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ABSTRACT

Detecting a salt dome overhang is known to be problematic
by seismic methods alone. We used magnetotellurics (MT) as a
complementary method to seismics to investigate the detectabil-
ity of a salt dome overhang. A comparison of MT responses for
3D synthetic salt models with and without overhang shows that
MT is very sensitive to shallow salt structures and suggests that
it should be possible to detect an overhang. To further investi-
gate the resolution capability of MT for a salt dome overhang,
we performed a 3D MT inversion study and investigated the
impact of model parametrization and regularization. We showed
that using the logarithms of the conductivities as model param-
eters is crucial for inverting data from resistive salt structures
because, in this case, commonly used Tikhonov-type stabilizers
work more equally for smoothing the resistive and conductive
structures. The use of a logarithmic parametrization also accel-

erated the convergence and produced better inversion results.
When the Laplace operator was used as a regularization func-
tional, we still observed that the inversion algorithm allows
spatial resistivity gradients. These spatial gradients are reduced
if a regularization based on first derivatives in contrast to the
Laplace operator is introduced. To demonstrate the favorable
performance when logarithmic parametrization and gradient-
based regularization are employed, we first inverted a data
set simulated for a simple model of two adjacent blocks. Sub-
sequently, we applied the code to a more realistic salt dome
overhang detectability study. The results from the detectability
study are encouraging and suggest that 3D MT inversion can be
applied to decide whether the overhang is present in the shallow
salt structure even in the case when only profile data are avail-
able. However, to resolve the overhang, a dense MT site cover-
age above the flanks of the salt dome is required.

INTRODUCTION

Imaging of offshore salt dome overhang structures that are asso-
ciated with accumulations of oil and natural gas is a current chal-
lenge for the exploration industry and difficult to accomplish with
seismic methods alone. Particularly, resolving salt boundaries on
the steeply dipping flanks of such salt domes and the base of salt
poses problems due to multiple reflections and mode conversions
(Ogilvie and Purnell, 1996; Key et al., 2006).
The high contrast in electrical resistivity between the salt and the

surrounding sediments provides an excellent target for magnetotel-
luric (MT) method and, therefore, MT can be regarded as a possible
alternative or complementary method to explore salt dome over-
hangs (Hoversten et al., 2000). A number of recent studies have

investigated some aspects of imaging salt structures with MT (Con-
stable et al., 1998; Hoversten et al., 1998, 2000; Key and Weiss,
2006; Zhdanov et al., 2009, among others). Most of these use
1D or 2D MT modeling or inversion for imaging salt structures.
Zhdanov et al. (2009) present a fully 3D inversion algorithm, which
they apply to marine MT data collected in the Gemini Prospect,
Gulf of Mexico. They show that their code can map resistive struc-
tures like a salt dome with reasonable accuracy. In the current paper,
we investigate the ability of 3D MT inversion to resolve the salt
dome overhang.
A number of 3D MT inversion algorithms have been developed

(Mackie and Madden, 1993; Newman and Alumbaugh, 2000;
Zhdanov and Golubev, 2003; Sasaki, 2004; Siripunvaraporn
et al., 2005; Avdeev and Avdeeva, 2009, among others). All of these
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algorithms are designed to find models that fit the data and are geo-
logically interpretable. Because 3D MT inversion is a large-scale
problem, there are two main issues: the high memory requirements
and large computational times. As in many other 3D MT codes,
these issues are also addressed in our code x3Di (Avdeev and
Avdeeva, 2009). It is based on a limited-memory quasi-Newton
(QN) optimization method Nocedal and Wright (1999). This meth-
od has become a popular tool to solve large-scale inverse problems
(Newman and Boggs, 2004; Haber, 2005; Moorkamp et al., 2011,
among others) because it requires only a few pairs of vectors to be
stored in memory. Each pair of vectors consists of the vector of
model parameters and the gradient of the objective functional at
a previous iteration. Our experience shows that it is sufficient to
keep information only from six previous iterations. To calculate
the gradients of the objective functional efficiently, we use an ad-
joint approach (see Rodi, 1976). In this paper, we first remind the
reader of the main aspects of the 3D MT inversion code. We then
adjust the code to the specific problem of inverting for the
geometry of a salt dome overhang by using the logarithms of
the conductivities as model parameters and by introducing
Gradient-based regularization. These modifications are necessary
when one wants to resolve a resistive structure such as a salt dome.
We demonstrate how these two modifications improve the conver-
gence and the results of the inversion on a simplistic synthetic
example consisting of two adjacent blocks. Finally, we apply the
new improved code to investigate the detectability of a 3D salt dome
overhang in a shallow marine environment. For this study, we
construct two synthetic models based on an existing salt dome
in the North Sea, one with and one without overhang. Using the
3D frequency domain integral equation code x3D (Avdeev et al.,
1997, 2002), we compare the responses obtained for these two salt
dome models. We then invert these two data sets and assess the
inversion results.

