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Abstract

An infinte word w avoids a pattern p with the involution 8 if there is
no substitution for the variables in p and no involution # such that the
resulting word is a factor of w. We investigate the avoidance of patterns
with respect to the size of the alphabet. For example, it is shown that
the pattern af(a) @ can be avoided over three letters but not two letters,
whereas it is well known that oo« is avoidable over two letters.

1 Introduction

The avoidability of patterns in infinite words is an old area of interest with a first
systematic study going back to Thue [4, 5]. This field includes rediscoveries and
studies by many authors over the last one hundred years; see for example [2]
and [1] for surveys. In this article, we are concerned with a variation of the theme
by considering avoidable patterns with involution. An involution € is a mapping
such that 62 is the identity. We consider morphic, where §(uv) = 0(u)6(v), and
antimorphic involutions, where 6(uv) = 6(v)f(u). The subject of this article
draws quite some motivation from applications in biology where the Watson-
Crick complement corresponds to an antimorphic involution in our case. Our
considerations are more general, however, by considering any alphabet size and
also morphic involutions.

2 Preliminaries

Our notation is guided by what is commonly found in literature, see for example
the first chapter of [3] as a reference. Let ¥ be a finite alphabet of letters and ¥*
denote all finite and X% denote all (right-) infinite words over 3. Let ¢ denote
the empty word. Letters are usually denoted by a, b, or ¢, and words over X
are usually denoted by u, v, or w in this paper. The i-th letter of a word w is
denoted by wi;, that is, w = wpjwyg) - - - wy,) if w is finite, and the length n of w
is denoted by |w| as usual.



Besides ¥ we need another finite set E of symbols. The elements of E are
called variables and we usually denote them by «, 3, or v. Words in E* are called
patterns. For example affa € E* is a pattern consisting of the variables a and 8
in E. We assign to every pattern a pattern language over the alphabet ¥. This
language contains every word, that can be generated by substituting all variables
in the pattern by non-empty words in ¥*. For example the pattern language of
the pattern aa over ¥ = {a,b} is { aa, bb, acaa, abab, baba, bbbb, . . . }.

We say that a word w avoids a pattern, if no factor of w exists, that is in
the pattern language. On the other hand, if a factor of w is an element of the
pattern language, we say w contains the pattern. If for a given pattern e and
an alphabet ¥ with k£ elements a word w € X% exists that avoids e, then we
say that e is k-avoidable. Otherwise we call e k-unavoidable. We call k € N the
avoidance index V(e) of a pattern e € E*, if e is k-avoidable and k is minimal.
If no such k exists, we define V(e) = oo.

Let f: {a,b}" — {a,b}" with a — ab and b — ba. The fixpoint ¢t =
limy oo f’“(a) exists and is called Thue—-Morse word. The following result is
a classical one.

Theorem 1 ([4, 5]). The Thue—Morse word avoids the patterns aaa and afaSa.

3 Patterns with Involution

For introducing patterns with involution, we extend the set of pattern variables
E by adding 6(«) for all variables o € E and some involution 6. For the rest
of the article, we will stick to this definition of E. Given a morphic or antimor-
phic involution, we build the corresponding pattern language by replacing the
variables by non-empty words and, for variables of the form 6(«), by applying
the involution after the substitution.

For example, let # be the morphic involution with a — b and b — a over
Y = {a,b}, and let the pattern be af(a). We get the pattern language
{ ab, ba, aabb, abba, baab, bbaa, . .. }. Every word in {a,b}* \ (a* Ub¥) contains
the pattern a6(«) for the morphic involution 6 with ¢ — b and b — a.

Observation 2. Let 6 be a morphic or antimorphic involution and not the
identity mapping. Then every pattern, that contains variables of the a and
0(a), is avoidable.

Indeed, since € is not the identity mapping, a letter a € ¥ with 6(a) # a
exists. Therefore w = a“ avoids every pattern that includes variables o and
0(a).

Because of this observation we do not have to examine, if patterns are avoid-
able or unavoidable for a given involution. So we now change the point of view.
For a given pattern e € E*, we either look at all morphic or all antimorphic
involutions ¥* — ¥* at the same time. So, we examine, for example, if an
infinite word w € X¥ exists, that avoids a pattern e for all morphic involutions.



Definition 3. Let e € E* be a pattern, possibly with variables of the form 6(«).
We call k € N the morphic (antimorphic) 0-avoidance index V9, (e) (V(e)) of
e € E*, if an infinite word w € ¥ over ¥ with |X| = k exists, that avoids the
pattern e for all morphic (antimorphic) involutions X* — ¥* and k is minimal.

If this doesn’t hold for any k € N, we define VY, (e) = co (Vi(e) = 00).
We establish the first facts about avoidance of pattern a 6(«) cv.

Lemma 4. Let ¥ be a binary alphabet. Then there is no word w € X%, that
avoids the pattern af(a)a for all morphic involutions 6: ¥* — ¥*. That is,
VO (af(a)a) > 2.

Proof. Let ¥ = {a,b}. We try to construct a word w € X%, that avoids
e = af(a) « for all morphic involutions and bring this to a contradiction. For
example, this word must not contain aaa, bbb, aba or bab as a factor. Without
loss of generality w begins with a.

