
Kiel University, Kiel, Germany

Department of Computer Science

Software Engineering Group

Diploma Thesis

Transformation of Java Bytecode to

KDM Models as a Foundation for

Dependency Analysis

Oliver Prinz (opr@informatik.uni-kiel.de)

01. August 2012

Advised by: Prof. Dr. Wilhelm Hasselbring
M.Sc. Sören Frey

Abstract

Maintenance is a key activity in the long-term sup-
port of software. Faulty parts have to be �xed and
new requirements incorporated; the system evolves.
But changing system parts involves program under-
standing; a task that is often connected with a re-
verse engineering step based on the system's code.
A problem arises, if the source code is not avail-
able and has to be retrieved by a decompiler, for in-
stance. For most programming languages, more than
one exists, but they di�er in their functionality, there-
fore a suitable decompiler has to be selected for this
task. Embedded in this context is the �rst part of
this thesis, where current available Java decompilers
are evaluated; the best one will be integrated into
CloudMIG Xpress, a tool supporting the migration
of legacy software systems onto a cloud environment
architecture. A core part of CloudMIG Xpress is the
detection of cloud environment constraint violations
� breaches of restrictions imposed by a cloud envi-
ronment provider � that generates the context for
the second part of this thesis. A dependency analy-
sis library is introduced, that proposes a solution to
the limitations of the constraint violation detection
mechanism; he is not capable to determine the using
context of such violations.

Eidesstattliche Erklärung

Hiermit erkläre ich, Oliver Prinz, geb. 03.09.1984, an Eides statt, dass ich die vorliegende
Arbeit selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel verwen-
det habe.

Kiel,

Sleep is not a valid substitute for co�ee.

� Common student saying

Contents

Contents

1. Introduction 15
1.1. Motivation . 15
1.2. Goals of this Thesis . 18

1.2.1. Java Decompiler Integration . 18
1.2.2. KDM-based Dependency Analysis 18

1.3. Structure of this Thesis . 18

2. Foundations and Technologies 21
2.1. Foundations . 21

2.1.1. Reverse Engineering . 21
2.1.1.1. Overview . 21
2.1.1.2. Decompilation . 22
2.1.1.3. Bytecode . 24

2.1.2. Dependency Analysis . 24
2.1.2.1. Transitive Dependencies and Transitive Closure 27

2.2. Relevant Technologies . 28
2.2.1. Knowledge Discovery Meta-Model (KDM) 28

2.2.1.1. Infrastructure Layer . 28
2.2.1.2. Programs Elements Layer 30
2.2.1.3. Runtime Resource Layer 32
2.2.1.4. Abstractions Layer . 35

2.2.2. MoDisco . 35
2.2.2.1. Model Discovery . 36
2.2.2.2. Model Understanding . 36

2.2.3. CloudMIG . 37

3. Approach of this Thesis 41
3.1. Reverse Engineering of Java Class Files 41
3.2. Dependency Analysis . 42

4. Java Decompiler 45
4.1. Overview . 45
4.2. Available Java Decompilers . 46
4.3. Test Cases . 47

4.3.1. HelloWorld . 48
4.3.2. Inner Class . 48
4.3.3. Conditions . 48
4.3.4. Exceptions . 49
4.3.5. Loops . 49

8

Contents

4.3.6. Inheritance . 49
4.3.7. Generics . 50
4.3.8. Annotations . 50
4.3.9. Enumerations . 50

4.4. Test Evaluation . 52
4.5. Discussion . 55
4.6. Integration into CloudMIG Xpress . 56

5. KDM-based Dependency Analysis 59
5.1. Overview . 59
5.2. Approach . 59
5.3. Implementation . 62

5.3.1. Nodes of the Closure Graph . 62
5.3.2. Edges of the Closure Graph . 64
5.3.3. Traversing a KDM Instance . 65

6. Evaluation 69
6.1. Overview . 69
6.2. Evaluation of the Dava Decompiler . 69

6.2.1. MyBatis JPetStore . 70
6.2.2. JForum . 70
6.2.3. Output Evaluation . 71
6.2.4. Discussion of the Evaluation . 75

6.3. Evaluation of the KDM-based Dependency Analysis 75
6.3.1. Evaluation Tests . 77
6.3.2. Results . 79

7. Conclusion 81
7.1. Summary . 81
7.2. Future Work . 82

8. Related Work 83
8.1. Decompiler Analyisis . 83
8.2. Dependency Analysis for Program Understanding 83

References 85

A. Test Implementations 91

B. Attached CD 101

9

List of Figures

List of Figures

1. The horseshoe model. It describes the steps that have to be taken in order
to migrate an old software system to a modern architecture [24]. 16

2. Systems and their dependencies. 17
3. Extended transformation chain for the KDM trasformation process. 18
4. Common architecture for reverese engineering tools [9]. 22
5. Binary (in hexadecimal notation), assembly, and corresponding C code [8]. 23
6. The HelloWorld program in Java. 24
7. Java's HelloWorld converted to bytecode. Retrieved through javap. 25
8. The HelloWorld program in C. 25
9. C's HelloWorld converted to I-32 Assembler. 25
10. Dependency graph example. 26
11. Example of a Control �ow graph for a given program. 27
12. Transitive closure graph from Figure 10. 27
13. Layers, packages, and separation of concerns in KDM [39]. 29
14. UML Class Diagram of the inventory model [39]. 30
15. Key classes of the Code package [36]. 31
16. Instantiation and assignment of the class �java.io.File� as KDM relationships. 33
17. The two phases of MoDisco: �Discovery� and �Understanding� [7]. 36
18. The CloudMIG approach. [18] . 38
19. The transformation chain to a KDM instance in MoDisco. 41
20. Extended transformation chain. 42
21. Possible states of a system in the constraint detection process. [19] 43
22. Compilation and decompilation work�ow for Java bytecode [21]. 45
23. Excerpt from ClassTest. 48
24. Try-catch-�nally syntax in Java. 49
25. For-Each Loop in Java. 49
26. ArrayList signature with Generics in Java. 50
27. Day enumeration type, as de�ned in the Enum test case. 51
28. Double Brace Initialization pattern in Java. 51
29. Inline initialization of an abstract class in Java. 51
30. System to KDM transformation process in CloudMIG Xpress. 58
31. Discovery algorithm example for the transitive closure. 61
32. Double transitive edge. 62
33. Class diagram of AbstractNode. 63
34. Concrete nodes for the transitive closure graph. 63
35. Relationship-classes for the closure graph. 64
36. Interface of the dependency analysis library. 66
37. Entity-Handlers that are currently de�ned in the analysis library. 67
38. The NodeManager class diagram. 67

10

List of Tables

39. Exit condition example. 71
40. Loop example in JPetStore. 72
41. Missing try-catch statements. 72
42. Replaced For-Loop. 73
43. Class signature with interface implementation. 74
44. Generics and the decompilation counterpart. 74
45. Annotations in Dava . 75
46. An enum type compared to the decompiler output. 76
47. Places in code, where prohibited classes can occur. 77
48. InheritanceTest class diagram. 78
49. Test class containing a member and a local variable. 78
50. Test classes for transitivity tests. 78

List of Tables

1. Test evaluation of Mocha. 52
2. Test evaluation of Jdec. 53
3. Test evaluation of JODE. 53
4. Test evaluation of Jad. 54
5. Test evaluation of Dava. 54
6. Test evaluation of JReversePro. 54
7. Test evaluation of Java Decompiler. 55
8. Test evaluation of Java Decompiler Project. 55
9. Test evaluation summary. 56
10. Decompilers support status and their license. 57
11. JPetStore Performance metrics. 70
12. JForum Performance metrics. 70
13. Tests passed by the analysis library. 79

11

Glossary

API Application Programming Interface.
An interface provided by a system to enable other systems the access to it.

AJAX Asynchronous JavaScript and XML
A group of techniques to create asynchronous web applications.

EMF Eclipse Modeling Framework
A framework to model and generate code.

GPL GNU General Public License
http://www.gnu.org/licenses/

J2EE Java 2 Platform, Enterprise Edition
Java computing platform for enterprise systems.

JAR Java Archive
Archive format similar to ZIP.

JDK Java Development Kit
Software development kit for Java programs.

JVM Java Virtual Machine
Runtime environment for Java bytecode.

XMI XML Metadata Interchange
Standard to exchange meta-data through XML.

XML Extensible Markup Language
A markup language for storage and transportation of data.

javac A Java compiler included in the JDK.

javap A Java class �le disassembler included in the JDK.

1. Introduction

1. Introduction

Ladies and gentlemen please
Would you bring your attention to me?
For a feast for your eyes to see
An explosion of catastrophe

� Saliva, Ladies And Gentlemen

1.1. Motivation

Long-term support of software is often a�ected by technology evolution. Operational
requirements change and have to be adapted or completely new ones have to be de-
veloped and implemented throughout the life-cycle. Examples may be the integration
of new functions and features, upgrade of used frameworks or the adjustment of API
calls. The progress of hardware has to be addressed also, as the behavior changes or the
availability of specialized parts decreases. Another aspect to consider is the rise of new
technologies and the accompanied changes in computing paradigms, like the introduction
of Object-oriented Programming (OOP). All this and more coins the term of Software
modernization: A process of converting or porting a legacy system to state of the art
technology.
Core activities of this process are Reverse Engineering, Re-Engineering, and Forward

Engineering, de�ning an order on states a modernization goes through. They are de-
rived from the �horseshoe� de�ned by Kazman et al., which is a �visual metaphor of the
integration of code-level and architectural re-engineering views of the world,� [24] and is
�gured in 1. The �rst activity addresses the generation of facts about a system that are
useful for the process, such as the architecture or design patterns. These facts are then
used in the re-engineering activity to restructure the relevant system parts according to
the new requirements, which are implemented in the last activity.
In June 2003 the Object Management Group1 formed a task force to build standards,

that can be applied to the modernization of legacy systems. In applying concepts
and standards of Model-Driven Architecture to the process of modernization, the task
force proposed in November 2003 a speci�cation called Knowledge Discovery Meta-Model
(KDM); it describes an intermediate representation of existing software systems through
a set of models. A key part of this speci�cation is the ability of modeling a variety of
systems in a uniform way, independent from the language they are implemented in.

1http://www.omg.org/ (accessed 12.01.2012)

15

1. Introduction

Figure 1: The horseshoe model. It describes the steps that have to be taken in order to
migrate an old software system to a modern architecture [24].

Today, the target environment, that many legacy systems are migrated to, is called
�the cloud�. It describes a computing environment with the following characteristics [35]:

On-demand self-service The capability of supplying a consumer with computing capac-
ity as needed and in an automatic way.

Broad network access Services are available though standard network mechanisms, al-
lowing users the access with a broad set of devices.

Resource pooling Resources are provided through a multi-tenant model, which are dy-
namically assigned in order to satisfy current demands of consumers. Di�erent
systems may run on the same physical machine without the knowledge of the con-
sumer, as location services on this level are often non-existent.

Rapid elasticity Resources are automatically assigned or withdrawn to scale with de-
mand, appearing to be unlimited, since resources can be acquired at any size and
at any time.

Measured service As resources scale with the demand, the cost of the usage has to
be measured. This happens through di�erent metrics appropriate for the given
resource, that are also transparent for the consumer and cloud provider.

Furthermore, the environment comes in three di�erent service models, called Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS), describing three di�erent types of resource control. IaaS provides a consumer with

16

1. Introduction

basic computing resources, like storage and networks, where user-de�ned software can be
deployed. PaaS restricts access to resources; it allows the deployment of applications only
on a previously de�ned platform. The lowest form of control is de�ned by SaaS, where
a consumer can only provide pre-de�ned applications by the provider of the environment.

A tool to ease the e�ort of porting systems to a cloud environment is CloudMIG
Xpress. It is a research project aimed at a semi-automated process for transforming
legacy software systems to an architecture suitable for running in a cloud environment.
Core parts of this tool are concerned with the detection of Cloud Environment Constraint
Violations: Breaches of restrictions imposed by a cloud provider on systems. These
restrictions prohibit the use of certain technical actions, such as �le access.
CloudMIG Xpress relies on the MoDisco framework to generate KDM instances of

legacy systems, that will be ported to a cloud environment. Unfortunately, the framework
is still in development and has therefore some shortcomings. While it has a build-in
support for Java source and bytecode, the generated KDM instances from them di�er
in their powerfulness; the weaker is generated from bytecode. Here, only the signatures
of methods are considered and the bodies are spared. However, the latter contain vital
parts of the system and are therefore needed in the migration process.

Layer 1: System sources

Layer 2: Needed Libraries

Layer 3: Libraries for libraries

Figure 2: Systems and their dependencies.

Likewise, CloudMIG Xpress harbors the potential for improvement. While it can detect
a variety of constraint violations, some of these detection mechanisms are insu�ciently
powerful, namely the detection of use of prohibited methods, functions and classes. While
the occurrence check for such constructs is a rather easy task � it is simply a traversing of
the KDM instance � the determination of usage is harder, since it involves the evaluation
of the control �ow inherent in the KDM instance.
Considering the example given in Figure 2, which shows the layers of dependencies in

software systems. System parts depending on other system parts as well as on libraries,

17

1. Introduction

which de�ne solutions for common tasks. Those depending in turn on other libraries, and
so on. If a constraint violation is detected, for example, in layer three, it is not obvious,
if this violation a�ects the system in any way, since the violation could occur in a part
of the library that is never used; the violation can be neglected.

1.2. Goals of this Thesis

This thesis has two main objectives. The �rst pursues a better support for Java bytecode
in CloudMIG Xpress by integrating a decompiler, the second will extend the capabilities
of the constraint violation detection mechanism.

1.2.1. Java Decompiler Integration

The proposed solution for a better Java bytecode support is depicted in Figure 3. The
goal will be an extension of the transformation chain implemented in MoDisco with a
decompiler. Because a variety of Java decompilers exists, an evaluation has to be done
beforehand, to determine the best suited for this task.

Figure 3: Extended transformation chain for the KDM trasformation process.

1.2.2. KDM-based Dependency Analysis

The usage of prohibited classes, functions, and methods can be determined through a
dependency analysis. The proposed solution is the construction of the transitive closure
from the KDM instance, containing all relevant entities and relationships de�ned in
the di�erent models of the instance. The traversal of the instance is realized through
delegation; a handler object for each relevant entity takes care of the creation of nodes
and edges in the resulting closure graph.

1.3. Structure of this Thesis

The remainder of this thesis is structured as follows: Section 2 describes the founda-
tions and technologies used in this thesis, while Section 3 contains the detailed problem

18

1. Introduction

description and taken approach for the proposed solutions. Section 4 evaluates current
available Java decompilers, while Section 5 contains the implementation of a dependency
analysis based on KDM. An evaluation of both approaches can be found in Section 6,
the conclusion is given in Section 7. Section 8 closes this thesis with related work.

19

2. Foundations and Technologies

2. Foundations and Technologies

Hamburgers! The cornerstone of any nutritious
breakfast.

� Jules Winn�eld, Pulp Fiction

The following sections provide an overview of the foundations and relevant technologies
used in this thesis. Section 2.1.1 describes the process of reverse engineering, whereas
Section 2.1.2 discusses dependency analysis on given software artifacts. The last three sec-
tions deal with the used technologies in this thesis, describing a meta-model for modeling
software systems from di�erent architectural viewpoints named KDM in Section 2.2.1, a
framework to discover an instance of the meta-model from given systems in Section 2.2.2
as well as a tool for migration of software systems in Section 2.2.3.

2.1. Foundations

2.1.1. Reverse Engineering

2.1.1.1. Overview
To enable the evolution of software, i.e. adapting and extending features as requirements
change, it is crucial to understand the concepts implemented in a system. These concepts
are mostly high-level, such as the chosen architecture for the system or implemented
business rules and are often not directly apparent in the source code of the system [12; 44].
Thus, the consulting of the documentation is mandatory, but can lead to unsatisfactory
results, if the system is only poorly, partial, or not at all documented. In such a case the
information has to be retrieved from the code; it is the only reliable information source.
This retrieving process is called Reverse Engineering. A precise de�nition is given by
Chikofsky and Cross [9], whereby Reverse Engineering consists of the �identi�cation of
a system's components and their interrelationships� and �the creation of representations
of a system in another form or at higher level of abstraction.�
This process has its origin in the analysis of hardware, where it is used for �developing

a set of speci�cations for a complex hardware system by an ordinary examination of
specimens of that system.� [41] The process tries to determine the purpose of a given
hardware system and how it is achieved through analysis of the physical structure as well
as an operation analysis.

21

2. Foundations and Technologies

Figure 4: Common architecture for reverese engineering tools [9].

Eliam and Chikofsky show a wide application area [16], where this process can be
applied. It can be grouped in the following manner:

Security-related: The process of reverse engineering is used in many di�erent aspects of
system or computer security. A system can be analyzed to exploit security �aws for
malicious as well as for benevolent intends. An example would be the everlasting
�ght between the producers of so called �malware� and the developers of anti-virus
software. In the �eld of cryptography, algorithms and their implementations are
reverse engineered, to reason about the overall security they provide.

Software Development-related: Reverse engineering in the �eld of software develop-
ment occurs often in the context of software maintenance. Developers can use
the technique to determine the interoperability of partial or undocumented soft-
ware or the quality of third-party code. The process can also be used to address
other engineering problems, such as the recovering of a system's architecture [12; 3]
and used design patterns [4; 38; 43], but also in migration processes towards new
platforms [18], among others.

In order to cope with the complexity of systems in the reverse engineering process,
automation is needed. A common architecture for tools, that automates the process, is
shown in Figure 4. The system under view is analyzed and the results are put into an
information base. View composers then generate di�erent views from these information,
giving di�erent views on the system, like metrics, graphics or documentations.
An example tool implementing this architecture is CodeSurfer [2]. It uses static anal-

ysis techniques on C and C++ for review purposes. It comes with a set of code parsers,
that are able to analyze pointers and dependencies between data functions, among others.
Generated views contain mostly graphs, showing control �ow or interdependencies.