3D MT INVERSION

In this section, we first briefly review and then describe further
improvements of our 3DMT inversion algorithm. Here, we mention
only the aspects of the algorithm, which are essential for the paper.
The reader can find more details in Avdeeva and Avdeev (2006);
Avdeev and Avdeeva (2009).
The inversion code minimizes a classical Tikhonov-type regular-

ized penalty function:

φðm; λÞ ¼ φdðmÞ þ λφsðmÞ→
m;λ

min; (1)

where

φd ¼
1

2

XNS

i¼1

XNT

j¼1

βijtr½ ¯ðZ − DÞTijðZ − DÞij� (2)

is a measure of the data misfit. Here, m ¼ ðm1; : : : ; mNÞT is a vec-
tor of model parameters, N is the number of model parameters to be
recovered, NS is the number of observation sites, NT is the number
of frequencies, and βij are positive weights calculated from the
estimated data errors. The terms Zij and Dij denote 2 × 2

complex-valued matrices of predicted and observed impedances,
respectively.
The term λφsðmÞ in equation 1 is, as prescribed by regularization

theory (see Tikhonov and Arsenin, 1977), a regularization part with

a stabilizer φs and positive trade-off parameter λ. This stabilizer φs

reduces the set of possible solutions. For example, if the stabilizer is
based on the Laplace operator, i.e.,

φs ¼
XN
k 0¼1

�XN
k¼1

Wk 0kmk

�2

; (3)

where Wk 0k is a finite-difference approximation of the Laplacian,
solutions can only be models with minimum spatial variability
or roughness.
When regularization is used in the inversion, we encounter an

additional problem of finding the optimum trade-off parameter λ.
We choose λ in a cooling manner similar to that of Haber et al.
(2000). A relatively large value of λ is assigned initially and then
reduced gradually. Each new problem is solved using the solution of
the previous problem (i.e., the model obtained using the previous
value of λ) as an initial guess. The choice of the initial value for λ
and how fast it should be reduced is currently based on user
experience. For the future, it would be desirable to develop some
automated schemes.
To minimize φ, we employ a limited-memory quasi-Newton

(QN) optimization method with simple bounds (see Nocedal and
Wright, 1999). This optimization method requires a relatively small
storage, which is proportional to 2 × ncp × N, where ncp is the
number of the correction pairs (practically, only a few). The correc-
tion pairs are the pairs of the vectors m ¼ ðm1; : : : ; mNÞT and g ¼
ð ∂φ
∂m1

; : : : ; ∂φ
∂mN

ÞT at few previous iterations. Many tests (not
presented here) show that ncp ¼ 6 is usually enough and this is
the number we are going to use for all the examples presented
in this paper. Another advantage of the QN optimization method
is that it requires calculation of gradients of the penalty function
only, and requires no calculations of second-derivative terms.
The calculation of gradients based on an adjoint approach is
presented in Avdeev and Avdeeva (2009). The time needed to
compute the gradient at a given period is equivalent to only two
forward modelings (solution of a single forward and a single adjoint
system of Maxwell’s equations) and is independent of the number
of model parameters. The forward and adjoint problems are solved
with the integral equation (IE) forward-modeling code described
in Avdeev et al. (1997, 2002). The same code is used to simulate
2 × 2 matrices Dij of observed impedances for all synthetic tests
presented in the paper.
To adapt the code for the specific problem of the salt dome

overhang, we explore various parameterizations and regularization
techniques. As we present below, these aspects of the inversion
turn out to be very important when looking at resistive structures.

