Pattern Avoidability with Involution

Bastian Bischoff — Dirk Nowotka Institute for Formal Methods in Computer Science Universität Stuttgart, Germany

April 13, 2011

Abstract

An infinte word w avoids a pattern p with the involution θ if there is no substitution for the variables in p and no involution θ such that the resulting word is a factor of w. We investigate the avoidance of patterns with respect to the size of the alphabet. For example, it is shown that the pattern $\alpha \theta(\alpha) \alpha$ can be avoided over three letters but not two letters, whereas it is well known that $\alpha \alpha \alpha$ is avoidable over two letters.

1 Introduction

The avoidability of patterns in infinite words is an old area of interest with a first systematic study going back to Thue [4, 5]. This field includes rediscoveries and studies by many authors over the last one hundred years; see for example [2] and [1] for surveys. In this article, we are concerned with a variation of the theme by considering avoidable patterns with involution. An involution θ is a mapping such that θ^2 is the identity. We consider morphic, where $\theta(uv) = \theta(u)\theta(v)$, and antimorphic involutions, where $\theta(uv) = \theta(v)\theta(u)$. The subject of this article draws quite some motivation from applications in biology where the Watson-Crick complement corresponds to an antimorphic involution in our case. Our considerations are more general, however, by considering any alphabet size and also morphic involutions.

2 Preliminaries

Our notation is guided by what is commonly found in literature, see for example the first chapter of [3] as a reference. Let Σ be a finite alphabet of *letters* and Σ^* denote all finite and Σ^ω denote all (right-) infinite words over Σ . Let ε denote the empty word. Letters are usually denoted by a, b, or c, and words over Σ are usually denoted by u, v, or w in this paper. The i-th letter of a word w is denoted by $w_{[i]}$, that is, $w = w_{[1]}w_{[2]} \cdots w_{[n]}$ if w is finite, and the length n of w is denoted by |w| as usual.

Besides Σ we need another finite set E of symbols. The elements of E are called variables and we usually denote them by α , β , or γ . Words in E^* are called patterns. For example $\alpha\beta\alpha\in E^*$ is a pattern consisting of the variables α and β in E. We assign to every pattern a $pattern\ language$ over the alphabet Σ . This language contains every word, that can be generated by substituting all variables in the pattern by non-empty words in Σ^* . For example the pattern language of the pattern $\alpha\alpha$ over $\Sigma = \{a, b\}$ is $\{aa, bb, aaaa, abab, baba, bbbb, \dots\}$.

We say that a word w avoids a pattern, if no factor of w exists, that is in the pattern language. On the other hand, if a factor of w is an element of the pattern language, we say w contains the pattern. If for a given pattern e and an alphabet Σ with k elements a word $w \in \Sigma^{\omega}$ exists that avoids e, then we say that e is k-avoidable. Otherwise we call e k-unavoidable. We call $k \in \mathbb{N}$ the avoidance index $\mathcal{V}(e)$ of a pattern $e \in E^*$, if e is k-avoidable and k is minimal. If no such k exists, we define $\mathcal{V}(e) = \infty$.

Let $f: \{a,b\}^* \to \{a,b\}^*$ with $a \mapsto ab$ and $b \mapsto ba$. The fixpoint $t = \lim_{k\to\infty} f^k(a)$ exists and is called *Thue-Morse word*. The following result is a classical one.

Theorem 1 ([4, 5]). The Thue–Morse word avoids the patterns $\alpha\alpha\alpha$ and $\alpha\beta\alpha\beta\alpha$.

3 Patterns with Involution

For introducing patterns with involution, we extend the set of pattern variables E by adding $\theta(\alpha)$ for all variables $\alpha \in E$ and some involution θ . For the rest of the article, we will stick to this definition of E. Given a morphic or antimorphic involution, we build the corresponding pattern language by replacing the variables by non-empty words and, for variables of the form $\theta(\alpha)$, by applying the involution after the substitution.

For example, let θ be the morphic involution with $a \mapsto b$ and $b \mapsto a$ over $\Sigma = \{a, b\}$, and let the pattern be $\alpha \theta(\alpha)$. We get the pattern language $\{ab, ba, aabb, abba, baab, bbaa, \dots\}$. Every word in $\{a, b\}^{\omega} \setminus (a^{\omega} \cup b^{\omega})$ contains the pattern $\alpha \theta(\alpha)$ for the morphic involution θ with $a \mapsto b$ and $b \mapsto a$.