2.1.1.2. Decompilation
As stated before, the lack of documentation leads to analyzing the source code of a
system. A problem arises, when the system, or parts of it, are available only in binary

22

2. Foundations and Technologies

55 89 e5 8b

45 0c 03 45

08 01 05 00

00 00 00 89

ec 5d c3

sum:

push1 %ebp

movl %esp, %ebp

movl 12(%ebp), %eax

addl 8(%ebp), %eax

addl %eax, accum

movl %ebp, %esp

popl %ebp

ret

int accum = 0;

int sum(int x, int y)

{

int t = x + y;

accum += t;

return t;

}

Figure 5: Binary (in hexadecimal notation), assembly, and corresponding C code [8].

or executable form. This case often occurs in the context of legacy system maintenance,
where the company that created the system does not exists anymore or where the data
has accidentally been deleted and could not be recovered. In such a case the binary
data has to be examined. However, reading and understanding binary code is hard
work, therefore the data is most often transformed into a human readable form. This
transformation process is in essence the inverse of compilation and is called decompilation:
The process of converting binary data or an executable program back to a (high-level)
programming language. Figure 5 shows an example for such a decompilation process.
The binary data (for convenience given in hexadecimal notation) on the left will be
transformed to an assembly language in the middle,2 which in turn is translated into
the higher programming language C on the right. It is quite obvious, that the process
is time consuming and error-prone if done manually and in a larger scaled programs,
consisting of millions of lines of code; especially the transformation from assembly to a
higher language is apparently not trivial. That is why this process is often done with a
Decompiler, a program, that automates the transformation.
A Decompiler takes one or more binary �les as input and convert them to the target

language determined by the program. Unfortunately, this conversion process has to
overcome many obstacles [11]:

Data and instructions representation: This problem derives from the Von Neumann
architecture, where data and instructions are indistinguishable.

Added Subroutines: The compiler and linker add a great number of subroutines for envi-
ronment setup and runtime support. Because they are mostly written in assembler,
they are often not translatable to higher-level functions.

Self-containment of binary programs: Executables are often self-contained; stand-alone
programs, where relevant libraries of the operating system are bound into the bi-
naries.

2This process is often called disassembly; it translates machine language into assembly language.

23

2. Foundations and Technologies

public class HelloWorld {
public stat ic void main (St r ing [] a rgs) {

System . out . p r i n t l n ("He l lo World ! ") ;
}

}

Figure 6: The HelloWorld program in Java.

Finally, the original names of functions, variables, etc. as well as some syntactic
structures cannot be retrieved through decompilation � because they are discarded by
the compilation process � creating a merely functional equivalent to the original.

2.1.1.3. Bytecode
A special form of compilation output is bytecode. It is an intermediate representation
for programs intended to run on an interpreter,3 a program which executes bytecode.
It has a human readable form, much like an assembly language, and is often enriched
with some sort of meta-data, aiding the reasoning about the original purpose of the
code. Figure 6 shows the prominent Hello World program written in Java with the
corresponding bytecode in Figure 7. Compared to the assembly code in Figure 9 created
from the C HelloWorld in Figure 8, it can be seen easily, that the bytecode is much more
verbose, containing method names and method parameter values.
The capability of easily porting bytecode to other systems is an often cited advantage.

In general, if a program is written and compiled for one kind of platform, it cannot run
easily on another, because of compatibility problems: Each platform could describe its
services in its own unique way or use a di�erent instruction set. In using bytecode, the
program can run on every platform that is supported by the interpreter.4

A common disadvantage associated with bytecode is the Execution Time. Before the
bytecode can be executed, it has to be transformed by the interpreter, adding time to
the overall runtime of the program. Indeed, this was true in the past, the introduction of
so called JIT5 Compilers renders this statement today mostly false [1; 20]. While there
is still a performance loss in the execution time, it has become less signi�cant.

2.1.2. Dependency Analysis

A dependency is commonly de�ned as �the quality or state of needing something or
someone,� [30] thus the term dependency analysis refers to the process of identifying

3Often called a Virtual Machine (VM)
4In Theory. In practice, this is sometimes not the case. A famous example is the Standard Widget
Toolkit for Java programs. For each platform (like Linux and Windows), there is a di�erent Toolkit,
making the program using it, platform depend.

5Just-in-Time

24

2. Foundations and Technologies

Compiled from "HelloWorld . java "
pub l i c c l a s s HelloWorld extends java . lang . Object {
pub l i c HelloWorld () ;

Code :
0 : aload_0
1 : i n vok e sp e c i a l #1; //Method java / lang /Object ."< i n i t >":()V
4 : re turn

pub l i c s t a t i c void main (java . lang . S t r ing []) ;
Code :
0 : g e t s t a t i c #2; // F i e ld java / lang /System . out : Ljava/ i o /PrintStream ;
3 : ldc #3; // St r ing He l lo World !
5 : i n vok ev i r t u a l #4; //Method java / i o /PrintStream . p r i n t l n :

(Ljava/ lang / St r ing ;)V
8 : re turn

}

Figure 7: Java's HelloWorld converted to bytecode. Retrieved through javap.

#include <s td i o . h>
int main () {

(void) p r i n t f ("He l lo World ! \ n") ;
return 0 ;

}

Figure 8: The HelloWorld program in C.

.LC0 :
. s t r i n g "He l lo World ! "
. t e x t
. g l o b l main
.type main , @function

main :
.LFB0 :

. c f i_ s t a r t p r o c
pushq %rbp
. c f i_de f_c f a_o f f s e t 16

. c f i _ o f f s e t 6 , −16
movq %rsp , %rbp
. c f i_de f_c f a_r eg i s t e r 6
movl $.LC0 , %edi
ca l l puts
movl $0 , %eax
popq %rbp
. c f i_de f_c f a 7 , 8
ret

. c f i_endproc

Figure 9: C's HelloWorld converted to I-32 Assembler.

25

2. Foundations and Technologies

entities and the relationships between them, such that the relationships comply to the
de�nition. More formally: Let S be a set of entities, s, s′ ∈ S and R ⊆ S × S. A
dependency between s and s′ exists, if (s, s′) ∈ R. Thus, the result of a dependency
analysis is the pair (V,E), where V ⊆ S de�ning the found entities and E = {(v, v′) ∈
R : v, v′ ∈ V }. Obviously, this pair represents a graph, where each node in the graph
represents an identi�ed entity and each edge a dependency, respectively. An edge is
also directed, indicating that an entity depends on the entity on the end of the edge.
Figure 10 shows an example of such a dependency graph. The nodes are the set of A, B,
C, D, E, F, where D depends on E and F, B on C and A on D and B, thus creating the
set of edges: (D,E), (D,F), (B,C), (A,D), (A,B).

Figure 10: Dependency graph example.

In computer science, the dependency analysis is used in a variety of disciplines. For
example in compiler theory, the analysis is used to determine the execution order of
statements and to �nd circular dependencies. Also, the output can be used to reason
about the safe reordering or the parallel execution of statements. In the �eld of software
engineering it can be used as a pre-step for remodeling systems and to reduce complexity.
The Control �ow and the Data �ow Analysis are the two well known dependency anal-

yses. The Control �ow Analysis identi�es the order, in which instructions in an analyzed
system are executed or evaluated, respectively and is visualized through a Control �ow
graph. Figure 11 shows an example program and the resulting graph of a control �ow
analysis applied to this program.
A Data �ow Analysis discovers dependencies between data elements, that are altered

by the analyzed system. It determines the order of execution of statements through the
data dependencies. For example, considering the assignments: x = a + b, b = 1 + 2, a
= 5 + 3. The result of the analysis would show, that the assignments of a and b have
to be evaluated before the assignment of x. The evaluation order of those statements is
not further de�ned, since they do not share a dependency, thus they could be evaluated
in any order or in parallel.

26

2. Foundations and Technologies

x = a + b ;
y = b ;
whi l e (y < x)
{

x = x − 1 ;
y = y + 2 ;

}

Figure 11: Example of a Control �ow graph for a given program.

2.1.2.1. Transitive Dependencies and Transitive Closure
A transitive dependency between two entities exists, if there is a path in the dependency
graph from one entity to the other. In graph theory, a path is a sequence of nodes, such
that for each consecutive pair of nodes in the sequence, an edge between these nodes
exists. More precisely: if a, b, c ∈ E and (a, b) ∈ R ∧ (b, c) ∈ R → (a, c) ∈ R. Figure 10
shows a dependency graph that includes three such transitive dependencies: A and E, A
and F, and A and C.

Figure 12: Transitive closure graph from Figure 10.

In a more complex graph such dependencies are hard to spot, that's why the transitive
closure of the dependency relation is computed. The transitive closure is the relation R+

27

2. Foundations and Technologies

over R, such that R+ is a minimal transitive relation and contains R. Simply put, this
closure contains all dependencies between entities, that are either direct or transitive.
Figure 12 shows the transitive closure graph from the example given in Figure 10. The
transitive edges are represented through a dotted line.
The closure is often needed to answer reachability questions; a node m is reachable

from a node n, if they are connected through a path. The advantage over a normal graph
is performance: In a normal graph the time needed to �nd the answer is O(|V | + |E|)
in the worst case (when a Depth-�rst Search or Breadth-�rst Search is used). With
the transitive closure it is either O(|V |), when implemented naively, or O(1), when the
information is saved in a |V |×2 matrix.

2.2. Relevant Technologies

2.2.1. Knowledge Discovery Meta-Model (KDM)

The Knowledge Discovery Meta-Model is a speci�cation by the ADM Task Force6 and
speci�es a �meta-model for representing existing software, its elements, associations, and
operational environments.� [36] It is the result of the e�orts undertaken by the Task
Force to standardize the re-engineering process in the context of software modernization
by using model-driven principles.
The main goal of the KDM standard is the creation of a uniform representation of all

software artifacts an existing system is composed of, with the aim to extract di�erent
kinds of knowledge about the system. A software artifact thereby refers to everything
that is involved in the engineering process, such as the source code of the system, used
databases, user interfaces or build instructions.
The extracted knowledge is composed of a set of facts, describing behavior, structure

and data of the system. The facts can be grouped into domains, where each domain
de�nes an architectural viewpoint of the system. The language used to describe such a
viewpoint is contained in a package. Figure 13 shows all packages de�ned by the KDM
standard. For example, the Data package de�nes the viewpoint for the Data domain,
containing meta-model elements describing the organization of data in the system, like
database tables. The packages are also structured in layers, each builds upon the pre-
vious, to cope with the complexity of KDM; they will be described in the following
subsections.

2.2.1.1. Infrastructure Layer
A small set of concepts that are used systematically throughout the speci�cation are
de�ned in this layer, consisting of the three packages Core, KDM and Source.

6Architecture-Driven Modernization Task Force http://adm.omg.org/ (accessed 12.01.2012)

28

2. Foundations and Technologies

Figure 13: Layers, packages, and separation of concerns in KDM [39].

Core The Core package contains basic constructs for creating and describing the meta-
model elements in all other packages. KDM builds on the Entity-Relationship termi-
nology, thus the two fundamental classes are KDMEntity and KDMRelationship, from
which every other element in the KDM speci�cation derives. An instance of KDMEntity
is thereby de�ned as �an abstraction of some element of an existing software system, that
has a distinct, separate existence, a self-contained piece of data that can be referenced
as a unit,� [36] while an instance of KDMRelationship represents an association with a
meaning between elements of the system.

KDM The package named KDM 7 contains meta-model elements that constitute the
framework of each KDM instance. The framework describes the physical structure of the
instance, which consists of one or more Segments containing one or more KDMModels.
Each KDM package, that builds on this package, may de�ne some speci�c KDMModel,
addressing a speci�c facet of knowledge concerning the modeled system.

Source The Source package contains the InventoryModel. It is a collection of KDM-
Entities that describe all the physical artifacts of the modeled system, such as source
code, con�guration �les, images, etc. The model also contains a mechanism to trace a
KDMEntity back to its �original� language-dependent representation, i.e., a reference or
link to the (region of) a �le, where the entity is de�ned. For example, a KDMEntity
describing a function in a module contains a link to the lines of code in the source code
�le where the function is de�ned.

7To clarify the wording: There is a di�erence between the package named KDM and a KDM Package.
The former describes the package of the infrastructure layer, while the latter is used for all packages
of the speci�cation.

29

2. Foundations and Technologies

Figure 14 shows the UML Class Diagram of the InventoryModel. For most physical
artifacts there exists a KDMEntity, describing the type of the �le. To address the group-
ing of artifacts, the package provides an InventoryContainer which can contain instances
of InventoryItems.

Figure 14: UML Class Diagram of the inventory model [39].

The package also provides an AbstractInventoryRelationship to model speci�c depen-
dencies between physical artifacts. While the sub-class InventoryRelationship describes
a general relationship between two inventory items, like the association between a source
�le and its compilation unit, the DependsOn-Relationship is used to model the require-
ment of one or more inventory elements in the build process of another inventory element,
for example, the need of a certain con�guration �le for an executable �le.

2.2.1.2. Programs Elements Layer
The Program Elements Layer consists of the packages Code and Actions. Various con-
structs from di�erent programming languages can be represented through the meta-model
elements de�ned in this package.

30

2. Foundations and Technologies

Code The Code package de�nes elements called CodeItems, representing �named ele-
ments determined by the programming language, the so-called `symbols', `de�nitions',
etc.,� [36] such as classes, and methods. Furthermore, the package de�nes elements to
represent structural relationships between CodeItems.

Figure 15: Key classes of the Code package [36].

Figure 15 shows the key classes of the Code package. It de�nes a CodeModel which
owns a set of facts about the system modeled, as well as an AbstractCodeElement and
an AbstractCodeRelationship. The latter is used to represent relationships between code
elements, such as an import or extends relationship, which can be found in some object
oriented programming languages, for instance.
The AbstractCodeElement is the abstract parent class for entities that can be used to

model code. Derived from it is the CodeItem, an abstract class to constrain the owning
relationship of some containers used in the Code package. Sub-classes thereof are used
to model actual code elements:

� Module: A Module handles packaging aspects of code, like packages or compilation
units. It represents an �entire software module or a component� [36], which is a
�discrete and identi�able program unit that contains other program elements.� [36]

� ComputationalObject : A generic object representing elements that are callable, such
as procedures or variables.

� Datatype: A Datatype and the derived sub-classes de�ne �the named elements [. . .]
that describes datatypes.� [36]

31

2. Foundations and Technologies

Actions The Actions package extends the Code package and contains meta-model el-
ements to describe implementation-level behavior as well as data and control �ow re-
lationships between the code elements. It does so by de�ning two key elements: The
ActionElement and the AbstractActionRelationship.
The ActionElement describes behavior, such as statements and operators. The at-

tribute kind speci�es the precise semantics, de�ned in the Micro KDM package. Fur-
thermore, to trace an ActionElement back to its origin in the source code, the SourceRef
attribute is provided.
AbstractActionRelationship is an abstract parent class for relationships, that describe

some sort of behavior. According to [39], the relationship can either represent a control
�ow between two actions (De�ned by ControlFlow and its sub-classes) or an association
originating in an action element and a code element.
Figure 16 shows an example of how the instantiation and assignment of Java's File class

is translated into KDM Code and Actions entities. The local variable ��le� is translated
to an instance of StorableUnit from the Code package. The instantiation and assignment
is represented through the relationships Calls and Creates, respectively. For clarity and
readability, names and references have been modi�ed.
For more basic data handling, the Actions package provides the Reads, Writes and

Addresses relationships. While Reads and Writes are used to de�ne a data �ow from
and to a data element, the Addresses is used to model the access of data inside a more
complex data structure, such as the struct element in the C programming language.

2.2.1.3. Runtime Resource Layer
The Runtime Resource Layer describes knowledge about a modeled system and the
environment it operates in. Elements of this layer represent resources provided by the
runtime platform and �resource actions� to manage such resources, respectively. Each
package of the Runtime Resource Layer de�nes its own entities and resources to describe
speci�c concerns in the modeled system. For example, the Event package provides classes
to model state and state transitions triggered by an event. Also, each package de�nes
some structural relationships between resources, as well as speci�c actions relating to the
manipulation of such resources through API calls.
The Runtime Resource Layer consists of the four packages Data, Event, UI, and Plat-

form, each with their own respective KDMModels named after the package they reside
in.

Data The Data package de�nes meta-model elements addressing the organizational
aspect of data. In contrast to the Code package, which de�nes data as �application
data�, such as I/O variables and function parameters, data is referred here under the
persistence aspect, resulting in elements that can model complex data repositories.
Since the Data package is particularly designed to model relational databases, it comes

32

2. Foundations and Technologies

Instantiation and assignment of Java's File class.

F i l e f i l e = new F i l e ("path to f i l e ") ;

KDM representation of above actions.

<codeElement
x s i : t y p e=" code :S to rab l eUn i t "
name=" f i l e "
type=" java . i o . F i l e " kind=" l o c a l ">
<codeRelat ion

x s i : t y p e="code:HasValue "
to="Act ionElement : c l a s s i n s t ance c r e a t i on "
from="CodeE l ement :S to rab l eUn i t : f i l e "/>

</codeElement>
<codeElement

x s i : t y p e=" act ion :Act ionElement "
name=" c l a s s i n s t anc e c r e a t i on "
kind=" c l a s s i n s t anc e c r e a t i on ">

<codeElement
x s i : t y p e=" code:Value " name=" s t r i n g l i t e r a l "
type=" java . lang . S t r ing " ext="" ; path/ to / f i l e" ; ">

</codeElement>
<ac t i onRe l a t i on

x s i : t y p e=" a c t i o n :C a l l s "
to=" java . i o . F i l e . F i l e (S t r ing f i leName) "
from="Act ionElement : c l a s s i n s t ance c r e a t i on "/>

<ac t i onRe l a t i on
x s i : t y p e=" ac t i on :C r e a t e s "
to=" java . i o . F i l e "
from="Act ionElement : c l a s s i n s t ance c r e a t i on "/>

</codeElement>

Figure 16: Instantiation and assignment of the class �java.io.File� as KDM relationships.

with a broad set of elements to map the facts contained within such a database into the
Data domain de�ned by this package. For instance, the abstract DataResource class is
specialized into DataSegment, RelationalTable, RelationalView, RecordFile and so on, to
give a �ne grained view on the modeled data and its organization.
The package also delivers a new set of actions, derived from the AbstractActionRela-

tonship de�ned in Actions package:

� ReadColumnSet : Used to model data �ow from the data resource, for example a
SQL Select query.

