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ABSTRACT

Simple idealized layered models and primitive equation models show that the meridional gradient of the

zonally averaged pressure has no direct relation with the meridional flow. This demonstrates a contradiction

in an often-used parameterization in zonally averaged models. The failure of this parameterization reflects the

inconsistency between the model of Stommel and Arons and the box model of Stommel, as previously pointed

out by Straub.

A new closure is proposed. The ocean is divided in two dynamically different regimes: a narrow western

boundary layer and an interior ocean; zonally averaged quantities over these regions are considered. In the

averaged equations three unknowns appear: the interior zonal pressure difference Dpi, the zonal pressure

difference Dpb of the boundary layer, and the zonal velocity ud at the interface between the two regions. Here

Dpi is parameterized using a frictionless vorticity balance, Dpb by the difference of the mean pressure in the

interior and western boundary, and ud by the mean zonal velocity of the western boundary layer.

Zonally resolved models, a layer model, and a primitive equation model validate the new parameterization

by comparing with the respective zonally averaged counterparts. It turns out that the zonally averaged models

reproduce well the buoyancy distribution and the meridional flow in the zonally resolved model versions with

respect to the mean and time changes.

1. Introduction

It is a common assumption in physical oceanography

that the magnitude and sign of the zonally integrated

meridional transport in the ocean [i.e., the meridional

overturning circulation (MOC)] is related to the me-

ridional pressure or density gradient. This assumption

originates in the discussion of a two-box model by

Stommel (1961), in which the exchange flow between

the two boxes is parameterized with the density differ-

ence between the boxes. The physical basis of this clo-

sure is a hypothetical dynamical balance between the

pressure difference induced by the different densities of

the boxes and friction in a narrow pipe connecting the

two parts of the ocean at depth.

A similar dynamical balance was also assumed by

Marotzke et al. (1988) to close the momentum balance

of the zonally averaged primitive equations. The Cori-

olis force is ignored, and a balance between the zonally

averaged meridional pressure gradient and some kind of

interior friction (Marotzke et al. 1988 choose vertical

friction) acting on the meridional velocity y is imple-

mented in the meridional momentum balance, while

momentum advection is assumed to be negligible. The

last assumption is reasonable for scales larger than the

internal Rossby radius. From this regime, a simple di-

agnostic relation

y 5 2g›yp (1)

between the zonally averaged meridional transport y and

the meridional gradient of the zonally averaged pressure

p can readily be derived, where the positive parameter g

depends on the type for frictional parameterization (we

will assume Rayleigh friction for simplicity but other forms

are possible). Note that the wind stress forcing in Eq. (1)

was ignored. It can be included in all closures discussed

in the present study.

Corresponding author address: Nils Brüggemann, KlimaCampus,
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This relation for y, together with the zonally averaged

continuity equation to determine the vertical velocity w,

allows us to calculate the zonally averaged tracer bal-

ances. Here zonal velocity–tracer correlations, which in-

troduce standing-eddy contributions in the tracer balances,

are ignored. Wright and Stocker (1991) diagnosed the

relation between 2›yp and y in a zonally resolved gen-

eral circulation model and found indeed a positive value

for the constant g, which, however, depends on latitude.

However, their particular choice of this relation is void of

any dynamical fundament. Wright et al. (1998) give dy-

namical arguments to motivate a modified version of the

closure, which leads to a relation very similar to Eq. (1)

(see appendix A for details).

It is one purpose of this study to demonstrate that the

closure from Eq. (1) is physically inconsistent. Although

this point was already discussed by Straub (1996) and

Greatbatch and Lu (2003), it was apparently not well

received by the scientific community: there are currently

several coupled earth system models of intermediate

complexity with zonally averaged ocean model compo-

nents relying on the closure given by Eq. (1) (Claussen

et al. 2002). Because of their low computational costs,

such models are often used for paleoclimate simulations

and long-term climate projections—several of them are

included in the Fourth Assessment Report of the Inter-

governmental Panel on Climate Change (IPCC) (Solomon

et al. 2007). Ocean-only versions are used for studies dis-

cussing the stability of the thermohaline circulation (e.g.,

Alexander and Monahan 2009). Furthermore, scalings for

the global meridional circulation including the Southern

Ocean and its impact on the circulation in zonally boun-

ded basins still rely on Eq. (1) (Gnanadesikan 1999;

Levermann and Fürst 2010). We would like to point out

that the closure by Wright et al. (1995) is an exception; it

does not rely on Eq. (1) as we will discuss in appendix A.

It is evident that the closures by Marotzke et al.

(1988), Wright and Stocker (1991), and Wright et al.

(1998) have in common that they call for a ‘‘down-

gradient’’ form of the meridional transport similar to

what was assumed by Stommel (1961) for the viscous

pipe flow in his two-box model, leading to a local re-

lation between y and ›
y
p. It was argued by Straub (1996)

that this assumption is inconsistent with the model by

Stommel and Arons (1960) describing the flow in a two-

layer system. In that model, the zonal mean of the in-

terface height between the layers, equivalent to the

pressure in primitive equations, becomes independent

of the location of the deepwater sources (i.e., inde-

pendent of the sign and magnitude of the meridional

transports), thus proving the closures based on Eq. (1) to

be wrong. We call this contradiction between the two

models by Stommel and Arons (1960) and Stommel

(1961) ‘‘Straub’s dilemma’’ and further detail this point

in the following section.

The models by Stommel (1961) and Stommel and Arons

(1960) have different conceptual backgrounds and were

developed to focus on different aspects of ocean dynam-

ics. Therefore it cannot be a priori expected that both

models are consistent with each other. Evidently, both

models had success in describing important phenomena

of the ocean dynamics. However, applying the strongly

simplified assumptions of the Stommel (1961) model to

zonally averaged models of Marotzke et al. (1988), Wright

and Stocker (1991), and Wright et al. (1998), Straub’s di-

lemma cannot be ignored anymore because it reveals

dynamical inconsistencies of these models.

The central purpose of the present study, however, is

to present and validate an alternative closure for zonally

averaged models, which generalizes the concept of Wright

et al. (1995). Their closure is based on a meridional in-

tegration of the vorticity balance in the interior and in

the western boundary layer. In their closure, the need

emerges for an integration constant that is difficult to

determine; but which sets the size and sign of the merid-

ional transports. We also divide the ocean into an interior

and a western boundary current, but instead of averaging

the vorticity equation over these regions we work with the

momentum and buoyancy (layer thickness) equations di-

rectly. Although this way we avoid the need to determine

an integration constant, we still need parameterizations

for the interior pressure difference of the boundary layer

and the zonal velocity at the interface between these re-

gions. A detailed comparison of two types of circulation

models [a two-layer model (LM) like the one by Stommel

and Arons (1960) and a general primitive equation model

(PEM) with many levels] with their zonally averaged

counterparts demonstrates the feasibility of the closure.