Model parameters

The model can be parameterized in resistivitiesmk ¼ ρk, conduc-
tivities mk ¼ σk, or some functions of ρk or σk. In the following, we
compare inversion results for parametrization in terms of conduc-
tivities and logarithms of conductivities of the cells.

Model parameters — Conductivities

In Avdeev and Avdeeva (2009), we chose mk ¼ σk,
ðk ¼ 1; : : : ; NÞ. Because the conductivities σk must be nonnegative
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and realistic, the optimization problem of equations 1–3 has to be
subjected to simple bounds

lk < σk < uk; (4)

where lk and uk are the lower and upper bounds, respectively,
and lk ≥ 0.
To investigate how the MT inversion method works, when σk are

the model parameters, we consider a model of two adjacent blocks.
This model has been considered in various 3D forward-modeling
and inversion papers (e.g., Wannamaker, 1991; Mackie et al.,
1994; Avdeev et al., 1997; Siripunvaraporn et al., 2005; Avdeev
and Avdeeva, 2009). The model consists of resistive and conductive
adjacent blocks buried in a two-layered earth (see Figure 1). The
inversion domain consists of Nx × Ny × Nz ¼ 20 × 20 × 9 ¼
3600 rectangular cells with dx ¼ dy ¼ 4 km and reaches a depth
of 32 km. Here, x, y, and z are pointing North, East and downward,
respectively. The modeling domain coincides with the inversion
domain. In an attempt to simulate a realistic field scenario, we cover
the surface of the inversion domain with 80 randomly distributed
MT sites, only requiring that MT sites do not occur in adjacent cells.
The location of the sites and the numerical grid are also shown in
Figure 1. It should be mentioned that the code poses no constraints
on MT site locations. At these sites, we simulate data at frequencies
of 103, 3.3 × 103, and 102 Hz ðNT ¼ 3Þ and add 1% noise to the
simulated data. As a starting model, we chose a uniform half-space
of 50 Ωm (mð0Þ

k ¼ 0.02 S∕m for k ¼ 1; : : : ; N).
The first and fifth row in Figure 2 show the inversion result for

nine different depth slices. The recovered image is very different
from the true model and is not satisfactory, especially for the upper
part of the model, where many artificial structures are visible. While
reasonable resistivities are recovered for cells immediately under-
neath the MT sites, the resistivities of the other cells are poorly
reconstructed leading to a “speckled” model.
Avdeev and Avdeeva (2009) investigate the reasons for the erratic

resistivities in the upper part of the model and conclude that the
standard Tikhonov regularization is not enough to provide
consistently smooth underground structures. They implement an
“additional regularization” to overcome the problem. In the
model space m ¼ ðm1; : : : ; mNÞ, they introduce a vector
g
∼ ¼ ð~g1; : : : ; ~gNÞT as

~g ¼
XN
k 0¼1

fk 0k
∂φ
∂mk 0

; (5)

where

fk 0k ¼

8>><
>>:

e
−1
2

h
ði 0x−ixax Þ2þði

0
y−iy
ay Þ2

i
P

Nx
lx¼1

PNy
ly¼1

e
−1
2½ðlx−ixax Þ2þðly−iyay Þ2� ; iz ¼ i 0z;

0; iz ≠ i 0z;

