForOwnCodeArtifacts() and

getConsideredFileExtensionsForThirdPartyLibraries() should return the file

extensions of the files that an implementation of the plug-in interface is able to pro-

cess in terms of own code artifacts and external libraries, respectively. Both methods

are used to present the CloudMIG Xpress user only those files in the selection dialog

that the user needs in order to transform a system of the given language. Hence, we

let the former method return a collection containing the file extension cs and the

latter return an empty collection.

The actual transformation is trigged by CloudMIG Xpress that invokes the

method extractSystemKDMModel(). The passed progressMonitor parameter can

be used to give information about the current transformation progress. Each time,

one of the folders that are passed as parameters in the method initialize() has

been processed, the method lastExtractionSuccessful() is invoked by Cloud-

MIG Xpress. Its return value indicates whether the transformation was successful

or not. If any error occurs while our transformation is being executed, we report it

68

5 INTEGRATION OF THE TRANSFORMATION COMPONENT

AbstractModelDiscoverer<T>

AbstractDiscoverer<T>

+isApplicableTo(T source) : boolean
+basicDiscoverElement(T source) : void

<<Interface>>
IDiscoverer<T>

Figure 10: MoDisco’s Plug-in Interface as UML Class Diagram

by returning a corresponding error message via the method getLastExtraction-

ErrorMessage().

5.2 Plug-In for MoDisco

Figure 10 shows MoDisco’s plug-in interface as a UML class diagram. An imple-

mentation of this interface needs to implement the Java interface IDiscoverer<T>.

MoDisco, however, provides the abstract class AbstractModelDiscoverer<T> that

already implements basic logic for all kinds of model discoverers, especially for our

C#-To-KDM model discoverer. It inherits from the class AbstractDiscoverer<T>

that in turn implements the interface IDiscoverer<T> so that we can use it instead

of the interface.

For integrating our transformation into MoDisco, we need to implement the

two methods isApplicableTo() and basicDiscoverElement() that are originally

defined in the interface IDiscoverer<T>.

Before doing so, we define what kind of type the type parameter of the ab-

stract class AbstractModelDiscoverer<T> should take. Since our transformation

can operate on files and folders, we implement two versions of it: One that ex-

tends AbstractModelDiscoverer<IFile> and one that extends AbstractModel-

Discoverer<IFolder>.

Now, we implement the method isApplicableTo(). For the file version, we

let the method return true if the given source of type IFile represents a C# file.

69

5.2 Plug-In for MoDisco

We can check this, e.g., by means of its file extension as it is done by CloudMIG

Xpress, too. For the folder version, we let the method always return true.

Finally, we also implement the method basicDiscoverElement(). For the file

version, we let the method execute our transformation on a single file that is passed

as parameter. However, the operating range is limited to files that have no depen-

dencies at all or some that refer to external libraries. Since internal dependencies

to other source files of the system are not contained in the decompilation folder,

our transformation cannot access them. For the folder version, we let the method

execute our transformation on the passed folder. If the transformation fails, the

error is reported by the provided DiscoveryException.

Moreover, MoDisco requires some coding conventions and standards,18 e.g., a

package naming convention, a source code formatting convention, and the availabil-

ity of an undefined amount of tests. However, these requirements are only necessary

if the plug-in should be contributed to the official MoDisco release.

18http://wiki.eclipse.org/MoDisco/How_to_contribute

70

http://wiki.eclipse.org/MoDisco/How_to_contribute

6 MICROSOFT AZURE CLOUD PROFILE

Virtual
Machine

Size

CPU
Cores

Memory

Disk Space
in Web and

Worker
Roles

Disk Space
in a VM
Role

Allocated
Band-
width
(Mbps)

Cost
Per
Hour
($)

ExtraSmall Shared 768 MB 19,480 MB 20 GB 5 0.02

Small 1 1.75 GB 229 MB 165 GB 100 0.12

Medium 2 3.5 GB 500 MB 340 GB 200 0.24

Large 4 7 GB 1 GB 850 GB 400 0.48

ExtraLarge 8 14 GB 2 GB 1890 GB 800 0.96

Table 4: Available VM Sizes

6 Microsoft Azure Cloud Profile

In this section, we present the cloud environment model for Microsoft Azure. It,

however, represents only the VM role with the characteristics that are necessary to

later apply the constraint validator of Section 7. Both the worker role and the web

role can be easily added though. We therefore focus on the VM role now. Section 6.1

describes the different available hardware configurations, i.e., the VM instance types

that Azure provides. Section 6.2 briefly shows the definition of the transient storage

constraint within the cloud profile. The representation of Microsoft Azure’s data

center locations is described in Section 6.3.

6.1 Hardware Configuration

Microsoft Azure offers five different VM instance types that are illustrated in Table 4.

They differ in the number of CPU cores, in memory, in disk space, in the maximal

bandwidth, and the cost per hour.

The current cloud profile represents all five VM sizes with all but the pricing

information. As an example, the CEM representation of the ExtraSmall VM size is

shown in Listing 11.

An hardwareConfiguration element corresponds to one VM instance type.

For each CPU core of a VM size, a cpu element with the corresponding clock speed

is added to the hardwareConfiguration (see line 2 in Listing 11). Analogously, a

71

6.2 Constraints

� �
1 <hardwareConfiguration description="Extra Small Instance" id

="extra.small" name="Extra Small Instance" maxParallel="20

" startDelayInSec="0">

2 <cpu frequency="1.8" unit="GHz"/>

3 <memory size="768" unit="MB"/>

4 <networkBandwidth amountPerSecond="5"

counterpartPartitionID="" unitPerSecond="Mbit"/>

5 <storage size="20" unit="GB"/>

6 </hardwareConfiguration >� �
Figure 11: Azure’s ExtraSmall VM Size

memory, a networkBandwidth, and a storage element is attached to the configura-

tion (see line 3-5 in Listing 11).

6.2 Constraints

Microsoft recommends to use an Azure drive to store data permanently. On the

official website, it is said:19

You can specify that a local storage resource be preserved when an in-

stance is recycled. However, data that is saved to the local file system of

the virtual machine is not guaranteed to be durable. If your role requires

durable data, it is recommended that you use a Windows Azure drive to

store file data.

Thus, Azure limits the use of the local file system in so far as writing operations

are only useful for caching and not for persisting purposes. For this reason, the

cloud profile for Azure includes an constraint definition that exactly represents this

limitation. Moreover, it also contains suggestions for persistence storage resources

that Azure offers. Listing 12 illustrates the constraint in a simplified way.20

6.3 Partitions

Microsoft operates thousands of servers that are distributed among the world. For

increased network performance and improved reliability, Azure lets the cloud user

19http://msdn.microsoft.com/en-us/library/windowsazure/ee758708.aspx (2012-03-26)
20The id and possibleFixViaCEConfiguration attributes are omitted for the sake of simplicity.

72

http://msdn.microsoft.com/en-us/library/windowsazure/ee758708.aspx

6 MICROSOFT AZURE CLOUD PROFILE

� �
1 <constraintConfiguration name="Constraints">

2 <constraint xsi:type="constraints:

LocalTransientStorageConstraint" descr="Microsoft Azure ’s

 VM instances used in the virtual machine role cannot

store local data persistently." name="Local Transient

Storage" [...]>

3 <proposedSolution solution="You may utilize Microsoft

Azure ’s BLOB storage to store persistent data."/>

4 <proposedSolution solution="You may utilize Microsoft

Azure ’s Table storage to store persistent data."/>

5 <proposedSolution solution="You may utilize Microsoft

Azure ’s Windows Azure Drive storage to store persistent

 data."/>

6 <proposedSolution solution="You may utilize Microsoft

Azure ’s SQL Azure storage to store persistent data."/>

7 </constraint >

8 </constraintConfiguration >� �
Figure 12: Azure’s LocalTransientStorageConstraint (simplified)

choose from several data center locations. The meta-model of the cloud profile,

CEM, can also represent such different data center locations. Listing 13 shows one

realm element that comprises the data center locations of North Europe, Western

Europe, and North Central US. Each supportsHWConfiguration element indicates

what hardware configurations are available at the corresponding location. In the

example listing, they are omitted for the sake of simplicity.