� WritesColumnSet : Models a data �ow to the data resource, like a Insert query.

33

2. Foundations and Technologies

� ManageData: For operations, that neither has a data �ow from, nor a data �ow to
the data resource, but nonetheless represent data access, this meta-model element
is used.

� HasContent : A structural relationship de�ning an interconnection between an ac-
tion element and the data resource.

Event The Event package facilitates the modeling of high-level behavior of a system,
notably event-driven state transitions. The elements of this package allows the model-
ing of two kinds of states: concrete states of speci�c state-machine languages, such as
CHILL [48] and abstract states, like states in algorithms or user interfaces.

UI Meta-model elements in the UI package are related to facets of user interface knowl-
edge, such as the composition of the interfaces, their sequence of operations, as well as
their relationships to the modeled system.
The model of the UI package is the UIModel, which represents the main components of

the user interface. The model is composed of UIResource elements, describing concrete
ui elements such as forms or labels, and containers, like a web page, respectively. The
package also de�nes two relationships, the UILayout and the UIFlow, where the former is
used to describe an association between �a portion of a user interface and its layout� [39],
while the latter �captures the behavior of the user interface as the sequential �ow from
one instance of Display to another.� [36]
Deriving from the Actions package AbstractActionRelationship, the UI package de�nes

three new relationships, called ManageUI, ReadsUI and WritesUI, with similar seman-
tics as the counterparts in the Action package, di�ering in the fact, that they refer to
UIResource elements.

Platform The Platform package de�nes meta-model elements representing parts of the
runtime platform and the environment of the modeled system, like inter-process commu-
nication or data management. These elements constitute the execution context of the
system due to the fact that a system is not self-contained, meaning that the system is
not only determined by the programming language it was written in, but also by the
selected runtime platform.
The package de�nes the PlatformModel, a container for a set of AbstractPlatformEle-

ments. Sub-classes of the AbstractPlatformElement specify the type of platform or en-
vironment resource, like a Thread, a Process or a File-Resource. Also de�ned is the
relationship BindTo, that describes an association between two platform resources.
For accessing such resources, the package provides also a set of actions, deriving from

the Actions package. These actions are ReadsResource, WritesResource, ManagesRe-
source with similar semantics as their counterpart from the Actions package.

34

2. Foundations and Technologies

2.2.1.4. Abstractions Layer
The Abstractions Layer contains implicit knowledge of a system, like domain- or appli-
cation-speci�c abstractions, and will mostly not be generated automatically but by a user
reasoning about or interpreting the system. To model this knowledge, the Abstractions
Layer de�nes the three packages Conceptual, Build, and Structure.

Conceptual The Conceptual package is used to model domain-speci�c knowledge of the
system; it describes the viewpoint for the domain of Business Rules. The elements in this
package are used to generate conceptual information about the system by using lower
level KDM models.
Furthermore, the resulting model is aligned with the SBVR8 speci�cation, where the

entities de�ned in this package are mappings of the so called �concepts� of SBVR.

Build The Build package de�nes elements representing facts related to the build process
of the modeled system, �including but not limited to the engineering transformations
of the `source code' to `executables� ' [36], as well as elements to represent the output
artifacts generated by the build process.

Structure The Structure package de�nes several meta-model elements to describe the
architectural components of the modeled system, such as subsystems, layers, packages,
etc. The results show, how the structural elements of the system are related to the
modules de�ned by the Code package.
The package de�nes the StructureModel, which owns a collection of StructuralElements,

representing the organization of the modeled system's code.

Micro KDM This package is concerned with ActionElements. The problem addressed
is, that some ActionElements have not per se a de�ned semantic. For views, that can be
used in a static analysis, this ought to be an issue. Thus, constraints and attributes are
introduced with this package, specifying additional semantics for such cases.

2.2.2. MoDisco

MoDisco is �a generic and extensible framework for model driven reverse engineering.� [7]
It is embedded in the context of reverse and re-engineering of software systems and applies
the model-driven engineering principle to this process.
The main problem MoDisco tackles, is the cost of migration and modernization of

legacy systems. Quick re-engineering of software systems to adapt the changing and
extended demands to it, is often not possible, because the systems are heterogeneous

8Semantics of Business Vocabulary and Business Rules, http://www.omg.org/spec/SBVR/ (accessed
12.01.2012)

35

2. Foundations and Technologies

and important for the business processes, which causes a deep integration in to the
company's routine procedures. Combined with the fast pace of evolution of technologies,
making developed systems rapidly obsolete, most companies get into a predicament.
The MoDisco framework tries to solve these problems by �switching from the hetero-

geneous world of implementation technologies to the homogeneous world of models.� [7]
The major challenge identi�ed, is the discovery and understanding of functionalities,
architecture, data, etc. used in the legacy systems and �reverse engineer them into a
meaningful representation that can be later on manipulated and re-implemented.� [7]

Figure 17: The two phases of MoDisco: �Discovery� and �Understanding� [7].

Figure 17 shows the approach taken by MoDisco, which consists of the two phases
�Model Discovery� and �Model Understanding�.

2.2.2.1. Model Discovery In this phase a set of models (denoted as M, M', M� in the
�gure) is discovered through one or more �discoverers�, describing the di�erent viewpoints
needed, each expressed through a meta-model. The discovery process thereby considers
not only the source code of the system under view, but also documentation, raw data,
and other sources needed in the engineering process of the system. The output models
can be instances of a variety of meta-models most notably the Knowledge Discovery
Meta-Model (see section 2.2.1) and Software Metrics Meta-Model, both speci�cations of
the OMG.

2.2.2.2. Model Understanding In this phase, the generated models can be exploited.
In the context of reverse engineering, the models can be used for metrics computation,
like coupling, refactoring of architecture and structures, code generation, quality anal-

36

2. Foundations and Technologies

ysis, and so on. While the content of the models is analyzed and computed, model
transformations or chains of such transformations can occur, which often are automated
processes, depending on the identi�ed scenarios.

MoDisco is available as an Eclipse open source project, providing an extensible and
customizable Model Driven Reverse Engineering (MDRE) framework. It is equipped
with both generic and customizable components, such as a model browser, a mechanism
to extend and customize models, a query manager for models, and some metrics visu-
alization facilities. Also, it o�ers support for Java reverse engineering, including a Java
meta-model, a corresponding discoverer and a transformation process to KDM, as well
as XML reverse engineering.

2.2.3. CloudMIG

CloudMIG describes a model-based approach �for the semi-automated migration of en-
terprise software systems to scalable and resource-e�cient PaaS- and IaaS-based appli-
cations.� [18] The main purpose of the approach is to aid the process of re-engineering
a legacy software system to run in a cloud computing environment, because most legacy
systems have to be heavily re-engineered, to create an architecture suitable for running
�in the cloud.� However, the cause for this is mostly not the migration to a server-based
structure, but the scalability and �elasticity� of the target environment.
While other approaches and projects related to such types of migration exist, they all

su�er several shortcomings, summarized as follows [18]:

1. Applicability: Solutions for a cloud migration process are tied to a particular cloud
provider.

2. Level of automation: The migration process is not fully automated; users often
have to build the target architecture and the mapping model9 manually. Also, the
proposed solutions lack a detection mechanism for constraint violations of the cloud
environment at design time.

3. Resource e�ciency: The use of resources in migrated systems is often ine�cient
and the advantages of the environments elasticity aren't exploited. Also, the in-
su�cient evaluation of dynamic resource utilization of most solutions adds to this
shortcoming.

4. Scalability: Although one of the advantages of a cloud environment, an automatic
evaluation of the scalability of a target architecture is often non existent.

9A model to describe, how elements of the legacy system are mapped to the elements of the new system.

37

2. Foundations and Technologies

The CloudMIG approach addresses these shortcomings by de�ning six activities for a
migration of systems to PaaS- and IaaS-based cloud environments, using a model-based
approach. The interaction of these activities can be seen in Figure 18 and are speci�ed
as follows:

A1 - Extraction: The legacy system is transformed into a set of models, describing the
actual architecture of the system. The process is controlled by the MoDisco framework
(see section 2.2.2), using OMG's KDM (see section 2.2.1) as the meta-model. Further-
more, a utilization model is extracted that includes statistical properties concerning user
behavior, such as the number of service invocation over time and which also contains
�application-inherent information related to proportional resource consumption.� [18]

Figure 18: The CloudMIG approach. [18]

A2 - Selection: CloudMIG supports a variety of cloud environments and de�nes a
meta-model to describe the common properties of those. To advance in the process of
the migration, a speci�c instance of the meta-model has to be selected, describing the
desired cloud environment.

38

2. Foundations and Technologies

A3 - Generation: This activity results in the generation of three artifacts: A target
architecture, a mapping model and a constraint violation model, listing �the features of
the target architecture which are non-conform with the cloud environment's speci�ca-
tion.� [18] The generation of this model is described in [19]. The Cloud environment
constraints de�ned in the model for an environment are validated through a set of val-
idators, that are plugged into the platform. Each validator thereby addresses a speci�c
constraint; for example the AbstractCommonTypeListManager describes a handler for a
prede�ned list of types, that create a violation, when used.
For the generation of the target architecture, CloudMIG de�nes three phases, contain-

ing the following:

P1 Model transformation: Features of the existing architecture are assigned to cloud-
speci�c features.

P2 Con�guration: This phase con�gures, how system feature resources are allocated,
using rules and assertions for the heuristic computations in P3.

P3 Resource-e�cient feature allocation: This phase improves the initial assignments
from P1 regarding the resource e�ciency using the rules and assertions of P2.

A4 - Adaption: Although the process automates much of the migration process, the
generated results are not always satisfactory with respect to the requirements. Thus a
manual adjustment has to take place, which is the purpose of this activity.

A5 - Evaluation: Before the last activity, an evaluation of the target architecture,
generated by A3 and A4, takes place, involving static and dynamic analyses.

A6 - Transformation: At last, the legacy system is transformed manually according to
the de�ned and generated models.

Activity A3 and A4 can be repeated either after an evaluation has been done, to
improve the generated models, or after each generation process, analyzing the e�ects of
di�erent cloud environments on the legacy system.

39

3. Approach of this Thesis

3. Approach of this Thesis

Science is the attempt to make the chaotic diver-
sity of our sense-experience correspond to a logi-
cally uniform system of thought.

� Albert Einstein

The CloudMIG approach and its implementation, CloudMIG Xpress, migrates existing
legacy software systems to a cloud based environment. In this migration process a new
architecture for the system is de�ned, that embraces the advantages of the environment,
the �elasticity� in particular. To �t the legacy system onto this new architecture, it often
has to be remodeled and restructured. In this process, the legacy system is converted with
the help of the MoDisco framework to an instance of KDM (see Section 2.2.1 and 2.2.2,
respectively). This transformation chain can be seen in Figure 19; MoDisco creates from
a set of sources a Java model, which will then be transformed to a KDM instance. At
the time of writing, MoDisco is only capable of transforming Java based legacy systems
to KDM, therefore the transformation chain pictured contains Java source �les.

Figure 19: The transformation chain to a KDM instance in MoDisco.

3.1. Reverse Engineering of Java Class Files

As stated in Section 2.1.1 a problem arises, if the system, or parts thereof, is only available
in binary or intermediate form; in the case of Java, a set of class �les. For this case,
MoDisco provides a mechanism to analyze the bytecode contained in these �les, enriching
the KDM instance with the result. However, this mechanism does not convert the class

41

3. Approach of this Thesis

�le back to a Java source �le, but merely extract signatures and members, ignoring the
interesting part, the method bodies. In them, the vital parts of a class are contained,
namely control and data �ow information, that are necessary to enable the restructuring
process. Thus, the provided mechanism is not satisfying.
The solution to this problem is a process, that is capable of extracting the whole

information from a class �le and the contained methods within. This process has then to
be encapsulated in a Discoverer, that takes class �les as input and returns KDM instances
or entities and relations, respectively. Since projects consist probably of both class and
source �les, a better solution would be a uniform Discoverer, that can work with both
types of �les. Although an interesting approach, it would cross the boundaries of this
thesis. Therefore another solution has to be found.
The second approach for a solution is de�ned in the �rst goal of this thesis (see Sec-

tion 1.2.1) and introduces the use of a Decompiler. Because Java is based on bytecode,
the decompilation process is much more simpler than in languages, that compile to na-
tive code (see Section 2.1.1). Thus, before the discovery of a KDM instance begins, the
class �les of the legacy system are put through a decompilation phase, leaving only Java
source �les to work with. This results in an extended transformation chain, depicted in
Figure 20.

Figure 20: Extended transformation chain.

3.2. Dependency Analysis

For the migration process de�ned in the CloudMIG approach, the target cloud environ-
ment has to be selected. As stated in Section 2.2.3, CloudMIG Xpress provides a variety
of cloud environments, including Amazons EC2 10 and the Google App Engine11. The
essential parts are described through a meta-model, which is used in the transformation
process of the legacy system.
An interesting part of the description is concerned with the constraint de�nitions, that

are imposed on a system that runs on the selected environment. For example, The Google

10http://aws.amazon.com/en/ec2/ (accessed 01.07.2012)
11https://developers.google.com/appengine/ (accessed 01.07.2012)

42

3. Approach of this Thesis

Figure 21: Possible states of a system in the constraint detection process. [19]

App Engine is very restrictive concerning system access. It disallows the use of threads,
sockets, system calls and �le system access, among others. Thus, when a legacy system
is migrated to such an environment, it has to be validated against these constraints.
Figure 21 shows the part of the work�ow in CloudMIG Xpress related to constraints.
Apparently, violations have a severity, that can break the migration process. But not all
violations prevent the migration process (see [19] for examples).
Furthermore, if a legacy system is migrated, it often has to be redesigned in order to

�t an architecture suitable for a cloud environment. In order to do so, the current system
architecture has to be extracted and remodeled accordingly.
Both aspects addresses reachability: For the constraint violation examples given above,

it is de�ned through inclusion and in the context of architecture remodeling, through the
interconnection of the di�erent system parts. As stated in Section 2.1.2, the transitive
closure can be used to determine the reachability of system components. Because the
system itself is described as an instance of KDM, the closure has to be computed on top
of the entities and relationships de�ned therein, since KDM relationships are not transi-
tive [36, page 66]. This reachability aspect and the implementation of it, respectively, is
also the second goal of this thesis, de�ned in Section 1.2.2.

43

4. Java Decompiler

4. Java Decompiler

If Java had true garbage collection, most programs
would delete themselves upon execution.

� Robert Sewell

The following sections describe existent Java decompilers, as well as the integration
of one of them into CloudMIG Xpress. Section 4.1 gives an overview of the taken ap-
proach, while 4.2 describes Java decompilers. Section 4.3 de�nes test cases to evaluate
the capacity of the decompilers. The results of the tests are analyzed in Section 4.4
and discussed in Section 4.5. Section 4.6 concludes with the integration approach into
CloudMIG Xpress.

4.1. Overview

A stated in 3.1, the e�ort to create a new discoverer for the MoDisco tool crosses the
boundaries of this thesis. The inherent problem of this approach is the decompilation of
class �les. This process is not trivial and is the core of entire theses [31; 10]. However,
there exists a variety of Java decompilers, that can be used for the approach for a better
bytecode support in CloudMIG XPress.

Figure 22: Compilation and decompilation work�ow for Java bytecode [21].

A work�ow of the compilation an decompilation process can be seen in Figure 22.
Apparently, there is more than one way to create a Java Class �le. For most Java

45

4. Java Decompiler

programs, javac is used. Others exists [15; 47; 42], but are not commonly applied.
As of late, other languages make also use of the JVM [22; 37; 25; 34], delivering their
own compiler; even the writing of a class �le by hand is possible. All this leads to a
syntactically correct class �le, that can be optimized or obfuscated.12 The use of such
tools often change the structure of the �le. It is still a functional equivalent to the original,
but can lead to di�erent semantics. Therein lies the problem of most decompilers: While
they can often retrieve a syntactical correct Java source �le, the generated code can di�er
from the original.

4.2. Available Java Decompilers

A variety of Java decompilers exists. This section gives a brief overview of most of them.
The Decompilers mentioned here are selected from the �rst one hundred search results
from the Google Search Engine using the terms �Java Decompiler� as well as from [45]
and [21]. Those, that are not listed here, are either build onto the decompilers presented
here, extending them with a GUI, or not available.

Mocha [46] Mocha was released as one of the �rst Java decompilers in 1996. The
distribution also contained an obfuscator called Crema. Further development has
stopped with the death of the author, but the decompiler is still available on several
websites.

Jdec [6] Jdec is written in Java and an open source decompiler. It supports the decom-
pilation of class �les, that are compiled with javac. The latest version is 2.0 and
has been released in May, 2008.

JODE [23] JODE is a package containing a decompiler and an optimizer. The current
version is 1.1.2-pre1, released in February 2004.

Jad [26] Jad is a free for non-commercial use Java decompiler, that is no longer main-
tained. The last available version is 1.5.8.e/g, depending on the platform, and was
released in 2001. Jad is an often used decompiler and is applied as the back-end of
many other programs such as the DJ Java Decompiler [5].

Dava [32] Dava is a Java decompiler and part of the Soot Java optimization frame-
work [28]. It aims at decompiling not only bytecode that is created through javac,
but also arbitrary bytecode. Dava can be obtained through the Soot distribution,
which is an ongoing research project. The current version is 2.5.0, released in
January, 2012.