Observation 2. Let θ be a morphic or antimorphic involution and not the identity mapping. Then every pattern, that contains variables of the α and $\theta(\alpha)$, is avoidable.

Indeed, since θ is not the identity mapping, a letter $a \in \Sigma$ with $\theta(a) \neq a$ exists. Therefore $w = a^{\omega}$ avoids every pattern that includes variables α and $\theta(\alpha)$.

Because of this observation we do not have to examine, if patterns are avoidable or unavoidable for a given involution. So we now change the point of view. For a given pattern $e \in E^*$, we either look at all morphic or all antimorphic involutions $\Sigma^* \to \Sigma^*$ at the same time. So, we examine, for example, if an infinite word $w \in \Sigma^{\omega}$ exists, that avoids a pattern e for all morphic involutions.

Definition 3. Let $e \in E^*$ be a pattern, possibly with variables of the form $\theta(\alpha)$. We call $k \in \mathbb{N}$ the morphic (antimorphic) θ -avoidance index $\mathcal{V}_{m}^{\theta}(e)$ ($\mathcal{V}_{a}^{\theta}(e)$) of $e \in E^*$, if an infinite word $w \in \Sigma^{\omega}$ over Σ with $|\Sigma| = k$ exists, that avoids the pattern e for all morphic (antimorphic) involutions $\Sigma^* \to \Sigma^*$ and k is minimal. If this doesn't hold for any $k \in \mathbb{N}$, we define $\mathcal{V}_{m}^{\theta}(e) = \infty$ ($\mathcal{V}_{a}^{\theta}(e) = \infty$).

We establish the first facts about avoidance of pattern $\alpha \theta(\alpha) \alpha$.

Lemma 4. Let Σ be a binary alphabet. Then there is no word $w \in \Sigma^{\omega}$, that avoids the pattern $\alpha \theta(\alpha) \alpha$ for all morphic involutions $\theta \colon \Sigma^* \to \Sigma^*$. That is, $\mathcal{V}_{m}^{\theta}(\alpha \theta(\alpha) \alpha) > 2$.

Proof. Let $\Sigma = \{a, b\}$. We try to construct a word $w \in \Sigma^{\omega}$, that avoids $e = \alpha \theta(\alpha) \alpha$ for all morphic involutions and bring this to a contradiction. For example, this word must not contain aaa, bbb, aba or bab as a factor. Without loss of generality w begins with a.

Case 1: Assumed the word w begins with ab. Then this prefix must be followed by b, $abb <_p w$. The next letter must be an a, the fifth must be an a too. So we have $abbaa <_p w$. If the following letter is an a, aaa is a factor of w. So the next letter must be the letter b. But for the morphic involution θ with $a \mapsto b$ and $b \mapsto a$ the word $ab\theta(ab)ab$ is a factor of w.

Case 2: The argument for the case $aa \leq_{p} w$ is analogous to case 1.

The proof of the following lemma is analogous to the previous one.

Lemma 5. Let Σ be a binary alphabet. There is no word $w \in \Sigma^{\omega}$, that avoids the pattern $\alpha \theta(\alpha) \alpha$ for all antimorphic involutions $\theta \colon \Sigma^* \to \Sigma^*$. That is, $\mathcal{V}^{\theta}_{\mathbf{a}}(\alpha \theta(\alpha) \alpha) > 2$.

4 Main Result

In this section, we establish the θ -avoidance indices for the pattern $\alpha \theta(\alpha) \alpha$ in the morphic and antimorphic case. We start with the morphic case.

Theorem 6. It holds that $V_m^{\theta}(\alpha\theta(\alpha)\alpha) = 3$.

Proof. Let Σ an alphabet with three elements, $\Sigma = \{a, b, c\}$. Let u be the infinitely long Thue–Morse word over the letters a' and b'. Furthermore let $w \in \Sigma$ be the word, that is the outcome of replacing every a' in u by aacb and b' by accb. We will show, that w avoids the pattern $\alpha\theta(\alpha)\alpha$ for all morphic involutions. For better readability, we define x = aacb and y = accb.