Case 1: Assumed the word w begins with ab. Then this prefix must be
followed by b, abb <, w. The next letter must be an a, the fifth must be an a
too. So we have abbaa <, w. If the following letter is an a, aaa is a factor of w.
So the next letter must be the letter b. But for the morphic involution 6 with
a — b and b — a the word abf(ab)ab is a factor of w.

Case 2: The argument for the case aa <, w is analogous to case 1. O

The proof of the following lemma is analogous to the previous one.

Lemma 5. Let ¥ be a binary alphabet. There is no word w € X, that avoids
the pattern af(a)a for all antimorphic involutions 0: ¥* — ¥*. That is,
Vi(ab(a)a) > 2.

4 Main Result

In this section, we establish the f-avoidance indices for the pattern «6(«a) « in
the morphic and antimorphic case. We start with the morphic case.

Theorem 6. It holds that VI (af(a)a) = 3.

Proof. Let ¥ an alphabet with three elements, ¥ = {a,b,c}. Let u be the
infinitely long Thue-Morse word over the letters @’ and o’. Furthermore let
w € ¥ be the word, that is the outcome of replacing every a’ in u by aacb and
b by acchb. We will show, that w avoids the pattern af(«)a for all morphic
involutions. For better readability, we define © = aacb and y = acch.

We assume it exists a morphic involution 6 and a substitution for a, such
that af(a)a is a factor of w. Proof by contradiction. First, we examine the
possibilities of replacing the variable a by words u € X1 of length |u| < 7.
The word u6(u) v has a maximal length of 18. Therefore there must exist a
morphic involution so that u6(u) u is a factor of a word w’ € {z,y}°. Because
of Theorem 1, the words zzx, yyy, ryzyr and yryry can not be a factor of w’.
A computer program can easily check these finite possibilities with the result,
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Figure 1: Part of w to illustrate the factor uuu

that no words v and w’ exist, which fulfill the conditions. Now we assume «
gets replaced by a word u € X1 with |u| > 7. Then, the word u contains aacb or
acch. Without loss of generality, u contains aacb. Therefore, 8(u) contains the
factor 8(aac) = 0(a) 0(a) 0(c). In addition O(u) and for this reason 6(a) 8(a) 6(c)
is a factor of w. There are only two possibilities for two succeeding identical
letters in w. Either these letters are two letters ¢ followed by the letter b, or
two letters a are followed by the letter c¢. This implies, that v 6(u) u can only be
a factor of w, if 0 is the identity mapping. Furthermore this implies |u| =4 -k
for a k € N. This is visualized in Fig. 1, where w;, w;, w;» € { z,y } holds for all
0 <4 < k. If the word (wo ) ) (wo) 3 (wo) 4y OF (wo) (1) (wo) 9 (wo) (3) (wo ) (4 = wo is
a prefix of the first v in Fig. 1, then the following equations apply:

Wo = Wo = worr
w1 = w1y = wiyr
Wg—1 = Wkg—1 = Wg-17
3
The word wowy ... WE—1 WorW1s ... We—_1/ Worr W1 « . . We—17 (wowy ... wg—_1)

is a factor of w. Because of w; € {x,y} for all 0 < i < k — 1, this is a
contradiction to Lemma 1. On the other hand, if only (wo) 5 (wo)y or (wo)y
is a prefix of u, then wo # wy is possible. But in this case (wy)j)(wk )y or
(wirr) 1) (wrrr ) g (i) 3 is @ suffix of the third u. This implies

w1 = w1y = wqr
w2 = 'LUQ’ = 'LU2'/
Wi = Wi = Wi
3.
and WIW2 ... W WrwWor ... Wgr W1rrwarr ... Wt = (U)1UJ2 . wk) is a factor of w.
Again, this is a contradiction to Lemma 1. The theorem follows with Lemma 4.

O
The result of Theorem 6 transfers also to the antimorphic case.

Theorem 7. It holds that V?(af(a)a) = 3.



Figure 2: Part of w and the factor u of w

Proof. This proof follows the proof of the previous theorem. Let ¥ be an alpha-
bet with three elements, ¥ = { a,b,c}. Further, let u be the Thue-Morse word
over the letters o’ and o/. Let w € X* be the word, that we get by replacing a’
in u by aabbe and b’ by aacch. We will show, that w avoids the pattern o 6(«),
for all antimorphic involutions. For better readability, we define x = aabbc and
y = aacch.

We assume that there exists an antimorphic involution and a substitution
of a by a word u € ©F so, that uf(u)u is a factor of w. First we suppose
that |u| < 9 holds. The word u@(u)w then has a maximal length of 24 and
uB(u)u is factor of a word w' € {z,y}°. The word zzz, yyy, xyzyz, and
yryxry must not be a factor of w’ because of Lemma 1. A computer program
can check these finite possibilities with the result, that no words v and w’ exist
that fulfill these conditions for an antimorphic involution 6. So ,Ju| > 9 must
hold and u contains at least one word x or y completely. We now look at
the first u of the factor ué(u)u of w. Let wywhy <s w with wy,wy € {z,y},
wy = whwy and |wh| < 5. We get Fig. 2 where ws,wy € {z,y}. Without loss
of generality, let w1 = x = aabbe. Then O(u) and therefore wywsw, contains
the word 6(aabbc) = 6(c) 0(b) 6(b) 6(a) O(a) with length 5 as a factor. Hence we
look at the following words:

zx = aabbc aabbc
xy = aabbc aacch
yx = aacch aabbc

yy = aacchbaacch .