: (6)

and k ¼ γðix; iy; izÞ, k 0 ¼ γði 0x; i 0y; i 0zÞ, and γðix; iy; izÞ ¼ izþ
½iy − 1þ ðix − 1Þ × Ny − 1� × Nz.
The vector ~g replaces the true gradient g of the objective function

in the inversion. In this approach, two new parameters ax and ay are
introduced and need to be chosen. We use a cooling approach for
these parameters, similar to cooling of the regularization parameter
λ. When such “additional regularization” is applied, the result is

greatly improved (see third and seventh row in Figure 2). To obtain
this result, we start with ax ¼ ay ¼ 3 at the beginning of the
inversion and slowly reduce it to ax ¼ ay ¼ 1 at the final inversion
iterations. The resistivity and shape of conductive block is now very
well recovered. The same is true for the resistive block, however, the
recovered resistivity value (>200 Ωm) exceeds the true model re-
sistivity (100 Ωm). This is due to the fact that when conductivities
are used as model parameters, the stabilizer φs of equation 3 does
not enforce smoothing on the resistive structures, because they have
little impact on the overall value of the stabilizer. Therefore, if the
target has a resistive character, a parametrization in terms of con-
ductivities is not favorable. In the next section, we introduce the
parametrization by logarithms of conductivities.

Logarithmic parameterization

The logarithmic parametrization is commonly used by inversion
software developers (see, for example, Mackie and Madden, 1993;
Newman and Alumbaugh, 2000), motivated by the fact that consid-
ering logðσk − lkÞ or log ½ðσk − lkÞ∕ðuk − σkÞ� as unknown param-
eters, helps to keep the conductivities positive. Some advantages of
the logarithmic parametrization also are discussed in Parker (1994).
After such transformations, the bounds of the model parameters ex-
tend to infinity and the constrained problem of equations 1–4 turns
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Figure 1. Two-block model used to test the inversion. The upper
panel shows a horizontal slice through the top 10 km of the model.
The lower panel presents the central vertical cross section through
the model. Solid dots correspond to the locations of 80 randomly
distributed MT sites used for synthetic tests. We also plot the
numerical grid as solid black lines.
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nominally to an easier unconstrained problem of equations 1–3.
These transformations, however, can slow down the convergence
of the inversion, if the solution is very close to the boundaries.
For this reason, we do not include boundaries in the logarithmic
transformation, but use mk ¼ log10 σk and still impose simple
bound constraints as

log10 lk < log10 σk < log10 uk. (7)

Now, our optimization problem is defined by equations 1–3 and 7.
There are several advantages in using the logarithmic parametri-

zation. First of all, in this case it does not matter what to invert for,
conductivities or resistivities, because log10 σk is −log10 ρk. Second,

when a logarithmic parametrization is used, the
stabilizer works more equally for smoothing
resistive and conductive structures, while in case
mk ¼ σk the conductive structures are mostly the
ones that are smoothed.
Inversion results for a logarithmic parametri-

zation mk ¼ log10 σk with and without “addi-
tional regularization” are also shown in
Figure 2. To obtain the result with the “additional
regularization,” we used the same values for the
parameters ax and ay, as previously. It is always
difficult to compare inversion results based on
different model parametrizations or different
types of regularization because each inversion
has its own convergence path. To make this
comparison, we choose models that produce a
target data misfit φd of 0.04. The trade-off para-
meter λ is chosen and modified during the inver-
sion in a way that produces the best result (note
that we run the inversion with many different
sequences of the parameter λ). To obtain the
results presented in Figure 2, we start with λini ¼
108 for mk ¼ σk and with λini ¼ 104 for
mk ¼ log10 σk. When the logarithmic parametri-
zation is employed the results are satisfactory
even without the use of “additional regulariza-
tion” (see second and sixth rows), the shape of
both anomalies and the resistivity values are well
resolved. There is still some erratic behavior at
the top of the model, but in general, it is not
as extreme as for the case of mk ¼ σk (see first
and fifth rows). When mk ¼ log10 σk and “addi-
tional regularization” is applied (see fourth and
eights rows), the conductive and resistive blocks
at the top of the model are nearly perfectly
resolved, however, we observe very large resis-
tivity values at the bottom. This can be explained
by the fact that the regularization based on the
Laplace operator allows the resistivity to have
a constant spatial gradient. The effect of the
choice of regularization on the result will be
discussed later.
Figure 3 presents the convergence curves for

