
Capturing provenance information with a workflow
monitoring extension for the Kieker framework

Peer C. Brauer
Wilhelm Hasselbring

Software Engineering Group, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel

Abstract: Workflow technologies are getting more and more attention in daily busi-
ness life. So why are these system not used for science? One reason why this is not
feasible is, because there is a lack of provenance capturing features in business work-
flow engines. In this paper we present an approach to enhance business workflow
engines with advanced monitoring features for capturing provenance information. We
will discuss our approach with the help of the Apache ODE workflow engine1, for
which we will provide an exemplary provenance monitoring solution.

1 Introduction

The way research is done is changing rapidly. More and more experiments are shifted away
from the laboratory bench to computer based simulations, even classic laboratory work
moves to virtual working environments [Sch10]. Different scientific workflow engines
like Kepler2, Trident3 or Taverna4 have been developed to support scientists during their
daily work. These tools are specially designed to meet all the requirements of a scientific
working environment. Compared to business workflow engines they do not only have
benefits, but also some disadvantages. One is, that they are developed by a much smaller
community. Because of this, the software environment and tool landscape built around
these workflow engines is much smaller than for commercial or open source business
workflow systems. So why not also use these systems for science and benefit from all
the tools, which were developed by the community or companies. One of the answers
to this question is, that most business workflow engines lack of provenance capturing
mechanisms.

This paper presents an approach for adding provenance capturing functionality to normal
business workflow engines. This is done by creating an easily to configure and adaptable
monitoring framework for business workflow engines. The approach is build upon the
Kieker monitoring framework and the SCOPE DSL. It is tested within the Apache ODE
workflow engine.

1http://ode.apache.org
2https://kepler-project.org/
3http://research.microsoft.com/en-us/collaboration/tools/trident.aspx
4http://www.taverna.org.uk/

hc
Schreibmaschinentext
Brauer, P. C. and Hasselbring, W. (2012) Capturing provenance information with a workflow monitoring extension for the Kieker framework [Paper] In: The Third International Workshop on the role of Semantic Web in Provenance Management , 28.5.2012, Heraklion, Kreta.

hc
Schreibmaschinentext

hc
Rechteck

Kieker.Analysis

Monitorin
Record
Consume

Analysi
Controlle

Monitoring
Log

Kieker.Monitoring

Monitoring
Prob

Monitoring
Controlle

Monitoring
Log

Monitoring

Monitoring Record

Monitoring

Probe

Monitoring

Controller

Monitoring

Writer

Analysis

Plugin

Analysis

Controller

Monitoring

Reader

Monitoring

Record

Figure 1: Kieker architecture overview

Kieker [vHWH12] is a modular monitoring framework, which can be easily extended by
user created components. The development of the framework started in 2006. Since then,
it has evolved from a small tool for monitoring the response times of Java applications to
a powerful monitoring and analysis tool. Currently, the standard implementation provides
modules for monitoring and analyzing not only the runtime behavior of software systems,
but also it’s inner structure. Therefore it includes different sorts of monitoring probes and
analysis components.
As figure 1 depicts, Kieker is structured into different parts. The main components are
Kieker.Monitoring and Kieker.Analysis. In the Kieker.Monitoring component reside the
probes, which are responsible for collecting the monitoring data. Kieker already pro-
vides different probes for measuring values like CPU utilization, memory usage and other
system characteristics. The collected monitoring data is then passed to the Monitoring
Controller, which writes it,using the Monitoring Writer component, to a datastore.
The analysis of the monitoring data is performed within the Kieker.Analysis component.
The monitoring data is read from the datastore by the Monitoring Reader and passed to
the Analysis Controller. The Analysis Controller can start different Analysis Plugins con-
taining chains of analysis filters, which interpret the collected monitoring data and provide
different sorts of visualizations. In a later version, Kieker will provide a new feature called
the Kieker.AnalysisGUI.5 This feature will allow users to compose structures of filters and
visualizations graphically.

SCOPE is a running research project in the context of space based multicore programming
[GH11]. The goal of this project is to alleviate multithreaded Java programming. The
programmer should not have to deal with the typical problems resulting from accessing
concurrent data structures. SCOPE consists of two different parts. The first part is the
SCOPE coordination model with focus on the choreography of the accesses to the space
and the orchestration of the single processes. The other part is the SCOPE DSL. This

5You can trace the development stage at the project site (http://kieker-monitoring.de)

component focuses on separating the description of the collaboration from the process
definition.

