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Abstract

An infinte word w avoids a pattern p with the involution θ if there is
no substitution for the variables in p and no involution θ such that the
resulting word is a factor of w. We investigate the avoidance of patterns
with respect to the size of the alphabet. For example, it is shown that
the pattern α θ(α)α can be avoided over three letters but not two letters,
whereas it is well known that ααα is avoidable over two letters.

1 Introduction
The avoidability of patterns in infinite words is an old area of interest with a first
systematic study going back to Thue [4, 5]. This field includes rediscoveries and
studies by many authors over the last one hundred years; see for example [2]
and [1] for surveys. In this article, we are concerned with a variation of the theme
by considering avoidable patterns with involution. An involution θ is a mapping
such that θ2 is the identity. We consider morphic, where θ(uv) = θ(u)θ(v), and
antimorphic involutions, where θ(uv) = θ(v)θ(u). The subject of this article
draws quite some motivation from applications in biology where the Watson-
Crick complement corresponds to an antimorphic involution in our case. Our
considerations are more general, however, by considering any alphabet size and
also morphic involutions.

2 Preliminaries
Our notation is guided by what is commonly found in literature, see for example
the first chapter of [3] as a reference. Let Σ be a finite alphabet of letters and Σ∗

denote all finite and Σω denote all (right-) infinite words over Σ. Let ε denote
the empty word. Letters are usually denoted by a, b, or c, and words over Σ
are usually denoted by u, v, or w in this paper. The i-th letter of a word w is
denoted by w[i], that is, w = w[1]w[2] · · ·w[n] if w is finite, and the length n of w
is denoted by |w| as usual.
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Besides Σ we need another finite set E of symbols. The elements of E are
called variables and we usually denote them by α, β, or γ. Words in E∗ are called
patterns. For example αβα ∈ E∗ is a pattern consisting of the variables α and β
in E. We assign to every pattern a pattern language over the alphabet Σ. This
language contains every word, that can be generated by substituting all variables
in the pattern by non-empty words in Σ∗. For example the pattern language of
the pattern αα over Σ = { a, b } is { aa, bb, aaaa, abab, baba, bbbb, . . . }.

We say that a word w avoids a pattern, if no factor of w exists, that is in
the pattern language. On the other hand, if a factor of w is an element of the
pattern language, we say w contains the pattern. If for a given pattern e and
an alphabet Σ with k elements a word w ∈ Σω exists that avoids e, then we
say that e is k-avoidable. Otherwise we call e k-unavoidable. We call k ∈ N the
avoidance index V(e) of a pattern e ∈ E∗, if e is k-avoidable and k is minimal.
If no such k exists, we define V(e) =∞.

Let f : { a, b }∗ → { a, b }∗ with a 7→ ab and b 7→ ba. The fixpoint t =
limk→∞ fk(a) exists and is called Thue–Morse word. The following result is
a classical one.

Theorem 1 ([4, 5]). The Thue–Morse word avoids the patterns ααα and αβαβα.

3 Patterns with Involution
For introducing patterns with involution, we extend the set of pattern variables
E by adding θ(α) for all variables α ∈ E and some involution θ. For the rest
of the article, we will stick to this definition of E. Given a morphic or antimor-
phic involution, we build the corresponding pattern language by replacing the
variables by non-empty words and, for variables of the form θ(α), by applying
the involution after the substitution.

For example, let θ be the morphic involution with a 7→ b and b 7→ a over
Σ = { a, b }, and let the pattern be α θ(α). We get the pattern language
{ ab, ba, aabb, abba, baab, bbaa, . . . }. Every word in { a, b }ω \ (aω ∪ bω) contains
the pattern α θ(α) for the morphic involution θ with a 7→ b and b 7→ a.

Observation 2. Let θ be a morphic or antimorphic involution and not the
identity mapping. Then every pattern, that contains variables of the α and
θ(α), is avoidable.

Indeed, since θ is not the identity mapping, a letter a ∈ Σ with θ(a) 6= a
exists. Therefore w = aω avoids every pattern that includes variables α and
θ(α).

