
Kiel University, Kiel, Germany

Department of Computer Science

Software Engineering Group

Bachelor's Thesis

Improving a Transformation of Java

Models to KDM

Kim Yannik Lübbe (kyl@informatik.uni-kiel.de)

Last edited: September 27, 2012

Advised by: Prof. Dr. Wilhelm Hasselbring
M. Sc. Sören Frey

ii

Hiermit versichere ich, Kim Yannik Lübbe, dass ich diese Bachelorarbeit selbständig
verfasst und keine anderen als die angegebenen und bei Zitaten kenntlich gemachten
Quellen und Hilfsmittel benutzt und die Arbeit in keinem anderen Prüfungsverfahren
eingereicht habe.

Ort, Datum, Unterschrift

iii

iv

Abstract

This Bachelor's Thesis describes the process of improving a given transformation to
convert Java Project Models into the Knowledge Discovery Meta-model format. This
transformation is written in the Atlas Transformation Language. First we will mention
practical reasons for the viability of model transformation. Secondly we list the di�erent
foundations and technologies relevant for this thesis. After an initial analysis of the
performance problems, we will introduce di�erent approaches to improve a given ATL
transformation, and talk about feasibility of these approaches in our speci�c case.
In this case, the chosen way of improving resource usage and execution time is remov-

ing unnecessary detail from the transformation when dealing with large projects, which
resulted in a boost of both speed and resource-e�ciency. Next we evaluate the results of
our modi�cations, and measure the performance improvements with regards to execution
time and resource usage with the help of di�erent test cases. The performance improve-
ment was signi�cant, although common optimization techniques were already applied to
the project beforehand.

v

vi

Contents

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Approach . 1
1.3 Goals . 2
1.4 Document Structure . 2

2 Foundations and Relevant Technologies 4

2.1 Reverse Engineering . 4
2.2 Software Modernization . 4
2.3 Model Transformation . 4
2.4 Relevant Technologies . 4

3 Initial Analysis 9

3.1 Outline . 9
3.2 Extracting the Transformation . 9
3.3 Test Runs . 9
3.4 The ATL Pro�ler . 11

4 Approach 14

4.1 Outline . 14
4.2 Possible optimizations . 14
4.3 Improvements . 18
4.4 Choosing the Right Transformation . 20

5 Evaluation 24

5.1 Methodology . 24
5.2 Feasibility . 24
5.3 Performance . 24
5.4 Test Cases . 24

6 Conclusions and Future Work 26

6.1 Conclusions . 26
6.2 Future Work . 26

References 28

Attachments 30

vii

List of Figures

List of Figures

1 Layers, packages, and concerns in KDM 5
2 The CloudMIG Approach . 6
3 The Cloud Suitability and Alignment Hierarchy 7
4 Extracting the ATL Transformation . 10
5 Pro�ling the ATL transformation . 11
6 Counting Calls of Single Operations . 12
7 Total Time Needed, Grouped by Operation 12
8 Numbers of Instructions Executed, Grouped by Operation 13
9 Top Memory Usage of Single Operations 13
10 Example for short-circuit boolean expressions 15
11 Execution times of including . 16
12 Execution times of includes . 17
13 Comparison of di�erent ways of computing an opposite relationship. . . . 17
14 Grep count of includes . 18
15 Grep count of di�erent collections . 18
16 Resolving the extends relationship . 19
17 Choosing the Right Transformation . 22

List of Tables

1 Execution times of original transformation 9
2 Bodies removed from transformation . 20
3 Statements removed from transformation 21
4 Execution times of di�erent transformations 25

viii

1 Introduction

1 Introduction

This section introduces the main goals and their motivation.

1.1 Motivation

The analysis of complex software systems is an important part of software engineering.
Analyses are used to reveal errors, monitor e�ciency, and to reverse engineer systems,
for instance for modernization or adaption to new environments, e.g., for use in cloud
computing. Here the main problems lie in the diversity of programming languages,
di�erent computer architectures, and coding styles. An abstraction from these special
cases is needed to reuse methods of analysis and to adapt software to di�erent scenarios.

1.2 Approach

A useful approach to this problem is using a uni�ed model for software systems. By
abstracting from language and architecture, the need to re-develop those methods for
every new case is circumvented. A publicly available technology that is able to represent
di�erent software systems is the Knowledge Discovery Meta-Model (KDM) [16]. KDM
has been developed by the Object Management Group [6] and enables the use of uni�ed
analyzation and optimization methods for a wide array of software. This is accomplished
by providing a common base for multiple analysis tools, independent from programming
languages, or coding styles.