2. Straub’s dilemma

a. Dilemma in a simple layered model

We first consider the model by Stommel and Arons

(1960) in a slightly extended form also used by Greatbatch

and Lu (2003), which is later referred to as LM. The

governing equations for this model are given by

›tu 2 f y 5 2g9›xh 2 ru, (2)

›ty 1 fu 5 2g9›yh 2 ry, and (3)

›th 1 H(›xu 1 ›yy) 5 Q 2 lh, (4)

where H denotes the mean thickness of the lower layer

of a two-layer ocean and its perturbation h, with a den-

sity difference dr, between the two layers represented by
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the reduced gravity g9 5 gdr/r0. The velocities u and y

are the differences between the upper- and lower-layer

velocities. A prescribed deepwater source is denoted by

Q and the interior upwelling is parameterized by the

term 2lh in the thickness balance of Eq. (4). The mo-

mentum balance in Eqs. (2) and (3) is taken to be linear,

and friction induced by subgrid-scale processes is rep-

resented by Rayleigh friction with coefficient r. For a

detailed derivation of the model equations see, for ex-

ample, Gill (1982), their section 6.2, or Greatbatch and

Lu (2003). There are two equations derived from Eqs.

(2)–(4) that we present for later use. The momentum

balance yields the vorticity balance

(›t 1 r)(›xy 2 ›yu) 5 2f (›xu 1 ›yy) 2 by, (5)

and using this equation to eliminate the divergence from

the thickness balance we find

(›t 1 l)h 2 (H/f )(›t 1 r)(›xy 2 ›yu) 2 (Hb/f )y 5 Q,

(6)

which is the potential vorticity balance. Implementing

the geostrophic approximation of Eqs. (2) and (3) to

eliminate u and y turns this into the familiar form of the

quasi-geostrophic vorticity equation

›t(=2h 2 h/R2) 1 b›xh 1 r=2h 2 (l/R2)h 5 2Q/R2,

(7)

where R 5 c/jfj is the baroclinic Rossby radius and

c 5
ffiffiffiffiffiffiffiffiffi
Hg9

p
the Kelvin wave speed. The equation deter-

mines the long-term adjustment of the circulation by

Rossby waves. It also determines the steady state.

The potential vorticity equation reveals the existence

of a western boundary layer of the Stommel type with

the familiar width dW 5 r/b, resulting from the dominant

balance between advection of planetary vorticity and

the torque by the Rayleigh friction: by 5 2r›xy or

b›xh 5 2r›2
xxh. In the interior the planetary term b›xh

and the upwelling term 2lh/R2 dominate. Approaching

the northern (or southern) rim of the domain, with h /
const, y / 0, and Q [ 0, upwelling and the Rayleigh

friction term r›2
yyh must balance in the steady state. This

implies a meridional scale, d
NS

5 R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dh/h)r/l

p
, where

dh/h is the relative variation of h. These considerations

can be used to construct an approximate analytical so-

lution of Eq. (7). Here, however, a numerical model will

be used.

For the experiments with LM we have used the pa-

rameter values r 5 2 3 1026 s21, l 5 1 3 1029 s21, g9 5

0.02 m s22, b 5 2.3 3 10211 m21 s21, and H 5 400 m,

which yields c 5 2.8 m s21, R 5 30 km (at y 5 4000 km),

dW 5 100 km, and dNS 5 300 km. For the latter, dh/h ;

0.1 is used. The system is integrated on an equatorial b

plane and the horizontal resolution is 20 km in the zonal

and meridional directions. The zonal and meridional

extent of the model domain is 2500 and 10 000 km, re-

spectively. To demonstrate the influence of the transport

and pressure field on the location of the deepwater source,

we choose three different locations for Q. The results of

the three experiments are shown in Fig. 1. The location

of the deepwater source is at the northwestern edge of

the model domain for Fig. 1a, at the equator at the

western boundary for Fig. 1b, and at the southwestern

edge of the model domain for Fig. 1c. The lateral scale of

Q is dW in both directions. In each experiment two dy-

namical different regimes exist: a narrow western bound-

ary layer with a strong meridional flow and a weak interior

flow whose meridional component is always poleward.

The widths of the boundary layers at the western, northern,

and southern rims confirm the above considerations.

In the interior the velocity field and the thickness con-

tours are almost identical in all three cases. This is be-

cause the Sverdrup balance

by 5 ( f /H)lh (8)

obtained from Eq. (6) holds to a good approximation for

steady conditions and r/(bB)� 1, where B is the zonal

width of the basin. We also need to know that h is related

to Q only in an integral sense—that is,

l

ð
h dx dy 5

ð
Q dx dy (9)

in the integral over the whole model domain; however,

the rhs of Eq. (9) has only contributions from the

western boundary region. From Eq. (8) it is clear that

the meridional interior transport is driven by the interior

upwelling lh, which is almost identical for the three

cases (i.e., almost uniform and of similar magnitude).

The major differences occur, therefore, only in the bound-

ary current of the individual experiments, which has to

balance the interior flow and the upwelling in the in-

terior and the different inflows of the localized deep-

water source Q.

It is clear that the location and strength of the deep-

water source Q in the thickness equation determines the

total transport in the lower layer—that is, when Q is

located at the northwestern corner, the total meridional

transport is southward in both hemispheres of the domain

(Fig. 1g, solid line) and it is anywhere northward for

a deepwater source Q located at the southwestern cor-

ner of the domain (Fig. 1i), while the total transport is
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FIG. 1. Numerical simulation of LM after 160 yr of integration. (a) Layer thickness h (m; contours) and velocity (m s21; arrows) with

deepwater source Q localized in the northwestern corner. (b) As in (a) but with deepwater source Q located at the equator y 5 0 on the

western side. (c) As in (a) but with Q at the southwestern corner. (d) Zonally averaged layer thickness h in m for the experiment shown

in (a). (e) As in (d) but for the equatorial source. (f) As in (e) but for the southern source. (g) Total meridional transport (Sv; solid),

transport in the western boundary layer (dashed), and transport in the interior (dotted) for the experiment shown in (a). (h) As in (g), but

for the equatorial source. (i) As in (g), but for the southern source.
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poleward in both hemispheres for an equatorial source

(Fig. 1h). The source Q drives a total transport of about

5 Sv (1 Sv [ 106 m3 s21) in the vicinity of the source in

each case, which linearly reduces because of the interior

upwelling into the upper layer with increasing distance

from the source. Although the western boundary layer

is much smaller than the total width of the basin, the

transport in the western boundary layer is of similar mag-

nitude to the total transport. It also has the same direction

as the total transport, except for the region y , 22500,

jyj . 2500, and y . 2500 km for the experiment with

northern, equatorial, and southern sources, respectively,

where it opposes the total transport.