We assume it exists a morphic involution θ and a substitution for α , such that $\alpha\theta(\alpha)\alpha$ is a factor of w. Proof by contradiction. First, we examine the possibilities of replacing the variable α by words $u \in \Sigma^+$ of length |u| < 7. The word $u \theta(u) u$ has a maximal length of 18. Therefore there must exist a morphic involution so that $u \theta(u) u$ is a factor of a word $w' \in \{x, y\}^6$. Because of Theorem 1, the words xxx, yyy, xyxyx and yxyxy can not be a factor of w'. A computer program can easily check these finite possibilities with the result,

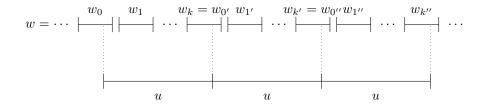


Figure 1: Part of w to illustrate the factor uuu

that no words u and w' exist, which fulfill the conditions. Now we assume α gets replaced by a word $u \in \Sigma^+$ with $|u| \geq 7$. Then, the word u contains aacb or accb. Without loss of generality, u contains aacb. Therefore, $\theta(u)$ contains the factor $\theta(aac) = \theta(a) \theta(a) \theta(c)$. In addition $\theta(u)$ and for this reason $\theta(a) \theta(a) \theta(c)$ is a factor of w. There are only two possibilities for two succeeding identical letters in w. Either these letters are two letters c followed by the letter b, or two letters a are followed by the letter c. This implies, that $u \theta(u) u$ can only be a factor of w, if θ is the identity mapping. Furthermore this implies $|u| = 4 \cdot k$ for a $k \in \mathbb{N}$. This is visualized in Fig. 1, where $w_i, w_{i'}, w_{i''} \in \{x, y\}$ holds for all $0 \leq i \leq k$. If the word $(w_0)_{[2]}(w_0)_{[3]}(w_0)_{[4]}$ or $(w_0)_{[1]}(w_0)_{[2]}(w_0)_{[3]}(w_0)_{[4]} = w_0$ is a prefix of the first u in Fig. 1, then the following equations apply:

The word $w_0w_1 \dots w_{k-1} w_{0'}w_{1'} \dots w_{k-1'} w_{0''}w_{1''} \dots w_{k-1''} = (w_0w_1 \dots w_{k-1})^3$ is a factor of w. Because of $w_i \in \{x,y\}$ for all $0 \le i \le k-1$, this is a contradiction to Lemma 1. On the other hand, if only $(w_0)_{[3]}(w_0)_{[4]}$ or $(w_0)_{[4]}$ is a prefix of u, then $w_0 \ne w_{0'}$ is possible. But in this case $(w_{k''})_{[1]}(w_{k''})_{[2]}$ or $(w_{k''})_{[1]}(w_{k''})_{[2]}(w_{k''})_{[3]}$ is a suffix of the third u. This implies

and $w_1w_2 \dots w_k w_{1'}w_{2'} \dots w_{k'} w_{1''}w_{2''} \dots w_{k''} = (w_1w_2 \dots w_k)^3$ is a factor of w. Again, this is a contradiction to Lemma 1. The theorem follows with Lemma 4.

The result of Theorem 6 transfers also to the antimorphic case.

Theorem 7. It holds that $V_a^{\theta}(\alpha\theta(\alpha)\alpha) = 3$.

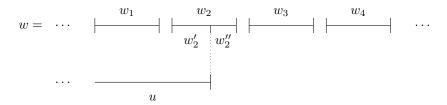


Figure 2: Part of w and the factor u of w

Proof. This proof follows the proof of the previous theorem. Let Σ be an alphabet with three elements, $\Sigma = \{a, b, c\}$. Further, let u be the Thue-Morse word over the letters a' and b'. Let $w \in \Sigma^{\omega}$ be the word, that we get by replacing a' in u by aabbc and b' by aaccb. We will show, that w avoids the pattern $\alpha \theta(\alpha), \alpha$ for all antimorphic involutions. For better readability, we define x = aabbc and y = aaccb.

> $xx = aabbc \ aabbc$ $xy = aabbc \ aaccb$ $yx = aaccb \ aabbc$ $yy = aaccb \ aaccb$.