A widely used programming language is Java. To let Java developers bene�t from the
available tools that operate on KDM, it has to be possible to transform Java software into
models compatible with these tools. Such a transformation already exists, and is utilized
by tools like MoDisco [7] and CloudMIG Xpress [11]. This available transformation is
written in the Atlas Transformation Language [15], short ATL, and is working for small
to medium size systems. But it exhibits performance problems when transforming large
software systems, to the point of not terminating the process, even on powerful computer
systems. This poses the question, if it is possible to optimize the given algorithm, or, if
this is not the case, if ATL has to be replaced by another transformation language.

This bachelor's thesis is written as part of a larger software engineering project at the
Kiel University [5]. In the course of a semester, a group of students developed a software
for managing KDM-models, the KDM-Model-Manager. It includes features like import-
ing and exporting of KDM-projects, conversion from Java and Python software to KDM,
and visualization of KDM-models.

1

1 Introduction

1.3 Goals

G1: Identifying performance problem(s)

G2: i. Optimizing the ATL algorithm

ii. Modifying it to �t di�erent scale projects

iii. (Optional) Rewriting it in another language

G3: Applying suitable boundaries to the transformation to use in di�erent scenarios

The goal of this bachelor's thesis is to �x the performance issues occurring in Cloud-
MIG's transformation from Java to KDM (G1). This will be accomplished by either
optimizing the ATL algorithm with regards to larger software systems, i.e. modifying
it to an extent where it can process large projects without problems. The alternative
approach would be replacing the given transformation in question with a model trans-
formation written in another language (G2.iii). A model transformation language that
seems suited to this kind of problem is Xtend.
To achieve these goals, we will have to analyze the transformation currently used with

regards to large software systems. Secondly we will start identifying possible performance
bottlenecks by applying the algorithm to a number of applicable test cases (see section
4). Furthermore, if possible, we will optimize the current ATL code and implement the
optimized algorithm into a standalone library, that will be usable by other projects.
If the achieved speed optimization and resource needs of the transformation are not
enough to handle large software projects, we will cut down on the level of detail from the
source model that is transformed to the target. To achieve this, we will o�er multiple
di�erent transformations for multiple sizes of software projects (G3).
Finally, if the mentioned optimization is not possible, we will try to �nd the solution in
another model transformation language, and analyze if a change to this language is a
sensible approach (G2.iii).

1.4 Document Structure

The remainder of the thesis is structured as follows. Section 2 outlines the foundations
and technologies relevant to this thesis. Following that, Section 3 describes the extraction
of the transformation from the MoDisco libraries into a standalone eclipse project. Next,
it documents the �rst look at the transformation and lists examples of test runs with a
sample software project. At the same time we evaluate the di�erences between running
the transformation with and without the use of the ATL Pro�ler. Section 4 weighs
possible optimization strategies against the given source code and mentions problems with
these common approaches. Next we list the modi�cations applied to the transformation.
The next Section 5 expands on the evaluation and compares the results of di�erent

2

1 Introduction

transformations applied to di�erent test cases. After that, the �nal Section 6 concludes
the thesis and de�nes starting points for future work based on this thesis.

3

2 Foundations and Relevant Technologies

2 Foundations and Relevant Technologies

In this section we will list foundations and technologies that are relevant for the thesis.

2.1 Reverse Engineering

Reverse engineering means analyzing a system with two main purposes:

1. Identifying the system's components and their internal relationships.

2. Creating an abstract representation of the system

[9]

2.2 Software Modernization

The process of software modernization involves understanding the system at hand, ex-
tracting its rules of operation, and by using current technologies and software engineering
methods, creating a new system with the same set of needed features. These include for
example reverse engineering and software transformation [8].

2.3 Model Transformation

Model transformation is a method that enables the automation of many activities like
reverse engineering, application of patterns or refactoring, which are used extensively in
software development and modernization. By creating an representation of the system
on a higher level of abstraction and applying a set of rules known as transformation rules
it is possible to convert one or more source models into one or more output models. This
process is referred to as model transformation [18].

2.4 Relevant Technologies

2.4.1 KDM

The Knowledge Discovery Metamodel's purpose is to de�ne a unifying standard to repre-
sent software and information systems. It includes means to represent di�erent software
artifacts, such as source code, user interfaces, databases, etc. The KDM standard speci�es
facts, which are compiled in sets to display behavior, structure, and data of information
systems. In di�erence to the Uni�ed Modeling Language (UML), which generates code
in a top-down manner, KDM can be used to build models from software systems and
artifacts in a bottom-up manner with a higher level of abstraction. This is achieved by
using reverse engineering techniques [16].

