
Christian-Albrechts-University Kiel
Department of Computer Science

Software Engineering Group

Bachelor Thesis

Transforming Python into KDM to Support
Cloud Conformance Checking

Written by: Alexander Clausen (acl@informatik.uni-kiel.de)
Born 1986-06-09 in Eckernförde

September 28, 2012

Advised by: Prof. Dr. Wilhelm Hasselbring
M.Sc. Sören Frey



Hiermit versichere ich, Alexander Clausen, dass ich die Bachelorarbeit selbständig ver-
fasst und keine anderen als die angegebenen und bei Zitaten kenntlich gemachten Quellen
und Hilfsmittel benutzt habe und die Arbeit in keinem anderen Prüfungsverfahren ein-
gereicht habe.

Datum, Ort, Unterschrift

ii



Abstract Python is a well-suited language for developing web applications. This
is demonstrated by the success of social networking websites like Pinterest, Reddit,
Instagram, or Disqus, whose application servers mostly run Python code.
But as software ages, it often needs to go through large changes in its architecture.

Doing them by hand is usually tedious and error-prone. Model-driven software devel-
opment is a promising approach to this problem, as it provides automation for doing
software changes. One step of this is often reverse-engineering, where a model is ex-
tracted from the existing system. The Knowledge Discovery Meta-Model (KDM) is a
meta-model which can be applied here.
KDM, specified by the OMG (Object Management Group), describes a software sys-

tem on different levels of abstraction in a language-independent way. It is designed as a
standard for exchanging information between model-driven software modernization tools
from different vendors.
KDM is used by the CloudMIG approach to support semi-automatic model-driven

migration of software systems to the cloud. CloudMIG supports cloud conformance
checking, which analyzes a model for violations of a set of constraints that describe the
cloud environment. CloudMIG Xpress is an implementation of the CloudMIG approach.
There are already plugins to extract KDM models from Java and C# software sys-

tems. In this thesis, we present the transformation of Python software systems to KDM
instances, towards the goal of supporting Python in CloudMIG Xpress. A tool for ex-
tracting a KDM model from Python is developed. As a prerequisite, a mapping between
Python and KDM is defined and a multi-phase approach for transforming Python to
KDM is shown.
Finally, the feasibility and performance of the approach is analyzed using three Python

code bases.



Contents

Contents

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3. Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Foundations and Technologies 3
2.1. Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Model Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3. Software Modernization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4. Relevant Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.1. KDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4.2. Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4.3. Jython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.4. ATL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.5. Xtend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.6. CloudMIG and CloudMIG Xpress . . . . . . . . . . . . . . . . . . 7

2.5. Three-Phase Transformation Approach . . . . . . . . . . . . . . . . . . . . 8
2.5.1. Phase 1: Type Transformation . . . . . . . . . . . . . . . . . . . . 8
2.5.2. Phase 2: Member & Method Transformation . . . . . . . . . . . . 9
2.5.3. Phase 3: Statement Transformation . . . . . . . . . . . . . . . . . 9

3. Approach 10
3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2. The Transformation Approach . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1. Step 1: Collect Import Statements . . . . . . . . . . . . . . . . . . 11
3.2.2. Step 2: Create a Topological Ordering . . . . . . . . . . . . . . . . 11
3.2.3. Step 3: Transform Toplevel Code . . . . . . . . . . . . . . . . . . . 11
3.2.4. Step 4: Transform Code Below Function/Lambda Bodies . . . . . 11
3.2.5. Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3. Mapping Python Elements to KDM . . . . . . . . . . . . . . . . . . . . . 12
3.3.1. Modules and Packages . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2. Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3. Variable references . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.4. Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.5. Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.6. Function Definitions, Function and Method Calls . . . . . . . . . . 14
3.3.7. Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.8. Name Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iv



List of Figures

4. Evaluation 17
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1. Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2. Feasibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.4. Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3. Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5. Related Work 25

6. Conclusion 26
6.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2.1. Improvements of the Transformation . . . . . . . . . . . . . . . . . 26
6.2.2. Complementary Dynamic Extraction . . . . . . . . . . . . . . . . . 26
6.2.3. ASTM as Intermediate Model . . . . . . . . . . . . . . . . . . . . . 26
6.2.4. Union Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

References 27

A. Attachments 28

List of Figures
1. The Horseshoe Process [Kazman et al. 1998] . . . . . . . . . . . . . . . . . 4
2. The 12 packages of KDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. The CloudMIG Approach [Frey and Hasselbring 2011b] . . . . . . . . . . 8
4. The three-phase approach for transforming C# to KDM [Wulf et al. 2012] 8
5. Screenshot of FlussInfo.net, taken on 2012-09-27 . . . . . . . . . . . . . . 20
6. Screenshot of addons.mozilla.org, taken on 2012-09-27 . . . . . . . . . . . 21

v



1. Introduction

1. Introduction
1.1. Motivation
There is a big incentive for business software developers to move their products to the
cloud. IaaS and PaaS solutions free companies from having to run their own datacenter
and having to worry about infrastructure details at the physical level, like maintaining
hardware or getting enough energy delivered to the servers [Creeger 2009].
Also, going into the cloud, companies only pay for what they use, and can scale their

application up and down depending on current usage. They no longer need to pay
upfront for provisioning servers for the highest usage and find them idle most of the
time.
Often, the architecture of software systems is not known in detail. Documentation

is lacking, if it exists, or the system may have diverged from the state where it was
documented. Also, because documentation is generally written by humans, errors may
be introduced when documenting a system. Furthermore, the writer may not know what
aspects are of interest for the future reader.
This is especially a problem when doing big architectural changes on large software

systems. One example would be moving an existing system to the cloud. There are
fundamental differences between traditional deployments and running a system in a
cloud computing environment. For instance, a program running on Google App Engine
for Python [Google inc.] cannot write to the filesystem, open sockets to connect to other
hosts, or make syscalls. This often has the consequence that the architecture needs to be
adapted, for example inserting a layer of abstraction above file management or network
communication.
A possible solution to handling changes in large software systems is using a model-

driven approach. By operating on models, a high degree of automation is possible and
independence from programming languages can be archived.
For representing software systems, the Knowledge Discovery Meta-Model