73

6.3 Partitions

� �
1 <partition xsi:type="iaas:Realm" id="org.cloudmig.

cloudprofiles.mswindowsazure.realms.zone1" name="Zone 1

" arbitraryImages="true">

2 <location id="org.cloudmig.cloudprofiles.mswindowsazure

.locations.northeurope" name="North Europe"

supportsHWConfiguration="[...]"/>

3 <location id="org.cloudmig.cloudprofiles.mswindowsazure

.locations.westerneurope" name="Western Europe"

supportsHWConfiguration="[...]"/>

4 <location id="org.cloudmig.cloudprofiles.mswindowsazure

.locations.northcentralus" name="North Central US"

supportsHWConfiguration="[...]"/>

5 </partition >� �
Figure 13: The Representation of Three Data Center Locations of Microsoft Azure
(simplified)

74

7 MICROSOFT AZURE CONFORMANCE CHECKING

7 Microsoft Azure Conformance Checking

This section briefly presents the conformance checking approach of CloudMIG Xpress

in conjunction with Microsoft Azure and C#. We then implement one constraint

validator that checks for the presence of write accesses to the file system. Other

C#-specific validators can be easily added. Here, we only want to give an example

of how to plug in a constraint validator to CloudMIG Xpress.

The CloudMIG approach represents a model-driven cloud migration assistant

framework. CloudMIG Xpress therefore operates on models that base on the KDM

standard. Especially, the conformance checking mechanism uses the extracted archi-

tecture model and the extracted utilization model to validate the cloud environment

constraints that the chosen cloud provider imposes. For each constraint, one has

to implement a validator that at least conforms to the abstract class Abstract-

ConstraintValidator that we do not describe here in more detail. In doing so,

CloudMIG Xpress is able to apply these validators to search for the corresponding

constraints in the KDM models. Some constraints are applicable to all kinds of KDM

instances, some are specific to particular programming language libraries and APIs.

For the former constraints, CloudMIG Xpress already provides a few validators, e.g.,

one that checks for a maximal number of files. For the latter constraints, CloudMIG

Xpress currently offers some validators for the Java programming language and its

APIs. For example, there is one validator that forbids to open sockets and another

that prohibits the access to the Reflection API.

We now implement a validator for the C# programming language that checks

for write accesses on the local file system. Since stored data that is not saved in one

of the different types of Azure’s databases is not available anymore after a restart

of the VM or a distribution to another VM. CloudMIG Xpress already provides the

abstract class AbstractLocalTransientStorageConstraintValidator that imple-

ments most of the logic that is necessary to detect this constraint within the architec-

ture model. We only need to implement the three methods isSuitedFor(), getFor-

biddenMethodCalls(), and getForbiddenTypesCommonTypeListIDs(). Figure 14

shows the class AbstractLocalTransientStorageConstraintValidator and the

super classes providing the methods that are not already implemented by other

super classes.

75

+getForbiddenMethodCalls() : Collection<MethodCall>
+getForbiddenTypesCommonTypeListIDs() : Collection<String>

AbstractTypeInstantiationAndMethodCallValidator

+isSuitedFor(SupportedProgrammingLanguage language) : boolean
AbstractConstraintValidator

AbstractLocalTransientStorageConstraintValidator

Figure 14: CloudMIG Xpress’ Validator Interface for the Transient Storage Con-
straint as UML Class Diagram

The method isSuitedFor() takes one parameter that indicates what pro-

gramming language was used to build the system. The method should return true,

if the validator is applicable to the programming language and thus to the system,

otherwise false. For our validator, we return true if and only if the passed pro-

gramming language equals C#. The methods getForbiddenMethodCalls() and

getForbiddenTypesCommonTypeListIDs() return a collection of method calls and,

respectively, type definitions that the cloud provider discourages from using or even

forbids to use. The list of C# method calls and the list of C# types that are respon-

sible for writing to the local file system are illustrated in Listing 15 and Listing 16,

respectively. Hence, these method calls and type definitions are returned by the

aforementioned methods of our validator.

76

7 MICROSOFT AZURE CONFORMANCE CHECKING

� �
1 System.IO.Directory.CreateDirectory

2 System.IO.Directory.Delete

3 System.IO.Directory.Move

4 System.IO.DirectoryInfo.Create

5 System.IO.DirectoryInfo.CreateSubdirectory

6 System.IO.DirectoryInfo.Delete

7 System.IO.DirectoryInfo.MoveTo

8 System.IO.File.AppendAllLines

9 System.IO.File.AppendAllText

10 System.IO.File.AppendText

11 System.IO.File.Copy

12 System.IO.File.Create

13 System.IO.File.CreateText

14 System.IO.File.Delete

15 System.IO.File.Encrypt

16 System.IO.File.Move

17 System.IO.File.OpenWrite

18 System.IO.File.Replace

19 System.IO.File.WriteAllBytes

20 System.IO.File.WriteAllLines

21 System.IO.File.WriteAllText

22 System.IO.FileInfo.AppendText

23 System.IO.FileInfo.CopyTo

24 System.IO.FileInfo.Create

25 System.IO.FileInfo.CreateText

26 System.IO.FileInfo.Delete

27 System.IO.FileInfo.Encrypt

28 System.IO.FileInfo.MoveTo

29 System.IO.FileInfo.OpenWrite

30 System.IO.FileInfo.Replace� �
Figure 15: C# Method Calls That Are Responsible for Writing to the File System

� �
1 System.IO.File

2 System.IO.FileInfo

3 System.IO.Directory

4 System.IO.DirectoryInfo

5 System.IO.DriveInfo

6 System.IO.FileStream

7 System.IO.FileSystemInfo� �
Figure 16: C# Types That Are Responsible for Acessing the File System

77

78

8 EVALUATION

8 Evaluation

In this section, we evaluate our transformation component in terms of performance

and accuracy. Section 8.1 gives an overview of the experimental methodology and

presents the applications that are used in the experiments. Section 8.2 describes the

planning and execution of the performance analysis. Furthermore, we reason about

the scalability of ANTLR and our transformation by analyzing the results. In Sec-

tion 8.3, we perform a completeness and correctness analysis on our transformation

component. Finally, we motivate further experiments in Section 8.4, especially a

conformance checking analysis concerning the cloud environment Microsoft Azure.

For this purpose, we use the industrial C#-based library Nordic Analytics from the

HSH Nordbank.

8.1 Overview

In the following, we present our methodology for the experiments. Moreover, we

present the applications with whom we perform the analysis.

8.1.1 Methodology

When performing the performance analysis, we measure the program execution time

by using System.currentTimeMillis(). We take ten measurements per application

and use the last nine to compute the median program execution time. We skip the

first measurement due to the initial overhead of the JIT compilation.

When performing the completeness analysis, we use the matured C# analysis

tool NDepend21 to compare the number of namespace, type, and method definitions.

8.1.2 Nordic Analytics

Nordic Analytics (HSH Nordbank) is a C#-based library for the assessment and

risk control of finance products. It is deployed to a grid infrastructure composed of

online trading and batch processing systems. Desktop users have access to it via an

Excel front-end.