Since the zonal integral of h is dominated by the in-

terior, the zonally integrated h becomes independent of

the location of the deepwater source Q. Consequently, h

and in particular the meridional gradient of h become

independent of the location of Q, and thus the sign and

strength of the meridional transport is neither related to

the zonal average of h nor its meridional gradient. This

statement is in contrast to the box model by Stommel

(1961) where the flow between the two boxes is pa-

rameterized by the meridional density difference be-

tween the boxes, and also in contrast to the closures by

Marotzke et al. (1988), Wright and Stocker (1991), and

Wright et al. (1998), which all depend on Eq. (1). To

summarize, the parameterization in the box model by

Stommel (1961) and the closures based on Eq. (1) are not

consistent with the dynamics of the model by Stommel

and Arons (1960). This inconsistency (Straub’s dilemma)

was first noted by Straub (1996).

b. The dilemma in primitive equations

The independence of the meridional gradient of the

zonally averaged thickness from the meridional trans-

port is not specific to layered models but is also found in

a primitive equation model (Viebahn and Eden 2010;

https://wiki.zmaw.de/ifm/TO/cpflame), referred to as

PEM, with a similar configuration as the LM. In PEM

we have neglected momentum advection (as before),

and, for simplicity, the only tracer is temperature. The

model domain is identical to the layered model, but

there are 20 vertical levels of 50-m thickness, such that

the domain is 1000 m deep. PEM is forced by relaxation

of temperature in the uppermost grid box toward a tar-

get temperature, which is zonally and meridionally uni-

form except for a small region of meridional width r/b

(equivalent to the western boundary-layer width) at the

northern or equatorial region with a 3-K-smaller target

temperature. This way, a northern or equatorial deep-

water formation region is introduced as in the layered

model. A case with a southern source is just a mirror of

the one with a northern source and therefore not further

discussed. The time scale of relaxation at the surface is

20 days. Convection in the case of unstable stratification

is parameterized by setting the vertical diffusivity to

very large values. As in LM, there is no wind forcing—

that is, we focus here on the thermohaline circulation.

Friction is identical to the LM, except that we introduce

in addition lateral and vertical friction with viscosities

of 3.2 3 104 m2 s21 and 1 3 1023 m2 s21, respectively,

since otherwise unphysical oscillations on a short time

scale develop. We use the Quicker advection scheme

(Leonard 1979) for tracers and vertical diffusivity of

1 3 1024 m2 s21 in addition.

The steady solution of PEM, shown in Fig. 2, indeed

has much resemblance to LM. In the experiment with

a northern source, there is a deep temperature minimum

at the equator, and isopycnals below about 500-m depth

are symmetric with respect to the equator, bending to-

ward the bottom and toward the poles (Fig. 2b). A

similar ‘‘hill,’’ symmetric around the equator, can be

seen in the experiment with the equatorial source (Fig. 2d),

although it is located more to the surface than at depth.

Figures 2a,c also show the meridional transports for

both experiments with PEM by the meridional stream-

function c with y 5 2›zc. The surface forcing drives a

volume transport of a couple of Sv in both cases. In

the case of the northern source, there is southward flow

at depth, almost-uniform upwelling in the interior, and

northward return flow at the surface. Sign, magnitude,

and meridional structure of the meridional transport is

also very similar to LM in the experiment with an equa-

torial source (see Figs. 2c,d).

As for LM, the meridional gradient of the zonally

averaged density (i.e., temperature) or pressure (not shown)

is similar in both experiments with PEM (cf. Fig. 1d with

Fig. 2b and Fig. 1e with Fig. 2d for the case with northern

and equatorial deep water sources, respectively) and is

of opposite sign in both hemispheres. Their depth de-

pendence differs. The meridional transport, on the other

hand, does not show any direct dependency on ›yp, with

respect to the individual hemispheres or experiments,

proving the downgradient closures based on Eq. (1) to

be wrong in primitive equation models as well. The rea-

son is of course the same as in LM—notably the zonally

averaged pressure p is dominated by the interior zonal

mean of p, which is in turn governed by the frictionless

Sverdrup relation in the interior.

Greatbatch and Lu (2003) increased the vertical

mixing to unrealistic values in LM and found that the

zonally averaged thickness h becomes dominated by the

values in the western boundary layer, such that h re-

sembles more and more the meridional transports. We

note here that introducing mesoscale eddy mixing re-

sults in a similar effect. However, again, unrealistically
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large values of the isopycnal thickness diffusivity are

needed.

3. A consistent closure

We regard the closure for a zonally averaged model

proposed by Wright et al. (1995) as dynamically con-

sistent. It is based on a meridionally integrated, zonally

averaged balance of vorticity (see appendix B). How-

ever, integrating the vorticity balance requires inte-

gration constants to be specified in each hemisphere.

Wright et al. (1995) locate these constants at the northern

and southern boundaries of the domain and relate them

to the interior flow at the respective boundaries. The

result is a nonlocal relation between the zonally aver-

aged pressure p (or thickness h) and the average me-

ridional flow, as detailed in Eq. (B7) of appendix A. We

have shown that the interior flow, and thus p (or h), are

nearly independent of the deepwater convection region

and the direction and magnitude of the MOC. Since the

choice of the integration constant determines the di-

rection and magnitude of the MOC, it appears therefore

problematic to use the interior flow for the choice. We

therefore propose and evaluate a closure for zonally av-

eraged models that avoids unknown integration constants.

The closure is developed for the shallow water and the

primitive equations.

a. Closure for the layer model

Instead of considering the vorticity balance in the in-

terior and the western boundary layer we simply use

separate thickness and momentum balances averaged

over these domains and keep also all time derivatives.

Zonal averages of variables over the whole basin are in-

dicated with overbars without an index, and zonal av-

erages over the boundary layer or the interior carry an

additional index b or i, respectively. The total meridio-

nal transport can be obtained by

By 5 Bbyb 1 Biyi (10)

and the zonally averaged height by

Bh 5 Bbhb 1 Bihi. (11)

Here B, Bb, and Bi denote the total basin width from the

western to the eastern boundary, the width of the

western boundary layer, and the width of the interior,

respectively. Note that the boundary-layer width might

be defined as a multiple of r/b. Obviously, Bb� Bi.