12A process to make the understanding of source or machine code harder on purpose.

46

4. Java Decompiler

JReversePro [27] JReversePro is written in Java and is a decompiler and disassembler.
It is released under an open source license and currently in version 1.5.2, which was
released in May, 2008.

Java Decompiler [40] This project aims at developing a platform independent decom-
piler, that also provides obfuscation options. The latest version is still in alpha
phase and has been released in 2002.

Java Decompiler Project [13] This decompiler is a free for non-commercial use program
aiming at decompiling Java 5 and higher byte code. The current available version
is 0.3.3 and still in development.

4.3. Test Cases

As stated before, Java bytecode can be obtained through many di�erent ways, including
writing it down by hand. Each way is using his own strategy to create bytecode, which
therefore can contain patterns, that are not easily translated back to Java structures.
For example, a compiler developed for a language intended to run on the JVM, creates
valid bytecode patterns, that don't correspond to a speci�c Java construct, much like
instructions in the object code counterpart written in assembler. Thus, to fully test the
capacity of a decompiler, all variants of how to assemble bytecode must be tested. This
is a tedious and time consuming work and also crosses the boundaries of this thesis.
Therefore, a much more simpler way of testing must be used.
The assumption of this thesis is a better support for the migration of legacy software

systems in CloudMIG Xpress. To create tests in this context for a decompiler, the term
has to be clari�ed. For this part of the thesis, a legacy software system is de�ned in the
following way:

1. A software system written in Java, derived from the fact, that the MoDisco tool
only supports Java source �les.

2. The source �les are compiled with javac. The compiler version has to be less or
equal to 1.5.

The second de�nition results from the following observation: Java is an evolving lan-
guage, so for each new major milestone, a new JDK is released. The current version of
the JDK is 1.7 and was released in July, 2011. Programs written with this version are
obviously not a legacy system in a strict sense. The most commonly used JDK version is
still 1.6, released in 2006. Although systems compliant to this version could qualify for
the term legacy software system, the language standard contained in this JDK does not
di�er signi�cantly from the language standard de�ned in JDK version 1.5. Even though
other compilers for the Java language exists, they are not commonly adapted, hence the
above de�nition.

47

4. Java Decompiler

With this de�nition, a set of tests can be created, that cover the commonly used
language constructs. After that, they are compiled with the di�erent versions of javac to
obtain a set of class �les, that are then used with the di�erent decompilers. The output
of the decompilation process falls into one of three categories:

1. The decompiler creates no output.

2. The result is a syntactical correct Java program.

3. The result is syntactical correct and semantically equal to the original source code.

The following tests contain language constructs, that are present in most Java pro-
grams:

4.3.1. HelloWorld

The HelloWorld program is a very simple test, that contains everything needed to run a
Java application. The program can be seen in Figure 6.

4.3.2. Inner Class

This test contains an inner class, that uses a member of the parent class. An excerpt
containing the relevant code, can be seen in Figure 23.

public class ClassTest {
private St r ing parent = "ClassTest " ;

private class MyInnerClass {
public MyInnerClass () {

System . out . p r i n t l n ("My parent i s : " + parent) ;
}

}
}

Figure 23: Excerpt from ClassTest.

4.3.3. Conditions

This test contains the simple if-else construct, a switch statement as well as the C-Style
if-else: boolean_condition ? true_flow : false_flow;

48

4. Java Decompiler

4.3.4. Exceptions

Exceptions are a frequently used construct in Java to delegate error handling. For this,
a try-catch block is used. Even if a method does not throw an exception in the body, the
method signature can force the use of a try-catch block. Also, to clean up the state, the
�nally keyword is introduced, whose body is always executed, if used after a try-catch
block. The syntax of this block can be seen in Figure 24.

try {
// at tempt something

} catch (Exception ex) {
// handle excep t i on

} f ina l ly {
// c leanup s t a t e

}

Figure 24: Try-catch-�nally syntax in Java.

4.3.5. Loops

The two main loop types in Java, namely the While and the For Loop are tested here.
The special case of the For-Each Loop, depicted in Figure 25, is not tested, because it
is only so called �syntactical sugar�, which will be translated into the normal For Loop
construct in the compilation process.
This test is more interesting than it initially appears, because compilers, that translate

a program to native code, transform loops often to Do-While Loops. One could assume,
that this is also the case here.

for (Object ob j e c t : ob j e c t s) {
// do something wi th o b j e c t

}

Figure 25: For-Each Loop in Java.

4.3.6. Inheritance

Java is an Object-orientated language, so the testing of object inheritance is a matter of
course. The two inheritance principles available in Java are the implementation of one
or more interfaces and the extension of one13 (abstract) class, respectively.

13Java does not support multiple inheritance of classes, but of interfaces.

49

4. Java Decompiler

4.3.7. Generics

Generics are a new Feature introduced with the Java 1.5 speci�cation. It �allows a type
or method to operate on objects of various types while providing compile-time type
safety.�14 An example for Generics is shown in Figure 26. It displays the signature of
the ArrayList class. The type E identi�es the type of objects, that can be put into the
ArrayList. Without Generics, the type has to be either Object, to enable the ArrayList
for all kinds of objects, or there has to be an ArrayList for each object type that exists
in the system and that is used in the context of an ArrayList.

class java . u t i l . ArrayList<E>
extends AbstractL i s t<E>
implements List<E>, RandomAccess , Cloneable , S e r i a l i z a b l e

Figure 26: ArrayList signature with Generics in Java.

4.3.8. Annotations

Annotations are meta-data introduced in Java 1.5, that can be added to classes, methods,
and variables. They can be obtained through the re�ection mechanism in Java and are
used to in�uence the runtime behavior. They can be identi�ed through their notation,
beginning with the @ symbol.

4.3.9. Enumerations

An enumeration type de�nes an order on related types. Normally, this would be done
through a set of integers, where the name of the integer corresponds to the name of the
type and its value to the position. The Enum class in Java encapsulates this behavior
and enables the user to use an enumeration type like a class. Figure 27 shows an ex-
ample of how days could be written as an enumeration type. Moreover, it shows, how
the enumeration type can be used as class by de�ning a String representation for each day.

Other tests contained in the class �les, that are not mention explicit, are the Double
Brace Initialization pattern and the inline initialization of abstract classes (see Figure 28
and 29, respectively).

14http://docs.oracle.com/javase/1.5.0/docs/guide/language/index.html (accessed 01.07.2012)

50

4. Java Decompiler

public enum Day {
MONDAY("Monday") ,
TUESDAY("Tuesday") ,
WEDNESDAY("Wednesday") ,
THURSDAY("Thursday") ,
FRIDAY("Friday") ,
SATURDAY("Saturday") ,
SUNDAY("Sunday") ;

private St r ing str ingRep ;

private Day(St r ing str ingRep) {
this . s t r ingRep = str ingRep ;

}
}

Figure 27: Day enumeration type, as de�ned in the Enum test case.

private stat ic f ina l Set VALID_CODES = new HashSet () {{
add ("XZ13s") ;
add ("AB21/X") ;
add ("YYLEX") ;
add ("AR2D") ;

}} ;

Figure 28: Double Brace Initialization pattern in Java.

MyAbstractClass myAbstrctClass = new MyAbstractClass () {
public void myAbstractMethod () {

// implementat ion
}

} ;

Figure 29: Inline initialization of an abstract class in Java.

51

4. Java Decompiler

4.4. Test Evaluation

The evaluation compares the original source �les with the output of the decompilers.
Because the �les are rather small in code size, no special metrics are computed to show
the degree of the di�erence; rather, they are compared manually.
The decompilers are rated by their output, which falls into one of the three categories

stated in 4.3; a 0 is equivalent to the no-output category, while a 2 describes a syntactical
and semantical correct output. Accordingly, 1 is syntactical correct. Additionally, two
�in between� categories are introduced, referenced through 0-1, 1-2, due to the fact, that
the output does not always correlate with one of the primary categories. For example,
while the translation of a while loop into a for loop is a legal substitution, the semantics
of both loops di�er, thus the rating is 1-2 and not 2. Category 0-1 describes every output
that is generated, but contains errors or stack dumps. The try-catch-�nally result of
most decompilers falls into this category, because the code either contains references to
the stack or contains code, that does not equal the functionality of the original.
Unfortunately, the JDK in Version 1.1 and 1.2 will not run on modern systems, so

the tests are only executed with the JDK versions 1.3, 1.4, and 1.5. However, it can
be assumed, that the decompilers are also capable of translating �les compiled with the
former two versions of Java, because all but one decompilers had no problems translating
the �les compiled with the latter versions.

HelloWorld Inner Class Conditions Exceptions Inheritance

Mocha 2 2 2 0-1 2, 2, 1-2

Loops Annotations Enum Generics

Mocha 1-2 0 0 0

Table 1: Test evaluation of Mocha.

Mocha The Mocha decompiler produces good test results. While some odd translations
exists, like the synchronized in the class signature, the output is mostly semantically
correct. The only problem occurs in the decompilation process of try-catch-�nally con-
structs. Although the content of each statement of the construct is correctly translated,
the keywords are replaced with a pop, indicating, that the stack representation at this
point is used.
An interesting fact about the decompiler is, that it only accepts class �les compiled

with the compiler version 1.3; if attempted with higher versions, an error occurs. Thus,
annotations, enumerations and generics could not be tested.

Jdec Jdec has problems with the translation of the C-style if-else syntax. While it
translates the case to a standard if-else construct, the content of the statements are

52

4. Java Decompiler

HelloWorld Inner Class Conditions Exceptions Inheritance

Jdec 2 2 1-2 0-1 2, 2, 2

Loops Annotations Enum Generics

Jdec 1-2 2 1-2 1-2

Table 2: Test evaluation of Jdec.

empty. It has also some quirks in the translation of a try-catch-�nally construct. While
the keywords exists and the content of the statements are also correct, a syntax error
exists, in where an object is been referenced, before it is de�ned. Furthermore, the
construct is wrapped in another try construct and two closing braces are missing.
The translations of the loops are rather unusual. The while-loop is indeed translated

to a while loop, but the condition of the loop is put into an if -block in the body. The
for loop does not exists, instead a while loop is used, where the condition and increment
is also located in the body.
Most notably, Jdec is only one of two decompilers, that is capable of translating anno-

tations. Not only are annotation de�nitions translated to the correct syntax, but it also
discovers the use of annotations.

HelloWorld Inner Class Conditions Exceptions Inheritance

JODE 2 2 2 2 (only 1.3) 2, 2, 2

Loops Annotations Enum Generics

JODE 2 1-2 0 1-2

Table 3: Test evaluation of JODE.

JODE The decompilation of most constructs are no problem for the JODE decompiler.
It is capable of putting translated inner classes into the de�ning class �le, rather than into
a separate �le; the double brace initialization pattern has also been correctly identi�ed.
The try-catch-�nally statement has been successfully translated, but only if the �le was
compiled with the compiler version 1.3; 1.4 and 1.5 resulted in an error.
The new language features introduced with Java 1.5 have been recognized only par-

tially. Annotations are translated to interfaces, while their use have not been discovered.
Generics are only classes with the type Object isntead of T and enumerations could not
be decompiled.

Jad Jad provides similar results as JODE. Exception handling is translated correctly,
but also only in 1.3. But contrary to JODE, the decompilation of try-catch-�nally does
not end in an decompilation but a syntax error; instead of try-catch-�nally, there is only

53

4. Java Decompiler

HelloWorld Inner Class Conditions Exceptions Inheritance

Jad 2 2 2 2 (only 1.3) 2, 2, 2

Loops Annotations Enum Generics

Jad 1-2 1-2 1-2 1-2

Table 4: Test evaluation of Jad.

a � MISSING_BLOCK_LABEL_56� at the position of the keywords. While-loops are
not recognized by Jad, instead a for loop with a missing iteration step is placed.
Also, as most other decompilers, the Java 1.5 language features are only partially

translated; Annotations are interfaces, enumerations derive form the Enum class and the
generic type T is replaced with Object.

HelloWorld Inner Class Conditions Exceptions Inheritance

Dava 2 2 2 0-1 2, 2, 2

Loops Annotations Enum Generics

Dava 2 1-2 1-2 1-2

Table 5: Test evaluation of Dava.

Dava Although Dava aims at decompiling arbitrary bytecode and can therefore not
rely on reversing the decompilation process of only one compiler, which has a prede�ned
set of ways to create a class �le, the output is useful in most cases. The only exceptions
is, like in almost all decompilers that are tested here, the handling of try-catch-�nally.
It will be translated into a nested set of try-catch structures, in where the content of the
�nally statement is (partially) repeated.
Annotations and generics are also handled like in other decompilers. The enumeration

is also a sub-class, but carries the keyword enum in its signature.

HelloWorld Inner Class Conditions Exceptions Inheritance

JRP 2 2 0 0 2, 0-1, 0-1

Loops Annotations Enum Generics

JRP 0 0-1 0 0

Table 6: Test evaluation of JReversePro.

JReversePro This decompiler has problems with basic structures. Conditions, excep-
tions and loops have not been decompiled, while annotations are transformed to inter-
faces.

54

4. Java Decompiler

HelloWorld Inner Class Conditions Exceptions Inheritance

JD 0-1 0-1 0-1 0-1 0-1, 0-1, 0-1

Loops Annotations Enum Generics

JD 0-1 0-1 0-1 0-1

Table 7: Test evaluation of Java Decompiler.

Java Decompiler The output of the Java Decompiler was mostly a set of errors. The
output contained not much more than the class signature, if anything at all.

HelloWorld Inner Class Conditions Exceptions Inheritance

JDP 2 0-1 2 2 2, 0-1, 2

Loops Annotations Enum Generics

JDP 2 2 2 1-2

Table 8: Test evaluation of Java Decompiler Project.

Java Decompiler Project The Java Decompiler Project is the best decompiler so far as
measured by feature coverage. It decompiles every test with mostly equal semantics to
the original except for two constructs. First, the double brace initialization pattern was
not translated at all. Only the constructor call as well as the serial version uid could be
recovered, while the content of the initialization, i.e., the addition of list elements, is lost.
The second construct is the inline instantiation of classes. While the inline instantiation
is semantically correct, the variable referencing the call of the constructor is replaced
by �1 local1�. The extended features of Java 1.5 are also correctly reversed, the only
drawback is, that the generic attribute of classes is not used when instantiated.

4.5. Discussion

The overall test results can be seen in Table 9. The most notably de�cit is the try-catch-
�nally construct. While a simple try-catch is translated by most of the decompilers, the
�nally statement seams the most hardest to translate.
The extended language-features introduced in Java 1.5 are also not recognized by most;

annotations would simply be translated to interfaces while the use of the annotation is
not discovered at all. Enumerations will be transformed to a sub-class of the Enum class
and generics are simply ignored by translating the type T to Object.
Aside from these shortcomings, some interesting behavior can be observed:

� An inner class will be compiled into separate class �le, referencing the parent class
in the constructor. Therefore, most of the decompilers assume, that the inner class
is a stand-alone class and generate a separate �le.

55

4. Java Decompiler

� The direct initialization of member variables is replaced with constructor initial-
ization.

� Missing constructors are added in the decompiling process.

� The explicit type of a variable is inferred. For example would an interface type be
replaced with a class type implementing the interface.

� Some decompilers add the keyword abstract to the signature of an interface and
his methods.

� Loops are not always translated back to the original representation, but to a similar
with di�erent syntax that achieves the same. For example the replacement of a for
loop with a while loop, where the condition is put into the loop body.

HelloWorld Inner Class Conditions Exceptions Inheritance

Mocha 2 2 2 0-1 2, 2, 1-2

Jdec 2 2 1-2 0-1 2, 2, 2

JODE 2 2 2 2 (only 1.3) 2, 2, 2

Jad 2 2 2 2 (only 1.3) 2, 2, 2

Dava 2 2 2 0-1 2, 2, 2

JRP 2 2 0 0 2, 0-1, 0-1

JD 0-1 0-1 0-1 0-1 0-1, 0-1, 0-1

JDP 2 0-1 2 2 2, 0-1, 2

Loops Annotations Enum Generics

Mocha 1-2 0 0 0

Jdec 1-2 2 1-2 1-2

JODE 2 1-2 0 1-2

Jad 1-2 1-2 1-2 1-2

Dava 2 1-2 1-2 1-2

JRP 0 0-1 0 0

JD 0-1 0-1 0-1 0-1

JDP 2 2 2 1-2

Table 9: Test evaluation summary.

4.6. Integration into CloudMIG Xpress

After the evaluation of the test results, a suitable decompiler has to be chosen for the
integration into CloudMIG Xpress. For this, the decompilers will be graded by the
following criteria:

56

4. Java Decompiler

Language support Java is an evolving programming language and constantly adds new
features to the language speci�cation. With version 1.5 of this speci�cation, Java
introduced Generics and Annotations, among others, which are vital parts of some
legacy systems. A suitable decompiler should support most, if not all, of those
features.

Generated code quality The recreation of the source-code form the bytecode is not per-
fect, for example names and comments cannot be recovered,15 but the produced
output should be approximately equal to the original concerning the semantics.
For example: Generics should not be translated to Object or the Enum type not
be changed to a class.

Compatibility The decompiler must work fully automatic and with no user guidance. If
con�guration has to be done, this has to happen before the decompilation process.
Also, a No-GUI mode is mandatory.

Support As stated above, Java is evolving and so should the decompiler. An ongoing
development is preferable.

License Because the decompiler will be integrated into CloudMIG Xpress, the license of
the decompiler should not interfere with this aim. Thus, an open source decompiler
is mandatory, but not su�cient, because even an open source license (like the GPL)
could stand in the way of the integration.

Decompiler latest release date License

Mocha 1996 freely distribut-
able

Jdec May, 2008 GPL

JODE 2004 GPL/LGPL

Jad 2001 Free for non-
commercial use

Dava January, 2012 LGPL

JReversePro May, 2008 GPL

Java Decompiler 2002 Public Domain

Java Decompiler Project August, 2010 Free for non-
commercial use

Table 10: Decompilers support status and their license.