21http://www.ndepend.com/

79

http://www.ndepend.com/

8.1 Overview

Name Author Description Dependencies URL
Last

Update

SharpDevelop Christoph
Wille

C# IDE with de-
bugger and testing
environment

.NET and many
more

a 2012-03-04

NAnt Gerry Shaw
et. al

.NET build tool .NET and 3 more b 2011-10-22

RAIL Bruno
Cabral et. al

Runtime Assem-
bly Instrumenta-
tion Library for
.NET

.NET and 2 more c 2005-01-19

ahttp://sourceforge.net/projects/sharpdevelop/
bhttp://nant.sourceforge.net/
chttp://rail.dei.uc.pt/index.htm

Table 5: Other Open-Source Applications That We Use for the Evaluations

Nordic Analytics depends on the .NET framework 2.0 and its source code

conforms to the C# 4 specification. More information about its physical and logical

structure can be retrieved from Table 6.

We use Nordic Analytics as a C#-based industrial example application to an-

alyze and evaluate ANTLR, our transformation component, and CloudMIG’s cloud

environment constraint violation detection mechanism.

8.1.3 Other Used Applications

Besides Nordic Analytics, we also use other applications for the evaluations. We

choose two smaller and one larger C# project to analyze the scalability with suffi-

cient precision. All three applications are released under an open-source license so

that we can access and especially transform the source code. Table 5 shows these

applications with additional information.

Although the applications do not represent typical examples for a migration to

the cloud, they serve as good examples to measure the performance, correctness, and

completeness of our transformation component. We do not need particular cloud

migration candidates to evaluate the extraction from source code to KDM instances.

Here, we intentionally choose the three applications since they represent different

orders of magnitude.

80

http://sourceforge.net/projects/sharpdevelop/
http://nant.sourceforge.net/
http://rail.dei.uc.pt/index.htm

8 EVALUATION

8.2 Performance Analysis

Below, we evaluate ANTLR and our transformation with respect to their perfor-

mance. Section 8.2.1 to Section 8.2.6 describe the goals, the experimental setting,

the scenarios, the results, and finally the threats to validity.

8.2.1 Goals

The following experiments evaluate the performance of ANTLR and our transforma-

tion component. Furthermore, the experiments analyze whether they scale according

to appropriate metrics representing the size of a system.

We expect that ANTLR scales with respect to the file size of a system, i.e., the

processing time of C# source files by the generated lexer and parser is linear in time.

Moreover, we also expect the processing period of our transformation component to

grow linear in time for larger systems.

8.2.2 Experimental Setting

We perform our analysis on a system with an Intel Core2Duo 2x2.4 GHz and 2 GB

RAM using the operating system (OS) Windows XP SP3. We disable all command

line output messages for the execution of the experiments in order to not falsify the

experiment results later. For the same reason, we do not save the KDM instances

that are generated by our transformation.

Moreover, we determine the number of files, the lines of code (LOC), the

project size,22 and the number of C# types of the used applications. We need the

information for the different scenarios. The number of source files and the project

size are given by the OS. The tool cloc23 calculates the LOC for us. We use NDepend

to determine the overall number of types that the individual applications define.

Table 6 displays the information about each application.

8.2.3 Scenarios

We define five scenarios (S1-S5) for the performance analysis. S1 and S2 serve as a

performance and scalability indicator of ANTLR. The last three scenarios (S3-S5)

22represents the summarized file size of the project’s C# source files
23http://cloc.sourceforge.net/

81

http://cloc.sourceforge.net/

8.2 Performance Analysis

Application Number of Files LOCa Project Size C# Typesb

SharpDevelop 6399 618.565 25.44 MB 8.518

NordicAnalytics 939 170.656 11.70 MB 1.355

NAnt 356 43.619 3.42 MB 494

RAIL 36 15.038 695.29 KB 128

aw/o comments, w/o blank lines
bw/o delegates

Table 6: Basic Information about the Used Applications

deal with the performance analysis of the three phases of our transformation com-

ponent. In all five scenarios, we measure the program execution time as described

previously in Section 8.1.1.

In S1, we let our generated parser parse all C# source files of the given appli-

cations presented in Section 8.1.2 and Section 8.1.3. In S2, we let the parser, while

parsing, additionally create the AST that we have defined in Section 3.4. In S3,

we further execute the first transformation phase. In addition to that, S4 and S5

include the execution of the second and the third transformation phase, respectively.

8.2.4 Results

Figure 17a to 21c show the results of the scenarios. Each column of three figures

illustrates one scenario. In each case, the y-axis represents the median program

execution time. The x-axis represents the number of files, the LOC, and the project

size, respectively.

S1 Figure 17a shows the measuring points of RAIL, NAnt, Nordic Analytics, and

SharpDevelop from left to right. We measured a program execution time of 186 ms,

453 ms, 2,265 ms, and 4,725 ms, respectively, for the corresponding applications.

The resulting curve grows non-linearly according to the number of files.

Considering the parsing time in combination with the LOC in Figure 17b, the

corresponding curve also grows non-linearly, but not as strong as in the previous

figure. If we look at Figure 17c though, we can observe an approximately linearly

growing curve.

82

8 EVALUATION

(a) Measured Parsing Time in Relation to the
Number of Files

(b) Measured Parsing Time in Relation to the
Lines of Code

(c) Measured Parsing Time in Relation to the
Project Size

Figure 17: Scenario 1

(a) Measured AST Creation Time in Relation to
the Number of Files

(b) Measured AST Creation Time in Relation to
the Lines of Code

(c) Measured AST Creation Time in Relation to
the Project Size

Figure 18: Scenario 2

83

8.2 Performance Analysis

S2 We measured 520 ms, 1,073 ms, 7,993 ms, and 12,707 ms for the AST creation

times of the corresponding applications. The resulting curves, illustrated in Fig-

ure 18a to 18c, almost exactly correspond to the ones gained by the parsing time.

The AST creation takes 2.85 times longer than the parsing on average.

S3 For the program execution time of the P1 transformation, we measured 690

ms, 1,264 ms, 8,285 ms, and 13,091 ms, respectively, resulting in similar curves

concerning the previous AST creation time curves. The P1 transformation takes

1.14 times longer than the AST creation on average.

S4 We measured 4,902 ms, 14,363 ms, 53,481 ms, and 207,870 ms for the program

execution time of the P2 transformation. The curves in Figure 20a and Figure 20b

grow linearly now. Figure 20c shows a curve with a linear growth if we consider the

first three measurement points. The program execution time for the P2 transfor-

mation of SharpDevelop increased by a factor of more than 15 concerning the P1

transformation. The average time factor that the applications took longer according

to their P1 transformation execution times is 10.2.

S5 The execution of the P3 transformation resulted in the following execution

times for the corresponding applications: 6,181 ms, 33,740 ms, and 80,285 ms. We

have aborted the P3 transformation for SharpDevelop because the first measurement

has not terminated after more than 15 minutes. All resulting curves, shown in

Figure 21a to 21c, represent an approximately straight line. The P3 transformations

took 1.7 times longer than the P2 transformation on average.

8.2.5 Discussion of the Results

If we consider the results of the first two scenarios, we conclude by means of Fig-

ure 17c and Figure 18c that the parsing and the AST creation of ANTLR scales well

for increasing input, i.e., project size. Since the metrics number of files and lines of

code do not appropriately represent the input size, the corresponding curves are not

that linear as the ones in Figure 17c and Figure 18c.