FIG. 2. (a) The meridional overturning streamfunction c (contour interval is 0.5 Sv) and (b)

the zonally averaged temperature (contour interval is 0.58C) of PEM with a deepwater for-

mation region at the northern boundary. (c) The meridional overturning streamfunction

(contour interval is 2 Sv) and (d) zonally averaged temperature (contour interval is 0.58C) for

an equatorial deepwater formation region. The results are time averages over the last 100 yr of

a 200-yr integration.
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1) MOTIVATION AND EVALUATION OF THE

CLOSURE

Averaging the system of Eqs. (2)–(4) over the western

boundary at xW to the offshore edge of the western

boundary layer at xd, yields

›tub 2 f yb 5 2g9Dhb/Bb 2 rub, (12)

›tyb 1 f ub 5 2g9›yhb 2 ryb, and (13)

›thb 1 H(›yyb 1 u
d
/Bb) 5 QB/Bb 2 lhb, (14)

with Dhb 5 h(x 5 xd) 2 h(x 5 xW) 5 hd 2 hW. In the

thickness balance the zonal velocity ud 5 u(x 5 xd) at the

interface between the interior and the boundary layer

appears. Furthermore, it was assumed in Eq. (14) that

u(x 5 xW) 5 0 and the source Q was located entirely in

the western boundary layer. Likewise, the respectively

averaged equations for the interior regime, extending

from xd to xE, are

›tui 2 f yi 5 2g9Dhi/Bi 2 rui, (15)

›tyi 1 f ui 5 2g9›yhi 2 ryi, and (16)

›thi 1 H(›yyi 2 u
d
/Bi) 5 2lhi, (17)

with Dhi 5 h(x 5 xE) 2 h(x 5 xd) 5 hE 2 hd. Here u(x 5

xE) 5 0 is used. To allow for the northern and southern

boundary layers, described in section 3a, the friction

terms have been retained though they are negligible in

the actual interior. The pressure differences over the

respective domains, Dhb and Dhi, as well as the zonal ve-

locity ud, have to be parameterized. The resulting model

will be referred to as the zonally averaged layer model

(ZALM).

We start by assuming that ud must be close to ub,

hence we put1

u
d

5
!

g1ub (18)

in the thickness balances from Eqs. (14) and (17). Note

that a linear increase of u within the western boundary

layer would yield g1 5 2. However, u is not increasing

linearly over the western boundary layer (not shown)

and we found that the best fit is obtained for g1 5 1.7 [see

also Figs. 3c,f where lhs and rhs of Eq. (18) are shown].

Next we demand that the thickness balance for the interior

regime yields the averaged form of the Sverdrup balance

from Eq. (8), assuming steady state and vanishing fric-

tion. To insert yi from the momentum balance of Eq.

(15) into the thickness balance given by Eq. (17), we

compute the meridional divergence of y
i
from the zonal

momentum balance in Eq. (15), which becomes

f ›yyi 5 (g9/Bi)›yDhi 2 byi 1 r›yui 1 ›t›yui. (19)

We note that the choice

FIG. 3. (a) Thickness difference (m) over the western boundary layer Dhb (solid) and its parameterization from Eq.

(23) (dashed) as a function of y for the experiment with the northern source. (b) As in Dhi and its parameterization from

Eq. (21). (c) Zonal velocity at the offshore edge of the boundary layer ud (solid) and its parameterization from Eq. (18)

(dashed). All tuning coefficients are set to 1. (d)–(f) As in (top), but for experiments with the equatorial source.

1 In this paper we denote by the ‘‘ 5
!

’’ sign that we introduce

a parameterization.
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g9›yDhi 5
!

fu
d

(20)

leads to an interior thickness budget in which only the by

contribution, frictional, and tendency terms remain—that

is, to an interior Sverdrup balance analogous to Eq. (8)

[assuming that by dominates r›
y
u

i
and ›

t
›

y
u

i
in Eq. (19)].

Using Eq. (20) together with Eq. (18) as parameterization

of Dhi, the integrated form of this relation reads

g9Dhi 5 g9(Dhi)jy50 1 g1

ðy

0
f ub dy9. (21)

The integration constant at y 5 0 follows from the steady

state zonal balance at the equator:

g9(Dhi)jy50 5
!

2rBiui(y 5 0). (22)

Note that the Rayleigh model has the deficit that the

equatorial field ui(y 5 0) is completely decoupled from

the rest. For this reason ui(y 5 0) in Eq. (22) is re-

placed by the mean over three grid points across the

equator. Note that the lhs and rhs of Eq. (21) are shown

in Figs. 3b,e.

It remains to specify a parameterization for the pres-

sure difference Dhb 5 hd 2 hW across the boundary layer.

We have experimented with a variety of closures for Dhb

analogous to Eq. (20)—that is, motivated by the potential

vorticity budget in the western boundary layer. However,

many possible forms for the closure, which often yield an

excellent fit to the respective variable in the zonally re-

solved model, turned out to lead to unstable numerical

integrations. The simple ansatz

Dhb 5
!

g2(hi 2 hb) (23)

with another tuning parameter g2 of order one, on the

other hand, yields stable integrations in all cases, which

we have considered, and is also a reasonable fit to Dhb

from the zonally resolved model as discussed next [lhs

and rhs of Eq. (23) are shown in Figs. 3a,d]. Further, the

results of the integrations with the resulting zonally av-

eraged model compare well with the zonally resolved

counterparts, as discussed below, giving confidence to the

parameterization from Eq. (23).

Figure 3 shows the western boundary thickness dif-

ference Dhb and its parameterization hi 2 hb, both di-

agnosed from the experiments with the layered model

LM, which is shown in Fig. 1. For the experiment with

a northern (southern) source, the parameterization fits

well with Dhb except for the southernmost (northernmost)

part of the domain in the experiment with a northern

(southern) source, where Dhb becomes negative, while

h
i
2 h

b
stays positive. A similar deviation in the sign of

the parameterization can be seen in the experiment with

the equatorial source for large distances from the source.

However, the structure of the meridional changes in

hi 2 hb are in all cases similar to Dhb. We also note that

the quality of the parameterization depends on the exact

definition of the width of the western boundary layer.

Here, we have used Bb 5 r/b with values for r and b as in

the numerical experiments. The middle panels of Fig. 3

display Dhi from the zonally resolved model and its pa-

rameterization from Eq. (21) which in fact agree very

well. Figure 3 also shows the outflow from the western

boundary region, ud, from the zonally resolved model to-

gether with its parameterization ub. Our choice of Eq. (18)

fits ud well with respect to the meridional structure and

sign, while the magnitude is underestimated, which might

be resolved by tuning the parameter g1 to values greater

than one.

2) PERFORMANCE OF THE ZONALLY AVERAGED

LAYER MODEL

The complete ZALM consists of Eqs. (12)–(14) for

the boundary layer and Eqs. (15)–(17) for the interior

domain together with the parameterizations expressed

in Eqs. (18), (21), and (23). ZALM was programmed in

FORTRAN 90 and the source code together with a de-

tailed documentation of all numerical details can be

downloaded from https://wiki.zmaw.de/ifm/TO/zom. The

steady state of a numerical integration of ZALM is

shown as dashed lines in Fig. 4 and compared with the

correspondingly averaged quantities diagnosed from

LM. Note that the configuration of ZALM is identical to

LM in all respects (except for the zonal extent and the

closure). Transports and thickness height are reasonably

well reproduced by ZALM for the northern and equa-

torial sinking case using g1 5 g2 5 1 and a boundary-

layer width of Bb 5 r/b. However, by changing the tuning

parameters to g1 5 1.7, g2 5 1.2, and Bb 5 2r/b, the

broad central hill in h and the structure at the northern

and southern boundaries are even better reproduced

(dotted lines in Fig. 4). This improvement was found after

some educated trials. Probably an even better improve-

ment could be reached by using a parameter optimiza-

tion procedure but this is not focus of this study.