4

2 Foundations and Relevant Technologies

Figure 1: Layers, packages, and concerns in KDM
taken from Ricardo Pérez-Castillo et. al [16]

2.4.2 KDM-Model-Manager

The proposed bachelor's thesis will be written as part of a larger software engineering
project at the Kiel University [5]. In the course of a semester, a group of students
developed a software for managing KDM-models, the KDM-Model-Manager, including
import and export of KDM-projects, conversion from Java and Python software to KDM,
and visualization of KDM-models.

2.4.3 Java

Java is a programming language introduced by Sun Microsystems that has been increas-
ing in popularity since 1995. Java is very popular, in fact most colleges and universities
require computer software majors to take Java courses. This is mainly because of Javas
simplicity, which makes it easy to learn, while being powerful enough to compete with
the widely used Visual C++. Java is deployable on many platforms, because of the Java
Virtual Machine, which eliminates the need for compiling against di�erent hardware or
software architectures [20].

Java is in�uenced by other popular languages, like C and C++. Although it is de-
signed to solve similar problems, Java tries to eliminate the need for code complexity.
Java is very familiar to users of other programming languages for these reasons. But it
cuts away often repeated code and replaces it with easy to use high level functions, which
makes Java di�erent to the languages mentioned above in many areas. From this stems
Javas simplicity, making it easily approachable, as it is a simple language by design, but
on the other hand, Java o�ers more complex features like garbage collection and native

5

2 Foundations and Relevant Technologies

multithreading [19].

2.4.4 MoDisco

Modisco is a framework to apply reverse engineering and model transformation techniques
to software systems. It improves on other, existing approaches to o�er a full suite of
features to extract metamodels, apply model transformation rules and by that, facilitate
software modernization [7].

2.4.5 CloudMIG Xpress

Figure 2: The CloudMIG Approach
taken from Frey et al. [12]

CloudMIG Xpress is an application that provides software engineers with suitable tools
to convert their software projects into a suitable format for use in cloud computing. This
is achieved by making heavy use of reverse engineering techniques and model transfor-
mation to modernize software and semi-automatically adapt existing software systems to
the needs of cloud based architectures [12]. An Overview of the CloudMig approach can
be seen in Figure 2.

6

2 Foundations and Relevant Technologies

Figure 3: The Cloud Suitability and Alignment Hierarchy
taken from Frey et al. [11]

CloudMIG provides means to categorize software applications into the "Cloud Suit-
ability and Alignment (CSA) hierarchy". As seen in Figure 3, the CSA hierarchy includes
categories like "cloud compatible" and "cloud optimized", to help in improving software
systems and choosing the right cloud environment to deploy in. It enables software
providers to semi-automatically migrate enterprise software applications to cloud based
applications, with regards to resource e�ciency and scalability [11].

2.4.6 ATL - Atlas Transformation Language

The Atlas Transformation Language is a language for model transformation. ATL enables
software engineers to convert one or more source models to a set of target models. ATL
provides its own integrated development environment (IDE), which is implemented as an
addon to the Eclipse platform. The ATL IDE provides users with many commonly used
tools to facilitate the creating of transformation rules for use in model transformation
processes, such as software modernization. These tools include, but are not limited to,
an editor with syntax highlighting, and a debugger [15].

2.4.7 ATL Pro�ler

The ATL Pro�ler is part of the ATL IDE. It allows the close inspection of execution
count and resource usage, such as CPU time or memory, on a per-method level. The
pro�ler dynamically analyzes the transformation rules, and outputs a detailed execution
pro�le, e.g. a table or a tree view, which can be exported to .xmi �les. Also included
are sortable table and tree views, which should provide a quick way to easily detect
performance issues with single or even multiple transformation rules [17].

7

2 Foundations and Relevant Technologies

2.4.8 Xtend

Xtend is a functional language, which could be a possible substitute for ATL. While
Xtend is already suited for model transformation, the main advantage of Xtend derives
from the fact that Xtend compiles into Java code, which makes it ideal for programmers
already equipped with su�cient knowledge and training in Java programming. While
the compiler output is easily readable, the written Xtend code tends to be shorter and
more concise than the semantically equivalent Java program [14].

2.4.9 Grep

Grep, short for "global regular expression print" [13], is a UNIX/Linux command line
tool that outputs all lines of a �le that match a given regular expression. While powerful
and �exible, grep is mainly used to �nd simple strings in a single �le, as opposed to other
search commands, who rely on matching strings or regular expressions to �le names.
Grep is also able to count occurrences of matches instead of printing matching lines
to standard output. Matching full text strings is normally case sensitive, this can be
overridden.