Since the P1 transformation only transforms type definitions, the increase in

time compared to the AST creation scenario is not that large (factor of 1.14). Fur-

84

8 EVALUATION

(a) Measured P1 Time in Relation to the Number
of Files

(b) Measured P1 Time in Relation to the Lines
of Code

(c) Measured P1 Time in Relation to the Project
Size

Figure 19: Scenario 3

(a) Measured P2 Time in Relation to the Number
of Files

(b) Measured P2 Time in Relation to the Lines
of Code

(c) Measured P2 Time in Relation to the Project
Size

Figure 20: Scenario 4

85

8.2 Performance Analysis

(a) Measured P3 Time in Relation to the Number
of Files

(b) Measured P3 Time in Relation to the Lines
of Code

(c) Measured P3 Time in Relation to the Project
Size

Figure 21: Scenario 5

86

8 EVALUATION

thermore, each source file often contains only one or two type definitions on average

so that the P1 transformation curves resemble the AST creation curves.

The P2 transformation of all applications took considerably more time than

the P1 transformation because it transforms type relationships, method definitions

including their parameters, and member declarations inclusively their types. In

particular, the name resolution algorithm from Section 4.5.1 is applied to find the

correct internal and external types. That is why the P2 transformation required 10

times longer than the P1 transformation. The P2 transformation on SharpDevelop

took even longer because we have not decompiled all required external libraries. For

this reason, the name resolution algorithm did not terminate prematurely due to a

positive match and thus did not find several external types ultimately. This fact

results in an abnormally high program execution time. However, Figure 20c shows

a linear curve concerning the first three applications. Hence, we conclude that the

P2 transformation scales if all external libraries are available.

Due to the missing external libraries, the P3 transformation on SharpDevelop

took so long that we finally aborted the process. Therefore, Figure 21a to 21c only

display the measurement points of RAIL, NAnt, and Nordic Analytics.

The resulting curve in Figure 21c indicates that even the P3 transformation

scales well concerning the project size. We, however, claim that the linear behavior

in time depicted by Figure 21a and Figure 21b cannot be generalized to all projects

because both metrics do not represent the logical structure and complexity. For more

information about this and other threats to validity, we refer to the corresponding

Section 8.2.6.

8.2.6 Threats to Validity

Our performance experiments only constitute a first evaluation of our C# grammar

(and the generated lexer, parser, and AST) and especially of our transformation

component. We do not claim that our evaluation empirically proves the scalability

of them. It represents, however, a first positive indicator. To increase the validity,

we need to evaluate more applications to check the conclusions we made. Moreover,

the project size metric is not optimal since it does not represent the logical structure,

e.g., the number of method definitions and the amount of statements. Finally, our

transformation component still does not support all C# constructs at the time of

87

8.3 Accuracy Analysis

writing. Thus, the final execution times of the P1-P3 transformations will increase

in the future.

8.3 Accuracy Analysis

Besides a performance analysis, we also investigate the accuracy of our transforma-

tion component. We begin by briefly considering the correctness. Afterwards, we

check the completeness of the KDM instance that results from the transformation

of Nordic Analytics.

Correctness Analysis Testing the correctness of the transformation is an impor-

tant task since the output need not correspond to the input in general. The more

logic we add to our program, the more the risk of bugs increases. As we especially

introduce three different, partially complex phases, we should perform an intensive

correctness analysis to improve the reliability of and the trust in our transformation

component.

However, checking the correctness is very time-consuming. For this reason,

we limited our verification to manual code reviews and testing within the context

of this thesis. Currently, we provide several JUnit tests that cover the transforma-

tion for type definitions, member declarations, method definitions, and a set of C#

statements.24

We propose an intensive and statistically significant T-Test for future work.

Furthermore, simple correctness tests that could be automated should be performed

by a program.

Completeness Analysis In the following, we perform a completeness analysis by

means of the industrial C# project Nordic Analytics. First, we name the goals and

describe the experimental setting as well as the scenario. Then, we consider and

discuss the result. Finally, we look at potential threats to validity.

8.3.1 Goals

The completeness analysis should reveal to what extent our transformation compo-

nent transforms all C# constructs of a software system to their corresponding KDM

24The full set of JUnit tests can be found on the CD in the annex.

88

8 EVALUATION

Entity NDepend Our Transformation

Namespaces 109 113 (+4, +2.7 %)

Types 1.355 1359 (+4, +0.3 %)

Methods 9.327 6250 (-3077, -67.0 %)

Members 7.169 8.356 (+1187, +16.6 %)

Table 7: Completeness Analysis of Nordic Analytics

elements. In the context of this thesis, we focus on the number of C# namespaces,

types, methods, and members for now. We expect from our transformation that

it completely transforms these C# constructs with the exception of the number of

methods because our transformation does currently not support interface method

definitions. Future work will deal with the verification of other constructs such as

the type relationships and statements.

8.3.2 Experimental Setting

In order to compare the results of our transformation component, we use the matured

.NET code quality analysis tool NDepend.

8.3.3 Scenarios

We execute our transformation component on Nordic Analytics and compare the

number of namespaces, type definitions (without delegates), method definitions, and

member declarations (without constants) with the ones determined by NDepend.

8.3.4 Results

Table 7 shows the analysis and transformation results of NDepend (first column) and

our transformation component (second column), respectively. The rows represent

the corresponding number of namespaces, types, methods, and members.

We observe that our transformation component transforms almost the same

number of namespaces and types as NDepend has analyzed. However, NDepend

recognizes more methods, but less members than our transformation component.

89

8.4 Conformance Checking Analysis

8.3.5 Discussion of the Results

We see that our transformation meets our expectations for namespaces and types.

The four additional namespaces and types represent dead code, i.e., they are not

used by the system. NDepend does not analyze unused elements per default and thus

does not consider them in the analysis. The difference in the number of methods

results from both the missing support for interface method definitions and from

the fact that our transformation maps a C# property not to a getter and/or setter

MethodUnit but to one single MemberUnit for now. The difference in the number of

members results from both the property mapping to MemberUnits and the lack of

support for constant members.

8.3.6 Threats to Validity

In our completeness analysis, we only compare the amount of entities and do not

simultaneously check the correctness. Thus, we could have missed to transform

some C# constructs and added a few imaginary ones instead so that we would

still consider the transformation to be complete. Moreover, since NDepend skips

analyzing dead code per default, the tool could make further unknown assumptions

that threatens the validity of the experiment.

8.4 Conformance Checking Analysis

Although our transformation component does not yet support all C# constructs,

it is already possible to use it in combination with the cloud profile of Microsoft

Azure and the local transient storage constraint validator for C# to perform a first

conformance checking analysis on an arbitrary C# software system.

8.4.1 Goals

We evaluate whether CloudMIG Xpress is able to detect too less (false negatives),

too many (false positives), or exactly the amount of constraint violations that the

given system contains.

90

8 EVALUATION

8.4.2 Experimental Setting

In order to compare the results of the validator, we use the matured .NET code

quality analysis tool NDepend.

8.4.3 Scenarios

We execute CloudMIG Xpress and let our validator from Section 7 validate the

conformance of Nordic Analytics to Azure’s local transient storage constraint. We

start NDepend and execute the query25 shown in Listing 49, selecting all forbidden

method calls that we also have defined in our validator.

The commented lines indicate forbidden method calls that NDepend is not able

to identify. If we would uncomment them, the query would be invalid and could not

be executed. Thus, we need to remove these method calls from the query.

8.4.4 Results

Listing 50 displays the methods that contain forbidden method calls according to

our validator. It detected seven different methods in four different classes.

Listing 51 shows the method calls that NDepend has detected. In particular,

they include all method calls that our validator was able to detect. We sorted the

results for the sake of clarity. From line 9 to 13, we listed the additional method

calls that CloudMIG Xpress has not recognized.