(KDM) [OMG 2011] can be used. It allows the representation of a software system on
different levels of abstraction in a language-independent way.
In this thesis, we present the transformation of Python software systems to KDM

instances.

1.2. Goals
In this bachelor thesis we developed a Java library to transform a Python application
into a KDM instance, under the perspective of using this model for assisting a migration
to a cloud environment (G1). This tool was implemented as a Java library, so it can be
used in different contexts. Integration into CloudMIG Xpress is the optional goal (G2).
The transformation tool targets Python 2.7 as target platform and expects that the

application source code is syntactically compatible with CPython 2.7. Python 3.x is not

1



1. Introduction

supported, as Google App Engine for Python does not support it yet. Also, due to its
low adoption, it is unlikely to be used in a legacy application.
Applications written for alternate Python runtimes, like PyPy, Jython, or IronPython,

should work, too, but there are subtle differences in semantics.1 Also, CPython code
can import C extensions, where Jython can import Java packages and IronPython can
import ṄET packages. Those external packages can not be analyzed by the approach
in this thesis.
To summarize, the goals are:

G1: Java library to transform Python source code into KDM

G2: Integration into CloudMIG Xpress (optional)

1.3. Document Structure
In the next section, we describe the foundations for the rest of the thesis, including
a well-performing approach for another language, C#. In Section 3, We describe our
approach for transforming Python to KDM, and why it is necessary to divert from the
three-phase-approach. Then, in Section 4, we evaluate the feasibility of our approach by
analyzing transformation runs on different code bases. Finally, in Section 6, we draw a
conclusion and possible directions for future work.

1PyPy vs. CPython: http://doc.pypy.org/en/latest/cpython_differences.html, last visit 2012-05-10.
At the time of writing, there seems to be no up-to-date documentation on the differences between
CPython and IronPython or the differences between CPython and Jython

2



2. Foundations and Technologies

2. Foundations and Technologies
2.1. Reverse Engineering
According to [Chikofsky and Cross II 1990], reverse engineering is the process of analyz-
ing a subject system to

• identify the system’s components and their interrelationships and

• create representations of the system in another form or at a higher level of abstrac-
tion.

In the context of model-driven engineering, the resulting artifact is a model. Reverse
engineering can be done by statically analyzing the source code, or by tracing the running
application, for example using the Kieker monitoring framework [Rohr et al. 2008].
If the source code is not available, the process may also involve decompiling or disas-

sembling existing application binaries or bytecode.
Forward engineering denotes the opposite direction: moving from a high-level descrip-

tion to the physical implementation of a system [Chikofsky and Cross II 1990].

2.2. Model Transformation
A model transformation is a program that takes a model as input, which conforms
to a specific metamodel, and outputs another model that conforms to a different meta-
model. There are several general approaches to model transformation, including a direct-
manipulation transformation, relational, operational, graph-transformation-based,
template-based, structure-driven, and hybrid [Czarnecki and Helsen 2003]. For our the-
sis, we chose the direct-manipulation approach, where the target model is manipulated
using a general-purpose programming language (Xtend) using the Ecore API of KDM.

2.3. Software Modernization
Software modernization is the process of reengineering a legacy application, to take into
account new requirements and to increase the quality attributes of a system.
The software modernization process can be understood as a “horseshoe”, with the

left side being extraction/reverse engineering, the right side forward-engineering, and
connections between the two are transformations from the old application to the new
one [Kazman et al. 1998].
Software modernization includes retargeting [Kowalczyk and Kwiecinska 2009], that is,

transforming the system into a new configuration, for example, a new hardware platform,
or a new operating system. This includes migration to a cloud environment.
In model-driven software modernization, the process is supported by automated tools

that extract models from source code and allow for refinements of the created models.
Tool support for the reengineering step may include code generation.

3



2. Foundations and Technologies

Development

New System
Source

Legacy
Source

design
patterns

program
plans

Based
Architecture-

Base
Architecture

Desired
Architecture

Architectural
Rep’n

Architectural

Conformance

Architecture
Transformation

Recovery/

code
styles

Architecture

Rep’n

Rep’n
Code-Structure

Function-Level
Rep’n

Source Text
Rep’n

Code-Structure
Rep’n

Function-Level
Rep’n

& styles

Concepts Concepts

Figure 1: The Horseshoe Process [Kazman et al. 1998]

2.4. Relevant Technologies
2.4.1. KDM

The Knowledge Discovery Meta-Model (KDM), specified by the OMG [OMG 2011], de-
scribes a system’s architecture on different levels of abstraction in a language-independent
way. KDM is split up into layers, which are made up of individual packages. Addition-
aly, packages are grouped into compliance levels, that define common targets for tool
interoperability.
For this thesis, the Core, kdm, Source, Code, and Action packages are used. They

describe the source code files and the program elements—classes, methods, variables
etc.—contained therein, but also the program behavior, like control flow and data flow.
We use existing technologies that can help with the transformation, for example EMF

and Xtend. The KDM Meta-Model is available as an ECore [Eclipse Foundation] XML
file, which can be loaded by EMF. Afterwards, EMF can automatically generate the
Java representation of KDM and those can be used to serialize the KDM instance to an
XMI file.