8

3 Initial Analysis

Transformation \ Testcase JPetStore Apache OFBiz Adempiere

original 5.7508s - -

Table 1: Execution times of original transformation
median of 5 runs on Intel Pentium Core i5, 6GB Java Heap

3 Initial Analysis

In this section, we will describe our �rst look at the original version of the ATL trans-
formation.

3.1 Outline

Section 3 evaluates the original transformation in two di�erent ways. After extracting
the ATL transformation into a runnable eclipse project, we try to convert our test cases
mentioned in Section 5.4 from Java Project Models to KDM. Next we use the pro�ler
program included with the ATL SDK to measure which operations from the original
transformation use the most resources.

3.2 Extracting the Transformation

The original ATL transformation is part of the MoDisco project. Its main purpose is to
take a Java project model and convert it into the KDM format. This produces an .xmi
�le, which holds all the information of the original Java model, but in a format readable
by the KDM-Model-Manager (See Section 2). After extracting the ATL transformation
to a standalone eclipse project, as seen in Figure 4, we can now start to measure execution
times using the ATL SDK.

3.3 Test Runs

As you can see in Table 1, the transformation of testcase 1, JPetStore, took about
5.75 seconds on average. The other testcases, OFBiz and Adempiere, were not able to
be transformed. In various tries either the garbage collector or eclipse itself crashed.
Sometimes this took one to four hours, another time 3 days, but without a measurable
signi�cance or reproducable results. This was tested on computers with di�erent system
speci�cations and levels of hardware performance.
These test runs were all executed without the ATL pro�ler enabled, because the pro�ler

produces a large overhead. As seen in Figure 5, the transformation takes nearly 5 minutes
(281.8 seconds) with the pro�ler enabled, as opposed to about 6 seconds without the
pro�ler. In the case of JPetStore this is tolerable, but in larger test cases as OFBiz
or Adempiere, the execution of the pro�ler with a factor of 281.762s

5.7508s = 48.995 to the

9

3 Initial Analysis

Figure 4: Extracting the ATL Transformation
from MoDisco to eclipse

10

3 Initial Analysis

Figure 5: Pro�ling the ATL transformation
with testcase 1 JPetStore

execution time is not practicable. This does not take into account the chance of a non-
linear relation between the execution times with pro�ler enabled/disabled, as we lack the
proper test cases for con�rming polynomial or even exponential growth.

3.4 The ATL Pro�ler

The ATL Pro�ler has another view. It lists the di�erent ATL operations sorted by various
metrics. The interesting ones for this thesis are:

� Number of calls of this operation, Figure 6

� Total time needed for executing these operations, Figure 7

� Number of instructions executed by this operation, Figure 8

� Top memory usage of single operations, Figure 9

The evaluation of these metrics poses a problem, as either the ATL pro�ler or the ATL
runtime seem to handle abstract methods a little di�erent than documented on the o�cial
ATL Project website [3]. While extending an operation via abstract methods should
be equal to the same static copying of the parents instructions to the child operation,
abstract methods show up in the ATL pro�ler combined under the parent operation.
This led us to replace the abstract methods with their static counterparts. While this
made the source code of the original transformation harder to read, it enabled us to use
the ATL pro�ler to its full extent. We will still refer to the static-modi�ed transformation
as the original transformation, as this is not an optimization step.

11

3 Initial Analysis

Figure 6: Counting Calls of Single Operations
in the Original Transformation

Figure 7: Total Time Needed, Grouped by Operation
in the Original Transformation

12

3 Initial Analysis

Figure 8: Numbers of Instructions Executed, Grouped by Operation
in the Original Transformation

Figure 9: Top Memory Usage of Single Operations
in the Original Transformation

13

4 Approach

4 Approach

This section de�nes how we approached improving the original transformation.

4.1 Outline

We start with analyzing the current ATL transformation with special regards to large
software projects. Secondly, we will be identifying possible performance bottlenecks by
applying the algorithm to a number of test cases, which are listed in Section 5.4. Next we
will handpick redundant or useless information, that may not need to be stored by the
KDM-Model-Manager, and remove these steps from the transformation. Meanwhile, we
will evaluate the performance and correctness of the improved transformation by directly
comparing the used resources and output to the original transformation.