We next take a closer look at the physical processes

that establish the circulation in ZALM. Kawase (1987)

showed that the establishment of the deepwater circula-

tion involves basin-wide propagating Kelvin and Rossby

waves: a thickness anomaly generated at the northern

boundary of the basin propagates along the western

boundary southward in the form of a Kelvin wave; at the

equator, the Kelvin wave turns into an equatorial Kelvin

wave and crosses the basin toward the east where it is
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again reflected and propagates at the eastern boundary

north- and southward; westward propagating long Rossby

waves, emanating from the eastern boundary, then trans-

fer the signal into the interior of the ocean. These pro-

cesses are of course realized in LM and a very similar

adjustment process can be found in ZALM.

It is easily confirmed that the dynamics in the western

boundary layer of ZALM allow for a Kelvin wave. With

ub [ 0 and vanishing friction, diffusion, and forcing, the

equations become

›tyb 1 g9›yhb 5 0 ›thb 1 H›yyb 5 0, (24)

which yields the familiar wave speed of c 5
ffiffiffiffiffiffiffiffiffi
g9H

p
. The

zonal velocity is in geostrophic balance. In a corre-

sponding way, Kelvin waves exist for the interior regime

of ZALM, which are, however, attached to the eastern

boundary in the zonally resolved model. Both regimes

also support meridionally propagating gravity waves, which

are coupled via the pressure terms and the ud term in the

thickness balances.

Because of the zonal averaging, equatorial waves and

midlatitude Rossby waves appear in a quite hidden way

in ZALM. The Rossby wave response in midlatitudes

is governed by the potential vorticity equations for the

boundary and interior regime derived from Eqs. (12)–

(14) and Eqs. (15)–(17) together with the parameteri-

zations expressed in Eqs. (18), (21), and (23). We find,

omitting again friction, diffusion, and forcing,

›t(hi 2 R2›2
yyhi) 1 (bR2/Bi)hb 5 0 and (25)

›t(hb 2 R2›2
yyhb) 2 ( fR2/Bb)›y(hb 2 hi)

2 (bR2/Bb)hi 5 0, (26)

with the Rossby radius R 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g9H/f 2

p
. Here all tuning

parameters of the parameterizations are set to one. Note

that ta 5 Ba/(bR2) is the time that a baroclinic Rossby

wave needs to cross the respective region a 5 i, b. The

corresponding time scale for the interior is roughly 10 yr

in the northern part; it decreases toward the equator to

several days (7 days at y 5 300 km). For the boundary

layer, the time scale is considerably smaller (by the factor

Bb/Bi ’ 25). The Rossby wave communication between

the two regimes is thus represented by an oscillation of

FIG. 4. (a),(c) Comparison of results of LM and ZALM for the experiment with the northern

source and (b),(d) for the experiment with the equatorial source. Shown is (a),(b) the zonally

averaged layer thickness h (m) and (c),(d) meridional transports By (Sv). In (a) and (b) solid

lines denote the results of LM, the dashed lines the results of ZALM with g1 5 g2 5 1 and Bb 5

r/b, and the dotted lines the results of ZALM with g1 5 1.7, g2 5 1.2, and Bb 5 2r/b. In (c) and

(d) the thick lines are total transports (By) of LM (solid) and ZALM (dashed) and the thin lines

are interior transports (B
i
y

i
) of LM (solid) and ZALM (dashed). In (c) and (d) the result of

ZALM with g1 5 g2 5 1 and Bb 5 r/b are shown; the results with the tuned parameter set look

similar.
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the mean layer thicknesses hi and hb with a period

proportional to
ffiffiffiffiffiffiffiffi
titb

p
. In addition there is a meridional

propagation of the perturbation with the correct Rossby

wave speed, expressed by the meridional derivative terms

in the tendency terms.

To assess the temporal behavior, Fig. 5 shows h
b

and h
i

for ZALM in comparison to LM from the start of both

integrations. In the initial phase of both simulations, the

anomaly in the interface height produced by the deep-

water source is distributed via a Kelvin wave propagating

from the northern edge of the model domain along the

western boundary toward the south. During this stage the

interior is still quiet. The Kelvin wave reaches the equator

after approximately 20 days (see Figs. 5a,c) in both ZALM

and LM. We note that in ZALM the propagation speed of

the wave response at the western boundary depends to

some extent on the western boundary width Bb. Increasing

(decreasing) Bb from r/b—the value used in Fig. 5—to

larger (smaller) values, the southward propagation speed

decreases (increases) slightly. The reason is the increasing

(decreasing) importance of u
b

for the dynamics, which

should be zero for a pure Kelvin wave, but which is present

in both numerical integrations, reducing the southward

propagation (Kelvin wave) speed.

The signal is then transported from the bound-

ary layer into the interior (see Figs. 5b,d). This is first

achieved by the increasing imbalance of the Kelvin wave

dynamics: approaching the equator, the geostrophic re-

lation for y
b

cannot be sustained, and a zonal velocity u
b

must increasingly develop. This disturbance thus cou-

ples into the interior thickness balance and the resulting

thickness perturbation spreads to the north and to the

south, involving the northward propagating Kelvin wave

response at the eastern boundary and zonally and me-

ridionally propagating Rossby waves in the interior. The

time scale of this subsequent adjustment is also very

similar in LM and ZALM.

b. Application to primitive equations

The application of the closure, discussed so far for the

layered model, to primitive equations is straightforward.

Averaged separately over the western boundary layer

and over the interior, the equations become

›tua
2 f y

a
5 2Dp

a
/B

a
1 F

u
a, (27)

›tya
1 f u

a
5 2›yp

a
1 F

y

a, (28)

FIG. 5. Establishment of the circulation for (top) LM and (bottom) ZALM for an experiment with a northern deep-

water source. Here we show h
b

(m) as a function of time and latitude for (a) LM and (c) ZALM and h
i
(m) as function

of time and latitude for (b) LM and (d) ZALM.
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›tba
1 ›yb

a
y

a
1 ›zw

a
b

a

5 ›zK
a

›zb
a

2 �
a

u
d
b

a
/B

a
, and (29)

›yy
a

1 ›zw
a

5 2�
a

u
d
/B

a
, (30)

with a 5 b, i indicating the boundary or interior part,

respectively, and �b 5 1 and �i 5 21. The (scaled) pres-

sure p
a

is related to the buoyancy b
a

5 2gr
a
/r

0
by the

hydrostatic relation ›
z
p

a
5 b

a
. Note that standing-eddy

fluxes are neglected in Eq. (29). Friction is contained in

Fu
a and Fy

a and is specified below. Momentum advection

has been neglected as before for the layered model.