Because of this observation we do not have to examine, if patterns are avoid-
able or unavoidable for a given involution. So we now change the point of view.
For a given pattern e ∈ E∗, we either look at all morphic or all antimorphic
involutions Σ∗ → Σ∗ at the same time. So, we examine, for example, if an
infinite word w ∈ Σω exists, that avoids a pattern e for all morphic involutions.
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Definition 3. Let e ∈ E∗ be a pattern, possibly with variables of the form θ(α).
We call k ∈ N the morphic (antimorphic) θ-avoidance index Vθm(e) (Vθa (e)) of
e ∈ E∗, if an infinite word w ∈ Σω over Σ with |Σ| = k exists, that avoids the
pattern e for all morphic (antimorphic) involutions Σ∗ → Σ∗ and k is minimal.
If this doesn’t hold for any k ∈ N, we define Vθm(e) =∞ (Vθa (e) =∞).

We establish the first facts about avoidance of pattern α θ(α)α.

Lemma 4. Let Σ be a binary alphabet. Then there is no word w ∈ Σω, that
avoids the pattern α θ(α)α for all morphic involutions θ : Σ∗ → Σ∗. That is,
Vθm(α θ(α)α) > 2.

Proof. Let Σ = { a, b }. We try to construct a word w ∈ Σω, that avoids
e = α θ(α)α for all morphic involutions and bring this to a contradiction. For
example, this word must not contain aaa, bbb, aba or bab as a factor. Without
loss of generality w begins with a.

Case 1: Assumed the word w begins with ab. Then this prefix must be
followed by b, abb <p w. The next letter must be an a, the fifth must be an a
too. So we have abbaa <p w. If the following letter is an a, aaa is a factor of w.
So the next letter must be the letter b. But for the morphic involution θ with
a 7→ b and b 7→ a the word abθ(ab)ab is a factor of w.

Case 2: The argument for the case aa ≤p w is analogous to case 1.

The proof of the following lemma is analogous to the previous one.

Lemma 5. Let Σ be a binary alphabet. There is no word w ∈ Σω, that avoids
the pattern α θ(α)α for all antimorphic involutions θ : Σ∗ → Σ∗. That is,
Vθa (α θ(α)α) > 2.

4 Main Result
In this section, we establish the θ-avoidance indices for the pattern α θ(α)α in
the morphic and antimorphic case. We start with the morphic case.

Theorem 6. It holds that Vθm(αθ(α)α) = 3.

Proof. Let Σ an alphabet with three elements, Σ = { a, b, c }. Let u be the
infinitely long Thue–Morse word over the letters a′ and b′. Furthermore let
w ∈ Σ be the word, that is the outcome of replacing every a′ in u by aacb and
b′ by accb. We will show, that w avoids the pattern αθ(α)α for all morphic
involutions. For better readability, we define x = aacb and y = accb.

We assume it exists a morphic involution θ and a substitution for α, such
that αθ(α)α is a factor of w. Proof by contradiction. First, we examine the
possibilities of replacing the variable α by words u ∈ Σ+ of length |u| < 7.
The word u θ(u)u has a maximal length of 18. Therefore there must exist a
morphic involution so that u θ(u)u is a factor of a word w′ ∈ {x, y }6. Because
of Theorem 1, the words xxx, yyy, xyxyx and yxyxy can not be a factor of w′.
A computer program can easily check these finite possibilities with the result,
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w = . . .
w0 w1

. . .
wk = w0′ w1′

. . .
wk′ = w0′′w1′′

. . .
wk′′

. . .

u u u

Figure 1: Part of w to illustrate the factor uuu

that no words u and w′ exist, which fulfill the conditions. Now we assume α
gets replaced by a word u ∈ Σ+ with |u| ≥ 7. Then, the word u contains aacb or
accb. Without loss of generality, u contains aacb. Therefore, θ(u) contains the
factor θ(aac) = θ(a) θ(a) θ(c). In addition θ(u) and for this reason θ(a) θ(a) θ(c)
is a factor of w. There are only two possibilities for two succeeding identical
letters in w. Either these letters are two letters c followed by the letter b, or
two letters a are followed by the letter c. This implies, that u θ(u)u can only be
a factor of w, if θ is the identity mapping. Furthermore this implies |u| = 4 · k
for a k ∈ N. This is visualized in Fig. 1, where wi, wi′ , wi′′ ∈ {x, y } holds for all
0 ≤ i ≤ k. If the word (w0)[2](w0)[3](w0)[4] or (w0)[1](w0)[2](w0)[3](w0)[4] = w0 is
a prefix of the first u in Fig. 1, then the following equations apply:

w0 = w0′ = w0′′

w1 = w1′ = w1′′

...
...