8.4.5 Discussion of the Results

Comparing the results of CloudMIG Xpress and NDepend, CloudMIG Xpress did

not recognize five of twelve forbidden method calls resulting in an overall detection

rate of approximately 58 %. If we look at the method calls that exclusively NDepend

was able to recognize, we see that all these method calls are not contained in Nordic

Analytics ’ KDM instance at all. The reason for this lies in our transformation

component that does not yet support all C# statements. As soon as one statement

of a method body is not supported, the whole method body is not transformed and

25NDepend provides the so-called Code Query Language (CQL) that allows to query the code
structure of any .NET application. For more information, we refer to http://www.ndepend.com/

CQL.htm.

91

http://www.ndepend.com/CQL.htm
http://www.ndepend.com/CQL.htm

8.4 Conformance Checking Analysis

Listing 49: The CQL Query That Selects All Forbidden Method Calls� �
1 SELECT METHODS WHERE ! IsSpecialName AND
2 (
3 I sD i r e c t l yUs ing ”System . IO . Di rec to ry . CreateDirectory (S t r ing) ” OR
4 I sD i r e c t l yUs ing ”System . IO . Di rec to ry . De lete (Str ing , Boolean) ” OR
5 // I sD i r e c t l yUs ing ”System . IO . Di rec to ry .Move(Str ing , S t r ing) ” OR
6 I sD i r e c t l yUs ing ”System . IO . D i r e c t o ry In f o . Create () ” OR
7 I sD i r e c t l yUs ing ”System . IO . D i r e c t o ry In f o . CreateSubdi rectory (S t r ing) ” OR
8 I sD i r e c t l yUs ing ”System . IO . D i r e c t o ry In f o . De lete (Boolean) ” OR
9 // I sD i r e c t l yUs ing ”System . IO . D i r e c t o ry In f o .MoveTo(St r ing) ” OR

10 // I sD i r e c t l yUs ing ”System . IO . F i l e . AppendAllLines (Str ing , IEnumerable<Str ing >,
Encoding) ” OR

11 // I sD i r e c t l yUs ing ”System . IO . F i l e . AppendAllText (Str ing , Str ing , Encoding) ” OR
12 // I sD i r e c t l yUs ing ”System . IO . F i l e . AppendText (S t r ing) ” OR
13 // I sD i r e c t l yUs ing ”System . IO . F i l e . Copy(Str ing , Str ing , Boolean) ” OR
14 // I sD i r e c t l yUs ing ”System . IO . F i l e . Create (Str ing , Int32 , Fi leOpt ions , F i l e S e cu r i t y) ”

OR
15 // I sD i r e c t l yUs ing ”System . IO . F i l e . CreateText (S t r ing) ” OR
16 I sD i r e c t l yUs ing ”System . IO . F i l e . De lete (S t r ing) ” OR
17 // I sD i r e c t l yUs ing ”System . IO . F i l e . Encrypt (S t r ing) ” OR
18 I sD i r e c t l yUs ing ”System . IO . F i l e .Move(Str ing , S t r ing) ” OR
19 // I sD i r e c t l yUs ing ”System . IO . F i l e . OpenWrite (S t r ing) ” OR
20 // I sD i r e c t l yUs ing ”System . IO . F i l e . Replace (Str ing , Str ing , Str ing , Boolean) ” OR
21 // I sD i r e c t l yUs ing ”System . IO . F i l e . WriteAl lBytes (Str ing , Byte []) ” OR
22 // I sD i r e c t l yUs ing ”System . IO . F i l e . Wri teAl lL ines (Str ing , IEnumerable<Str ing >,

Encoding) ” OR
23 // I sD i r e c t l yUs ing ”System . IO . F i l e . WriteAllText (Str ing , Str ing , Encoding) ” OR
24 // I sD i r e c t l yUs ing ”System . IO . F i l e I n f o . AppendText () ” OR
25 I sD i r e c t l yUs ing ”System . IO . F i l e I n f o . CopyTo(St r ing) ” OR
26 I sD i r e c t l yUs ing ”System . IO . F i l e I n f o . CopyTo(Str ing , Boolean) ” OR
27 // I sD i r e c t l yUs ing ”System . IO . F i l e I n f o . Create () ” OR
28 // I sD i r e c t l yUs ing ”System . IO . F i l e I n f o . CreateText () ” OR
29 // I sD i r e c t l yUs ing ”System . IO . F i l e I n f o . De lete () ” OR
30 // I sD i r e c t l yUs ing ”System . IO . F i l e I n f o . Encrypt () ” OR
31 I sD i r e c t l yUs ing ”System . IO . F i l e I n f o .MoveTo(St r ing) ”
32 // I sD i r e c t l yUs ing ”System . IO . F i l e I n f o . OpenWrite () ” OR
33 // I sD i r e c t l yUs ing ”System . IO . F i l e I n f o . Replace (Str ing , Str ing , Boolean) ”
34)� �

Listing 50: Methods That Were Detected by Our Validator� �
1 SpecialTask.cs: cSpecialTask.GenerateTestFile ()

2 cAuxTools.cs: cAuxTools.GetOutputPath ()

3 Directory.cs: cDirectory.Create ()

4 ConsoleApp.cs: cConsoleApp.GetResultRootDirectory ()

5 ConsoleApp.cs: cConsoleApp.CopyChangedBatches ()

6 Directory.cs: cDirectory.Delete ()

7 ConsoleApp.cs: cConsoleApp.ClearLogFiles ()� �

92

8 EVALUATION

Listing 51: Methods That Were Detected by NDepend� �
1 SpecialTask.cs: cSpecialTask.GenerateTestFile ()

2 cAuxTools.cs: cAuxTools.GetOutputPath ()

3 Directory.cs: cDirectory.Create ()

4 ConsoleApp.cs: cConsoleApp.GetResultRootDirectory ()

5 ConsoleApp.cs: cConsoleApp.CopyChangedBatches ()

6 Directory.cs: cDirectory.Delete ()

7 ConsoleApp.cs: cConsoleApp.ClearLogFiles ()

8
9 File.cs: cFile.WriteStream ()

10 CopyDirectory.cs: cCopyDirectory.CopyDirectory ()

11 ConsoleApp.cs: cConsoleApp.CopyNonWorkingBatches ()

12 EvaluationErrorHandler.cs: cEvaluationErrorHandler.

RemoveOldProtocols ()

13 TestfileGenerator.cs: cTestfileGenerator.Generate ()� �
Listing 52: The Method cAuxTools.GetOutputPath()� �

1 internal string GetOutputPath(string PathName)

2 {

3 string pathUp = Path.GetDirectoryName(PathName);

4 string outputPath = pathUp + ’\\’ + "Results";

5 DirectoryInfo op = new DirectoryInfo(outputPath);

6 op.Create ();

7 return outputPath;

8 }� �
thus remains empty. We will improve the handling of unsupported statements in

future work so that only the unsupported statement is not transformed.

In order to understand and verify the results that both CloudMIG Xpress

and NDepend have produced, we exemplarily look at the methods cAuxTools.Get-

OutputPath() and cConsoleApp.GetResultRootDirectory().

The former is illustrated in Listing 52. In line 6, the method Create() of

the type DirectoryInfo is called. Since we defined the invocation of this method

as forbidden, CloudMIG Xpress correctly complains about the caller method cAux-

Tools.GetOutputPath().

The method cConsoleApp.GetResultRootDirectory() is shown in Listing 53.