2.4.2. Python

Python is a dynamic, high-level programming language. Dynamic, in the context of
programming languages, means that many decisions are postponed to runtime, which
are done at compile-time by other languages. For example, class definitions are done at

4



2. Foundations and Technologies

Figure 2: The 12 packages of KDM

runtime
Python is strongly, dynamically typed and features a garbage collector for memory

management.
Functions, types and modules are all first-class citizens and can be passed as param-

eters.
There are multiple implementations; CPython being the reference implementation.
There are some challenges when trying to do static analysis on a language like Python:

• Python is a strongly, dynamically typed language, that is, variables do not have a
fixed type, but values do. For an example, see Listing 1 ( >>> denotes the Python
prompt).

5



2. Foundations and Technologies

Listing 1: A Python Example
class Adder ( ob j e c t ) :

def add ( s e l f , a , b ) :
return a + b

def cal lAdd ( obj , num1 , num2 ) :
return obj . add (num1 , num2)

>>> print cal lAdd (Adder ( ) , 21 , 21)
42
>>>

When doing a static analysis, the type of obj is generally not known without
doing type inference. Anything with an method add which takes two arguments
will be accepted at runtime. This programming style is sometimes also referred
to as “duck typing”.2 In the context of a transformation to KDM, this means
that type information and call graph information will be only partially available in
the resulting model. Possible solutions would be doing type inference,3 or manual
type annotations, which are only available since Python 3.x. Alternatively, such
information can be added later by doing a complementary dynamic analysis. It
needs to be evaluated whether it is feasible to integrate existing type inference
solutions for Python into this project. Implementing complete type inference from
scratch is considered out of scope for this thesis.

• The dynamic nature of Python. For example, using the type built-in,4 a class can
be constructed at run-time (see Listing 2).

Listing 2: Dynamically Constructing Types in Python
>>> Foo = type ( ’Foo ’ , ( object , ) , { ’ getOne ’ : lambda s e l f : 1})
>>> f = Foo ( )
>>> print f . getOne ( )
1
>>>

2.4.3. Jython

Jython is an implementation of the Python language for the Java Virtual Machine.
Included with Jython is an ANTLR-Grammar for parsing Python source code. Also,
included with the source code of Jython is a tool called “indexer”, which provides some
very useful services for us:

2http://docs.python.org/glossary.html#term-duck-typing, last visit 2012-05-10
3A good overview on type inference for Python can be found at http://lambda-the-
ultimate.org/node/1519, last visited 2012-05-10

4Python built-ins are the pre-defined functions and constants that are always available

6



2. Foundations and Technologies

• (limited) type inference

• Python module discovery

• Parsing files using the Jython parser

• Caching the parsed ASTs

2.4.4. ATL

ATL5 is a specialized language for doing model-to-model transforms, built on the Eclipse
platform and with integration into the Eclipse IDE available. Previous work on trans-
forming Java to KDM using ATL showed severe performance problems in the context
of MoDisco [Fenner]. Even though it is unclear whether the problems stem from the
language ATL itself or the rules used, we approached this problem using Xtend.

2.4.5. Xtend

As a language for doing the transformation from the Python AST into KDM, Xtend was
chosen. Xtend is a statically typed programming language that compiles down to Java.
It borrows a lot from Java, but adds new features, like multiple dispatch, that make it a
good fit for working with models. A multi-phase approach similarly to [Wulf et al. 2012]
was implemented, as it has proven to be of high performance.

2.4.6. CloudMIG and CloudMIG Xpress

A secondary goal of the thesis was integration with the CloudMIG framework[Frey and
Hasselbring 2011b]. The integration was not implemented due to time constraints after
consulting with the thesis advisor.
The CloudMIG framework is a semi-automatic model-driven approach to the problem

of migrating software systems to the cloud. Among others, it extracts a model of the
legacy application in form of a Knowledge Discovery Meta-Model (KDM, described in
detail in Section 2.4.1) instance and checks for conformance with the cloud environment.
The framework is independent from specific programming languages and IaaS/PaaS
providers, and support for new languages can be added as plug-ins. The specific cloud
environments and their constraints are described by so-called Cloud Profiles, which are
instances of the Cloud Environment Model (CEM)[Frey et al. 2012]. See
CloudMIG Xpress is an implementation of the CloudMIG approach.
Currently, KDM extractors for Java [Frey and Hasselbring 2011a] and C# [Wulf 2012]

are implemented. By transforming Python to KDM, a large step towards Python support
for CloudMIG Xpress is done.

5http://www.eclipse.org/atl/, last visit 2012-05-14

7



2. Foundations and Technologies

Existing
System

A2

Actual
Architecture

A1

Utilization
Model

CloudEnvironment
Model

Target
Architecture

Mapping
Model

A1

?

?