Convection is parameterized by using large values of the

vertical diffusivity Ka in case of unstable stratification.

The pressure differences over the western boundary

layer and the interior, Dpb 5 p(x 5 xd) 2 p(x 5 xW) and

Dpi 5 p(x 5 xE) 2 p(x 5 xd), respectively, and the zonal

velocity ud at the offshore edge of the western boundary

need parameterizations. Analogous to the closure in the

layered model, we use

u
d

5
!

g1ub, Dpi 5
!

Dpi(y 5 0) 1 g1

ðy

0
f ub dy9,

Dpb 5
!

g2(pi 2 pb). (31)

The interior pressure difference at the equator, Dpi(y 5

0), is again set by the steady zonal momentum balance

at the equator. The model includes a rigid lid surface

boundary condition and a diagnostic relation to find the

surface pressure as usual in ocean general circulation

models. This will be called the zonally averaged primi-

tive equation model (ZAPEM).

Figure 6 shows Dpb, Dpi, and ud diagnosed in PEM and

their parameterizations given by Eq. (31). There is a good

agreement concerning sign and structure of the variables

and their parameterizations. Only in the southernmost

part does the parameterization for Dpb not show the

correct sign, which is similar to what we have seen for

LM (see Fig. 3a). It turns out that an important pa-

rameter is the boundary-layer width Bb, which we have

chosen here as Bb 5 3.7r/b since this value seems to

match best the boundary-layer width in PEM. Note that

the boundary layer is broader than expected from the

Rayleigh friction term because we also have included

harmonic friction in PEM, which leads to a wider bound-

ary layer.

ZAPEM was programmed in FORTRAN 90 and

the source code as well as a documentation of all im-

portant numerical details can be downloaded from https://

wiki.zmaw.de/ifm/TO/zom. The results of ZAPEM after

200 yr of integration for two different surface boundary

conditions are shown in Fig. 7.

The configuration and relevant parameters of ZAPEM

are identical to the zonally resolved model version (PEM)

shown in Fig. 2, except for the zonal extent, the closure,

FIG. 6. Comparison of parameterized variables with the model result for PEM in the experiment with a northern deep-water source.

(top) Here we show (a) Dpb, (b) Dpi, and (c) ud in the zonally resolved model. (bottom) The respective parameterizations: (d) pi 2 pb, (e)Ð y

0 fu
d

dy9, and (f) ub. The contour intervals are (a),(b),(d),(e) 0.1 m2 s22 and (c),(f) 0.1 cm s21.
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and that we have omitted the harmonic zonal friction

terms (meridional friction is kept) in ZAPEM. Two dif-

ferent surface boundary conditions are implemented

using the two different target surface temperatures, as

described in section 2b. Without parameter optimization

(i.e., for g1 5 g2 5 1 and Bb 5 3.7r/b) we found already

good agreement between ZAPEM and PEM; we there-

fore made no further attempt of parameter tuning.

However, for the polar sinking case (see Figs. 7a,b) the

overturning rate in ZAPEM is slightly too strong while

the vertical stratification is slightly too weak. For the

equatorial sinking (see Figs. 7c,d) the reverse statement

holds.

For comparison we also present a primitive equation

simulation with the inconsistent closure of the form from

Eq. (1). We use the zonally averaged meridional mo-

mentum equation

›ty 5 2›yp 2 gWSry 1 Ah›2
yyy 1 A

y
›2

zzy, (32)

which is the time-dependent case of Eq. (1) and similar

to the closure proposed by Marotzke et al. (1988) and

Wright and Stocker (1991). Note that the Coriolis term

is omitted in the meridional momentum balance in Eq.

(32) and replaced by a large Rayleigh damping term.

Note also that horizontal and vertical friction is included

here only for a consistent comparison with the other

simulations; there is no qualitative difference in the re-

sults with and without these terms (not shown). The

zonally averaged meridional velocity y from Eq. (32) is

used in the budget for b for which no further closure is

needed; w is calculated from the continuity equation.

Figure 8 shows results of an integration using Eq. (32)

as closure with gWS 5 40. While the overturning circu-

lation is similar to ZAPEM and PEM, the structure of

the buoyancy field reveals a major disagreement for the

case of a northern deepwater source (Fig. 8b). Accord-

ing to Eq. (1), the sign of the meridional buoyancy

(pressure) gradient cannot change if the streamfunction

consists of one single overturning cell. This clearly con-

tradicts the results of PEM and ZAPEM. Only for the

case of the equatorial deepwater source, the buoyancy

distribution (Fig. 8d) conforms better with that of ZAPEM

and PEM, although the northern and southern boundary

layers as observed in ZAPEM and PEM are not reproduced.

Figure 9 illustrates the effect of wind forcing and a

Southern Ocean part in simulations with ZAPEM and

PEM. It is straightforward to include wind forcing and/

or zonally periodic boundary conditions in the zonally

averaged models ZALM and ZAPEM: the zonally av-

eraged wind stress is used as upper-boundary condition

in the vertical stress divergences contained in F
u

a and F
y

a.

FIG. 7. (a) Meridional overturning streamfunction c (contour interval is 0.5 Sv) and (b)

zonally averaged temperature T (contour interval is 0.58C) in ZAPEM after 200 yr of in-

tegration with a deep-water formation region at the northern boundary. (c),(d) Here we show c

and T for the case of the equatorial deep-water source.
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For the zonally unbounded periodic part of the domain,

as found in the Southern Ocean, the zonal pressure

differences are simply set to zero. Their dynamical role

is replaced by the effect of mesoscale eddies; see, for

example, Olbers and Visbeck (2005). This process can

be included by interpreting the momentum balance as a

balance for the residual velocity—that is, the sum of the

Eulerian mean velocity and the eddy-driven (bolus) ve-

locity (Andrews et al. 1987; Ferreira and Marshall 2006;

Viebahn and Eden 2010). The effect of mesoscale eddy

density mixing is then represented by vertical friction

with viscosity Kgm f 2/N2 where Kgm denotes the isopycnal

thickness diffusivity according to the Gent and McWilliams

(1990) parameterization. We simply take a constant value

of Kgm 5 1000 m2 s21.

For the simulations shown in Fig. 9, we have chosen

the same model domain as before, but for the southern

quarter of the basin we apply zonally periodic boundary

conditions to represent the Southern Ocean. Note that

the setup is similar to that used in Viebahn and Eden

(2010): the wind stress over the Southern Ocean region

is zonally constant and sinusoidal in the meridional co-

ordinate with a maximum of 2 3 1024 m2 s22 located at

the center of the periodic domain. The wind stress in the

zonally bounded part of the domain is set to zero. The

surface boundary condition for buoyancy is a relaxation

toward a target buoyancy restoring function with a lin-

ear increase (with a rate of 1029 s22) in the Southern

Ocean region, a constant value from y 5 22560 to y 5

2560 km, and a linear decrease of the target buoyancy at

the northern part (with the same rate), which generates

an equivalent temperature difference of about 20 K

between the equator and the polar boundaries. As be-

fore, the zonally averaged model (ZAPEM) with our

new closure is compared to a simulation with PEM in an

identical (but zonally resolved) setup (Fig. 9). ZAPEM

again reproduces well PEM, although ZAPEM again

slightly underestimates the overturning and overestimates

the stratification in comparison with the corresponding

PEM experiment. We further note that temperature and

salinity and further passive tracers can be added as var-

iables to the zonally averaged model (not shown). Iso-

pycnal mixing is also implemented as an additional

mixing term in the tracer balances. It is also straight-

forward to include variations in the ocean depth.