Ounly xzz contains 0(c) 6(b) 0(b) 0(a) 6(a) for the antimorphic involution 6 with
a+ b, b— a, and ¢ — c. Because of wy; = x, the equation wows = zx is
a contradiction to Lemma 1. The case wowswy = yxx remains. Now there
are five possibilities for the position of u, see Fig. 3. It is easy to check, that
in all five cases 6(u) <, whwsw, respectively wiwsws <, 6(u) doesn’t hold.
So our assumption, that there exists an antimorphic involution # and a word
u € X with uf(u)u is a factor of w, was wrong. The theorem follows with
Lemma 5. O



Case 1: - -- 41

Case 2: - -+ |

Case 3: -+ |
Case 4: --- |
Case 5: - -+ |

Figure 3: Hlustration of possible positions of the factor u of w

5 Complementary Patterns

In this section, patterns similar to a8(«) 8 are considered.

For the next lemma we need a further definition. Let e € E* be a pattern
consisting of variables of the form « and 0(«) and ¢’ be the pattern that we
get, when all variables a and 0(«) in e are switched. We call ¢ € E the
0-complementary pattern of e. For example the #-complementary pattern of
aaf(a)fis 8(a)f(a) ad(B). For this definition it doesn’t matter if morphic or
antimorphic involutions are examined.

Lemma 8. Let e € E* be a pattern and ¢’ € E be the 0-complementary pattern
of e. Then V?(e) =VI(e') and VI (e) = VI ().

Proof. First of all we show V? (e) = V9 (¢/). For better readability, we replace
the variable « in the pattern ¢’ by o' and 6(«) by (). We assume a word
w € X¥ contains the pattern e for a morphic involution and a substitution of «
by u € ¥ 7. Then w contains the pattern e’ for the same morphic involution by
substituting o’ by 6(u). Symmetry reasons imply:

It exists a morphic involution # so, that w contains the pattern e.

& Tt exists a morphic involution @’ so, that w contains the pattern e’.
By negation we get:

The word w € ¥ avoids the pattern e.
< The word w € X avoids the pattern ¢’.

The equation VY (e) = V (¢’) follows. The proof of V?(e) = V?(¢’) is identical.
O

Note the following #-free patterns; see [1].



Observation 9. The patterns aa, aaf, faa, aafa, affa, aaff, afas,
aafaa, and aafaf are 2-unavoidable and 3-avoidable.

Lemma 10. Let e € E* be a pattern, that contains the variables a and ().
Further, e contains no other variable of the form 6(v). Let € be the pattern
when all occurrences of 6(a) in e are replaced by . The pattern e” obtained
when all occurrences of 8(a) in e are replaced by a new variable f3.

Then V(e') < V2 (e) < V(e") and VI(e) < V(e").

Proof. The relation V(e’) < VY (e) holds, since the morphic #-avoidance index
considers all morphic involutions, including the identity mapping. Now say
V(") =k, ie., a word w € 3¢ exists, that avoids the pattern e”.Then this
word also avoids the pattern e for all morphic and antimorphic involutions.
Therefore the relations VZ (e) < V(e”) and V¢ (e) < V(e”) hold. O

Lemma 11. It holds that Vg(aozﬁ(oz)) = an(aozﬂ(a)) = 3.

Proof. According to Observation 9 the equation V(«, o §) = 3 holds. Lemma 10
implies VY (aaf(a)),V? (aab(a)) < 3. We show by contradiction, that it
holds that V(aaf(a)) # 2. The proof for the relation VI (aaf(a)) # 2
is analogous. Assuming a word w € X with ¥ = {a,b} exists that avoids
the pattern oo é(«) for all antimorphic involutions. Then w contains neither
aa nor bb as a factor. Without loss of generality w begins with the letter a.
It follows that w = (ab)®¥. But w = (ab)¥ contains the pattern v« 6(«a) for
a = ab and the antimorphic involution defined by a +— b and b +— a. This
is a contradiction to our assumption. Therefore V?(aaf(a)) # 2 holds and
analogously V9 (acaf(a)) # 2. We get V?(aaf(a)) =V (aab(a)) = 3. O

Lemma 12. [t holds that V¢ (0(a) aa) = VI (0(a) aa) = 3.
Proof. The proof is analogous to the proof of Lemma 11. O
Corollary 13.

1. V8 (0(a) ab(a)) = V(0(a) ab(a)) = 3 by Theorem 6 and 7.

a

2. V2 (0(a) 8(a) @) = VI (0(a) O(a) ) = 3 by Lemma 11.

a

3. V2 (ab(a)f(a)) =V (ab(a)d(a)) =3 by Lemma 12.

a
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