If we look at line 14, we can see a call to the method Delete of the member Info of

93

8.4 Conformance Checking Analysis

Listing 53: The Method cConsoleApp.GetResultRootDirectory()� �
1 private cDirectory GetResultRootDirectory ()

2 {

3 cDirectory R = m_Root.GetChildDirectory(sResults);

4 if(R.Exists)

5 {

6 if(Is(m_ArgFile))

7 {

8 Write(true);

9 Write("WARNING: Result directory", true);

10 Write(R.FullName , true);

11 Write("exists already. It will be overriden.", true

);

12 Write(true);

13 }

14 R.Info.Delete(true);

15 }

16 return R;

17 }� �

Listing 54: The Class cDirectory (excerpt)� �
1 pub l i c c l a s s cDi r ec to ry : INDef
2 {
3 [. . .]
4 pub l i c D i r e c t o r y I n f o In f o { get { re turn m DirInfo ; } }
5 [. . .]
6 }� �

the type cDirectory. Listing 54 demonstrates an excerpt of the type cDirectory.

In line 4, we find the property Info of the type DirectoryInfo. Hence, the method

call in line 14 in Listing 53 represents a forbidden method call, too.

The conformance checking analysis therefore shows that CloudMIG Xpress

is able to detect forbidden method calls if the underlying KDM instance contains

enough information.

94

8 EVALUATION

8.4.6 Threats to Validity

Since NDepend does not accept all method calls in the query shown in Listing 49,

Nordic Analytics could invoke these not considered method calls. The overall de-

tection rate of CloudMIG Xpress would then decrease further. However, as already

mentioned above, all method calls that exclusively NDepend has detected were not

contained in the given KDM instance at all. Thus, it is impossible for CloudMIG

Xpress to detect all method calls.

95

8.4 Conformance Checking Analysis

96

9 RELATED WORK

9 Related Work

Since cloud computing and cloud migration are relatively new topics and still emerg-

ing, there are only limited cloud migration approaches so far. Most of them [18, 38]

only cover a part of the whole migration process, e.g., cost estimation, risk assess-

ment, effort estimation, and decision support in general.

Besides Frey and Hasselbring [14], Peddigari [30] and Venugopal et al. [37] also

propose cloud migration frameworks, for instance, but they are still in the planning

stage and thus described imprecisely or focus on one specific kind of software sys-

tems, respectively. Up to now, researchers often investigate the cloud migration

process by performing several migration case studies [3, 35]. For this reason, tool

support is also restricted.

Apart from ANTLR, there are a few other parser generator tools available.

XText [8, 10], for example, is a framework for developing arbitrary languages such

as domain-specific and general purpose languages. In addition to the generation of

a lexer and a parser in the target language, it also generates a full Eclipse-based

IDE with syntax highlighting, code completion, and quick fixes for the given XText

grammar.

Moonen [24] developed MANGROVE, a generator for source model extractors

based on island grammars. Island grammars are more flexible than standard gram-

mars because they can also handle syntax errors without aborting the parsing. They

have at least one fall-back rule that catches all cases that are not covered by the de-

fined grammar rules. In this way, one can use an island grammar to extract only the

information that is necessary for the specific use case. Thus, island grammars are

particularly useful for reverse engineering purposes such as model extraction from

source code. ANTLR’s grammar format also supports fall-back rules and parsing

based on an incomplete language definition.

Originally, lexers and parsers are manually and independently implemented.

In 1975, Yacc[16] was proposed. It represents a compiler-compiler, i.e., a parser

generator. By using a lexer generator such as Lex[20], it was then possible to generate

a lexer and a parser from the lexer grammar and the parser grammar. However, both

grammar formats are different. Furthermore, the generators originally supported

only the target language C.

An overview of textual language tools is given by Merkle [23].

97

98

10 CONCLUSIONS & FUTURE WORK

10 Conclusions & Future Work

In this section, we conclude the thesis and present future work that is related to

our transformation component, to the Microsoft Azure cloud profile, and to C#

constraint validators in general.

10.1 Conclusions

In this thesis, we briefly described the CloudMIG approach of Frey and Hassel-

bring and their corresponding prototype implementation CloudMIG Xpress. For

the latter, we implemented a C#-to-KDM transformation component that bases on

a C# grammar in ANTLR notation. During the development, we analyzed several

available C# grammars and adapted the chosen one. Furthermore, we discussed

some particular transformation concepts and thereby analyzed currently available

CIL-to-C# decompilers.

As part of the thesis, we additionally built a cloud profile for the cloud en-

vironment Microsoft Azure. By means of the exemplary C# constraint validator

that we also developed, it is now possible to check an arbitrary C#-based software

system for write accesses on the local file system. In conclusion, we built and em-

bedded the basic structure for CloudMIG Xpress to perform a conformance analysis

on any C# software system for the cloud environment Microsoft Azure. Tests and

first experiments show that the transformation is complete, correct, and scales well.

Furthermore, CloudMIG Xpress was applied on an industrial example application

the first time.

10.2 Future Work

There are quite a few places where we can improve our transformation component.

First, we will add support for more C# constructs, e.g., for delegates, type pa-

rameters, and attributes. Second, we will add support for the alternative look-up

approach that utilizes the .NET Reflection API. In addition to that, we will pro-

vide a switch mechanism so that the user is able to choose between both. Third,

we will automate the decompilation approach so that we do not need to decompile

the external libraries in advance. Fourth, we will increase the performance of the

transformation by parallelizing the individual phases with the help of threads and

99

10.2 Future Work

by reducing the amount of parser passes. Currently, a system is parsed three times,

i.e, once per phase. Fifth, the C# grammar can be optimized in terms of speed

by using more sophisticated syntax predicates. Moreover, at the time of writing,

ANTLR 4 was recently announced and promises many changes and improvements,

especially in terms of performance and usability. Instead of defining an own AST by

using operators and rewrite rules, ANTLR 4 automatically builds a parse tree and

generates interfaces to access this tree via the visitor pattern.

Moreover, the cloud profile for Microsoft Azure can be enhanced with addi-

tional information and characteristics. Further constraint validators could utilize

the additional information to detect more restrictions that Azure imposes on C#

systems.

100

REFERENCES

References

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy

Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,

and Matei Zaharia. A View of Cloud Computing. Commun. ACM, 53:50–58,

April 2010. ISSN 0001-0782. doi: 10.1145/1721654.1721672.

[2] Azure. Microsoft Azure Platform. http://www.microsoft.com/

windowsazure/, last access: 2011-09-23.

[3] Muhammad Ali Babar and Muhammad Aufeef Chauhan. A tale of migration

to cloud computing for sharing experiences and observations. In Proceedings of

the 2nd International Workshop on Software Engineering for Cloud Computing,

SECLOUD ’11, pages 50–56, New York, NY, USA, 2011. ACM. ISBN 978-1-

4503-0582-2. doi: 10.1145/1985500.1985509.

[4] Jean Bovet and Terence Parr. ANTLRWorks: An ANTLR Grammar Devel-

opment Environment. Softw. Pract. Exper., 38(12):1305–1332, October 2008.

ISSN 0038-0644. doi: 10.1002/spe.v38:12.

[5] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. MoDisco:

A Generic and Extensible Framework for Model-Driven Reverse Engineering. In

Proceedings of the IEEE/ACM international conference on Automated software

engineering, ASE ’10, pages 173–174, New York, NY, USA, 2010. ACM. ISBN

978-1-4503-0116-9. doi: 10.1145/1858996.1859032.

[6] E.J. Chikofsky and II Cross, J.H. Reverse Engineering and Design Recovery:

A Taxonomy. Software, IEEE, 7(1):13 –17, jan. 1990. ISSN 0740-7459. doi:

10.1109/52.43044.