2 Monitoring workflows for collecting provenance data

2.1 How to describe what (provenance-) information should be logged

Since monitoring always has a negative impact on the performance of a computing system
[vHRH+09, 11-14], it is essential to mark those areas of a process for which monitoring
should be enabled. In the context of the Kieker.WorkflowMonitor we utilize the BPEL
extension mechanism6 to weave monitoring information directly into a BPEL process def-
inition. We have implemented our own extensions, which can be added to all extensible
elements of a BPEL process definition. These extensions indicate if monitoring should be
active and what should be monitored.
To describe what to monitor, we developed so called profiles. A profile is an XML element
describing which event to monitor and what type of information to collect. Listing 1 shows
a sample profile.

Listing 1: a sample profile
1 <m o n i t o r : p r o f i l e name=” p r o v e n a n c e L i g h t ”>

<m o n i t o r : t a r g e t e l e m e n t t y p e =” a c t i v i t y ” >
<m o n i t o r : e v e n t t y p e>a c t i v i t y E n a b l e d E v e n t </ m o n i t o r : e v e n t t y p e>
<m o n i t o r : e v e n t t y p e>a c t i v i t y D i s a b l e d E v e n t </ m o n i t o r : e v e n t t y p e>

</ m o n i t o r : t a r g e t e l e m e n t >
6 . . .

<m o n i t o r : t a r g e t e l e m e n t t y p e =” v a r i a b l e ” >
<m o n i t o r : e v e n t t y p e>V a r i a b l e M o d i f i c a t i o n E v e n t </ m o n i t o r : e v e n t t y p e>
<m o n i t o r : e v e n t t y p e>Var i ab l eReadEven t </ m o n i t o r : e v e n t t y p e>

</ m o n i t o r : t a r g e t e l e m e n t >
11 . . .

<m o n i t o r : e v e n t t y p e =” V a r i a b l e M o d i f i c a t i o n E v e n t ”>
<m o n i t o r : fokus>varName</ m o n i t o r : fokus>
<m o n i t o r : fokus>newValue</ m o n i t o r : fokus>

</ m o n i t o r : even t>
16 </ m o n i t o r : p r o f i l e >

Using the BPEL extension we can now weave the information about which profiles to ap-
ply to which elements of the BPEL process directly into the process definition.
With these basics, it is quite easy to enable the monitoring framework to collect prove-
nance information. All one have to do is to create a monitoring profile, which defines
what monitoring information is also provenance information and weave the monitoring
instructions into the process definition using the extension mechanism.

6http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

2.2 How to get the monitoring data

As mentioned before the Kieker.WorkflowMonitor is built upon the Kieker monitoring
framework. This has the advantage that the proven and well tested infrastructure of Kieker
can be used. Kieker.WorkflowMonitor extends the Kieker framework with a special work-
flow probe and some new analysis plugins.

The new probe is an entirely new developed Kieker probe. Because of the special re-
quirements resulting from the domain of workflow monitoring, none of the Kieker probes
developed so far could be reused. The new probe was designed to meet the following
requirements

• minimal affect to the performance of the workflow system

• allow changes to the monitoring behavior during runtime

• monitoring of distributed workflow systems

We decided to build a probe, that consists of two different parts. The first part has to collect
the monitoring data and is embedded into the workflow engine, in this context this part is
called the probe. The second part contains the logic, converts the monitoring data to an
workflow independent exchange format and passes it to the persistence layer. It is called
the preprocessor.
Because of the differences between the single workflow engines it is not possible to pro-
vide a probe, which works fine for every workflow engine. Therefore we decided to pro-
vide an abstract probe containing all the logic needed for workflow monitoring and the
communication between the probe and the preprocessor. In this way users of the work-
flow monitoring framework can write a monitoring probe for the monitoring framework of
their choice. They only have to overwrite the onEvent()-method of the abstract probe
and provide a configuration for the communication channel. The onEvent()-method is
the method which should be called by the workflow engine, when an event occurs. How
this call can be realized is different from workflow engine to workflow engine. In Apache
ODE, the workflow engine on which this approach is tested, the probe can be listed as cus-
tom event listener by adding it to the ode-axis2.properties file and implementing
the BpelEventListener.
Whenever a runtime event within ODE is created, it is passed by the probe to the prepro-
cessor. The preprocessor again consists of four different parts, the communication channel
receiver, which writes the raw event logs to a log-space, the log-space, the log filters and
the persistence adapter called the log-writer. To alleviate the multithreaded programming,
which is necessary for a performant implementation of the preprocessor, the complete
preprocessor is modeled and generated using SCOPE.

2.3 Boosting performance with SCOPE

As mentioned earlier, SCOPE is a framework for alleviating the programming of mul-
tithreaded JAVA programs, based on a DSL, describing a BPMN compliant model of the
system, and a tuple space, for coordinating the access on shared resources. Listing 2 shows
a short extract of the coordination model definition of the preprocessor.

Listing 2: SCOPE model
d e f i n i t i o n s org . scope . t a r g e t . gen . work f lowMoni to r ing . p r o c e s s e s
{ . . .