4.2 Possible optimizations

These approaches are inspired by "Deriving OCL Optimization Patterns from Bench-
marks" [10]

4.2.1 Short-Circuit Boolean Expressions

To transform a model, many boolean expressions have to be evaluated in sequence. For
example, in ATL, the visibility of a certain Java element can be one of 4 things:

� public

� package (default)

� protected

� private

+ unknown

The �fth modi�er is not part of the Java language, but must be checked for in a model
translation nonetheless. We will not delve into the detailed de�nition of these, as it is
not relevant for this thesis what these modi�ers do, but how to check for them. It is only
relevant that an element of the Java language, be it a class or a method, can only ever
have one of these modi�ers at the same time.
The easiest and most common way to check the visibility of a class, is a switch/case

statement. In ATL, and for the sake of simplicity, a nested sequence of if/else statements
is semantically the same. The practice of short-circuiting the evaluation of boolean ex-
pressions now puts the most common case or the most easily evaluated expression in the

14

4 Approach

Figure 10: Example for short-circuit boolean expressions
from the original ATL Transformation

�rst if statement. This helps to skip unwanted or redundant steps in evaluating expres-
sions, because the �rst if statement can terminate the whole nested block of expressions
and prevents other statements from executing. We see an example in Figure 10.
This is taken directly from the original transformation. As one can see, the statement

is nested in such a way, that if an if statement holds, the rest of the block is terminated.
This is desired behavior, and can not be improved on [10].
Another example of short-circuit boolean expressions is a chain of expressions con-

nected with boolean operators, e.g. and and or. An e�ective way of writing and or
statement would be to make sure, the �rst statement is the most probable to return
true, as this would terminate the statement and prevent other expressions from being
processed. The same holds true for an and operator applied to a chain of boolean expres-
sions. In this case, the optimal way would be for the �rst statement to return false, as this
would terminate the whole block. This is very similar to the problem described above,
as we can easily convert the list of boolean expressions into a nested if/else statement
and vice versa.

4.2.2 Collections

ATL includes 3 types of collections. These are as follows:

15

4 Approach

Figure 11: Execution times of including
taken from Jesús Sánchez Cuadrado et. al [10]

� Set

� OrderedSet

� Sequence

As above, I will not get too far into the de�nition of these. The main point in evaluating
the performance of these collection types lies in examining the operators de�ned for
collections in ATL. The two main operators are including and includes. Includes checks
for the existence of an element in a collection, while including de�nes an element as part
of a collection, i.e. inserts the element into the collection. The three collection types in
ATL behave very di�erently regarding to performance under these operators.
As seen in Figure 11, sequence is the fastest collection to use when executing including.

While sequence is also the slowest when checking for elements with the includes method,
see Figure 12, this method is never called in the original ATL transformation. To prove
these and a few other points (later), we rely heavily on the usage of grep to �nd matching
constructors or commands in the original transformation source code. As you can see
in Figure 14, includes is never instantiated in the original transformation. This enables
us to choose the optimal collection to use for the performance improvement of the ATL
transformation as sequence.
As you can see in Figure 15, the collection orderedSet is never mentioned in the source

code of the original ATL transformation javaToKDM.atl at all. The string set appears
3 times, but never as constructor to a collection, see Figure 15, lower part. The only

16

4 Approach

Figure 12: Execution times of includes
taken from Jesús Sánchez Cuadrado et. al [10]

Figure 13: Comparison of di�erent ways of computing an opposite relationship.
The logarithmic scale used for the time axis corresponds to the following formula:

1.59× ln(time) + 8.46
taken from Jesús Sánchez Cuadrado et. al [10]

17

4 Approach

Figure 14: Grep count of includes
method in original transformation

Figure 15: Grep count of di�erent collections
in original transformation

collection ever instantiated seems to be sequence, with 78 mentions of the string in the
source code. This is already optimal for our case, as sequence is the fastest usable collec-
tion in ATL [10], except for the use of includes, which is not used in the transformation
at all.

4.2.3 Opposite Relationships

While transforming a source model into a target model, many child ↔ parent relation-
ships have to be resolved. An example in our programming language in question, Java,
might be the extends relation. The extending class in this relationship is the child, the
extended would be the parent class. It is often necessary to �nd the opposite of the given
relationship e.g. �nding the parent class to a given object.
ATL provides multiple way to solve the opposite relationship problem. As you can see

in Figure 13, the most e�cient one is refImmediateComposite(). This seems like another
way to look for improvable parts in the ATL transformation. The problem is, as with
the other approaches, the original transformation already uses this method for resolving
opposite relationships, such as extend or composite. An example for this is shown in
Figure 16.