An overview for the last two criteria can be found in Table 10. Because the license is
the exclusion criterion, only Mocha, JODE, Dava and the Java Decompiler are candidates

15At least not, when the code is not compiled with the debug option.

57

4. Java Decompiler

for an implementation. The language support narrows the selection down to Dava and
JODE, with equal support values.
For the construction of the KDM instance and the subsequent analysis, information is

a valuable asset, thus Dava will be selected for the implementation, because in contrast
to JODE, it is capable of decompiling enumerations. Also, it is the only decompiler that
has an ongoing support.

Figure 30: System to KDM transformation process in CloudMIG Xpress.

Figure 30 shows the current approach of CloudMIG Xpress on how to create an instance
of KDM from the Java legacy system. The system is separated into Java source �les and
JARs, representing the used libraries of the legacy system. For both �le-types a discoverer
is implemented in MoDisco, each creating a part of the overall instance of KDM.
Because the JARs are the only source for class �les, the Dava decompiler will be hooked

into this approach as follows:

1. Before the overall discovery process starts, the JARs will be extracted.

2. Each generated folder will be searched for class �les to collect them.

3. All collected class �les from one folder will be decompiled by Dava.

4. The output of the decompilation process will be a set of Java source �les, that
correspond to a set of class �les. Each class �le in this set will be replaced with a
source �le.

5. The MoDisco source discoverer takes the modi�ed folders and the original source
�les as input and generates a KDM instance.

With this approach, the library discoverer becomes obsolete. The downside is, that
the di�erentiation between libraries and sources vanishes, making it harder to argue in
the restructuring process.

58

5. KDM-based Dependency Analysis

5. KDM-based Dependency Analysis

Nothing is so good that somebody, somewhere will
not hate it.

� Pohls Law

This section describes the implementation of a dependency analysis based on KDM
into CloudMIG Xpress. Section 5.1 gives a brief overview, Section 5.2 describes the taken
approach, while Section 5.3 shows the implementation of the approach.

5.1. Overview

The interconnections of system components are a crucial information in addressing the
restructuring of the system for migration. As shown in Section 3.2, this information can
be used to determine the severity of constraint violation regarding the use of prohibited
classes, for instance. The discovery of such interconnections can be found through a
dependency analysis by traversing the relationships of each system component.
CloudMIG Xpress uses instances of KDM to describe legacy software systems in a

uniform way, so a dependency graph is inherently given. This derives from the fact, that
for each entity the set of relationships to other entities are discovered in the construction
of the KDM instance. Some of those relationships, in particular those that are contained
in the Code and Actions package, like Imports, Implements or Calls, are mappings of
dependencies.
But as stated also, knowing the direct dependencies is not always enough if used in

the context of reachability. Therefore, the transitive closure has to be computed, which
is the content of the next section.

5.2. Approach

To compute the transitive closure, the dependency graph is needed. The graph is repre-
sented through instances of (sub-classes) of KDMEntity and KDMRelationship, respec-
tively. But not all entities and relationships are needed, because they represent irrelevant
information for the closure, for example, the relation between a KDM MethodUnit and
the KDM BlockUnit is irrelevant, because the latter is a grouping element of more inter-
esting KDM ActionElements describing control and data �ow capabilities. So before an
algorithm can be de�ned, the following limitations have to be introduced:

59

5. KDM-based Dependency Analysis

� For the reachability question, only structure descriptions in the Code domain are
relevant, so only entities and relationships from the Core and Actions package will
be considered for the closure computation.

� Since the primary concerns are Java legacy systems, the closure will be computed
only on Java relevant entities and relationships. Those are:

� ClassUnit to describing a Java Class.

� InterfaceUnit to describe a Java Interface.

� MethodUnit describes a method within a Java Class.

� Signature of a MethodUnit.

� ParameterUnit as part of a Signature.

� StorableUnit for local and member variables.

� Implements describes the implementation of a Java Interface.

� Extends describes the extends relationship of a Java Class.

� Imports describes the use of classes and interfaces from other packages.

� Calls to describe a calling relationship between two methods.

With these limitation in mind, the algorithm can be de�ned. Figure 31 shows a demon-
stration of the discovery algorithm for the transitive closure, which works as follows:

1. For each entity encountered, that has not been visited yet, a node will be created
and a depth-�rst search on the entity's relationships is started.

2. For each node, that is encountered on the traversal and that has not been visited
yet, a node will be created. If the traversal cannot go further in the dependency
graph, that is, if a node either has already been visited or has no dependencies, an
edge between the current visited node and its predecessor is created. (See step 4.
and 5.)

3. If a node has outgoing edges and an edge between the node and its predecessor has
been created, a transitive edge is created from the predecessor to each node that is
reachable through these edges (see 9. - 11.).

4. The traversal stops, if all reachable nodes from the start node have been visited.

If this algorithm is executed on the example given in Figure 32, the result of step 3
would be two transitive edges (labeled as a and b), which are indistinguishable.
One could ask, if they have to be distinguishable. If they stay indistinguishable, the

only information, that can be derived is, that the node labeled 1 can somehow reach
the node labeled 4. If they could be distinguished from another, the derived information

60

5. KDM-based Dependency Analysis

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

Figure 31: Discovery algorithm example for the transitive closure.

61

5. KDM-based Dependency Analysis

Figure 32: Double transitive edge.

would be, that node 1 can reach node 4 on two di�erent paths. So, the �rst case loses
valuable information. Step 3 has thus to be modi�ed to contain a distinction mechanism
for transitive edges. To gain as much information of such an edge, the edge will be
labeled with the path, that leads from the start-node to the end-node. For the example
given, a and b would be labeled ((1,2),(2,4)) and ((1,3),(3,4)), thus giving the advantage
of not only knowing, that node 1 can reach node 4 in two di�erent ways, but also on
which path node 1 can reach node 4.

5.3. Implementation

The implementation should consider the two following aspects:

1. The approach has to be easily extendable. Even if the focus of this thesis evolves
around Java, others may use the same approach to discover a transitive closure
for legacy systems written in C, where the main components are functions and
primitive data structures.

2. Each node should contain as much information as possible, thus each node does not
only contain outbound edges, but also inbound edges. This is due to the fact, that
not only reachable aspect from one system part is considered, but also the reversed
aspect, i.e., which system parts are depend on a the currently viewed part. Also,
considering the constraint violation aspect, each node should contain the reference
to the code area, where it is de�ned. Therefore, the KDMEntity considered with
the node, will be wrapped. The same is true for the edges of the graph, which
therefore also wrap the KDMRelationship, that constitute the dependency.

5.3.1. Nodes of the Closure Graph

Figure 33 shows the class diagram of the AbstractNode class used for the transitive closure
graph. It contains the wrapped CodeItem and also the lists of incoming and outgoing

62

5. KDM-based Dependency Analysis

relationships. Furthermore, it contains the the quali�ed name of the wrapped CodeItem,
like java.lang.File, as well as the type of the wrapped CodeItem, for example a Class.

Figure 33: Class diagram of AbstractNode.

Derived thereof are three concrete node types, representing those components of the
system, that are of interest for the analysis, namely classes, interfaces, and methods. The
class diagram given in Figure 34 shows the node classes that represents these components.

Figure 34: Concrete nodes for the transitive closure graph.

The ObjectTypeNode is the abstract parent of ClassNode and InterfaceNode and con-
tains methods to parse the contained relationships in a ClassUnit and InterfaceUnit.
MethodNode is a special type of node, which only makes sense in the context of a

ClassNode. While a MethodNode is contained in the closure graph, all its relations are
also contained in the corresponding parent ClassNode, rendering it in most use cases
obsolete. Furthermore, a MethodNode contains only instances of the CallsRelation class
(s.b.), limiting its usefulness even more. However, there are two use cases where a
MethodNode can be useful:

�Prohibited� classes While mostly whole classes are blacklisted, cases exists, that only
prohibit the use of certain methods of a class. The lookup of such methods could

63

5. KDM-based Dependency Analysis

in fact be handled through the lookup of the parent ClassNode, traversing the
relationships of the node in search for a CallsRelation, that has the to-�eld set to a
MethodNode wrapping the MethodUnit, but this process has to be done manually,
while a MethodNode automates this process.

Control �ow Sometimes it is useful to determine the control �ow in the system from a
certain point. In such a case the interesting part is the calling hierarchy of methods,
that has to be, in the absence of a MethodNode, manually be crafted by accessing
the relationships of the ClassNode that declares ownership of the method.

5.3.2. Edges of the Closure Graph

Figure 35 contains a class diagram for the relationships, that can occur in the closure
graph. AbstractRelation is the abstract parent class of all relationships and contains
the KDMRelationship that forms the relationship, as well as the nodes wrapping those
entities, that constitute the relationship.

Figure 35: Relationship-classes for the closure graph.

CallsRelation This relation type wraps the corresponding KDM Calls-Relationship. Fur-
thermore, it constrains the type of nodes that can be referred through the from and
to members of MethodNodes. Like Calls, this relation type is used to describe the
control �ow from one method to another.

ObjectTypeRelation This relation type is used to describe the fact that a relationship
between two classes or interfaces exists, respectively. Instances of Sub-classes of this

64

5. KDM-based Dependency Analysis

relation type specify the semantic of the relation. Furthermore, this class de�nes
the enumeration type ObjectTypeRelationType describing the nature of the relation.
While Imports, Extends and Implements should be obvious, the Uses needs some
further explanation. Uses describes the fact, that a Class uses another Class or
Interface as a member type or in a method and can be found in the context of the
UsingRelation (s.b.). Also, if a class or interface extends or implements another
class while an import relationship is present, then the two relationships are fused
together, de�ning a relationship that has two types, namely (Imports, Extends) or
(Imports, Implements).

ClassRelation An instance of a ClassRelation is more or less �syntactic sugar�, because
it adds nothing to the ObjectTypeRelation. Its sole purpose is to describe a relation
that can have the two types de�ned in the ObjectTypeRelation and to separate such
relationships from a UsingRelation.

UsingRelation To describe the fact, that a class �uses� another class as either a member
or in the context of a method, as a parameter or local variable, the UsingRelation
is used. It also de�nes an enumeration type, describing the class of the wrapped
KDMEntity, which is either a StorableUnit or a ParameterUnit.

TransitiveRelation Perhaps the most important relation, the TransitiveRelation is used
to describe transitive edges in the closure graph. For the distinguish-constraint de-
�ned in 5.2, the relation contains a variable named path, containing all relationships
on the path from the start-node to the end-node in a LinkedList.

5.3.3. Traversing a KDM Instance

To avoid the parsing of the XMI �le, that contains the KDM instance of the legacy system
in XML manually, EMF is used. It transforms the XMI to a set of classes mapping the
entities and relationships contained within, to allow a more easy way of traversing the
model graph. With this premise and the requirement, that the whole project has to be
a Java library, the analysis class shown in Figure 36 can be de�ned.
The two methods given in the interface are used to parse one or more instances of

KDM16, determined through �rst parameter; the class Resource thereby contains a KDM
instance. The second parameter, the LookupType-Array, de�nes the set of nodes to look-
up. A LookupType wraps the quali�ed name of the entity to look for, as well as the type
of the entity. For example, to search for Java's File-Class, one would create a LookupType
containing the name �java.io.File� and the ClassUnit-Class.
The return value of the methods is a list containing all node-instances, that are present

in the closure graph and match a LookupType. Reconsidering the example with Java's
File-Class, the result would be a list, containing only one node maximum, which wraps

16whereby the �rst method, parseKdms, relies internally on the second method, parseKdm.

65

5. KDM-based Dependency Analysis

Figure 36: Interface of the dependency analysis library.

the ClassUnit describing the File-Class, if, and only if, the class is used somewhere in
the system.
The boolean parameter in the second method is used in the context of parsing only

one instance of KDM at the time. It preserves the result graph of previous parse-calls,
if set to true.

The actual parsing or traversing of the model works as follows:

1. From the given resource, the Segments (see �the package named KDM� in sec-
tion 2.2.1) are extracted.

2. All CodeModel instances contained in a Segment are extracted.

3. For each AbstractCodeElement, which is a direct child17 of the CodeModel, a Han-
dler -object is called to delegate the traversal of that entity.

The class diagram of all currently available handlers is shown in Figure 37. The pur-
pose of these handlers is the creation of nodes and edges for the graph, i.e., creating
instances of the above de�ned nodes and relations. Since the base of this thesis is the
Java programming language, the handlers de�ned here are mostly concerned with han-
dling entities representing constructs of this language. For other programming languages,
more handlers have to be de�ned, which is a rather easy task, with the approach pre-
sented here; for each construct of interest in the language, a handler class extending the
AbstractEntityHandler has to be created.

17Direct children of CodeModels are all AbstractCodeElements that are contained in the CodeElement-
List of a CodeModel.

66

5. KDM-based Dependency Analysis

Figure 37: Entity-Handlers that are currently de�ned in the analysis library.

The further traversal of the graph will be achieved through delegation � a handler can
call other handlers. For example, the ClassUnitHandler will call the MethodUnitHandler
for each method a ClassUnit contains.

The last part of the implementation addresses the visited state. When a relevant KDM
entity has been visited, a node is created. But the entity itself cannot be manipulated to
save a reference to the node and thus cannot be marked as visited. To solve this problem,
a NodeManager is introduced; the class diagram for it can be seen in Figure 38.

Figure 38: The NodeManager class diagram.

The NodeManager collects all nodes that are created in the collectedTypes and pro-
cessedMethods list, respectively. It is implemented as a Singleton and contains methods
to lookup and retrieve nodes.
The reason behind the distinction ofMethodNodes from all other nodes is performance:

If a lookup for a method is made, the algorithm needs only to search in a subset of nodes.

67

6. Evaluation

6. Evaluation

Evaluate what you want � because what gets mea-
sured, gets produced.

� James Belasco

The following sections contain the evaluation results for the decompiler, as well as
the dependency analysis library. Section 6.1 gives an overview of the evaluation, while
Section 6.2 contains the test results for the Dava decompiler with real software systems.
The section concludes with the evaluation of the KDM-based dependency analysis in
Section 6.3.

6.1. Overview

This thesis is based on the two main concepts of a decompiler integration into CloudMIG
Xpress and the creation of a dependency analysis library for instances of KDM. While
the sections 4 and 5 describe the approach and implementation details for these concepts,
an evaluation of the outcome has yet to be done.
In order to create a conclusive result for the decompiler, the evaluation of it is done

with a set of real live systems:

MyBatis JPetStore is an application based on suns original J2EE Pet Store, which was
designed as a showcase for development of AJAX-enabled web applications.

JForum is a discussion board implemented in Java. The current stable release is 2.1.9.

For the dependency analysis on KDM instances, test systems have to be created, that
cover all cases, in where a constraint violation can occur. Also, the reachability of those
violations will be addressed.

6.2. Evaluation of the Dava Decompiler

To test the decompiler, the libraries for the test-applications are decompiled and random
samples compared to the original source �le with regard to the tests de�ned in Section 4.3.
Also, some performance and output metrics are computed to show the overall e�ciency.

69

6. Evaluation

The platform, on which the decompilation process has run, is speci�ed as follows:

� Intel Core i5 2500K 4×3.30GHz

� 2×4096GB DDR3-1600 Ram

� Windows 7 Professional

The metrics are computed with the help of the Windows Task Manager and the timer
included in the Soot project.

6.2.1. MyBatis JPetStore

Overall decompilation time 6h

Used RAM in decompilation process Lowest: 1 GB/ Highest: 1,9 GB

Overall .class �les 4023

Decompiled .class �les 3805

Output ratio 94,6%

Table 11: JPetStore Performance metrics.

All but one JAR could be decompiled with Dava. Unfortunately, the decompilation
process has to be stopped two times to remove classes form the hsqldb library that created
an in�nity loop.

6.2.2. JForum

Overall decompilation time 8.5 h

Used RAM in decompilation process Lowest: 800 MB/ Highest: 1,3 GB

Overall .class �les 7050

Decompiled .class �les 3615

Output ratio 51,3%

Table 12: JForum Performance metrics.

In this test case, more than one JAR could not be decompiled with Dava. Also, like in
the JPetStore test case, the decompilation process has to be restarted, because of faulty
behavior of the decompiler.

70

6. Evaluation

6.2.3. Output Evaluation

Inner classes Inner classes as well as the inline instantiation are, as stated, compiled
to separate �les named ParentClass$InnerClass and ParentClass$1, respectively. Dava
handles both class �les as separate classes, so the output generates more than one Java
source �le. This is also the case in all probes examined, where inner classes are mostly
used to encapsulate local behavior.

Conditions An often encountered construct in methods is the exit condition at the
beginning of the method body, to stop further execution of the method, if requirements
are not hold. The generated output turns this behavior over, executing code only, if the
requirements are hold, as can be seen in Figure 39.
An also interesting case is the transformation of if-else if constructs. They are con-

verted to nested if-elses with the condition reversed. For example, the common use case
of if-else if is a emulation of the switch, where conditions successively tested for true.
The generated output is reversing those conditions, testing for not true and nesting the
else if statements as if statements in the body of the �rst if.

org.apache.log4j.AppenderSkeleton

i f (! i sAsSevereAsThreshold (event . ge tLeve l ())) { return ; }
// method code

Dava output

i f (this . i sAsSevereAsThreshold (r1 . ge tLeve l ())) {
// method code

}

Figure 39: Exit condition example.