[7] S. Ducasse and D. Pollet. Software Architecture Reconstruction: A Process-

Oriented Taxonomy. Software Engineering, IEEE Transactions on, 35(4):573

–591, july-aug. 2009. ISSN 0098-5589. doi: 10.1109/TSE.2009.19.

[8] S. Efftinge and M. Völter. oAW xText: A Framework for Textual DSLs. In

Workshop on Modeling Symposium at Eclipse Summit, 2006.

101

http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/

REFERENCES

[9] EMF. Eclipse Modeling Framework (EMF). http://www.eclipse.org/

modeling/emf/?project=emf, last access: 2011-09-22.

[10] Moritz Eysholdt and Heiko Behrens. Xtext: Implement Your Language Faster

Than the Quick and Dirty Way. In Proceedings of the ACM international

conference companion on Object oriented programming systems languages and

applications companion, SPLASH ’10, pages 307–309, New York, NY, USA,

2010. ACM. ISBN 978-1-4503-0240-1. doi: 10.1145/1869542.1869625.

[11] Charles N. Fischer, Ron K. Cytron, and Richard J. LeBlanc (Jr.). Crafting a

Compiler. Addison-Wesley, 2010. ISBN 9780136067054.

[12] Bryan Ford. Parsing Expression Grammars: A Recognition-based Syntactic

Foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, POPL ’04, pages 111–122, New York,

NY, USA, 2004. ACM. ISBN 1-58113-729-X. doi: 10.1145/964001.964011.

[13] Sören Frey and Wilhelm Hasselbring. The CloudMIG approach: Model-based

migration of software systems to cloud-optimized applications. International

Journal on Advances in Software, 4(3 and 4), 2011. to appear.

[14] Sören Frey and Wilhelm Hasselbring. An extensible architecture for detecting

violations of a cloud environment’s constraints during legacy software system

migration. In Proceedings of the 15th European Conference on Software Main-

tenance and Reengineering (CSMR 2011), pages 269–278. IEEE Computer So-

ciety, March 2011. ISBN 978-0-7695-4343-7. doi: 10.1109/CSMR.2011.33.

[15] Sören Frey, Wilhelm Hasselbring, and Benjamin Schnoor. Automatic confor-

mance checking for migrating software systems to cloud infrastructures and

platforms. Journal of Software Maintenance and Evolution: Research and Prac-

tice, 2012. ISSN 1532-0618. doi: 10.1002/smr.582.

[16] Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler. Technical report,

Bell Telephone Laboratories, 1975.

[17] KDM. Knowledge Discovery Metamodel (KDM). http://www.omg.org/spec/

KDM/, last access: 2011-09-22.

102

http://www.eclipse.org/modeling/emf/?project=emf
http://www.eclipse.org/modeling/emf/?project=emf
http://www.omg.org/spec/KDM/
http://www.omg.org/spec/KDM/

REFERENCES

[18] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and P. Teregowda. Decision

Support Tools for Cloud Migration in the Enterprise. In Cloud Computing

(CLOUD), 2011 IEEE International Conference on, pages 541 –548, july 2011.

doi: 10.1109/CLOUD.2011.59.

[19] Rainer Koschke. Architecture Reconstruction. In Andrea De Lucia and Filom-

ena Ferrucci, editors, Software Engineering, volume 5413 of Lecture Notes in

Computer Science, pages 140–173. Springer Berlin / Heidelberg, 2009. ISBN

978-3-540-95887-1. doi: 10.1007/978-3-540-95888-8\ 6.

[20] M. E. Lesk and E. Schmidt. UNIX Vol. II. chapter Lex: A Lexical Ana-

lyzer Generator, pages 375–387. W. B. Saunders Company, Philadelphia, PA,

USA, 1990. ISBN 0-03-047529-5. URL http://dl.acm.org/citation.cfm?

id=107172.107193.

[21] Scott McPeak and George Necula. Elkhound: A Fast, Practical GLR Parser

Generator. In Evelyn Duesterwald, editor, Compiler Construction, volume 2985

of Lecture Notes in Computer Science, pages 2725–2725. Springer Berlin / Hei-

delberg, 2004. ISBN 978-3-540-21297-3. doi: 10.1007/978-3-540-24723-4\ 6.

[22] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing.

Special Publication 800-145, September 2011. URL http://csrc.nist.gov/

publications/nistpubs/800-145/SP800-145.pdf. last access: 2012-03-14.

[23] Bernhard Merkle. Textual modeling tools: overview and comparison of language

workbenches. In Proceedings of the ACM international conference companion

on Object oriented programming systems languages and applications companion,

SPLASH ’10, pages 139–148, New York, NY, USA, 2010. ACM. ISBN 978-1-

4503-0240-1. doi: 10.1145/1869542.1869564.

[24] L. Moonen. Generating robust parsers using island grammars. In Reverse

Engineering, 2001. Proceedings. Eighth Working Conference on, pages 13 –22,

2001. doi: 10.1109/WCRE.2001.957806.

[25] .NET. Microsoft .NET Framework. http://www.microsoft.com/net, last

access: 2011-09-23.

103

http://dl.acm.org/citation.cfm?id=107172.107193
http://dl.acm.org/citation.cfm?id=107172.107193
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.microsoft.com/net

REFERENCES

[26] OMG. Object Management Group (OMG). http://www.omg.org/, last access:

2011-09-22.

[27] Terence Parr and Kathleen Fisher. LL(*): the foundation of the ANTLR parser

generator. In Proceedings of the 32nd ACM SIGPLAN conference on Program-

ming language design and implementation, PLDI ’11, pages 425–436, New York,

NY, USA, 2011. ACM. ISBN 978-1-4503-0663-8. doi: 10.1145/1993498.1993548.

[28] Terence J. Parr and Russell W. Quong. Adding Semantic and Syntactic Pred-

icates to LL(k): pred-LL(k). In In Computational Complexity, pages 263–277.

Springer-Verlag, 1994.

[29] Terence J Parr, T. J. Parr, and R W Quong. ANTLR: A Predicated-LL(k)

Parser Generator, 1995.

[30] B.P. Peddigari. Unified Cloud Migration Framework - Using factory based

approach. In India Conference (INDICON), 2011 Annual IEEE, pages 1 –5,

dec. 2011. doi: 10.1109/INDCON.2011.6139639.

[31] Ricardo Pérez-Castillo, Ignacio Garćıa-Rodŕıguez de Guzmán, and Mario Piat-

tini. Knowledge Discovery Metamodel-ISO/IEC 19506: A standard to modern-

ize legacy systems. Computer Standards & Interfaces, 33(6):519 – 532, 2011.

ISSN 0920-5489. doi: 10.1016/j.csi.2011.02.007.

[32] B.P. Rimal, Eunmi Choi, and I. Lumb. A Taxonomy and Survey of Cloud

Computing Systems. In INC, IMS and IDC, 2009. NCM ’09. Fifth International

Joint Conference on, pages 44 –51, aug. 2009. doi: 10.1109/NCM.2009.218.

[33] R. S. Scowen. Extended BNF — A Generic Base Standard, 2008. URL http:

//www.cl.cam.ac.uk/~mgk25/iso-ebnf.html.

[34] Yunlin Su and Song Y. Yan. Principles of Compilers. Higher Education Press,

Beijing and Springer-Verlag Berlin Heidelberg, 2011. ISBN 9783642208355.