4. Summary and discussion

The box model by Stommel (1961) and the model by

Stommel and Arons (1960) both aim to describe the

meridional overturning circulation of the ocean. Much of

our knowledge about this important aspect of the ocean’s

FIG. 8. Effect of the inconsistent parameterization analogous to Eq. (1): (a) meridional

overturning streamfunction c (contour interval is 0.5 Sv) and (b) zonally averaged temperature

T (contour interval is 0.58C) of the zonally averaged primitive equation model using the closure

in Eq. (32) after 200 yr of integration. The deep-water formation region is located at the

northern boundary in (a) and (b). (c),(d) The case of an equatorial deepwater formation region.
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circulation is based on these models. However, Straub

(1996) pointed out an inconsistency between the box

model and the Stommel and Arons (1960) model, which

proves the assumption in Eq. (1) to be inconsistent, which

is an inherent assumption in the box model of Stommel

(1961) and also in many zonally averaged ocean models

(Claussen et al. 2002). We call this inconsistency Straub’s

dilemma, representing the fact that it appears not possi-

ble to infer the meridional transport from the meridional

gradient of the zonally averaged pressure. This is because

the zonally averaged pressure is dominated by the in-

terior pressure, which, on the other hand, is governed by

frictionless and linear dynamics expressed by the Sverdrup

relation of Eq. (8). Since this vorticity balance is driven

only by the interior upwelling, it is unrelated to the sign

of the meridional flow.

In this study, we present and evaluate a new and

consistent closure for zonally averaged models to re-

place the inconsistent closure given by Eq. (1), illus-

trated by numerical integrations with a layered model

version and a version based on the full primitive equa-

tions. Following Wright et al. (1995), the model do-

main is divided into an interior part—governed by the

Sverdrup relation of Eq. (8)—and a boundary layer part,

where friction plays an important role in the vorticity

balance. However in contrast to Wright et al. (1995), we

do not use the vorticity balances of the interior and the

boundary layer directly, but instead use the zonally

averaged, interior and boundary layer, momentum and

thickness (or buoyancy) budgets. The reason for doing

so is that using the meridionally integrated vorticity

balances, as suggested by Wright et al. (1995), introduces

the need to specify an unknown integration constant. We

find the choice of this integration constant to be prob-

lematic, since it sets the sign of the meridional transport.

Therefore, we use the vorticity balance only to moti-

vate the parameterization of the zonal pressure differ-

ence over the interior, which is needed for the zonally

averaged interior zonal momentum balance. The zonal

pressure difference across the boundary layer, on the

other hand, is parameterized by the difference of the

zonally averaged pressure in the interior and the pres-

sure averaged over the boundary layer. The advective

exchange between the boundary layer and interior is pa-

rameterized using the mean zonal velocity in the boundary

layer. The standing-eddy fluxes in the nonlinear buoyancy

budgets are simply neglected. Both in the layered model

and the primitive equation model we find good agreement

with respect to the evaluation of the parameterizations

and model results in terms of the mean simulation of the

transports and the thickness (buoyancy) and its time

changes.

We advocate replacing the inconsistent closure of Eq.

(1) with the new closure discussed in this study in zonally

averaged ocean models. However, we do not imply that

the box model by Stommel (1961) is inconsistent as well.

FIG. 9. Model configuration with Southern Ocean included. Shown are the (a),(c) meridional

streamfunction c (Sv) and (b),(d) zonally averaged temperature T (8C) in (a),(b) PEM and

(c),(d) ZAPEM after 200 yr of integration.
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On the one hand, the interpretation of the meridional

flow in the ocean as driven by the pressure difference

between two boxes and controlled by friction in a hy-

pothetical pipe connecting the two boxes by Stommel

(1961) is certainly an incorrect oversimplification of the

real dynamics. On the other hand, many results and

predictions of the box models can be reproduced by

models, including the correct dynamics. This agreement

might give some confidence in the box model, although

we know that its dynamics are incomplete and only a

very rough analog to the real dynamics. We hope that

the new zonally averaged model presented here can con-

tribute to further confirm and extend knowledge from the

box model about the meridional flow in the ocean.
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APPENDIX A

Some Frequently Used Inconsistent Closures

In this section and the next, we discuss some closures

analogous to Eq. (1) using the layer equations for sim-

plicity, but the results easily transfer to primitive equa-

tions. We also neglect wind forcing, which can, however,

easily be incorporated. Marotzke et al. (1988) proposed

a closure by abandoning the Coriolis force and imple-

menting (unrealistically) large friction into the meridio-

nal momentum balance:

0 5 2g9›yh 2 ry, (A1)

which leads directly to Eq. (1) with g 5 1/r. Here g9 is the

reduced gravity, h the layer thickness, y the meridional

velocity component, and h and y their zonal averages.

Note that we use here Rayleigh friction with friction co-

efficient r to connect to the model by Stommel and Arons

(1960), while Marotzke et al. (1988) originally used ver-

tical diffusion of momentum. However, the specific choice

of the friction does not change the fundamental relation

in Eq. (1).

A similar relation was proposed by Wright and Stocker

(1991). They consider the zonal momentum balance in

the zonally averaged form, where the east–west pressure

difference hE 2 hW over the basin width B needs a pa-

rameterization. They choose

(hE 2 hW)/B 5 2gWS sin2f›yh, (A2)

where f denotes latitude and gWS a constant of order 1.

The zonal pressure difference is thus expressed in terms

of the local meridional pressure gradient, which is also of

the form in Eq. (1), assuming that the meridional flow is

in geostrophic balance, with a parameter g proportional

to cosf. This setting is supported by numerical experi-

ments with a three-dimensional (but highly simplified)

circulation model, but as argued by Greatbatch and Lu

(2003), the support is due to the highly diffusive nature

of the ocean model. Note that the closure is not based on

any dynamical concepts.

Wright et al. (1998) avoid a direct closure for the pres-

sure difference hE 2 hW. The zonal momentum balance is

entirely abandoned. In fact, the zonally averaged me-

ridional momentum balance is written as

f u 1 g9›yh 5 f [u 2 u(g)] 5 2ry, (A3)

with Coriolis parameter f, the zonally averaged zonal ve-

locity u, and its geostrophic component u(g) 5 2(g9/f )›
y
h.