Constraint
Violations

A3

A4,A3

A5

Rating

A

B
C

A6
Migrated
System

A4,A3

Legend:

A1: Extraction
A2: Selection
A3: Generation
A4: Adaptation
A5: Evaluation
A6: Transformation

Optional

Mandatory

Figure 3: The CloudMIG Approach [Frey and Hasselbring 2011b]

P1: Type
Transformation

P2: Member & Method
Transformation

P3: Statement
Transformation

Figure 4: The three-phase approach for transforming C# to KDM [Wulf et al. 2012]

2.5. Three-Phase Transformation Approach
In the approach presented by [Wulf et al. 2012] for transforming C# to KDM, the
transformation is done in three phases:

1. Type Transformation

2. Member & Method Transformation

3. Statement Transformation

2.5.1. Phase 1: Type Transformation

In this phase, type information and namespaces are transformed.

8



2. Foundations and Technologies

2.5.2. Phase 2: Member & Method Transformation

In this phase, all declarations at class-level are transformed. Types from the first phase
can be referenced, for example in method signatures.

2.5.3. Phase 3: Statement Transformation

In the last phase, statements are transformed, for example member initializers and
method bodies.

9



3. Approach

3. Approach
3.1. Overview
In this section, we describe our approach to the transformation of Python source code
into KDM.
A tool was developed that scans an existing Python codebase, parses the source files,

and transforms the resulting AST to a KDM instance.
For each file, the AST is walked by calling a dispatch method that calls the appropriate

transformation method. The transformation methods then invoke the dispatch method
again for relevant child AST node.
The transformation can be described as a direct-manipulation transformation, [Czar-

necki and Helsen 2003] as the model is created and manipulated by using a general-
purpose programming language, in this case using Xtend, through the KDM Ecore
metamodel.
Our tool is built on top of the Jython indexer, which is introduced in Section 2.4.3.
As a requirement, a suitable mapping between Python language elements and KDM

model elements was defined, which is detailed in Section 3.3.

3.2. The Transformation Approach
Using the Three-Phase-Approach, as detailed in 2.5, is not satisfying in combination with
Python: it does not work well with the possible nestings. In Python, every statement
can be nested in another compound statement (if, while, for, try/except, with,
function and class definitions, or decorated function/class definitions). See Listing 3 for
an example. This is problematic, because if we only transform class definitions in the
first step, they are orphaned: their parent in the KDM model does not exist yet. We
propose an adapted approach:

1. Collect import statements

2. Create a topological ordering

3. Transform toplevel code

4. Transform code below function/lambda bodies

10



3. Approach

Listing 3: Possible Statement Nesting
i f True :

def makeInstance ( ) :
class SomeClass ( ob j e c t ) :

def someMethod ( s e l f ) :
import other_module
return 42

return SomeClass ( )
makeInstance ( )

3.2.1. Step 1: Collect Import Statements

This step parses each file and extracts all module dependencies, excluding those where
the import is delayed, e.g. inside a function body.

3.2.2. Step 2: Create a Topological Ordering

The dependencies between the modules are represented as a directed graph, with the
modules as nodes and the dependency between them as the edge. When transforming
a module, all its dependencies should already be transformed, to allow references to the
dependencies.
The result is a DAG that represents the necessary transform-before relationship.

3.2.3. Step 3: Transform Toplevel Code

This step transforms toplevel code, that is, code that is executed at import time. This
is done in the order determined in step 2. This includes class and function definitions,
but not their corresponding bodies, as they may import code from modules that are not
transformed yet.
After this step, for every module, all names that are accessible from the outside are

transformed into their KDM representation and can be referenced, e.g. by Imports.

3.2.4. Step 4: Transform Code Below Function/Lambda Bodies

In this last step, the remaining code is transformed. This includes imports inside function
bodies, that can now be resolved (see Listing 3)

3.2.5. Dependencies

The transformation is run on files belonging to the software project to be transformed,
but also on its dependencies, where source code is available. Step 4 is left out for

11



3. Approach

dependencies, because of the associated overhead. Also, names defined inside of function
bodies cannot be referenced from the outside.
Prior to running the four transformation steps, the KDM representations of basic

types (object, int, str, and others) are transformed into KDM from static definitions.

3.3. Mapping Python Elements to KDM
To be compatible with existing tools, for example CloudMIG Xpress, the mapping from
source code to KDM was kept as close to the Java KDM extraction of MoDisco as
possible. A direct 1-to-1 mapping is not possible, because Python supports different
language constructs than Java. For an overview over the Python language, see the
Python Language Reference6. Often, when no corresponding language element exists in
Java, and thus no reference output from MoDisco was available, the mapping was chosen
similar to that of existing constructs.
As a general rule, the semantic interpretation of more dynamic features is left to

the user of the model. For example, the presence of a yield statement in a function
fundamentally changes the way the function works.
In the following sections, we give an overview of the mapping of some Python elements

to KDM and point out differences to the output of MoDisco. Also, we try to point out
shortcomings of the current implementation.

3.3.1. Modules and Packages

Every file with the filename suffix .py is a Python module. Modules can contain func-
tion/class definitions and other statements. These statements are executed when the
module is imported.
The module namespace is structured by packages. Every directory that contains a

file called __init__.py is a Python package. Python modules are then referenced, for
example for importing, by their dotted module name.

Listing 4: Example Package Structure
t o p l e v e l /

__init__ . py
mod1 . py
subpackage/

__init__ . py
mod2 . py

In Listing 4, an example package structure is given. Assuming that the toplevel
package is in the module search path, the dotted module name of mod2 would be
toplevel.subpackage.mod2.

6http://docs.python.org/reference/index.html, last visit 2012-09-22

12



3. Approach

The namespace of the package itself, for example toplevel.subpackage, contains the
definitions from the __init__.py file.
Python modules are mapped to the KDM element Module.