[35] Van Tran, Jacky Keung, Anna Liu, and Alan Fekete. Application migration to

cloud: a taxonomy of critical factors. In Proceedings of the 2nd International

Workshop on Software Engineering for Cloud Computing, SECLOUD ’11, pages

104

http://www.omg.org/
http://www.cl.cam.ac.uk/~mgk25/iso-ebnf.html
http://www.cl.cam.ac.uk/~mgk25/iso-ebnf.html

REFERENCES

22–28, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0582-2. doi: 10.

1145/1985500.1985505.

[36] Unicode. Unicode 6.1.0. http://www.unicode.org/versions/Unicode6.1.

0/, last access: 2012-03-29.

[37] S. Venugopal, S. Desikan, and K. Ganesan. Effective Migration of Enterprise

Applications in Multicore Cloud. In Utility and Cloud Computing (UCC), 2011

Fourth IEEE International Conference on, pages 463 –468, dec. 2011. doi:

10.1109/UCC.2011.76.

[38] C.-Y. Yam, A. Baldwin, S. Shiu, and C. Ioannidis. Migration to Cloud as Real

Option: Investment Decision under Uncertainty. In Trust, Security and Privacy

in Computing and Communications (TrustCom), 2011 IEEE 10th International

Conference on, pages 940 –949, nov. 2011. doi: 10.1109/TrustCom.2011.130.

[39] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud Computing: State-of-the-Art

and Research Challenges. Journal of Internet Services and Applications, 1(1):

7–18, May 2010. ISSN 1867-4828. doi: 10.1007/s13174-010-0007-6.

105

http://www.unicode.org/versions/Unicode6.1.0/
http://www.unicode.org/versions/Unicode6.1.0/

REFERENCES

Glossary

ANTLR

ANother Tool for Language Recognition

API

Application Programming Interface

AST

Abstract Syntax Tree

BOM

Byte Order Marker

CEM

Cloud Environment Model

CIL

Common Intermediate Language

Cloud Computing

Cloud Computing is an approach to reduce over-provisioning of large-scale data

centers and simultaneously offers a way of cost-efficient resource allocation for

cloud users

CLR

Common Language Runtime

DLL

Dynamic Link Library

EBNF

Extended Backus–Naur Form

EMF

Eclipse Modeling Framework

106

REFERENCES

IaaS

Infrastructure-as-a-Service

IDE

Integrated Development Environment

Infrastructure-as-a-Service

Infrastructure-as-a-Service is a cloud service model that represents the delivery

of computing resources as utilities

KDM

Knowledge Discovery Meta-Model

Knowledge Discovery Meta-Model

Object Management Group’s Knowledge Discovery Meta-Model represents in-

formation related to existing software assets and their operational environ-

ments. It is especially independent of the used programming language and

operating system

LOC

lines of code

NIST

National Institute of Standards and Technology

Object Management Group

The Object Management Group is an international, open membership, not-

for-profit computer industry consortium that develops enterprise integration

standards

OMG

Object Management Group

OS

operating system

107

REFERENCES

PaaS

Platform-as-a-Service

Platform-as-a-Service

Platform-as-a-Service is a cloud service model that represents the delivery of

a self-maintaining platform

SaaS

Software-as-a-Service

SMM

Structured Metrics Meta-Model

Software-as-a-Service

Software-as-a-Service is a cloud service model that represents the provisioning

of a particular software system or application

Structured Metrics Meta-Model

Object Management Group’s Structured Metrics Meta-Model represents mea-

surement information related to software, its operation, and its design. It

allows both to define metrics and to store metric-related measurement results

of arbitrary software systems

UML

Unified Modeling Language

VM

virtual machine

XMI

XML Metadata Interchange

XML

Extensible Markup Language

108

Appendices

A The Class Expression� �
1 public class Express ion {
2

3 private boolean exp r e s s i on ;

4

5 public boolean i sTrue () {
6 return exp r e s s i on ;

7 }
8 // custom methods used in l e x e r a c t i o n s

9 public void s e t (boolean exp r e s s i on) {
10 this . e xp r e s s i on = expr e s s i on ;

11 }
12 public void s e t (Express ion exprParam) {
13 this . e xp r e s s i on = exprParam . exp r e s s i on ;

14 }
15 public void or (Express ion expr1 , Express ion expr2) {
16 this . e xp r e s s i on = expr1 . exp r e s s i on | | expr2 . exp r e s s i on ;

17 }
18 public void and (Express ion expr1 , Express ion expr2) {
19 this . e xp r e s s i on = expr1 . exp r e s s i on && expr2 . exp r e s s i on ;

20 }
21 public void equal (Express ion expr1 , Express ion expr2) {
22 this . e xp r e s s i on = expr1 . exp r e s s i on == expr2 . exp r e s s i on ;

23 }
24 public void unequal (Express ion expr1 , Express ion expr2) {
25 this . e xp r e s s i on = expr1 . exp r e s s i on != expr2 . exp r e s s i on ;

26 }
27 public void not (Express ion expr) {
28 this . e xp r e s s i on = ! expr . exp r e s s i on ;

29 }
30 }� �

B Attachments

One CD labeled Masterthesis attachment - Christian Wulf containing

• the thesis as pdf-document and

• the source code of the created programs.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.2.1 Goal 1: C#-to-KDM Transformation
	1.2.2 Goal 2: Microsoft Azure Cloud Profile
	1.2.3 Goal 3: C#-specific Constraint Validators
	1.2.4 Goal 4: Evaluation of the Transformation and the Automatic Conformance Analysis

	1.3 Structure of the Thesis

	2 Foundations and Technologies
	2.1 Foundations
	2.2 Involved Technologies

	3 Building an Appropriate C# Grammar
	3.1 Necessity of a C# Preprocessor
	3.2 Comparison of Available C# Grammars
	3.3 Grammar Adaptation
	3.4 Definition of the Abstract Syntax Tree

	4 The Transformation from C# to KDM
	4.1 Overview
	4.2 The Mapping from C# to KDM
	4.3 Phases of the Transformation
	4.3.1 Necessity of Three Transformation Phases
	4.3.2 Phase 1: Internal Type Transformation
	4.3.3 Phase 2: Internal Member Declarations and Method Definitions Transformation
	4.3.4 Phase 3: Statement Transformation

	4.4 Architecture of the Transformation Component
	4.5 Own and Related Transformation Concepts
	4.5.1 Name Resolution
	4.5.2 Loading External Libraries
	4.5.3 MoDisco's Approach

	5 Integration of the Transformation Component
	5.1 Plug-In for CloudMIG Xpress
	5.2 Plug-In for MoDisco

	6 Microsoft Azure Cloud Profile
	6.1 Hardware Configuration
	6.2 Constraints
	6.3 Partitions

	7 Microsoft Azure Conformance Checking
	8 Evaluation
	8.1 Overview
	8.1.1 Methodology
	8.1.2 Nordic Analytics
	8.1.3 Other Used Applications

	8.2 Performance Analysis
	8.2.1 Goals
	8.2.2 Experimental Setting
	8.2.3 Scenarios
	8.2.4 Results
	8.2.5 Discussion of the Results
	8.2.6 Threats to Validity

	8.3 Accuracy Analysis
	8.3.1 Goals
	8.3.2 Experimental Setting
	8.3.3 Scenarios
	8.3.4 Results
	8.3.5 Discussion of the Results
	8.3.6 Threats to Validity

	8.4 Conformance Checking Analysis
	8.4.1 Goals
	8.4.2 Experimental Setting
	8.4.3 Scenarios
	8.4.4 Results
	8.4.5 Discussion of the Results
	8.4.6 Threats to Validity

	9 Related Work
	10 Conclusions & Future Work
	10.1 Conclusions
	10.2 Future Work

	References
	Glossary
	A The Class Expression
	B Attachments