Only xx contains $\theta(c) \theta(b) \theta(b) \theta(a) \theta(a)$ for the antimorphic involution θ with $a \mapsto b$, $b \mapsto a$, and $c \mapsto c$. Because of $w_1 = x$, the equation $w_2w_3 = xx$ is a contradiction to Lemma 1. The case $w_2w_3w_4 = yxx$ remains. Now there are five possibilities for the position of u, see Fig. 3. It is easy to check, that in all five cases $\theta(u) \leq_p w_2''w_3w_4$ respectively $w_2''w_3w_4 \leq_p \theta(u)$ doesn't hold. So our assumption, that there exists an antimorphic involution θ and a word $u \in \Sigma^+$ with $u \theta(u) u$ is a factor of w, was wrong. The theorem follows with Lemma 5.

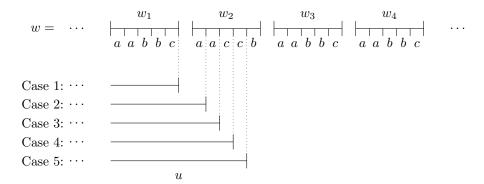


Figure 3: Illustration of possible positions of the factor u of w

5 Complementary Patterns

In this section, patterns similar to $\alpha \theta(\alpha) \theta$ are considered.

For the next lemma we need a further definition. Let $e \in E^*$ be a pattern consisting of variables of the form α and $\theta(\alpha)$ and e' be the pattern that we get, when all variables α and $\theta(\alpha)$ in e are switched. We call $e' \in E$ the θ -complementary pattern of e. For example the θ -complementary pattern of $\alpha \alpha \theta(\alpha) \beta$ is $\theta(\alpha) \theta(\alpha) \alpha \theta(\beta)$. For this definition it doesn't matter if morphic or antimorphic involutions are examined.

Lemma 8. Let $e \in E^*$ be a pattern and $e' \in E$ be the θ -complementary pattern of e. Then $\mathcal{V}_{\mathbf{a}}^{\theta}(e) = \mathcal{V}_{\mathbf{a}}^{\theta}(e')$ and $\mathcal{V}_{\mathbf{m}}^{\theta}(e) = \mathcal{V}_{\mathbf{m}}^{\theta}(e')$.

Proof. First of all we show $\mathcal{V}_{\mathrm{m}}^{\theta}(e) = \mathcal{V}_{\mathrm{m}}^{\theta}(e')$. For better readability, we replace the variable α in the pattern e' by α' and $\theta(\alpha)$ by $\theta(\alpha')$. We assume a word $w \in \Sigma^{\omega}$ contains the pattern e for a morphic involution and a substitution of α by $u \in \Sigma^{+}$. Then w contains the pattern e' for the same morphic involution by substituting α' by $\theta(u)$. Symmetry reasons imply:

It exists a morphic involution θ so, that w contains the pattern e.

 \Leftrightarrow It exists a morphic involution θ' so, that w contains the pattern e'.

By negation we get:

The word $w \in \Sigma^{\omega}$ avoids the pattern e.

 \Leftrightarrow The word $w \in \Sigma^{\omega}$ avoids the pattern e'.

The equation $\mathcal{V}_{\mathrm{m}}^{\theta}(e) = \mathcal{V}_{\mathrm{m}}^{\theta}(e')$ follows. The proof of $\mathcal{V}_{\mathrm{a}}^{\theta}(e) = \mathcal{V}_{\mathrm{a}}^{\theta}(e')$ is identical.

Note the following θ -free patterns; see [1].

Observation 9. The patterns $\alpha\alpha$, $\alpha\alpha\beta$, $\beta\alpha\alpha$, $\alpha\alpha\beta\alpha$, $\alpha\beta\beta\alpha$, $\alpha\alpha\beta\beta$, $\alpha\beta\alpha\beta$, $\alpha\alpha\beta\alpha\alpha$, and $\alpha\alpha\beta\alpha\beta$ are 2-unavoidable and 3-avoidable.

Lemma 10. Let $e \in E^*$ be a pattern, that contains the variables α and $\theta(\alpha)$. Further, e contains no other variable of the form $\theta(\gamma)$. Let e' be the pattern when all occurrences of $\theta(\alpha)$ in e are replaced by α . The pattern e'' obtained when all occurrences of $\theta(\alpha)$ in e are replaced by a new variable β .

Then $\mathcal{V}(e') \leq \mathcal{V}_{m}^{\theta}(e) \leq \mathcal{V}(e'')$ and $\mathcal{V}_{a}^{\theta}(e) \leq \mathcal{V}(e'')$.