...
wk−1 = wk−1′ = wk−1′′

The word w0w1 . . . wk−1 w0′w1′ . . . wk−1′ w0′′w1′′ . . . wk−1′′ = (w0w1 . . . wk−1)
3

is a factor of w. Because of wi ∈ {x, y } for all 0 ≤ i ≤ k − 1, this is a
contradiction to Lemma 1. On the other hand, if only (w0)[3](w0)[4] or (w0)[4]
is a prefix of u, then w0 6= w0′ is possible. But in this case (wk′′)[1](wk′′)[2] or
(wk′′)[1](wk′′)[2](wk′′)[3] is a suffix of the third u. This implies

w1 = w1′ = w1′′

w2 = w2′ = w2′′

...
...

...
wk = wk′ = wk′′

and w1w2 . . . wk w1′w2′ . . . wk′ w1′′w2′′ . . . wk′′ = (w1w2 . . . wk)
3 is a factor of w.

Again, this is a contradiction to Lemma 1. The theorem follows with Lemma 4.

The result of Theorem 6 transfers also to the antimorphic case.

Theorem 7. It holds that Vθa (αθ(α)α) = 3.
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w = . . .
w1 w2

w′2 w′′2

w3 w4
. . .

. . .

u

Figure 2: Part of w and the factor u of w

Proof. This proof follows the proof of the previous theorem. Let Σ be an alpha-
bet with three elements, Σ = { a, b, c }. Further, let u be the Thue-Morse word
over the letters a′ and b′. Let w ∈ Σω be the word, that we get by replacing a′
in u by aabbc and b′ by aaccb. We will show, that w avoids the pattern α θ(α), α
for all antimorphic involutions. For better readability, we define x = aabbc and
y = aaccb.

We assume that there exists an antimorphic involution and a substitution
of α by a word u ∈ Σ+ so, that u θ(u)u is a factor of w. First we suppose
that |u| < 9 holds. The word u θ(u)u then has a maximal length of 24 and
u θ(u)u is factor of a word w′ ∈ {x, y }6. The word xxx, yyy, xyxyx, and
yxyxy must not be a factor of w′ because of Lemma 1. A computer program
can check these finite possibilities with the result, that no words u and w′ exist
that fulfill these conditions for an antimorphic involution θ. So ,|u| ≥ 9 must
hold and u contains at least one word x or y completely. We now look at
the first u of the factor u θ(u)u of w. Let w1w

′
2 ≤s u with w1, w2 ∈ {x, y },

w2 = w′2w
′′
2 and |w′2| < 5. We get Fig. 2 where w3, w4 ∈ {x, y }. Without loss

of generality, let w1 = x = aabbc. Then θ(u) and therefore w2w3w4 contains
the word θ(aabbc) = θ(c) θ(b) θ(b) θ(a) θ(a) with length 5 as a factor. Hence we
look at the following words:

xx = aabbc aabbc

xy = aabbc aaccb

yx = aaccb aabbc

yy = aaccb aaccb .

Only xx contains θ(c) θ(b) θ(b) θ(a) θ(a) for the antimorphic involution θ with
a 7→ b, b 7→ a, and c 7→ c. Because of w1 = x, the equation w2w3 = xx is
a contradiction to Lemma 1. The case w2w3w4 = yxx remains. Now there
are five possibilities for the position of u, see Fig. 3. It is easy to check, that
in all five cases θ(u) ≤p w′′2w3w4 respectively w′′2w3w4 ≤p θ(u) doesn’t hold.
So our assumption, that there exists an antimorphic involution θ and a word
u ∈ Σ+ with u θ(u)u is a factor of w, was wrong. The theorem follows with
Lemma 5.
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w = . . .
w1

a a b b c

w2

a a c c b

w3

a a b b c

w4

a a b b c

. . .

Case 1: . . .

Case 2: . . .

Case 3: . . .

Case 4: . . .