3.3.2. Literals

Numbers and strings are transformed to the KDM element Value. For list and and
tuple literals, which do not have a Java equivalent, an ActionElement with kind="list
literal" is created, with the list/tuple elements as children (Value if they are numbers
or strings). Dictionary literals, which represent key/value mappings, are transformed
to an ActionElement with kind="dict" for the container, and for each key/value pair,
another ActionElement is created, with kind="dict item". Note that a list, a tuple,
or a dict can contain elements of different types.

3.3.3. Variable references

Variable references are transformed into Reads relations to the corresponding
StorableUnit. If the parent expression mixes literals and variable references, the order
of arguments is not preserved, for example in the context of a function call.

3.3.4. Boolean Expressions

Because of a bug in the Jython indexer, the operator in a boolean expression is not
preserved in the AST, and such expressions cannot be properly transformed.

3.3.5. Classes

Python classes are transformed to KDM ClassUnit instances. Because of the dependency-
sorted approach, all base classes7 are guaranteed to already be transformed and the
Extends-relationship can be created together with the ClassUnit instance.
Python allows arbitrary expression as base classes; see Listing 5 for an example. We

only transform the case of one or more direct references of class names, like class A in
the example.

Listing 5: Python Inheritance Examples
class A( ob j e c t ) :

pass
class B(A i f True else ob j e c t ) :

pass
class C( someFactoryFunction ( ) , A, B) :

pass

7Python supports multiple inheritance

13



3. Approach

3.3.6. Function Definitions, Function and Method Calls

In the AST, functions and methods cannot be distinguished from each other. Likewise,
function calls, method invocations and class instance creations have the same represen-
tation in the AST. So the type and context of the called object is used to determine the
KDM representation.
If the parent of a function is a class, it is transformed as a MethodUnit, otherwise a

CallableUnit (which is not present in Java).
In a call, if the type of object that is called is a class, the call is transformed like

an instance creation, otherwise a method invocation or function call. Class instance
creations and method calls are both transformed like in the Java transformation, for
function calls, the kind and name attributes on the resulting ActionElement are set to
"function call" instead of "method invocation" and the Calls relation points to
the CallableUnit
Arguments of function definitions are transformed like in the Java transformation, with

the addition of variadic arguments. Python has support for two different kinds of variadic
arguments for functions and methods: one that captures excess positional arguments,
and another that captures excess named arguments (called “keyword arguments” in
Python). Both are transformed into ParameterUnits with kind="variadic".

3.3.7. Assignments

In Python, variables are not declared as in some other languages. Names are bound (or
re-bound) by assignment. There are no explicit type annotations. The left-hand side
of an assignment either be a single identifier, a target list, an attribute reference, or a
slicing.8
When assigning to a single identifier, the behaviour depends on the global statement.

If a global statement for the identifier exists in the current block, the name is bound in
the global namespace (i.e. the module). Otherwise, it is bound in the local namespace.
Local namespaces are created by modules, function bodies, and class definitions.9
Assignments are transformed in two steps:

• Create an appropriate Storable KDM element, if none exists for the name

• The actual assignment, as a ActionElement with kind=assignment

For Augmented Assignments, the appropriate operator is set as name of the
ActionElement.

8see http://docs.python.org/reference/simple_stmts.html#assignment-statements for details, last vis-
ited 2012-09-26

9See http://docs.python.org/reference/executionmodel.html, last visited 2012-09-26

14



3. Approach

To keep track of the StorableUnits, a table (called ScopeDict) is kept in memory for
each module, class and function that maps name bindings to StorableUnit instances.
This table also contains a pointer to its parent scope and keeps track of subscopes. A
subscope is the ScopeDict of an object that can handle attribute access (e.g. module
objects, classes, and class instances).
When the left-hand side is an attribute reference, Python evaluates the primary10 of

the left-hand side. The resulting object is then asked to perform the assignment.
In the transformation, the primary is resolved by recursively walking the subscopes of

the ScopeDict corresponding to the local namespace. After that, it is handled like an
assignment to a single identifier.

Listing 6: Attribute Assignment
class A( ob j e c t ) :

x = 7

class Sub( ob j e c t ) :
b = 42

a = A( )
a . x = 14
a . Sub . b = 21

In the expression a.x, a is the primary, and x is the identifier. The primary is resolved
by looking in the local ScopeDict, which in this case corresponds to the ScopeDict of
the module. So the ScopeDict of a is that of the class A. Then the identifier x is looked
up in this ScopeDict, and the corresponding StorableUnit is found.
Similarly, the primary of a.Sub.b is a.Sub, which itself has the primary a.
Python also supports slicings, subscriptions and target lists on the left-hand side of

an assignments; the transformation of these is left as future work.
The same expressions that are allowed on the left-hand side of an assignment are also

allowed in the target list of some other compound statements, like for, try, etc. So
Listing 7 is valid Python:

Listing 7: Attribute as Assignment Destination in a for-Loop
class A( ob j e c t ) :

pass
for A. varname in [ 1 , 2 , 3 ] :

print A. varname

3.3.8. Name Resolution

In non-assignment contexts, names are resolved just like the left-hand side of the assign-
ment, with one exception: the scope of names bound in class definitions does not extend
10http://docs.python.org/reference/expressions.html#primaries, last visited 2012-09-25

15



3. Approach

to functions below the class definition. See Listing 8 for an example.