Loops Loops are often not translated back to the original counterpart, but to while or
for loops, as can be seen in Figure 41. However, an interesting part is how code used
around the loop is handled. Instead of positioning it before the the loop statement, the
code gets initialized in the initialization part of the loop. An example for this behavior
can be seen in Figure 40. Also, some loops are replaced with what seems to be an
optimized counterpart. An example for this can be seen in Figure 42.

org.objectweb.asm.ClassWriter

i n t e r faceCount = i n t e r f a c e s . l ength ;
this . i n t e r f a c e s = new int [i n t e r faceCount] ;
for (int i = 0 ; i < inte r faceCount ; ++i) {

this . i n t e r f a c e s [i] = newClass (i n t e r f a c e s [i]) ;
}

71

6. Evaluation

Dava output

for (n = r4 . length , o = new int [n] , i 2 = 0 ; i 2 < n ; i 2++) {
o [i 2] = this . newClass (r4 [i 2]) ;

}

Figure 40: Loop example in JPetStore.

Exception handling Most try-catch statements are decompiled correctly, however, some-
times they are missing completely, as depicted in Figure 41. But this behavior occurs
arbitrary and do not seem to correspond to the number of catch statements; for example,
the class BeanUtils in org.springframework.beans contains the method instantiateClass
with four catch statements, decompiled correctly.

org.springframework.beans.AbstractPropertyAccessor

for (PropertyValue pv : propertyValues) {
try { setPropertyValue (pv) ; }
catch (NotWritablePropertyException ex) {

i f (! ignoreUnknown) { throw ex ; }
}
catch (NullValueInNestedPathException ex) {

i f (! ignoreUnknown) { throw ex ; }
}
catch (PropertyAccessExcept ion ex) {

i f (propertyAccessExcept ions == null) {
propertyAccessExcept ions =

new LinkedList<PropertyAccessException >() ;
}

propertyAccessExcept ions . add (ex) ;
}

}

Dava output

r4 = r8 . i t e r a t o r () ;
while (r4 . hasNext ()) {

r5 = (PropertyValue) r4 . next () ;
this . setPropertyValue (r5) ;

}

Figure 41: Missing try-catch statements.

Inheritance Inheritance has been always recognized correctly in the probes. Interfaces
and their methods contain the abstract keyword, but are otherwise correctly decompiled.

72

6. Evaluation

net.sourceforge.stripes.controller.DispatcherHelper

Class<?> temp = type ;
while (temp != null) {

for (Method method : temp . getDeclaredMethods ()) {
Class [] a rgs = method . getParameterTypes () ;
i f ((method . getAnnotat ion (ValidationMethod . class) != null) &&

((args . l ength == 0) | |
(args . l ength == 1 && args [0] . equa l s (Va l ida t i onEr ro r s . class)))) {

va l idat ionMethods . add (method) ;
}

}
temp = temp . g e tSupe r c l a s s () ;

}

Dava output

r5 = r0 ;
while (r5 != null) {

r6 = r5 . getDeclaredMethods () ;
i 0 = r6 . l ength ;

i f (0 >= i0) {
r5 = r5 . g e tSupe r c l a s s () ;

} else {
r7 = r6 [0] ;
r8 = r7 . getParameterTypes () ;

label_5 :
i f (r7 . getAnnotation (class

"net / s ou r c e f o r g e / s t r i p e s / va l i d a t i o n /ValidationMethod") != null) {
i f (r8 . l ength != 0 &&

(r8 . l ength != 1 | |
! (r8 [0] . equa l s (class
"net / s ou r c e f o r g e / s t r i p e s / va l i d a t i o n /Va l ida t i onEr ro r s ")))) {

break label_5 ;
}
r4 . add (r7) ;

}
}

}

Figure 42: Replaced For-Loop.

73

6. Evaluation

org.springframework.beans.AbstractPropertyAccessor

package org . springframework . beans ;

public abstract class AbstractPropertyAccessor
extends PropertyEditorReg i s t rySupport
implements org . springframework . beans . Conf igurab lePropertyAccessor

Figure 43: Class signature with interface implementation.

However, an oddity sometimes happens, that an interface, that is packed in the same
package as an implementing class, is pre�xed with the quali�ed path. An example for
this can be seen in Figure 43.

Generics The generic type declaration in class and interface signatures are omitted in
the decompilation process, as depicted in Figure 44. However, instead of translating the
generic type T to Object in this example, permitting all types in the context of the class,
it is translated to Comparable, from which T derives.

net.sourceforge.stripes.util.Range

public class Range<T extends Comparable<T>>
implements Comparable<Range<T>> {

private T sta r t , end ;
// . . .

Dava output

public class Range implements java . lang . Comparable {
private Comparable s t a r t ;
private Comparable end ;
// . . .

Figure 44: Generics and the decompilation counterpart.

Annotations As stated in the test results for Dava, annotations are not fully under-
stand, as can be seen in the example provided in Figure 45. However, annotating classes,
methods, and variables is only one use case of annotations; another is the retrieving.
This retrieving is done through the method getAnnotation of the Class type. To use this
method, the class of the annotation, that should be retrieved, must be passed as the
parameter. The decompilation output of such attempt can be seen in Figure 42: The
class keyword is used along with the quali�ed name of the class to retrieve.

74

6. Evaluation

Enumerations An example for enumerations is given in Figure 46. An enumeration is
translated to a class-like structure, constructed with the help of integers.

org.apache.ibatis.annotations.Arg

@Retention (Retent ionPo l i cy .RUNTIME)
@Target (ElementType .METHOD)
public @inte r f a c e Arg {

// . . .

Dava output

public abstract annotat ion interface Arg
extends java . lang . annotat ion . Annotation

Figure 45: Annotations in Dava

6.2.4. Discussion of the Evaluation

Compared to the original source �les, the output of the decompiler is in most cases
equivalent; exceptions are shown above. However, it is not always clear, if the di�erence
between the original and the output is caused by the decompiler or the used compiler.
For example, javac extracts inner classes into separate �les, which are interpreted by the
decompiler as separate classes.
The usefulness of the output of the decompiler is the last question, that has to be

answered. As stated and shown in the given examples, names of variables and comments
cannot be retrieved, so the meaning of a decompiled �le is harder to derive. But in the
context of this thesis, this case is negligible; the interesting part is the resembled code
structure. Under this aspect, the output is useful in most cases, because control and
data �ow is often represented correctly.

6.3. Evaluation of the KDM-based Dependency Analysis

For the evaluation of the KDM-based dependency analysis, tests have to be formulated
that cover all usage contexts of classes or interfaces. These can be divided into indirect
and direct usage, depicted in Figure 2 and 47, respectively. Direct usage covers the
following constructs in a class or interface:

Imports If class A uses or derives class B's functionality, B has to be made visible in the
execution context of A. For this, B will often be imported into A through the path
describing the location of B.

Extends/Implements A class can extend another class or implement the functionality
of an interface.

75

6. Evaluation

net.sourceforge.stripes.controller.LifecycleStage

public enum L i f e c y c l e S t a g e {
ActionBeanResolution , HandlerResolut ion , BindingAndValidation ,
CustomValidation , EventHandling , Reso lut ionExecut ion ,
Request In i t , RequestComplete }

Dava output

public f ina l enum class L i f e c y c l e S t a g e extends Enum {
public stat ic f ina l enum L i f e c y c l e S t a g e ActionBeanResolut ion ;
public stat ic f ina l enum L i f e c y c l e S t a g e HandlerReso lut ion ;
// . . .
private stat ic f ina l L i f e c y c l e S t a g e [] $VALUES;

public stat ic f ina l L i f e c y c l e S t a g e [] va lue s () {
return (L i f e c y c l e S t a g e []) $VALUES. c l one () ;

}

public stat ic L i f e c y c l e S t a g e valueOf (S t r ing r0) {
return (L i f e c y c l e S t a g e) Enum. valueOf (class

"net / s ou r c e f o r g e / s t r i p e s / c o n t r o l l e r / L i f e c y c l e S t a g e " , r0) ;
}

private L i f e c y c l e S t a g e (S t r ing r1 , int i 0) { super (r1 , i 0) ; }

stat ic {
ActionBeanResolut ion = new L i f e c y c l e S t a g e ("ActionBeanResolut ion " , 0) ;
HandlerReso lut ion = new L i f e c y c l e S t a g e ("HandlerReso lut ion " , 1) ;
// . . .
L i f e c y c l e S t a g e [] $r8 = {

ActionBeanResolution , HandlerResolut ion , // . . .
} ;
$VALUES = $r8 ; }}

Figure 46: An enum type compared to the decompiler output.

76

6. Evaluation

Member To hold states in a class, member variables are used.

Signature The input and output for a method is de�ned here.

Local variables To compute output, sometimes a temporary state has to be hold, that
is irrelevant to the overall state of the class. For this, local variables are used.

import com . p roh ib i t ed . DoNotUse ;

public class CantBeMigrated
extends DoNotUseEither
implements Proh i b i t e d I n t e r f a c e {

private DoNotUse member ;

public Proh ib i t edCla s s myMethod(IAmAlsoNotAllowed in s t ance) {
Proh ib i t edCla s s l o c a l = new Proh ib i t edCla s s (i n s t anc e) ;
return l o c a l ;

}
}

Figure 47: Places in code, where prohibited classes can occur.

The indirect usage of a class is de�ned over a direct usage of an intermediate class. For
example, if class A imports class B, that imports class C, then A would use C indirectly,
through the intermediate B.

6.3.1. Evaluation Tests

In order to determine the detection e�ectiveness for the use cases described before, the
following tests are de�ned, containing one or more classes, that cover one or more of the
use cases. The test cases are implemented as JUnit18 tests and executed in a Maven19

build process, therefore the tests are de�ned as a set of assertions.

Inheritance This simple test de�nes the interface ITestInterface, that is implemented
by the class TestImpl. The corresponding UML class diagram can be seen Figure 48.
The task of the test is to detect the imports/implements relationship between them.

MethodAndMemberVar This test describes the use of a class or interface as either a
member of the class or as a local variable in a method. Figure 49 shows the class used

18http://www.junit.org/ (accessed 01.07.2012)
19http://maven.apache.org/ (accessed 01.07.2012)

77

6. Evaluation

Figure 48: InheritanceTest class diagram.

for this purpose. It implements a member called memberVar of type java.lang.System as
well as a method localVar containing a variable referencing the java.io.File class.

Figure 49: Test class containing a member and a local variable.

Signature This test refers also to the class depicted in Figure 49. The test describes the
use of classes in a method signature; in this example, the use of java.lang.StringBu�er
as a parameter and java.io.OutputStream as a return value.

Tricky This test is a special test, because it uses the java.io.File class as follows:

java . i o . F i l e . createTempFile (" t e s t " , " txt ") ;

This use case is neither covered by an import statement, nor is it assigned to a lo-
cal variable and therefore harder to discover. Nevertheless, this use case must also be
detected.

Figure 50: Test classes for transitivity tests.

78

6. Evaluation

Transitive To test the detection of classes outside of the system, i.e. in layer 2 and 3,
the test classes shown in Figure 50 are de�ned. Intermediate addresses a library in layer
2, EndPoint a library in Layer 3, respectively. Also, the classes contains cases for above
tests, to test the a�ection of the core system.

6.3.2. Results

Table 13 shows the tests passed by the analysis library. In order to pass a test, all
assertions that are made in the corresponding unit tests have to be con�rmed. Moreover,
those assertions have to be �ne grained, de�ning not only that a relationship exists, but
how the relationship is build, i.e. the class instance that maps the relationship. Also, in
some tests, structure assertions are made, meaning, that not only a relationship is found,
but that the relationship is the only relationship found, or one of three, etc.

Inheritance X
MethodAndMemberVar X
Signature X
Transitive X

Table 13: Tests passed by the analysis library.

The following shows the assertions of the inheritance test, to clarify, what exactly is
tested. All other test are structured similar and can be found in Appendix A.

new LookupType (" te s tpackage . IT e s t I n t e r f a c e " , I n t e r f a c eUn i t . class)

At �rst, we have to de�ne the class or interface we want to search for. In the inheritance
test, this is the ITestInterface. The class InterfaceUnit is needed, to determine, that the
test is only interested in interfaces with the name ITestInterface and not in a class, that
maybe shares the same name. After that, an instance of the analysis object can be called,
to get a set of nodes, representing the types, that are searched for.

Assert . a s se r tTrue (! nodes . isEmpty ()) ;
Assert . a s se r tTrue (nodes . s i z e () == 1) ;
Assert . a s se r tTrue (nodes . get (0) instanceof Inter faceNode) ;
Inter faceNode node = (Inter faceNode) nodes . get (0) ;
Assert . a s se r tTrue (node . getType () == NodeType . I n t e r f a c e) ;
Assert . a s s e r tEqua l s (" te s tpackage . IT e s t I n t e r f a c e " ,

node . getWrappedItemQualifiedName ()) ;

These assertions express the fact, that only one node is returned by the analysis and
that this node is a representation of the searched interface.

79

6. Evaluation

Inter faceNode iT e s t I n t e r f a c e = (Inter faceNode) nodes . get (0) ;
Assert . a s se r tTrue (iT e s t I n t e r f a c e . get IncomingRe lat ions () . s i z e () == 1) ;

This is a structure assertion, and describes the fact, that the interface must have only
one relationship.

AbstractRe lat ion r e l = iT e s t I n t e r f a c e . get IncomingRe lat ions () . get (0) ;
Assert . a s se r tTrue (r e l instanceof Clas sRe la t i on) ;
Assert . a s s e r tEqua l s (1 , ((C la s sRe la t i on) r e l) . getTypes () . s i z e ()) ;
ObjectTypeRelationType type0 = ((C la s sRe la t i on) r e l) . getTypes () . get (0) ;
Assert . a s se r tTrue (type0 == ObjectTypeRelationType . Implements) ;

These assertions de�ne the type of relationship that has to be present, i.e. an Imple-
mentation without an import.

AbstractNode te s t Impl = r e l . getFrom () ;
Assert . a s se r tTrue (te s t Impl instanceof ClassNode) ;
Assert . a s se r tTrue (te s t Impl . getType () == NodeType . Class) ;
Assert . a s s e r tEqua l s ("TestImpl " ,

((ClassNode) te s t Impl) . ge tClas sUni t () . getName ()) ;

At last, the implementation relationship starts from a node wrapping the class Tes-
tImpl.

80

7. Conclusion

7. Conclusion

And that's the bottom line, 'cause Stone Cold said
so!

� Stone Cold Steve Austin

This section summarizes this thesis in Section 7.1 and addresses future work in Sec-
tion 7.2.

7.1. Summary

In this thesis, the capabilities of CloudMIG Xpress have been improved in two ways.
The �rst is an improvement in Java bytecode support for the generation of a KDM
instance. The process is now able to discover system parts, that are only present as a
set of class �les, like a library, for instance. This was achieved through the integration
of a Java decompiler into the transformation chain that creates the KDM instance. To
�nd a suited one for this task, an evaluation of current available decompilers has been
performed.
For the evaluation, �ve criteria have been de�ned, namely the compatibility with

the CloudMIG Xpress platform, license, support, feature coverage and generated code
quality. For the last criterion, three categories have been speci�ed, in which the output
of a decompiler falls; either the decompiler generates no output, a syntactical correct
or a syntactical and semantically correct output. But more often than not, the tested
decompilers output falls in between these categories, so that two more categories had to
be speci�ed, to describe such cases.
The result of the evaluation determined the Dava decompiler best suited for the task,

closely followed by JODE. Further testing was required to determine the overall useful-
ness of Dava, thus two real existing systems � MyBatis JPetStore and JForum � have
been decompiled. Then, random samples from the output have been compared to the
original code, with the result, that the output is in most cases equivalent, except for the
naming of variables.

The second part of this thesis extends the capabilities of the constraint violation de-
tection mechanism implemented in CloudMIG Xpress. A library was introduced to de-
termine the using context of each relevant entity in a KDM instance; a context, which
describes, what entities are used in which way.

81

7. Conclusion

The library creates the transitive closure of a KDM instance for relevant entities and
relationships. This closure describes the reachability aspect of system parts; for instance,
it is able to show, how a part of a user interface, dedicated to display �le contents, is
connected to the service, that loads the �le content form the disc.
To demonstrate the capability of the library, test have been formulated, which cover

all relevant use cases of classes and interfaces in the Java programming language. The
reason behind those tests is, that they also cover all cases, where a constraint violation
due to the use of a prohibited class or interface can occur.

All in all, the improvements presented here enables CloudMIG Xpress to perform a
more in-depth analysis of legacy systems. Vital parts of a system, that are only available
as bytecode, can now be included in the generation of a KDM instance and further
processed. Also, due to the library, a more �ne grained detection of constraint violations
is possible. Moreover, the output of the analysis can be used in the remodeling process,
showing a more detailed view on the interconnections in a system.

7.2. Future Work

The statistics presented in Section 6.2 show, that the decompilation process is not opti-
mal, the needed time in particular. Also, some JARs could not be decompiled, due to
internal errors in Dava. Sometimes, a JAR could be decompiled partially, if the error-
creating class �les have been manually removed. The decompiler thus harbors much
improvement. It has to be determined, if the errors can be suppressed or even eliminated
through proper con�guration; if not, Dava has to be either �xed or replaced with a less
error prone decompiler such as JODE.
The dependency analysis library is currently only able to create the transitive closure

based on the Java constructs of classes, interfaces and methods. For other programming
languages, that have other constructs, the library has to be extended. This has to be
done by sub-classing the AbstractEntityHandler presented in Section 5.3.3, to create a
handler that is capable of handling KDM entities representing such language constructs.

82

8. Related Work

8. Related Work

Good artists copy, great artists steal.

� Attributed to Pablo Picasso

8.1. Decompiler Analyisis

Miecznikowski and Hendren give an overview of problems they encountered, while devel-
oping Dava, a decompiler for Java with the intend to decompile arbitrary bytecode [32].
Among others, the assignment of types to variables and literals is emphasized. An ex-
ample given in this paper, is the translation of boolean types into integers. While this is
a valid substitute, it hinders the decompilation back to a boolean type.
Van Emmerik performed a survey of Java decompilers in 2003 [45]. He collected a set

of nine tests to evaluate current freely accessible decompilers and identi�ed JODE as the
best. Based on that survey, Hamilton and Danicic also evaluated Java decompilers [21].
They included new and upgraded versions of decompilers and re�ned the tests. They
results point to Dava, Java Decompiler (in this Thesis named Java Decompiler Project)
and JODE as the best decompiler for Java, but no one was able to decompile all of the
provided tests.