all four inversions as a function of nfg. The num-
ber nfg increases by one after each evaluation of a
pair φ and ∇mφ. This index is proportional to the
time of the inversion and slightly larger than
the number of QN iterations, due to possible
additional calculations needed within the line
search. The sequences of trade-off parameters
λ used for the inversions are also shown as
step functions in Figure 3. Using logarithmic
parametrization not only improves the inversion
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Figure 2. Comparison of the inversion results with different model parametrizations for
the model presented in Figure 1. Nine horizontal slices through the models are
presented. The first and fifth rows correspond to the inversion result without “additional
regularization” using m ¼ σ; the second and sixth rows correspond to the inversion
without “additional regularization” and m ¼ log10ðσÞ; the third and seventh rows are
the result of inversion with “additional regularization” andm ¼ σ; the fourth and eighth
rows — with “additional regularization” and m ¼ log10ðσÞ. Three frequencies and 80
MT sites were used in the inversions.
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result, but also accelerates the convergence. We therefore use
logarithmic parametrization together with the “additional regulari-
zation” for subsequent inversion experiments.

Regularization

Inversion results depend on the choice of the regularization func-
tional φs. In this section, we compare the impact of two types of
commonly used regularizations. As we mentioned in the previous
section, the stabilizer based on the Laplace operator

φLaplace
s ≈ dxdy

X
αβγ

�
∂2m
∂x2

þ ∂2m
∂y2

þ ∂2m
∂z2

�
2

αβγ

dzγ (8)

allows the resistivity to have constant spatial gradients, which can
produce very high resistivity values. This issue can be resolved with
a stabilizer based on the following finite-difference approximation
to the Gradient

φGradient
s ≈ dxdy

X
αβγ

��
∂m
∂x

�
2

þ
�
∂m
∂y

�
2

þ
�
∂m
∂z

�
2
�
αβγ

dzγ : (9)

These two types of regularizations produce very similar results
(see Figures 4 and 5). However, excessively high resistivity values
at the bottom of the model disappear when Gradient-based regular-
ization of equation 9 is applied. It should be mentioned that
Figure 5.06b of Parker (1994) also presents a comparison of
Laplace and Gradient-based regularization, however, only for a
1D case. He shows that solutions agree remarkably well in conduc-
tive regions, whereas for the resistive parts the solution based on
Laplace regularization is an order of magnitude more resistive in
some places, which further confirms our conclusions.
It is difficult to compare the inversions when different regulariza-

tion techniques are applied because we have to choose different
optimum sequences of trade-off parameters λ. In an attempt to have
two comparable inversions, we use the following strategy for choos-
ing the initial value λini for the trade-off parameter. We start the
inversions with a uniform half-space model, where the stabilizer
φs ¼ 0. After one iteration of the inversion with Laplace-based
regularization, we obtain the model mð1Þ and a nonzero value of
φLaplace
s ðmð1ÞÞ. For this model, we calculate the Gradient-based

stabilizer φGradient
s ðmð1ÞÞ and choose initial values of trade-off

parameters such that

λLaplaceini φLaplace
s ðmð1ÞÞ ¼ λGradientini φGradient

s ðmð1ÞÞ: (10)

For the inversion results in Figures 4 and 5, initial trade-off param-
eters are λLaplaceini ¼ 104 and λGradientini ¼ 6 × 10−3. After the initial
trade-off parameter is chosen, we start the inversion and decrease
the trade-off parameter every time the convergence slows down
significantly. The cooling rate of parameter λ has to be chosen
by the user. Our experience shows that slow cooling of the
parameter produces better results.
The comparison of the inversion convergence rates for Laplace-

based and Gradient-based regularizations is presented in Figure 6.
The convergence curves are similar for both regularization techni-
ques and the program takes between 10 and 15 hours to reach the
target value of data misfit φd (one nfg≈ two min on an Intel Core2
Duo CPU, T9300 @ 2.50 GHz, 1.98 Gb of RAM Laptop).