Listing 8: Limited Scope of Names Bound in Class Definitions
class A( ob j e c t ) :

c l sVar = 42

print c l sVar # works

def method ( s e l f ) :
print s e l f . c l sVar # works
print c l sVar # NameError , because c lsVar i s

# only v a l i d in the c l a s s scope

16



4. Evaluation

Table 1: The Selected Case Studies
Project LOC (Project) LOC (Dependencies) LOC (Total)
P1 251 0 251
P2: FlussInfo 35909 394842 430751
P3: zamboni 94752 558731 653483

4. Evaluation
4.1. Overview
In this section, we evaluate the run time and memory usage of the transformation on
three code bases. Also, the feasibility of our approach is analyzed by comparing the
dependency graph and the names of methods/functions to the output of two existing
static analysis programs.

4.1.1. Case Studies

In Table 1, we list the selected case studies that were used for the evaluation of our
transformation approach, together with their size, measured in lines of code (LOC), and
the size of their dependencies. The numbers were obtained using the command line tool
cloc.11 As described in Section 3.2.5, the transformation also runs on the dependencies,
at least partially, so their size is relevant to the execution time and memory usage.
Another dependency that is common to all three case studies is the Python Standard
Library, which is not included in the LOC numbers in the table.
The project P1 is a number of small Python files, specifically written for this thesis.

They do not perform a specific functionality; they were written only to test the trans-
formation on common and more unusual language constructs. See Listings 9 and 10 for
one of these test files.

11http://cloc.sourceforge.net/, last visited 2012-09-25

17



4. Evaluation

Listing 9: Example Python File From P1
# imports from the s t d l i b
from decimal import Decimal
import xml . e t r e e

import xml . e t r e e as et ree2 , xml . pa r s e r s as pa r s e r s

# c re a t e decimal o b j e c t
d = Decimal ( " 42 .0 " )

# and p r i n t i t s s t r i n g r e p r e s e n t a t i o n
print s t r (d)

# l o c a l import
def l o ca l Impor t ( ) :

import s imple
import s imple as a l i a s

# strange import
class ClassLeve l Import ( ob j e c t ) :

import s imple as strange_import

# c o n d i t i o n a l module− l e v e l import
i f True :

import s imple as a l i a s 2

# guarded import
try :

import xml . e t r e e as e t r e e 3
except ImportError :

s imp l e j s on = None

# c i r c u l a r l o c a l import :
def c i r c u l a r ( ) :

import imports1

18



4. Evaluation

Listing 10: Example File From P1 Demonstrating Possible Nestings
def funWithInnerClass ( ) :

class FunInnerClass ( ob j e c t ) :
def add ( s e l f , a , b ) :

return a + b
return FunInnerClass

class ClassWithInner ( ob j e c t ) :
class InnerC las s ( ob j e c t ) :

def methodOfInner ( s e l f ) :
pass

def methodOfTopLevel ( s e l f ) :
class ClassInMethod ( ob j e c t ) :

pass

def decorato r ( fn ) :
def _wrapper (∗ args , ∗∗kwargs ) :

return fn (∗ args , ∗∗kwargs )
return _wrapper

The project P2, FlussInfo12, is a proprietary web application that is a real candidate
for a migration to the cloud. See Figure 4.1.1 for a screenshot of the front-end. The
code base includes an online shop, a content management system and an online mapping
solution, among others.
Finally, the project P3, zamboni, is an open-source project that is the code base of

Add-ons for Firefox,13 see Figure 4.1.1 for a screenshot.

4.2. Feasibility Analysis
4.2.1. Goals

We want to investigate how “complete” our approach is. Are all elements from the
existing software systems transformed into the KDM model?

4.2.2. Methodology

The method names in the model were compared to the output of pymetrics,14, which
creates a list of methods as a by-product of computing their McCabe metric. This list
12http://www.flussinfo.net/, last visit 2012-09-24
13https://addons.mozilla.org/, last visit 2012-05-10
14http://pymetrics.sf.net/, last visit 2012-09-16

19



4. Evaluation

Figure 5: Screenshot of FlussInfo.net, taken on 2012-09-27

20



4. Evaluation

Figure 6: Screenshot of addons.mozilla.org, taken on 2012-09-27

21



4. Evaluation

Table 2: Feasibility Analysis: Results
Project Imports Missing Functions Missing #Imports #Functions
P1 0 (0%) 0 (0%) 14 31
P2: FlussInfo 627 (44%) 13 (1%) 1425 1298
P3: zamboni 1819 (30%) 54 (0.5%) 5978 9881

is only present in the SQL output.
Another point of reference is the output of snakefood,15 which is a set of Python tools

that generate dependency graphs from Python files. This output is compared to an
extract of Imports from the KDM model.
For P1, additionally, a manual comparison between the KDM result and the source

files is conducted.

4.2.3. Results

Table 2 shows the results of the feasibility analysis, with the number of imports and
functions that are present in the reference output from the static analysis tools but not
in the KDM model.
Unfortunately, when running sfood on the FlussInfo project, it consistently picked up

a different installation of the project, without giving an option to correct the paths. The
resulting path data had to be corrected using an in-place search & replace operation.
A similar problem was found in the data from pymetrics, which noted an absolute

import path, where, in practice, a relative import was used, which was correctly put into
the KDM model. This was also corrected using an in-place search & replace operation.
The manual comparison uncovered some defects in the implementation of the trans-

formation:

• Attribute access to the explicit self parameter is not transformed properly

• Unlike the Java transformation, constructors that are not present in the source
file are also not present in the KDM model, and not referenced when instantiating
classes.