4.3 Improvements

This part of the thesis describes the modi�cations applied to the transformation. After
other common optimization techniques proved not feasible in this case, we decided to
lower the level of detail transformed. As mentioned in Section 3, our main problem with

18

4 Approach

Figure 16: Resolving the extends relationship
with refImmediateComposite() as found in the original transformation

the transformations performance was resource-usage. The level of detail on the original
transformations output was fairly high, as all statements and statement bodies, e.g.
loops, methods, branches like switch/case that were existent in the original project were
converted and placed in the output model. Since the models are kept in XMI format,
they tend to use a lot of memory while being converted. Our answer to this problem was
cutting the level of detail of the output model to a more reasonable amount. For the
sake of simplicity we decided on three di�erent levels:

� full: The original output

� medium: No statement bodies in the output

� low: No statements in the output model

The results of these modi�cations will be evaluated in Section 5.

4.3.1 Removing Statement Bodies

In ATL, statement bodies are referred to as src.body, and inserted into an KDM codeEle-
ment. By removing occurences of these, we e�ectively removed the bodies of following
statements:

4.3.2 Removing Statements

For even larger software projects, even the removing of statement bodies is not enough,
as the statements themselves account for a large portion of the source. Therefore the
conversion from input to output model still used too much main memory and or did not
terminate at all on the test machines. The removing of the statements themselves is our
way of choice for solving this problem. For the sake of lowering the system requirements

19

4 Approach

Body removed ATL referral

abstract methods java!AbstractMethodDeclaration

for java!ForStatement

foreach java!EnhancedForStatement

while java!WhileStatement

try java!TryStatement

catch java!CatchClause

synchronized java!SynchronizedStatement

labels java!LabeledStatement

Table 2: Bodies removed from transformation
with medium level of detail

of the transformation even more, we removed following artifacts from the transformation
process:
Additionally, we removed all references to the original Java source code, as this not

needed for the KDM-Model-Manager. The references to the code were part of nearly
every ATL operation, and as you can see in Figure 9, accounted for 3 of the seven
operations using the most memory. The operations in question are:

1. getTargetFromSource

6. getLinkBySourceElement

7. getSourceElement

4.4 Choosing the Right Transformation

The last part of this section describes our method to choose the right transformation
depending on the project size. As the �nal transformations will be embedded into a
standalone library as part of the KDM-Model-Manager project, we decided on a simple
Java class to handle this choice elegantly. The source code of this class can be seen in
Figure 17. The function getProjectSize() takes a software project �le as an argument,
preferably in .xmi format. After calculating the total �le size it returns a custom Java
Enum of type ProjectSize, which can be one of four values:

� SMALL

� MEDIUM

� BIG

� ERROR

20

4 Approach

Statement removed ATL referral

Initializing arrays java!ArrayInitializer

Access on array data java!ArrayAccess

Access on array length java!ArrayLengthAccess

Assignment of values java!Assignment

Access to �elds java!FieldAccess

Access to �elds of superclass java!SuperFieldAccess

Variable Declarations java!VariableDeclarationExpression

Conditionals java!ConditionalExpression

Expressions in parenthesis java!ParenthesizedExpression

Pre�x operators java!Pre�xExpression

In�x operators java!In�xExpression

Post�x operators java!Post�xExpression

This java!ThisExpression

InstanceOf java!InstanceofExpression

Null java!NullLiteral

Booleans java!BooleanLiteral

Numbers java!NumberLiteral

Strings java!StringLiteral

Types java!TypeLiteral

Annotations java!Annotation

Annotation members java!AnnotationMemberValuePair

Table 3: Statements removed from transformation
with low level of detail

21

4 Approach

Figure 17: Choosing the Right Transformation
depending on the Input Project

22

4 Approach

While only the �rst three are relevant to actually transforming the project, the Pro-
jectSize.ERROR value helps to spot faulty projects or coding errors early on. This simple
Java class is the interface to the rest of the KDM-Model-Manager.

23

5 Evaluation

5 Evaluation

5.1 Methodology

The results of this bachelors project will be evaluated by the thesis with regards to
two main categories: Feasibility and performance. The main approach is to ensure an
improvement in speed and memory usage, so that larger projects can be transformed
without errors from Java model to KDM by the improved ATL transformation. The
second goal here is to make sure that the modi�ed transformation produces an equal
output to the source model.

5.2 Feasibility

We have to ensure that the optimized model-to-model transformation produces an output
which is equal in structure and hierarchy to the source project model. To make sure that
the target model matches the source model, we did a manual review of a sample project
with regards to classes and methods. We compared the target model of the original
transformation to the output of the two mod�ed transformations. The only di�erences
of these were due to the removal of statement bodies, or statements respectively. The
parts actually removed are listed in Section 4.