To determine the meridional velocity y from Eq. (A3),

the ageostrophic zonal velocity u 2 u(g) must be known

and thus needs to be parameterized. For this reason,

Wright et al. (1998) divide the zonal extent B of the

ocean again into a western frictional boundary layer part

of width Bb and an interior part of width Bi 5 B 2 Bb�
Bb. They write

B[u 2 u(g)] 5 Bi[ui 2 u
(g)
i ] 1 Bb[ub 2 u

(g)
b ], (A4)

with the zonal velocities u
i

and u
b

averaged over the

interior and western boundary layer, respectively, and

where the superscript (g) denotes the geostrophic com-

ponent of the velocity. The interior flow is largely geo-

strophic and, thus, Wright et al. (1998) assumed the

product Bi[ui 2 u
(g)
i ] to be small. In the boundary layer,

the flow has both a geostrophic and an ageostrophic com-

ponent, but u vanishes on the continental side of the layer

and should be largely governed by the geostrophic balance

on the offshore edge of the western boundary layer. The

interior geostrophic component continues only moder-

ately changed into the boundary layer and to the actual

boundary. Hence, the magnitudes of ub 2 u
(g)
b and u

(g)
b

should be similar but of opposite signs in the boundary

layer, and

B[u 2 u(g)] ’ Bb[ub 2 u
(g)
b ] ’ 2Bbu

(g)
b ’ 2Bbu(g)

(A5)

should hold. Inserting the parameterized ageostrophic

velocity into the meridional momentum balance then

yields

y 52
g9Bb

rB
›yh, (A6)
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which is identical to Eq. (1) with a suitable parameter

g 5 Bb/(rB). Note that this closure is entirely of geometric

nature: it uses the observed structure of a basin-wide

circulation with a narrow western boundary current but

not any further dynamics.

APPENDIX B

The Consistent Closure by Wright et al.

Wright et al. (1995) propose a dynamically consistent

closure by splitting the ocean basin into a western

boundary layer and an interior and considered the vor-

ticity budgets averaged separately over both regions.

Assuming a frictionless interior and using specific pa-

rameterizations for friction in the western boundary layer,

they derive a nonlocal relation between the meridional

transport and zonally averaged pressure. Because the

original closure of Wright et al. (1995) needs the speci-

fication of integration constants that are difficult to de-

termine, we have presented in section 3a generalization

of the concept by Wright et al. (1995), which does not

need the specification of integration constants.

We found the derivation of the closure in Wright et al.

(1995) unnecessarily complicated. Here we give an al-

ternative simplified derivation with fewer assumptions

to arrive at a similar equation. The analysis is again per-

formed for the layer model and starts with the zonal

momentum balance in the zonally averaged form

2f yb 5 2g9(h
d

2 hW)/Bb 2 rub and (B1)

2f yi 5 2g9(hE 2 h
d
)/Bi 2 rui, (B2)

which are identical to Eqs. (12) and (15), neglecting the

time tendency terms. Again, indices W, E, and d denote

that the values are taken at the western or eastern

boundary or at the interface between interior ocean and

boundary layer, respectively. The overbars denote zonal

averages over the interior with additional index i or

boundary layer with index b, and Bb and Bi denote the

width of the boundary layer and the interior, respectively.

Only a few approximations now lead to the closure by

Wright et al. (1995). First, the friction term in Eq. (B2)

will be neglected. Because of the kinematic boundary

condition at the eastern boundary, uE 5 0, it follows from

Eq. (3) that ›yhE 5 0 or hE 5 const. Second, the thickness

perturbation hW along the western boundary in Eq. (B2)

is eliminated by the meridional velocity yW using the

steady meridional momentum balance at xW in the form

0 5 2g9›yhW 2 ryW , (B3)

and yW is parameterized by y
b
. Note that uW 5 0 was

assumed. Next the friction coefficient r in Eq. (B3) is

replaced by bBb using Bb 5 r/b as the boundary-layer

width according to Stommel (1948). The meridional in-

tegral of Eq. (B3) with starting point at y0 can be used to

eliminate hW from Eq. (B1) to end up with

f yb 2 b

ðy

y
0

yb dy9 5 g9[h
d

2 hW(y0)]/Bb 1 rub, (B4)

where integration limit y0 is arbitrary. The meridional

velocities yi and yb then follow from

f yb 2 b

ðy

y
0

yb dy9 5

ðy

y
0

f ›yyb dy9

5 g9f[h
d

2 hW(y0)]g/Bb 1 rub and

(B5)

f yi 5 g9(hE 2 h
d
)/Bi, (B6)

and are seen to be both determined by hd. Wright et al.

(1995) propose the closure h
d

5 gh, where h denotes the

zonally averaged thickness, and neglect the last term in

Eq. (B5) related to friction. Both are quite good as-

sumptions for the layered model outside the northern

and southern boundary layers (not shown). Note, how-

ever, that Eq. (B5) only determines the derivative of yb

and thus it it is necessary to set an integration constant

for yb. One may take yb(y0), which by Eq. (B5) is obviously

related to the unknown hW(y0). Note that the frictionless

interior balance leads to hE 5 h
d
(y 5 0) 5 gh( y 5 0).

To arrive at the central equation of the Wright et al.

(1995) model, Eq. (B5) is divided by f and integrated

from y0 to y (in the same hemisphere to avoid the sin-

gularity at y 5 0) to give yb, involving now the unknown

yb( y0). The total meridional flow is then governed by

By 5 Bbyb(y0) 1 gg9

ðy

y
0

f 21›yh dy9

2 g(g9/f )[h 2 h(y 5 0)]. (B7)

Wright et al. (1995) use as integration constant the

boundary transport at the northern and southern bound-

ary, which they relate to the interior flow at the respective

boundary [Eq. (B7) is used twice to circumvent the sin-

gularity at the equator]. It becomes clear that this closure

implies that the information about the placement of

the deepwater source—which is invisible to the interior

flow—must be contained in h at the northern and southern

boundary layers.

Figures 1d–f show indeed that h at the northern (south-

ern) boundary layer for the experiment with northern

(southern) sinking is slightly higher and reaches a larger
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value at the northern (southern) end of the domain than

in the experiment with equatorial and southern (north-

ern) sinking. It is this small difference that has to de-

termine the sign of the flow in the nonlocal relation

between y and h of Wright et al. (1995). Consequently,

an evaluation (not shown) of the closure based on Eq.

(B7) in the layered model shows that it is not able to

predict y using only h from the model. The reason is that

the assumption leading to the closure (i.e., a frictionless

interior flow) breaks down in the northern and southern

boundary layer. The unknown integration constant then

determines the meridional flow. We propose in section

3a a more robust way to determine the meridional flow,

which avoids Eq. (B3) and thus the meridional integra-

tion and appearance of unknown integration constants.
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