• Empty function bodies, that only contain the pass statement, return None, which
is not reflected in the model

• The loop variable in the foreach-construct is not created as a StorableUnit

• Empty else-branches of while-loops are not ommitted

15http://furius.ca/snakefood/, last visit 2012-09-25

22



4. Evaluation

• The built-in function str is missing

• Access to __name__ is not transformed properly

4.2.4. Threats to Validity

There is a bug in the Jython indexer that causes errors when processing files that use
a Python feature called explicit relative imports. This might be responsible for some of
the missing dependencies.
There might be a similar problem in the dependency analysis of zamboni as was found

for FlussInfo, but the author is not as acquainted with the code base of zamboni.

4.3. Performance Analysis
4.3.1. Goals

The goal is to find out how well the execution time and memory usage scales with the
project size.

4.3.2. Methodology

The evaluation was run in the following environment:

• CPU: Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz

• RAM: 8GB

• Operating System: Linux 3.2.0 x86_64

• Java version: OpenJDK Runtime Environment (IcedTea6 1.11.4), OpenJDK 64-
Bit Server VM (build 20.0-b12, mixed mode)

Measurement of the execution time was done using System.currentTimeMillis() in
the transformation code, so Java VM startup time is not included. As a lot of time is
spent loading the code into the Jython indexer and saving the model, we also measure
a second timespan, that excludes these two and only includes the transformation from
the AST to the KDM model.
Memory usage was analyzed by the /usr/bin/time command line tool, taking the

maxresident measure from the output. This means that the maximum memory usage
is reported here.
For transforming FlussInfo and zamboni, the available memory for the Java VM had

to be adjusted to prevent running our of heap space.
For time and memory usage, we run the transformation ten times and only use the

last nine; the first run is used to warm the disk cache of the operating system and the

23



4. Evaluation

Table 3: Performance Analysis: Results
Project Total Execution Time Only Transformation Memory Usage
P1 4.8s 0.7s 282MB
P2: FlussInfo 47.5s 4.9s 3039MB
P3: zamboni 66.7s 9.2s 3243MB

on-disk AST cache of the Jython indexer. Of the resulting nine runs, we take the median
value.

4.3.3. Results

The results of the performance analysis are displayed in Table 3. The column "Only
Transformation" refers to the time spent traversing the AST and building the KDM
model, essentially what is referred to in Section 3.2. The rest of the time is spend in the
Jython indexer and saving the resulting KDM model.
The unusually high memory usage for transforming P1, which only amounts to 215

lines of code, may occur because the Python Standard Library is loaded by indexer for
all Python programs.

24



5. Related Work

5. Related Work
In his Master’s Thesis [Wulf 2012], Wulf presents the transformation of C# to KDM,
which inspired our multi-phase approach.
The project Gra2MoL (Grammar to Model Language) [Cánovas Izquierdo and Gar-

cía Molina 2012] develops a transformation language designed for transforming from a
grammar to a metamodel. The examples include transformations from Delphi to ASTM
and Java to KDM.

25



6. Conclusion

6. Conclusion
6.1. Summary
A transformation from Python source code to KDM was presented, which uses existing
parsing infrastructure from Jython. A similar approach to the Three-Phase-Approach
that was used for transforming C# to KDM was developed to fit the requirements of
transforming Python code. Furthermore, the feasibility and performance of the approach
was analysed using three Python code bases.

6.2. Future Work
6.2.1. Improvements of the Transformation

The feasibility analysis has shown that many small details are not covered by the trans-
formation, and that errors in the used technology cause some modules to fail to load
completely. Also, some language constructs are simply not supported yet.
Additionally, a different approach for ordering the module transformations could be

looked into, that works more like the Python importer.16

6.2.2. Complementary Dynamic Extraction

A complementary dynamic extraction could be used to identify the types of variables
where the current type inference approach fails.

6.2.3. ASTM as Intermediate Model

The OMG also specified the Abstract Syntax Tree Metamodel (ASTM)17, which is a low-
level description of the abstract syntax tree of a program. It allows a 1-to-1 mapping
between code and model. Also, it can be used together with KDM, and the KDM model
can be derived from the ASTM instance.

6.2.4. Union Types

Currently, the transformation assumes only one type per variable. This is not generally
true, because of Python’s dynamic type system. A KDM representation of union types
needs to be devised

16See for example http://effbot.org/zone/import-confusion.htm, last visited 2012-09-25
17http://www.omg.org/spec/ASTM/1.0/, last visited 2012-09-25

26



References

References
[Chikofsky and Cross II 1990] E. J. Chikofsky and J. H. Cross II. Reverse engineering
and design recovery: A taxonomy. pages 13–17, 1990.

[Creeger 2009] M. Creeger. Cto roundtable: Cloud computing. Commun. ACM, 52(8):
50–56, Aug. 2009. ISSN 0001-0782. doi: 10.1145/1536616.1536633.

[Czarnecki and Helsen 2003] K. Czarnecki and S. Helsen. Classification of model trans-
formation approaches. 2003.

[Cánovas Izquierdo and García Molina 2012] J. Cánovas Izquierdo and J. García Molina.
Extracting models from source code in software modernization. Software & Systems
Modeling, pages 1–22, 2012. ISSN 1619-1366. doi: 10.1007/s10270-012-0270-z. URL
http://dx.doi.org/10.1007/s10270-012-0270-z.

[Eclipse Foundation ] Eclipse Foundation. Eclipse modeling framework project. URL
http://www.eclipse.org/modeling/emf/. last visit 2012-05-06.

[Fenner ] S. Fenner. Migration of software systems to platform as a service based cloud
environments. Diploma Thesis, University of Kiel, Germany.