5.3 Performance

Our main goal when improving performance is decreasing memory usage and execution
times. The ATL pro�ler bundled with the ATL SDK o�ers the possibility to output
these execution times, see table 4. We mainly used these for performance measuring
purposes. Additionally, the ATL Pro�ler provides means to measure the execution time of
single transformation rules, which come in handy when identifying performance problems
and/or improvements in a more di�erentiated context, and in single transformation rules.
Secondly, we measure the main memory usage of the ATL transformation, as this is

a bottleneck when dealing with software projects in the KDM format. KDM �les are
stored in an .xmi �le, and larger projects take up memory while being transformed. This
escalates to the point of not terminating if the project models are too large or detailed.

5.4 Test Cases

For the sake of comparability, we will focus on 3 main test cases:

� JPetStore [4], a small java project which can be transformed to KDM by the original
transformation without errors

� Apache OFBiz [2], an open source enterprise automation software project which
will serve as our medium size project, and is not yet transformable by the original
ATL transformation

24

5 Evaluation

Transformation \ Testcase JPetStore Apache OFBiz Adempiere

full detail: original 5,7508s - -

medium detail: without statement bodies 3,6764s - -

low detail: without any statements 0,6242s 8726,6624s 45439,5640s

Table 4: Execution times of di�erent transformations
median of 5 runs on Intel Pentium Core i5, 6GB Java Heap

� ADempiere [1], an open source collection of ERP applications, as the biggest test-
case

25

6 Conclusions and Future Work

6 Conclusions and Future Work

This section concludes the main aspects of this thesis and refers to future work which
could be based on its results.

6.1 Conclusions

Transforming software projects into the KDM format is a step into building and being
able to use more uni�ed tools for software modernization. The KDM-Model-Manager en-
ables software engineers to convert their software projects into a form which is employable
by other applications and tools, such as the CloudMIG Framework. The improvements
applied to the transformation from Java Project Models to KDM help to broaden the
target audience for these tools.
The thesis showed how to improve the transformation w.r.t execution time and resource

usage, and accomplished the goals G1, G2.i, and G2.ii. The transformation was not
rewritten in another language, thus eliminating the need for goal G2.iii. We found
boundaries that suited our test cases, and implemented them with the use of a chooser
library and three di�erent transformations with di�ering levels of detail. This lead to
the reach of goal G3.

6.2 Future Work

This section lists a few points with the possibility to serve as base for future work.

6.2.1 Fine Tuning the Level of Detail

At this moment, we have three di�erent transformations with varying level of detail.
This leads to two problems:

1. Redundant source code

2. Lack of �exibility in what will be transformed

Both of these problems could be �xed by a single transformation with dynamically ad-
justable levels of detail. This could go as �ne grained as single selection of each artifact
type that should be transformed, before the transformation is started. An example for
this would be a model-2-model conversion with just packages and classes. Another ex-
ample could be a very high detail transformation, but without certain statements, e.g.
try/catch blocks or loops.

6.2.2 Automatic Scaling According to System Power

Secondly, a problem with the current iteration of the transformation is thestatic nature
of hard-coded boundaries with regards to software project �le size. A desirable feature

26

6 Conclusions and Future Work

to add here would be the option to determine the best boundaries for the current system
speci�cations and project size. This would enable the library to change the boundaries
for the project �le size depending on the systems possible performance without too much
user interaction.

6.2.3 Optimizing the Boundaries for Project Sizes

The boundaries of Java class transformation chooser are derived from only three test
cases, as seen in Section 4. This is far from optimal, and could easily be improved on.
The more test cases we can transform on di�erent computer systems, the more precise
these boundaries can get. In combination with one or both of the above points, this
would drastically improve the usability of the transformation library, and as a result, the
KDM-Model-Manager.

6.2.4 Resolving the Pro�ler Overhead Problem

There is another question unanswered in this thesis. The ATL Pro�ler produces a large
execution time overhead as opposed to executing the transformation without the pro�ler
enabled. The reason for this is not clear to this point, as is the nature of the relation
between the execution times with or without the pro�ler. This could fall into the same
category as the optimizing of the boundaries above, as many more test cases would be
needed to calculate a formula exact enough to deal with this problem.

27

References

References

[1] Adempiere erp. http://www.adempiere.com/ 2012-09-25.

[2] The apache open for business project. http://ofbiz.apache.org/ 2012-09-25.

[3] Atl documentation. http://www.eclipse.org/atl/documentation 2012-09-27.

[4] ibatis jpetstore. http://sourceforge.net/projects/ibatisjpetstore/ 2012-09-25.

[5] Masterprojekt � software engineering für parallele und verteilte systeme (ss 12).
http://se.informatik.uni-kiel.de/teaching/ss-12/projekt/ 2012-09-25.

[6] Object management group. http://www.omg.org/ 2012-09-25.