Case 5: . . .
u

Figure 3: Illustration of possible positions of the factor u of w

5 Complementary Patterns
In this section, patterns similar to α θ(α) θ are considered.

For the next lemma we need a further definition. Let e ∈ E∗ be a pattern
consisting of variables of the form α and θ(α) and e′ be the pattern that we
get, when all variables α and θ(α) in e are switched. We call e′ ∈ E the
θ-complementary pattern of e. For example the θ-complementary pattern of
αα θ(α)β is θ(α) θ(α)α θ(β). For this definition it doesn’t matter if morphic or
antimorphic involutions are examined.

Lemma 8. Let e ∈ E∗ be a pattern and e′ ∈ E be the θ-complementary pattern
of e. Then Vθa (e) = Vθa (e′) and Vθm(e) = Vθm(e′).

Proof. First of all we show Vθm(e) = Vθm(e′). For better readability, we replace
the variable α in the pattern e′ by α′ and θ(α) by θ(α′). We assume a word
w ∈ Σω contains the pattern e for a morphic involution and a substitution of α
by u ∈ Σ+. Then w contains the pattern e′ for the same morphic involution by
substituting α′ by θ(u). Symmetry reasons imply:

It exists a morphic involution θ so, that w contains the pattern e.
⇔ It exists a morphic involution θ′ so, that w contains the pattern e′.

By negation we get:

The word w ∈ Σω avoids the pattern e.
⇔ The word w ∈ Σω avoids the pattern e′.

The equation Vθm(e) = Vθm(e′) follows. The proof of Vθa (e) = Vθa (e′) is identical.

Note the following θ-free patterns; see [1].
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Observation 9. The patterns αα, ααβ, βαα, ααβα, αββα, ααββ, αβαβ,
ααβαα, and ααβαβ are 2-unavoidable and 3-avoidable.

Lemma 10. Let e ∈ E∗ be a pattern, that contains the variables α and θ(α).
Further, e contains no other variable of the form θ(γ). Let e′ be the pattern
when all occurrences of θ(α) in e are replaced by α. The pattern e′′ obtained
when all occurrences of θ(α) in e are replaced by a new variable β.

Then V(e′) ≤ Vθm(e) ≤ V(e′′) and Vθa (e) ≤ V(e′′).

Proof. The relation V(e′) ≤ Vθm(e) holds, since the morphic θ-avoidance index
considers all morphic involutions, including the identity mapping. Now say
V(e′′) = k, i.e., a word w ∈ Σω exists, that avoids the pattern e′′.Then this
word also avoids the pattern e for all morphic and antimorphic involutions.
Therefore the relations Vθm(e) ≤ V(e′′) and Vθa (e) ≤ V(e′′) hold.

Lemma 11. It holds that Vθa (αα θ(α)) = Vθm(αα θ(α)) = 3.

Proof. According to Observation 9 the equation V(α, α β) = 3 holds. Lemma 10
implies Vθa (αα θ(α)) ,Vθm(αα θ(α)) ≤ 3. We show by contradiction, that it
holds that Vθa (αα θ(α)) 6= 2. The proof for the relation Vθm(αα θ(α)) 6= 2
is analogous. Assuming a word w ∈ Σω with Σ = { a, b } exists that avoids
the pattern αα θ(α) for all antimorphic involutions. Then w contains neither
aa nor bb as a factor. Without loss of generality w begins with the letter a.
It follows that w = (ab)ω. But w = (ab)ω contains the pattern αα θ(α) for
α = ab and the antimorphic involution defined by a 7→ b and b 7→ a. This
is a contradiction to our assumption. Therefore Vθa (αα θ(α)) 6= 2 holds and
analogously Vθm(αα θ(α)) 6= 2. We get Vθa (αα θ(α)) = Vθm(αα θ(α)) = 3.

Lemma 12. It holds that Vθa (θ(α)αα) = Vθm(θ(α)αα) = 3.

Proof. The proof is analogous to the proof of Lemma 11.

Corollary 13.

1. Vθm(θ(α)α θ(α)) = Vθa (θ(α)α θ(α)) = 3 by Theorem 6 and 7.

2. Vθm(θ(α) θ(α)α) = Vθa (θ(α) θ(α)α) = 3 by Lemma 11.

3. Vθm(α θ(α) θ(α)) = Vθa (α θ(α) θ(α)) = 3 by Lemma 12.
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