[Frey and Hasselbring 2011a] S. Frey and W. Hasselbring. An extensible architecture
for detecting violations of a cloud environment’s constraints during legacy software
system migration. In Proceedings of the 15th European Conference on Software Main-
tenance and Reengineering (CSMR 2011), pages 269–278. IEEE Computer Society,
Mar. 2011a. ISBN 978-0-7695-4343-7. doi: 10.1109/CSMR.2011.33.

[Frey and Hasselbring 2011b] S. Frey and W. Hasselbring. The cloudmig approach:
Model-based migration of software systems to cloud-optimized applications. Interna-
tional Journal on Advances in Software, 4(3 and 4):342–353, 2011b. ISSN 1942-2628.

[Frey et al. 2012] S. Frey, W. Hasselbring, and B. Schnoor. Automatic conformance
checking for migrating software systems to cloud infrastructures and platforms. Jour-
nal of Software Maintenance and Evolution: Research and Practice, 2012. ISSN 1532-
0618. doi: 10.1002/smr.582.

[Google inc. ] Google inc. Python runtime environment. URL https://developers.
google.com/appengine/docs/python/runtime. last visit 2012-05-06.

[Kazman et al. 1998] R. Kazman, S. G. Woods, and S. J. Carrière. Requirements for
integrating software architecture and reengineering models: Corum ii. In Proceedings
of the Working Conference on Reverse Engineering (WCRE’98), WCRE ’98, pages
154–, Washington, DC, USA, 1998. IEEE Computer Society. ISBN 0-8186-8967-6.

27

http://dx.doi.org/10.1007/s10270-012-0270-z
http://www.eclipse.org/modeling/emf/
https://developers.google.com/appengine/docs/python/runtime
https://developers.google.com/appengine/docs/python/runtime


A. Attachments

[Kowalczyk and Kwiecinska 2009] K. Kowalczyk and A. Kwiecinska. Model-driven
software modernization, 2009. Master thesis, School of Engineering, Blekinge Institute
of Technology, Sweden.

[OMG 2011] OMG. Knowledge discovery meta-model version 1.3, 2011. URL http:
//www.omg.org/spec/KDM/1.3/index.htm. last visit 2012-05-06.

[Rohr et al. 2008] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer, L. Stoever,
S. Giesecke, and W. Hasselbring. Kieker: continuous monitoring and on demand
visualization of java software behavior. In Proceedings of the IASTED International
Conference on Software Engineering, SE ’08, pages 80–85, Anaheim, CA, USA, 2008.
ACTA Press. ISBN 978-0-88986-716-1.

[Wulf 2012] C. Wulf. Automatic conformance checking of c#-based software systems
for cloud migration, 2012. Master thesis, Univesity of Kiel, Germany.

[Wulf et al. 2012] C. Wulf, S. Frey, and W. Hasselbring. A Three-Phase Approach to
Efficiently Transform C# into KDM. Technical Report TR-1211, Department of Com-
puter Science, Kiel University, Germany, Aug. 2012. URL http://www.informatik.
uni-kiel.de/uploads/tx_publication/TR-1211.pdf.

A. Attachments
Attached is a CD-ROM with the source code of the transformation and the program-
s/scripts used for the evaluation. It also contains this document as a PDF file.

28

http://www.omg.org/spec/KDM/1.3/index.htm
http://www.omg.org/spec/KDM/1.3/index.htm
http://www.informatik.uni-kiel.de/uploads/tx_publication/TR-1211.pdf
http://www.informatik.uni-kiel.de/uploads/tx_publication/TR-1211.pdf

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Document Structure

	2 Foundations and Technologies
	2.1 Reverse Engineering
	2.2 Model Transformation
	2.3 Software Modernization
	2.4 Relevant Technologies
	2.4.1 KDM
	2.4.2 Python
	2.4.3 Jython
	2.4.4 ATL
	2.4.5 Xtend
	2.4.6 CloudMIG and CloudMIG Xpress

	2.5 Three-Phase Transformation Approach
	2.5.1 Phase 1: Type Transformation
	2.5.2 Phase 2: Member & Method Transformation
	2.5.3 Phase 3: Statement Transformation


	3 Approach
	3.1 Overview
	3.2 The Transformation Approach
	3.2.1 Step 1: Collect Import Statements
	3.2.2 Step 2: Create a Topological Ordering
	3.2.3 Step 3: Transform Toplevel Code
	3.2.4 Step 4: Transform Code Below Function/Lambda Bodies
	3.2.5 Dependencies

	3.3 Mapping Python Elements to KDM
	3.3.1 Modules and Packages
	3.3.2 Literals
	3.3.3 Variable references
	3.3.4 Boolean Expressions
	3.3.5 Classes
	3.3.6 Function Definitions, Function and Method Calls
	3.3.7 Assignments
	3.3.8 Name Resolution


	4 Evaluation
	4.1 Overview
	4.1.1 Case Studies

	4.2 Feasibility Analysis
	4.2.1 Goals
	4.2.2 Methodology
	4.2.3 Results
	4.2.4 Threats to Validity

	4.3 Performance Analysis
	4.3.1 Goals
	4.3.2 Methodology
	4.3.3 Results


	5 Related Work
	6 Conclusion
	6.1 Summary
	6.2 Future Work
	6.2.1 Improvements of the Transformation
	6.2.2 Complementary Dynamic Extraction
	6.2.3 ASTM as Intermediate Model
	6.2.4 Union Types


	References
	A Attachments