Now that we have demonstrated the basic properties of possible
model parametrizations and regularization terms on a simple test
model, we will examine how far we can use MT inversion to recover
the geometry of a salt dome structure and, in particular, whether
we can resolve the existence of an overhang at its flanks. As we
showed that mk ¼ log σk as model parameters and a Gradient-
based stabilizer together with “additional regularization” are the
optimum choices, these are the inversion settings we use in the
following.

SALT DOME OVERHANG
DETECTABILITY STUDY

In this study, we examine and compare two salt dome models (see
Figure 7), based on an existing salt dome located in a tidal area of
the North Sea. The models consist of a layered background and two
resistive salt dome structures with a resistivity of 125 Ωm. The dif-
ference between these two models is the presence of a 1 km thick
and 1 km wide overhang in the larger salt structure in one of the
models. Our main focus lies on investigating the effect of the over-
hang of the large salt structure onto the MT responses. The smaller
salt structure has been included to test whether the signal of two
adjacent salt domes can be differentiated. The depth to the top
of the larger salt structure is 50 m and to the smaller one
1200 m below a shallow sea of 2 m thickness. The lengths of
the larger and smaller anomalies are 60 and 14 km, respectively.
The salt domes originate from a 1 km thick horizontal salt layer
at a depth of 6.2 km.

3D forward modeling

For the feasibility study, we first perform a number of
forward modelings using the 3D IE frequency-domain code. For
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Figure 3. Convergence curves for the inversions with two types of
model parameters: m ¼ σ (grey) and m ¼ log10ðσÞ (black). The
regularization parameters λ are also shown as a step functions in
the same colors. The upper panel corresponds to the inversion
results when no “additional regularization” is applied and the lower
panel to inversion results with “additional regularization”.
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the numerical modeling, the volume has to be discretized into
prisms, where we assume that all prisms in the mesh have the
same horizontal area dx × dy, but their vertical size dzk may vary
with depth. In our case, the modeling domain comprises Nx × Ny ×
Nz ¼ 320 × 160 × 13 rectangular prisms, with dx ¼ dy ¼ 250 m,
and extends to 7.2 km depth.
We simulate magnetotelluric (MT) data for 22 frequencies in the

range from 100 to 10−5 Hz. To test the sensitivity of the MT
responses to the salt structures, we calculate a 3D effect defined as

Rm1

salt ¼
jZm1

xx − Zback
xx j2 þ jZm1

xy − Zback
xy j2 þ jZm1

yx − Zback
yx j2 þ jZm1

yy − Zback
yy j2

jZback
xx j2 þ jZback

xy j2 þ jZback
yx j2 þ jZback

yy j2
(11)

at the sites located at the sea floor and with ðx; yÞ coordinates
coinciding with the center of each cell. In equation 11, Zm1

xx ,
Zm1
xy , Zm1

yx , and Zm1
yy are the complex-valued entries of the impedance

tensor for the model without overhang (model 1 in Figure 7); Zback
xx ,

Zback
xy , Zback

yx , and Zback
yy are the impedance tensor entries for the 1D

layered background. This 3D effect for five frequencies is shown in
Figure 8 and reveals MT is particularly sensitive to the shallow salt
structure. This can be explained by the fact that the electric currents
are squeezing in the narrow conductive area above the resistive salt
dome. The deformation of the electric field lines is the largest for the
shallow salt dome. Another conclusion that can be drawn from
Figure 8 is that the effect of the salt structures is very localized.
The shape of the 3D response is approximately following the out-
line of the anomaly. Hence, the smaller salt structure should not
affect an electromagnetic measurements above the larger one.
To investigate the effect of the presence of the salt dome over-

hang, we compare the responses from the models with and without
overhang. To do this, we calculate the residuals