8.2. Dependency Analysis for Program Understanding

Moonen describes a generic architecture for data �ow analysis [33], aiding the reverse
engineering process. The main goal of this architecture is to prevent reimplementation
of the same data �ow analysis algorithms for di�erent programming languages. The
proposed solution transforms the language-dependent program into an intermediate rep-
resentation de�ned through a data �ow representation language. Thus, the algorithms
have to implemented only for one language.
Leitch uses dependency analysis to estimate refactoring costs and bene�ts [29]. The

premise of this paper is, that the costs of maintaining a �good� designed software is
less than the maintaining costs of �bad� designed software. The costs and bene�ts for
each refactoring activity are determined through the calculation of the refactoring ROI
(Return on investment). In this calculation, the dependency analysis is applied in two of
three steps. In the �rst step, a procedure-level dependency analysis is used to construct
control and data dependency graphs. Refactoring opportunities are identi�ed with the
help of the Code smells criteria de�ned by Fowler [17]. The opportunities then constitute

83

8. Related Work

a refactoring plan, which is used to create two new control and data dependency graphs,
showing the state of the system after refactoring. The old and new graphs building the
base for the calculation of the ROI by subtracting the estimated maintenance costs of
the new system from the estimated costs of the old system.
Eisenbarth et al. presents a semi-automated approach to map features to source code

using dependency analysis [14]. A feature is de�ned as functional requirement imple-
mented in the system. In order to detect the relevant units for a feature, scenarios are
de�ned, that contain the execution of the feature. Dynamic analysis is applied to track
the control �ow while the system is executed under the scenarios. All units present in
such a control �ow a collected and the intersection is formed. The result is a set of
computational units associated with a feature.

84

References

References

[1] A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh, and J. M. Stichnoth.
Fast, e�ective code generation in a just-in-time Java compiler. ACM SIGPLAN
Notices, 33(5):280�290, May 1998. ISSN 0362-1340. doi: 10.1145/277652.277740.

[2] P. Anderson and T. Teitelbaum. Software inspection using codesurfer. In In Work-
shop on Inspection in Software Engineering, 2001.

[3] N. Anquetil and T. C. Lethbridge. Recovering software architecture from the names
of source �les. Journal of Software Maintenance, 11(3):201�221, May 1999. ISSN
1040-550X. doi: 10.1002/(SICI)1096-908X(199905/06)11:3<201::AID-SMR192>3.
0.CO;2-1.

[4] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design Pattern Recovery in Object-
Oriented Software. In Proceedings of the 6th International Workshop on Pro-
gram Comprehension, IWPC '98, page 153. IEEE Computer Society, 1998. ISBN
0818685603.

[5] Atanas Neshkov Ltd. DJ Java Decompiler. URL http://www.neshkov.com/. Last
visited: 01.07.2012.

[6] S. Belur and K. Bettadapura. Jdec: Java Decompiler, 2006. URL http://jdec.

sourceforge.net/. Last visited: 01.07.2012.

[7] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. MoDisco: A Generic And
Extensible Framework For Model Driven Reverse Engineering. In Proceedings of the
IEEE/ACM international conference on Automated software engineering, ASE '10,
pages 173�174. ACM, 2010. ISBN 9781450301169. doi: 10.1145/1858996.1859032.

[8] R. E. Bryant and D. R. O'Hallaron. Computer Systems: A Programmer's Per-
spective. Addison-Wesley Publishing Company, USA, 2nd edition, 2010. ISBN
0136108040, 9780136108047.

[9] E. J. Chikofsky and J. H. Cross II. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, 7(1):13�17, Jan. 1990. ISSN 0740-7459. doi: 10.1109/
52.43044.

[10] C. Cifuentes. Reverse compilation techniques. PhD thesis, Queensland University of
Technology, July 1994.

[11] C. Cifuentes and K. J. Gough. Decompilation of binary programs. Software �
Practice and Experience, 25(7):811�829, July 1995. ISSN 0038-0644. doi: 10.1002/
spe.4380250706.

85

http://www.neshkov.com/
http://jdec.sourceforge.net/
http://jdec.sourceforge.net/

References

[12] S. Ducasse and D. Pollet. Software Architecture Reconstruction: A Process-Oriented
Taxonomy. IEEE Transactions on Software Engineering, 35(4):573�591, July 2009.
ISSN 0098-5589. doi: 10.1109/TSE.2009.19.

[13] E. Dupuy. Java Decompiler Project, 2008. URL http://java.decompiler.free.

fr/. Last visited: 01.07.2012.

[14] T. Eisenbarth, R. Koschke, and D. Simon. Locating Features in Source Code. IEEE
Transactions on Software Engineering archive, 29(3):210�224, Mar. 2003. ISSN
0098-5589. doi: 10.1109/TSE.2003.1183929.

[15] T. Ekman and G. Hedin. The jastadd extensible java compiler. ACM SIGPLAN
Notices - Proceedings of the 2007 OOPSLA, 42(10):1�18, Oct. 2007. ISSN 0362-1340.
doi: 10.1145/1297105.1297029.

[16] E. J. C. Eldad Eilam. Reversing: Secrets of Reverse Engineering. Wiley Publishing,
Inc., 1st edition, 2005. ISBN 0764574817, 9780764574818.

[17] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999. ISBN 0201485672.

[18] S. Frey and W. Hasselbring. The CloudMIG Approach: Model-Based Migration
of Software Systems to Cloud-Optimized Applications. International Journal on
Advances in Software, 4(3 and 4):342�353, 2011. ISSN 1942-2628.

[19] S. Frey, W. Hasselbring, and B. Schnoor. Automatic conformance checking for
migrating software systems to cloud infrastructures and platforms. Journal of Soft-
ware Maintenance and Evolution: Research and Practice, 2012. ISSN 1532-0618.
doi: 10.1002/smr.582.

[20] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundaresan. Java TM
just-in-time compiler and virtual machine improvements for server and middleware
applications. In Proceedings of the 3rd conference on Virtual Machine Research And
Technology Symposium - Volume 3, VM'04, page 12. USENIX Association, 2004.

[21] J. Hamilton and S. Danicic. An Evaluation of Current Java Bytecode Decompil-
ers. In Proceedings of the 2009 Ninth IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM '09, pages 129�136. IEEE Computer
Society, 2009. ISBN 9780769537931. doi: 10.1109/SCAM.2009.24.

[22] R. Hickey. The Clojure programming language. In Proceedings of the 2008 sympo-
sium on Dynamic languages, DLS '08, page 1. ACM, 2008. ISBN 9781605582702.
doi: 10.1145/1408681.1408682.

86

http://java.decompiler.free.fr/
http://java.decompiler.free.fr/

References

[23] J. Hoenicke. Java Optimize and Decompile Environment, 1998. URL http://jode.

sourceforge.net/. Last visited: 01.07.2012.

[24] R. Kazman, S. G. Woods, and S. J. Carrière. Requirements for Integrating Software
Architecture and Reengineering Models: CORUM II. In Proceedings of the Work-
ing Conference on Reverse Engineering (WCRE'98), WCRE '98, page 154. IEEE
Computer Society, 1998. ISBN 0818689676.

[25] G. King. Ceylon project. URL http://www.ceylon-lang.org/. Last visited:
20.07.2012.

[26] P. Kouznetsov. JAD Java Decompiler, 1997. URL http://www.varaneckas.com/

jad/. Last visited: 01.07.2012.

[27] K. Kumar. JReversePro Java Decompiler, 2008. URL http://jreversepro.

blogspot.com/. Last visited: 01.07.2012.

[28] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot framework for Java pro-
gram analysis: a retrospective. In Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), Oct. 2011.

[29] R. Leitch and E. Stroulia. Assessing the Maintainability Bene�ts of Design Re-
structuring Using Dependency Analysis. In Proceedings of the 9th International
Symposium on Software Metrics, METRICS '03, page 309. IEEE Computer Society,
2003. ISBN 0-7695-1987-3.

[30] Merriam-Webster, Dictionary and Thesaurus. Thesaurus: Dependency. URL http:

//www.merriam-webster.com/thesaurus/dependency.

[31] J. Miecznikowski. New algorithms for a Java decompiler and their implementation
in Soot. Master's thesis, McGill University, Montreal, Feb. 2003.

[32] J. Miecznikowski and L. J. Hendren. Decompiling Java Bytecode: Problems, Traps
and Pitfalls. In Proceedings of the 11th International Conference on Compiler Con-
struction, CC '02, pages 111�127. Springer-Verlag, 2002. ISBN 3540433694.

[33] L. Moonen. A generic architecture for data �ow analysis to support reverse engineer-
ing. In Proceedings of the 2nd international conference on Theory and Practice of
Algebraic Speci�cations, Algebraic'97, pages 10�10. British Computer Society, 1997.
ISBN 3-540-76228-0.

[34] Mozilla Foundation. Rhino: JavaScript for Java. URL http://www.mozilla.org/

rhino. Last visited: 20.07.2012.

[35] National Institute of Standards and Technology. The NIST De�nition of Cloud
Computing, Sept. 2011.

87

http://jode.sourceforge.net/
http://jode.sourceforge.net/
http://www.ceylon-lang.org/
http://www.varaneckas.com/jad/
http://www.varaneckas.com/jad/
http://jreversepro.blogspot.com/
http://jreversepro.blogspot.com/
http://www.merriam-webster.com/thesaurus/dependency
http://www.merriam-webster.com/thesaurus/dependency
http://www.mozilla.org/rhino
http://www.mozilla.org/rhino

References

[36] Object Management Group, Inc. Architecture-Driven Modernization (ADM):
Knowledge Discovery Meta-Model (KDM). URL http://www.omg.org/spec/KDM/.
Last visited: 12.01.2012.

[37] M. Odersky. The Scala Language Speci�cation. URL http://www.scala-lang.org/

sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf.
Last visited: 20.07.2012.

[38] T. Parsons. Automatic Detection of Performance Design and Deployment Antipat-
terns in Component Based Enterprise Systems. PhD thesis, University College
Dublin, Nov. 2007.

[39] R. Pérez-Castillo, I. G.-R. de Guzmán, and M. Piattini. Knowledge Discovery
Metamodel-ISO/IEC 19506: A standard to modernize legacy systems. Computer
Standards and Interfaces, 33:519�532, Nov. 2011.

[40] prabhu. Java Decompiler, 2002. URL http://sourceforge.net/projects/

dcompiler/. Last visited: 01.07.2012.

[41] M. G. Reko�. On Reverse Engineering. IEEE Transactions On Systems, Man, and
Cybernetics, 15(2):244�252, 1985.

[42] D. J. Scales, K. H. Randall, S. Ghemawat, and J. Dean. The Swift Java Compiler:
Design and Implementation. Technical report, HP Labs Technical Reports, 2000.
URL http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-2000-2.html.

[43] N. Shi and R. A. Olsson. Reverse Engineering of Design Patterns from Java Source
Code. In Proceedings of the 21st IEEE/ACM International Conference on Automated
Software Engineering, ASE '06, pages 123�134. IEEE Computer Society, 2006. ISBN
0769525792. doi: 10.1109/ASE.2006.57.

[44] A. Umar. Application Reengineering: Building Web-Based Applications and Dealing
with Legacies. Prentice Hall, 1997. ISBN 0137500351, 9780137500352.

[45] M. Van Emmerik. Java decompiler tests, 2003. URL http://www.

program-transformation.org/Transform/JavaDecompilerTests. Last visited:
20.07.2012.

[46] H. Van Vliet. Mocha, the Java Decompiler, 1996. URL http://www.brouhaha.com/

~eric/software/mocha/. Last visited: 01.07.2012.

[47] R. Veldema, R. A. F. Bhoedjang, and H. E. Bal. Jackal, A Compiler Based Imple-
mentation of Java for Clusters Of Workstations. In IN PROC. OF PPOPP, 2001.

88

http://www.omg.org/spec/KDM/
http://www.scala-lang.org/sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf
http://www.scala-lang.org/sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf
http://sourceforge.net/projects/dcompiler/
http://sourceforge.net/projects/dcompiler/
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-2000-2.html
http://www.program-transformation.org/Transform/JavaDecompilerTests
http://www.program-transformation.org/Transform/JavaDecompilerTests
http://www.brouhaha.com/~eric/software/mocha/
http://www.brouhaha.com/~eric/software/mocha/

References

[48] J. F. H. Winkler and G. Dieÿl. Object CHILL � an object oriented language for
systems implementation. In Proceedings of the 1992 ACM annual conference on
Communications, CSC '92, pages 139�147. ACM, 1992. ISBN 0897914724. doi:
10.1145/131214.131232.

89

A. Test Implementations

A. Test Implementations

The following sections contain the assertions for each test de�ned in Section 6.3.1. Some
used methods are omitted, but it should be clear form the context and their name, what
they do.

FindITestInterface

A simple test for the discovering of an implementation relationship.

Searched type: testpackage.ITestInterface

// ITe s t I n t e r f a c e i s found and i s the on ly node in nodes l i s t .
Assert . a s se r tTrue (! nodes . isEmpty ()) ;
Assert . a s se r tTrue (nodes . s i z e () == 1) ;
Assert . a s se r tTrue (nodes . get (0) instanceof Inter faceNode) ;
Assert . a s se r tTrue (

((Inter faceNode) nodes . get (0)) . getType () == NodeType . I n t e r f a c e) ;
Assert . a s s e r tEqua l s (" te s tpackage . IT e s t I n t e r f a c e " ,

((Inter faceNode) nodes . get (0)) . getWrappedItemQualifiedName ()) ;

// ITe s t I n t e r f a c e has on ly one r e l a t i o n
Inter faceNode iT e s t I n t e r f a c e = (Inter faceNode) nodes . get (0) ;
Assert . a s se r tTrue (iT e s t I n t e r f a c e . get IncomingRe lat ions () . s i z e () == 1) ;

// the r e l a t i o n i s an implements r e l a t i o n
AbstractRe lat ion r e l = iT e s t I n t e r f a c e . get IncomingRe lat ions () . get (0) ;
Assert . a s se r tTrue (r e l instanceof Clas sRe la t i on) ;
Assert . a s s e r tEqua l s (1 , ((C la s sRe la t i on) r e l) . getTypes () . s i z e ()) ;

ObjectTypeRelationType type0 = ((C la s sRe la t i on) r e l) . getTypes () . get (0) ;
Assert . a s se r tTrue (type0 == ObjectTypeRelationType . Implements) ;

// the r e l a t i o n i s from a c l a s s named TestImpl
AbstractNode te s t Impl = r e l . getFrom () ;
Assert . a s se r tTrue (te s t Impl instanceof ClassNode) ;
Assert . a s se r tTrue (te s t Impl . getType () == NodeType . Class) ;
Assert . a s se r tTrue (

((ClassNode) te s t Impl) . ge tClas sUni t () . getName () . equa l s ("TestImpl ")) ;

FindMemberVar

This test discovers the use of java.lang.System as a member of the class TestClass.

Searched type: java.lang.System

// ' System ' i s found and only member in l i s t
Assert . a s se r tTrue (! nodes . isEmpty ()) ;

91

A. Test Implementations

Assert . a s se r tTrue (nodes . s i z e () == 1) ;
Assert . a s se r tTrue (nodes . get (0) instanceof ClassNode) ;
Assert . a s se r tTrue (((ClassNode) nodes . get (0)) . getType () == NodeType . Class) ;

// ' System ' i s on ly r e f e r enced once
ClassNode system = (ClassNode) nodes . get (0) ;
Assert . a s se r tTrue (system . get IncomingRe lat ions () . s i z e () == 1) ;

// The r e l a t i o n i s a us ing r e l a t i o n
AbstractRe lat ion r e l = system . get IncomingRe lat ions () . get (0) ;
Assert . a s se r tTrue (r e l instanceof ObjectTypeRelation) ;
Assert . a s s e r tEqua l s (1 , ((ObjectTypeRelation) r e l) . getTypes () . s i z e ()) ;
Assert . a s s e r tEqua l s (ObjectTypeRelationType . Uses ,

((ObjectTypeRelation) r e l) . getTypes () . get (0)) ;

// Ca l l e r i s ' Tes tClass '
AbstractNode t e s tC l a s s = r e l . getFrom () ;
Assert . a s se r tTrue (t e s tC l a s s instanceof ClassNode) ;
Assert . a s se r tTrue (t e s tC l a s s . getType () == NodeType . Class) ;
Assert . a s se r tTrue (

((ClassNode) t e s tC l a s s) . ge tClas sUni t () . getName () . equa l s ("TestClass ")) ;

FindLocalVarInMethodUnit

The use of java.io.File as a local variable is discovered in this test.

Searched type: java.io.File

// ' F i l e ' i s found and only member in l i s t
Assert . a s se r tTrue (! nodes . isEmpty ()) ;
Assert . a s se r tTrue (nodes . s i z e () == 1) ;
Assert . a s se r tTrue (nodes . get (0) instanceof ClassNode) ;

ClassNode f i l e = (ClassNode) nodes . get (0) ;
Assert . a s se r tTrue (f i l e . getType () == NodeType . Class) ;
Assert . a s se r tTrue (f i l e . ge tClas sUni t () . getName () . equa l s (" F i l e ")) ;

// ' F i l e ' i s r e f e r enced by ' Tes tClass ' in method ' l oca lVar ' ,
// as import statement , and as par t o f the c a l l graph (repre sen t ed
// through a method r e l a t i o n)
Assert . a s se r tTrue (f i l e . get IncomingRe lat ions () . s i z e () == 3) ;

// the i n t e r e s t i n g par t f o r t h i s t e s t i s , t h a t the
// ' F i l e ' has a UsingRela t ion
Assert . a s se r tTrue (

hasRe lat ion (f i l e . get IncomingRe lat ions () , Us ingRelat ion . class)) ;

Us ingRelat ion r e l =
(Us ingRelat ion) f i ndRe l a t i on (

92

A. Test Implementations

f i l e . ge t IncomingRe lat ions () , Us ingRelat ion . class) ;

Assert . a s se r tTrue (r e l . getParentMethodNode () != null) ;
Assert . a s se r tTrue (r e l . getFrom () instanceof ClassNode) ;
Assert . a s s e r tEqua l s (

"TestClass " , ((ClassNode) r e l . getFrom ()) . ge tClas sUni t () . getName ()) ;

FindInSignature

A test to discover the use of classes and interfaces in a method signature.