4 c o l l a b o r a t i o n WorkflowProbe {
s p a c e LogSpace
c l i e n t Wo r k f lo w Pr ob e Cl i e n t : Workf lowProbeProc

}

9 p r o c e s s Workf lowProbeProc a t t e n d s WorkflowProbe {
C o n f i g u r a t i o n c o n f i g i n i t ;
p u b l i s h c o n f i g t o WorkflowProbe . LogSpace ;
p a r a l l e l {

m u l t i−i n s t a n c e (c o n f i g . maxNumberOfReceivers) c a l l
LogRece ive r ;

14 m u l t i−i n s t a n c e (c o n f i g . maxNumberOfPreprocessors)
c a l l LogWorker ;

c a l l LogWri t e r ;
}

}

19 p r o c e s s LogWorker a t t e n d s WorkflowProbe { . . . }

p r o c e s s LogWri t e r a t t e n d s WorkflowProbe { . . . }

p r o c e s s LogRece ive r a t t e n d s WorkflowProbe { . . . }
24 }

Beside the tuple space, the preprocessor consists of three different parts. The LogRe-
ceiver receives the monitoring events, which were sent by the probe, asynchronously
and writes them to the tuple space. When the workflow monitoring framework is used
for monitoring different instances of workflow engines or when there is a need to speed
up the communication channel, the number of receivers can be increased by altering the
config.maxNumberOfReceivers-value in the configuration file.
The LogWorker threads are responsible for filtering the events monitored. This is neces-
sary, because the probe sends all events it registers to the space. If the probe started to filter
out the events which should not be monitored, this would decrease the performance of the
workflow engine en bloc. Instead the filtering is done in the preprocessor. The preproces-
sor interprets the profiles mentioned earlier and applies the monitoring instructions to the
events listed in the tuple space. In this way, all monitoring information which should not
be persistent, are rejected. After the filtering process all remaining event logs are trans-
formed into a generic exchange data format for monitoring information. This exchange
format is based on a ontology defined in the Web Ontology Language (OWL).7

7http://www.w3.org/TR/owl2-overview/

Finally, the LogWriter, which is derived from the Kieker Monitoring Writer, is responsible
for writing the acquired and filtered monitoring information to a persistent data store.

3 Conclusion and future work

In this paper we presented an approach for monitoring business workflow systems based
on the Kieker framework. To allow Kieker to monitor business workflow engines, it is ex-
tended with a new probe and new monitoring data analysis components . The new probe
can easily be used to implement own probes for different workflow engines. By defining
monitoring profiles, which are interpreted by the preprocessor and used for filtering the
events monitored by the probe, the monitoring behavior of the framework can be con-
trolled.
A future task will be to create graphical representations for the monitoring results, which
will be embedded into the new Kieker analysis GUI currently being developed. Therefore
it is necessary to design filters and visualizations for workflow monitoring, which can be
used inside the framework. Another outstanding task is the definition of basic monitoring
profiles, describing the monitoring behavior of the probe for some basic use cases like
performance monitoring or business activity monitoring. To improve the interoperability
with other provenance capturing systems and analysis tools, data export functions to the
Open Provenance Model [MCF+10] should be added.

References

[GH11] Stefan Gudenkauf und Wilhelm Hasselbring. Space-Based Multi-Core Programming
in Java, Seiten 41–50. The Associacion for Computing Machinery, Inc., 2011.

[MCF+10] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Na-
talia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh
Simmhan, Eric Stephan und Jan Van den Bussche. The Open Provenance Model core
specification (v1.1). Future Generation Computer Systems, July 2010.

[Sch10] Matthias Schulze. Virtuelle Forschungsumgebungen und Forschungsdaten für Lehre
und Forschung: Informationsinfrastrukturen für die (Natur-)Wissenschaften. In Ock-
enfeld, Marlies (Hrsg.): Semantic Web and Linked Data : Elemente zuknftiger In-
formationsinfrastrukturen; Proceedings der 1. DGI-Konferenz, 62. Jahrestagung der
DGI, Frankfurt am Main, 7.-9. Oktober 2010. Frankfurt am Main, 2010 (Tagungen der
DGI 14), S. 165-176. Universitt Stuttgart, 2010.

[vHRH+09] André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens Ehlers, Sören
Frey und Dennis Kieselhorst. Continuous Monitoring of Software Services: Design
and Application of the Kieker Framework. Bericht TR-0921, Department of Computer
Science, University of Kiel, Germany, November 2009.

[vHWH12] André van Hoorn, Jan Waller und Wilhelm Hasselbring. Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis. In Proceedings
of the 3rd ACM/SPEC International Conference on Performance Engineering (ICPE
2012). ACM, April 2012. Invited tool demo paper. To appear.