Proof. The relation $\mathcal{V}(e') \leq \mathcal{V}_{\mathrm{m}}^{\theta}(e)$ holds, since the morphic θ -avoidance index considers all morphic involutions, including the identity mapping. Now say $\mathcal{V}(e'') = k$, i.e., a word $w \in \Sigma^{\omega}$ exists, that avoids the pattern e''. Then this word also avoids the pattern e for all morphic and antimorphic involutions. Therefore the relations $\mathcal{V}_{\mathrm{m}}^{\theta}(e) \leq \mathcal{V}(e'')$ and $\mathcal{V}_{\mathrm{a}}^{\theta}(e) \leq \mathcal{V}(e'')$ hold.

Lemma 11. It holds that $\mathcal{V}_{a}^{\theta}(\alpha \alpha \theta(\alpha)) = \mathcal{V}_{m}^{\theta}(\alpha \alpha \theta(\alpha)) = 3$.

Proof. According to Observation 9 the equation $\mathcal{V}(\alpha, \alpha \beta) = 3$ holds. Lemma 10 implies $\mathcal{V}_{\rm a}^{\theta}(\alpha \, \alpha \, \theta(\alpha))$, $\mathcal{V}_{\rm m}^{\theta}(\alpha \, \alpha \, \theta(\alpha)) \leq 3$. We show by contradiction, that it holds that $\mathcal{V}_{\rm a}^{\theta}(\alpha \, \alpha \, \theta(\alpha)) \neq 2$. The proof for the relation $\mathcal{V}_{\rm m}^{\theta}(\alpha \, \alpha \, \theta(\alpha)) \neq 2$ is analogous. Assuming a word $w \in \Sigma^{\omega}$ with $\Sigma = \{a,b\}$ exists that avoids the pattern $\alpha \, \alpha \, \theta(\alpha)$ for all antimorphic involutions. Then w contains neither aa nor bb as a factor. Without loss of generality w begins with the letter a. It follows that $w = (ab)^{\omega}$. But $w = (ab)^{\omega}$ contains the pattern $\alpha \, \alpha \, \theta(\alpha)$ for $\alpha = ab$ and the antimorphic involution defined by $a \mapsto b$ and $b \mapsto a$. This is a contradiction to our assumption. Therefore $\mathcal{V}_{\rm a}^{\theta}(\alpha \, \alpha \, \theta(\alpha)) \neq 2$ holds and analogously $\mathcal{V}_{\rm m}^{\theta}(\alpha \, \alpha \, \theta(\alpha)) \neq 2$. We get $\mathcal{V}_{\rm a}^{\theta}(\alpha \, \alpha \, \theta(\alpha)) = \mathcal{V}_{\rm m}^{\theta}(\alpha \, \alpha \, \theta(\alpha)) = 3$.

Lemma 12. It holds that $V_a^{\theta}(\theta(\alpha) \alpha \alpha) = V_m^{\theta}(\theta(\alpha) \alpha \alpha) = 3$.

Proof. The proof is analogous to the proof of Lemma 11. \Box

Corollary 13.

- 1. $\mathcal{V}_{m}^{\theta}(\theta(\alpha) \, \alpha \, \theta(\alpha)) = \mathcal{V}_{a}^{\theta}(\theta(\alpha) \, \alpha \, \theta(\alpha)) = 3$ by Theorem 6 and 7.
- 2. $V_{m}^{\theta}(\theta(\alpha) \theta(\alpha) \alpha) = V_{a}^{\theta}(\theta(\alpha) \theta(\alpha) \alpha) = 3$ by Lemma 11.
- 3. $\mathcal{V}_{m}^{\theta}(\alpha \theta(\alpha) \theta(\alpha)) = \mathcal{V}_{n}^{\theta}(\alpha \theta(\alpha) \theta(\alpha)) = 3$ by Lemma 12.

References

- [1] J. Cassaigne. Unavoidable Patterns, chapter 3, pages 111–134. In [3], 2002.
- [2] J. Currie. Pattern avoidance: themes and variations. *Theoret. Comput. Sci.*, 339(1):7–18, 2005.
- [3] M. Lothaire. *Algebraic Combinatorics on Words*. Cambridge University Press, Cambridge, UK, 2002.

- [4] A. Thue. Über unendliche Zeichenreihen. Norske Vid. Skrifter I. Mat.-Nat. Kl., Christiania, 7:1–22, 1906.
- [5] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Skrifter I. Mat.-Nat. Kl., Christiania, 1:1–67, 1912.