Searched types: java.io.OutputStream, java.lang.StringBu�er

// only two nodes are found
Assert . a s se r tTrue (! nodes . isEmpty ()) ;
Assert . a s se r tTrue (nodes . s i z e () == 2) ;

// and have the wanted type
Assert . a s se r tTrue (nodes . get (0) instanceof ClassNode) ;
Assert . a s se r tTrue (nodes . get (1) instanceof ClassNode) ;

// both are on ly r e f e r enced one in a us ing r e l a t i o n
Assert . a s se r tTrue (nodes . get (0) . get IncomingRe lat ions () . s i z e () == 1) ;
Assert . a s se r tTrue (nodes . get (1) . get IncomingRe lat ions () . s i z e () == 1) ;

Assert . a s se r tTrue (
nodes . get (0) . get IncomingRe lat ions () . get (0) instanceof UsingRelat ion) ;

Assert . a s se r tTrue (
nodes . get (1) . get IncomingRe lat ions () . get (0) instanceof UsingRelat ion) ;

// the f i r s t i s used as a parameter and s t a r t po in t i s ' Tes tClass '
UsingRelat ion us ingRe la t i on =

(UsingRelat ion) nodes . get (0) . get IncomingRe lat ions () . get (0) ;

Assert . a s se r tTrue (us ingRe la t i on . getUnitType () == VariableType . ParameterUnit) ;
Assert . a s se r tTrue (

((ClassUnit) u s ingRe la t i on
. getFrom ()

. getWrappedItem ()) . getName () . equa l s ("TestClass ")) ;

u s ingRe la t i on = (UsingRelat ion) nodes . get (1) . get IncomingRe lat ions () . get (0) ;

Assert . a s se r tTrue (us ingRe la t i on . getUnitType () == VariableType . ParameterUnit) ;
Assert . a s se r tTrue (

((ClassUnit) u s ingRe la t i on
. getFrom ()

. getWrappedItem ()) . getName () . equa l s ("TestClass ")) ;

93

A. Test Implementations

FindFileInTrickyClass

The use of java.io.File as de�ned in Section 6.3.1 is discovered with this test.

Searched type: java.io.File

// ' F i l e ' i s found and only member in l i s t
Assert . a s se r tTrue (! nodes . isEmpty ()) ;
Assert . a s se r tTrue (nodes . s i z e () == 1) ;
Assert . a s se r tTrue (nodes . get (0) instanceof ClassNode) ;

ClassNode node = (ClassNode) nodes . get (0) ;

Assert . a s se r tTrue (node . getType () == NodeType . Class) ;
Assert . a s s e r tEqua l s (" java . i o . F i l e " , node . getWrappedItemQualifiedName ()) ;

// F i l e has on ly one r e l a t i o n s h i p
Assert . a s s e r tEqua l s (1 , node . get IncomingRe lat ions () . s i z e ()) ;

// r e l a t i o n i s a ' Ca l l s ' r e l a t i o n s h i p
AbstractRe lat ion r e l = node . get IncomingRe lat ions () . get (0) ;
Assert . a s se r tTrue (r e l instanceof Ca l l sRe l a t i on) ;

// c a l l e r i s ' Tr ickyClass '
MethodNode from = (MethodNode) r e l . getFrom () ;
Assert . a s s e r tEqua l s (

" t r i c k y . Tr ickyClass " ,
from . getParent () . getWrappedItemQualifiedName ()) ;

Transitive

The following tests simulate the use of libraries. For each simulated library, above tests
are repeated. However, the assertions are de�ned under the transitivity aspect, i.e., they
assert, that the using context for classes and interfaces are detectable from the class
StartPoint.

FindEndPointFromStartPoint

Searched type: transitive.StartPoint

// ' S ta r tPo in t ' i s found and only member in l i s t
ClassNode node = assertThatNodeExists (nodes) ;

// node conta ins a t r a n s i t i v e r e l a t i o n wi th Endpoint as ' to '
for (AbstractRe lat ion r e l : node . getOutgo ingRe lat ions ())
{

i f (r e l instanceof Trans i t i v eRe l a t i on)

94

A. Test Implementations

{
AbstractNode to = r e l . getTo () ;

i f (to . getWrappedItemQualifiedName () . equa l s (" endpoint . Endpoint"))
{

Assert . a s se r tTrue (true) ;
return ;

}
}

}

FindFileFormStartPoint

Searched type: transitive.StartPoint

// ' S ta r tPo in t ' i s found and only member in l i s t
ClassNode node = assertThatNodeExists (nodes) ;
// node conta ins a t r a n s i t i v e r e l a t i o n wi th F i l e as ' to '
for (AbstractRe lat ion r e l : node . getOutgo ingRe lat ions ()) {

i f (r e l instanceof Trans i t i v eRe l a t i on) {
AbstractNode to = r e l . getTo () ;
i f (to . getWrappedItemQualifiedName () . equa l s (" java . i o . F i l e ")) {

Lis t<AbstractRelat ion> path =
((Tran s i t i v eRe l a t i on) r e l) . getPath () ;

/* p o s s i b l e path :
* − UsingRe la t ion S tar tPo in t x In termed ia te
* − Clas sRe la t i on In termed ia te x Endpoint (import)
* − UsingRe la t ion Endpoint x java . io . F i l e
*/

AbstractRe lat ion path0 = path . get (0) ;
i f (path0 instanceof UsingRelat ion) {

i f (path0 . getTo ()
. getWrappedItemQualifiedName ()

. equa l s (" t r a n s i t i v e . Inte rmed iate ")) {
AbstractRe lat ion path1 = path . get (1) ;

i f (path1 instanceof Clas sRe la t i on) {
i f (path1 . getTo ()

. getWrappedItemQualifiedName ()
. equa l s (" endpoint . Endpoint")) {

AbstractRe lat ion path2 = path . get (2) ;

i f (path2 instanceof UsingRelat ion) {
i f (path2 . getTo ()

. getWrappedItemQualifiedName ()
. equa l s (" java . i o . F i l e ")) {

Assert . a s se r tTrue (true) ;
return ;

}
. . .

}

95

A. Test Implementations

FindFileFormStartPoint

Searched type: transitive.StartPoint

// ' S ta r tPo in t ' i s found and only member in l i s t
ClassNode node = assertThatNodeExists (nodes) ;
// node conta ins a t r a n s i t i v e r e l a t i o n wi th Calendar as ' to '
for (AbstractRe lat ion r e l : node . getOutgo ingRe lat ions ()) {

i f (r e l instanceof Trans i t i v eRe l a t i on) {
AbstractNode to = r e l . getTo () ;
i f (to . getWrappedItemQualifiedName ()

. equa l s (" java . u t i l . Calendar ")) {
Lis t<AbstractRelat ion> path =

((Tran s i t i v eRe l a t i on) r e l) . getPath () ;
/* p o s s i b l e path :
* − UsingRe la t ion S tar tPo in t x In termed ia te
* − UsingRe la t ion In termed ia te x Endpoint
* − UsingRe la t ion Endpoint x java . u t i l . L i s t
*/

AbstractRe lat ion path0 = path . get (0) ;
i f (path0 instanceof UsingRelat ion) {

i f (path0 . getTo ()
. getWrappedItemQualifiedName ()

. equa l s (" t r a n s i t i v e . Inte rmed iate ")) {
AbstractRe lat ion path1 = path . get (1) ;
i f (path1 instanceof UsingRelat ion) {

i f (path1 . getTo ()
. getWrappedItemQualifiedName ()

. equa l s (" endpoint . Endpoint")) {
AbstractRe lat ion path2 = path . get (2) ;

i f (path2 instanceof UsingRelat ion) {
i f (path2 . getTo ()

. getWrappedItemQualifiedName ()
. equa l s (" java . u t i l . Calendar ")) {

Assert . a s se r tTrue (true) ;
return ;

}
. . .

}

Transitive Inheritance

The detection tests for classes and interfaces, that are extended and implemented, re-
spectively, are the same for layer two and three. The only di�erences are the names
of the classes and interfaces, that are searched for. Thus, two methods are introduced,
containing the general structure of the tests and are de�ned as follows:

96

A. Test Implementations

Searched type: transitive.StartPoint

private void inher i tanceExtendsTest (
S t r ing searchedEntityName , S t r ing extender)
{

LookupType [] forbiddenTypes =
new LookupType [] {

new LookupType (" t r a n s i t i v e . Star tPo int " , ClassUnit . class)
} ;

L i s t<AbstractNode> nodes =
getAna ly s i s () . parseKdm(getTestModel () , forbiddenTypes , fa l se) ;

// ' S ta r tPo in t ' i s found and only member in l i s t
ClassNode node = assertThatNodeExists (nodes) ;

boolean c o r r e c t = fa l se ;

for (AbstractRe lat ion r e l : node . getOutgo ingRelat ions ()) {
i f (c o r r e c t) {

break ;
}

i f (r e l instanceof Trans i t i v eRe l a t i on) {
AbstractNode to = r e l . getTo () ;

i f (to . getWrappedItemQualifiedName ()
. equa l s (searchedEntityName)) {

AbstractRe lat ion l a s t =
((Tran s i t i v eRe l a t i on) r e l) . getPath () . getLast () ;

i f (l a s t instanceof Clas sRe la t i on) {
Assert . a s s e r tEqua l s (

extender ,
l a s t . getFrom () . getWrappedItemQualifiedName ()) ;

Assert . a s s e r tEqua l s (
ObjectTypeRelationType . Extends ,
((C la s sRe la t i on) l a s t) . getTypes () . get (0)) ;

c o r r e c t = true ;
}

}
}

}

i f (! c o r r e c t) {
Assert . f a i l () ;

}
}

97

A. Test Implementations

Searched type: transitive.StartPoint

private void inher i tanceImplementsTest (
S t r ing searchedEntityName , S t r ing implementer)
{

LookupType [] forbiddenTypes =
new LookupType [] {

new LookupType (" t r a n s i t i v e . Star tPo int " , ClassUnit . class)
} ;

L i s t<AbstractNode> nodes =
getAna ly s i s ()

. parseKdm(getTestModel () , forbiddenTypes , fa l se) ;

// ' S ta r tPo in t ' i s found and only member in l i s t
ClassNode node = assertThatNodeExists (nodes) ;

boolean c o r r e c t = fa l se ;

for (AbstractRe lat ion r e l : node . getOutgo ingRe lat ions ()) {
i f (c o r r e c t) {

break ;
}
AbstractNode to = r e l . getTo () ;

i f (to . getWrappedItemQualifiedName ()
. equa l s (searchedEntityName)) {

AbstractRe lat ion l a s t =
((Tran s i t i v eRe l a t i on) r e l) . getPath () . getLast () ;

i f (l a s t instanceof Clas sRe la t i on) {
Assert . a s s e r tEqua l s (

implementer ,
l a s t . getFrom () . getWrappedItemQualifiedName ()) ;

I s In<ObjectTypeRelationType> in =
new I s In<ObjectTypeRelationType>(

((C la s sRe la t i on) l a s t) . getTypes ()) ;

Assert . as ser tThat (
ObjectTypeRelationType . Implements ,
in) ;

c o r r e c t = true ;
}

}
}
i f (! c o r r e c t) {

Assert . f a i l () ;
}

}

98

A. Test Implementations

The tests for layer two and three are now de�ned as follows:

public void inher i tanceExtendsLayer2 () {
inher i tanceExtendsTest (
" java . lang . Thread" , " t r a n s i t i v e . Inte rmed iate ") ;

}

public void inher i tanceImplementsLayer2 () {
inher i tanceImplementsTest (

" java . i o . S e r i a l i z a b l e " , " t r a n s i t i v e . Inte rmed iate ") ;
}

public void inher i tanceExtendsLayer3 () {
inher i tanceExtendsTest (

" java . lang . Object " , " endpoint . Endpoint") ;
}

public void inher i tanceImplementsLayer3 () {
inher i tanceImplementsTest (

" java . lang . Runnable" , " endpoint . Endpoint") ;
}

Transitive Signature

The detection tests for signatures in a transitive way are also the same for layer two and
three, that is why a helper method is introduced, that de�nes the test structure:

Searched type: transitive.StartPoint

private void f i nd InS i gna tu r e (
S t r ing returnEntityName ,
S t r ing parameterEntityName ,
S t r ing parentClassName) {

LookupType [] forbiddenTypes =
new LookupType [] {

new LookupType (" t r a n s i t i v e . Star tPo int " , ClassUnit . class)
} ;
L i s t<AbstractNode> nodes =

getAna ly s i s () . parseKdm(getTestModel () , forbiddenTypes , fa l se) ;
// ' S ta r tPo in t ' i s found and only member in l i s t
ClassNode node = assertThatNodeExists (nodes) ;
boolean r e turnCorrec t = fa l se ;
boolean parameterCorrect = fa l se ;

for (AbstractRe lat ion r e l : node . getOutgo ingRelat ions ()) {
i f (r e l instanceof Trans i t i v eRe l a t i on) {

AbstractNode to = r e l . getTo () ;

i f (to . getWrappedItemQualifiedName ()
. equa l s (returnEntityName)) {

99

A. Test Implementations

AbstractRe lat ion l a s t =
((Tran s i t i v eRe l a t i on) r e l) . getPath () . getLast () ;

i f (l a s t instanceof UsingRelat ion) {
Assert . a s s e r tEqua l s (

parentClassName ,
l a s t . getFrom () . getWrappedItemQualifiedName ()) ;

Assert . a s s e r tEqua l s (
VariableType . ParameterUnit ,
((Us ingRelat ion) l a s t) . getUnitType ()) ;

r e turnCorrec t = true ;
}

}

i f (to . getWrappedItemQualifiedName ()
. equa l s (parameterEntityName)) {

AbstractRe lat ion l a s t =
((Tran s i t i v eRe l a t i on) r e l) . getPath () . getLast () ;

i f (l a s t instanceof UsingRelat ion) {
Assert . a s s e r tEqua l s (

parentClassName ,
l a s t . getFrom ()

. getWrappedItemQualifiedName ()) ;

Assert . a s s e r tEqua l s (
VariableType . ParameterUnit ,
((Us ingRelat ion) l a s t) . getUnitType ()) ;

parameterCorrect = true ;
}

}
}

}

i f ((! r e turnCorrec t) | | (! parameterCorrect)) {
Assert . f a i l () ;

}
}

The tests are then de�ned as follows:

public void SignatureTestLayer3 () {
f i nd InS i gna tu r e (

" java . lang . Appendable" ,
" java . math . BigDecimal " ,
" endpoint . Endpoint") ;

}

public void SignatureTestLayer2 () {
f i nd InS i gna tu r e (

" java . awt . Button" ,
" java . awt . f ont . FontRenderContext" ,
" t r a n s i t i v e . Inte rmed iate ") ;

}

100

B. Attached CD

B. Attached CD

The attached CD contains the following:

Decompiler

This directory contains the following:

� The sources of for the tests de�ned in Section 4.3.

� The compiled classes for the tests, separated by the compiler version.

� Decompilers, that have been tested.

� The output of the decompilers, separated by compiler version.

� CloudMIG projects, that have been manipulated, to integrate the decompiler.

� The sources of the libraries of JPetStore and JForum.

KDM-based analysis library

The directory contains the Maven project of the dependency analysis library de�ned in
Section 5, as well as the Java projects, that are the base for the tests cases.

Thesis

Contained within this directory is the digital version of this thesis as well as the source
�les.

101

	1 Introduction
	1.1 Motivation
	1.2 Goals of this Thesis
	1.2.1 Java Decompiler Integration
	1.2.2 KDM-based Dependency Analysis

	1.3 Structure of this Thesis

	2 Foundations and Technologies
	2.1 Foundations
	2.1.1 Reverse Engineering
	2.1.2 Dependency Analysis

	2.2 Relevant Technologies
	2.2.1 Knowledge Discovery Meta-Model (KDM)
	2.2.2 MoDisco
	2.2.3 CloudMIG

	3 Approach of this Thesis
	3.1 Reverse Engineering of Java Class Files
	3.2 Dependency Analysis

	4 Java Decompiler
	4.1 Overview
	4.2 Available Java Decompilers
	4.3 Test Cases
	4.3.1 HelloWorld
	4.3.2 Inner Class
	4.3.3 Conditions
	4.3.4 Exceptions
	4.3.5 Loops
	4.3.6 Inheritance
	4.3.7 Generics
	4.3.8 Annotations
	4.3.9 Enumerations

	4.4 Test Evaluation
	4.5 Discussion
	4.6 Integration into CloudMIG Xpress

	5 KDM-based Dependency Analysis
	5.1 Overview
	5.2 Approach
	5.3 Implementation
	5.3.1 Nodes of the Closure Graph
	5.3.2 Edges of the Closure Graph
	5.3.3 Traversing a KDM Instance

	6 Evaluation
	6.1 Overview
	6.2 Evaluation of the Dava Decompiler
	6.2.1 MyBatis JPetStore
	6.2.2 JForum
	6.2.3 Output Evaluation
	6.2.4 Discussion of the Evaluation

	6.3 Evaluation of the KDM-based Dependency Analysis
	6.3.1 Evaluation Tests
	6.3.2 Results

	7 Conclusion
	7.1 Summary
	7.2 Future Work

	8 Related Work
	8.1 Decompiler Analyisis
	8.2 Dependency Analysis for Program Understanding

	References
	A Test Implementations
	B Attached CD