[7] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. MoDisco:
A Generic And Extensible Framework For Model Driven Reverse Engineering. In
Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering, ASE '10, pages 173�174, New York, NY, USA, 2010. ACM.

[8] Chia-Chu Chiang and C. Bayrak. Legacy software modernization. In Systems, Man
and Cybernetics, 2006. SMC '06. IEEE International Conference on, volume 2,
pages 1304 �1309, oct. 2006.

[9] E.J. Chikofsky and II Cross, J.H. Reverse Engineering and Design Recovery: A
Taxonomy. Software, IEEE, 7(1):13�17, jan. 1990.

[10] Jesús Sánchez Cuadrado, Frédéric Jouault, Jesús García Molina, and Jean Bézivin.
Deriving ocl optimization patterns from benchmarks. Electronic Communications
of the EASST, 15:16, 2008.

[11] Sören Frey and Wilhelm Hasselbring. The cloudmig approach: Model-based migra-
tion of software systems to cloud-optimized applications. International Journal on
Advances in Software, 4(3 and 4):342�353, 2011.

[12] Sören Frey, Wilhelm Hasselbring, and Benjamin Schnoor. Automatic conformance
checking for migrating software systems to cloud infrastructures and platforms.
Journal of Software Maintenance and Evolution: Research and Practice, 2012,
10.1002/smr.582.

[13] Eric Goebelbecker. Using grep: Moving from dos? discover the power of this linux
utility. Linux J., 1995(18es), October 1995.

[14] Arno Haase, Markus Völter, Sven E�tinge, and Bernd Kolb. Introduction to ope-
nArchitectureWare 4.1.2, 2007.

28

References

[15] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick Valduriez.
Atl: a qvt-like transformation language. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications,
OOPSLA '06, pages 719�720, New York, NY, USA, 2006. ACM.

[16] Ricardo Pérez-Castillo, Ignacio García-Rodríguez de Guzmán, and Mario Piattini.
Knowledge Discovery Metamodel-ISO/IEC 19506: A standard to modernize legacy
systems. Computer Standards & Interfaces, 33(6):519�532, 2011.

[17] William Piers. Atl 3.1 � industrialization improvements. In Proceedings of the 2nd
International Workshop on Model Transformation with ATL, 2010.

[18] S. Sendall and W. Kozaczynski. Model transformation: the heart and soul of model-
driven software development. Software, IEEE, 20(5):42 � 45, sept.-oct. 2003.

[19] A. Van Ho�. The case for java as a programming language. Internet Computing,
IEEE, 1(1):51 �56, jan/feb 1997.

[20] Yun zheng Ding and Zhen Hu. To enlighten students' thinking of programming by
java language. In Multimedia Technology (ICMT), 2011 International Conference
on, pages 923 �925, july 2011.

29

Attachments

Attachments

This is a list of all attachments to this thesis.

Attachments on CD

ATLTransformation

This folder includes the source code of the three di�erent transformations.

� javaToKdm.atl - the original full detail transformation

� javaToKdm - new.atl - the medium detail transformation

� javaToKdm - �nal.atl - the low detail transformation

ProjectSizeToTransformation

This folder includes the source code to the Java class that chooses the transformation
depending on the source project.

30

	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Goals
	1.4 Document Structure

	2 Foundations and Relevant Technologies
	2.1 Reverse Engineering
	2.2 Software Modernization
	2.3 Model Transformation
	2.4 Relevant Technologies
	2.4.1 KDM
	2.4.2 KDM-Model-Manager
	2.4.3 Java
	2.4.4 MoDisco
	2.4.5 CloudMIG Xpress
	2.4.6 ATL - Atlas Transformation Language
	2.4.7 ATL Profiler
	2.4.8 Xtend
	2.4.9 Grep

	3 Initial Analysis
	3.1 Outline
	3.2 Extracting the Transformation
	3.3 Test Runs
	3.4 The ATL Profiler

	4 Approach
	4.1 Outline
	4.2 Possible optimizations
	4.2.1 Short-Circuit Boolean Expressions
	4.2.2 Collections
	4.2.3 Opposite Relationships

	4.3 Improvements
	4.3.1 Removing Statement Bodies
	4.3.2 Removing Statements

	4.4 Choosing the Right Transformation

	5 Evaluation
	5.1 Methodology
	5.2 Feasibility
	5.3 Performance
	5.4 Test Cases

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work
	6.2.1 Fine Tuning the Level of Detail
	6.2.2 Automatic Scaling According to System Power
	6.2.3 Optimizing the Boundaries for Project Sizes
	6.2.4 Resolving the Profiler Overhead Problem

	References
	Attachments