Roverhang ¼
jZm2

xx − Zm1
xx j2 þ jZm2

xy − Zm1
xy j2 þ jZm2

yx − Zm1
yx j2 þ jZm2

yy − Zm1
yy j2

jZm1
xx j2 þ jZm1

xy j2 þ jZm1
yx j2 þ jZm1

yy j2
(12)
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inversion result when the regularization functional
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the first derivatives (equation 9); the third and
sixth rows show the true model. “Additional reg-
ularization” and logarithmic model parameters
m ¼ log10ðσÞ were employed to obtain both re-
sults. Three frequencies and 80 MT sites were
used in the inversions.
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again at the sites located at the sea floor and with ðx; yÞ coordinates
coinciding with the centers of all the cells. The superscripts m1 and
m2 stand for models without and with overhang, respectively. The
residuals for five of the 22 frequencies are shown in Figure 9. The
effect of the overhang is very localized and particularly strong for
frequencies between 0.1 and 0.001 Hz. To show the effect of the
overhang in more detail and to visualize how local this effect is,
we also plot the apparent resistivity and phase curves for a fre-
quency of 0.1 Hz along the profile crossing the left side of the
large salt structure, y ∈ ½−12;−6� km and x ¼ −23:5 km (see
Figure 10). We omit the diagonal elements in the figure because
they are a few orders of magnitude smaller than the off-diagonal
ones and are not particularly useful for resolving the anomaly. From
the above comparisons, we conclude that it is possible to see the
presence of the overhang, but it is vital to have MT sites just above
it. In other words, the MT site coverage should be denser on the
sides of the salt structure.
In the following, we investigate how the resolution changes with

depth to the top of the salt structure and also with the lateral extent
of the overhang. We use a set of models similar to the salt models
considered earlier, but with the top of the salt located deeper, at
275 m and 725 m below the sea floor, respectively. The vertical
cross sections through these models are presented in Figure 11.
We only show the part around the large salt structure because
the rest of the modeling domain stays exactly the same as in the
previous examples. We again compute the responses for all these
models at the sea floor and in every cell of the modeling domain.
The 3D effect Rsalt from equation 11 for these models looks very
similar to the 3D effect shown in Figure 8, nearly copying the shape
of the salt structure and is, therefore, not presented here. The main
difference is that the maximum sensitivity is shifted to lower fre-
quencies. For model three, we only start to sense the anomaly
(Rsalt > 0.1) for a frequency of 1 Hz, whereas for model six, we
sense it at 0.1 Hz. Another difference is that the overall sensitivity
decreases when the top of the salt shifts deeper. For the previous
example, when the top of the salt is 50 m below the sea floor,
the maximum sensitivity Rm1

salt is 70, while the maxima are Rm3

salt ¼
10 and Rm6

salt ¼ 1.5 for model three and model six, respectively.
These numbers mean that it is still easy to resolve the anomaly
as a whole.
With respect to the detectability of the overhang, the situation

has changed. As expected, it is much more difficult to resolve the
overhang when the top of the salt structure is deeper. In Figures 12
and 13, we show the apparent resistivity and phase curves for all
models presented in Figure 11. In these figures, the vertical scale
is not the same, but it is adjusted to make it possible to distinguish
between the curves. In all cases, the ρappyx component contributes
the most to the detectability of the overhang. When the top of the
salt is at 275 m depth below the sea floor, the maximum relative
difference in ρappyx between models with and without overhang is
28% and 44% for 1 and 2 km wide overhang, respectively. When
the top of the salt is deeper at 725 m below the sea, these numbers
decrease to 12% and 23% for 1 and 2 km wide overhang, respec-
tively. Increasing the width of the overhang not only widens the
region where one can identify the overhang, but also the differ-
ence between the curves becomes larger. From these figures, we
conclude that it should be possible to distinguish between the
models with and without overhang when the top of the salt is
275 m below the sea floor, especially for the 2 km wide overhang.
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When the top of the salt is 725 m deep, it is not possible to
resolve a 1 km wide overhang and an overhang with a width
of 2 km may only be resolved with marine magnetotelluric data
of above average quality.

In the next section, we investigate how well the models of the salt
dome with and without overhang can be recovered by our 3D MT
inversion algorithm, in the best case scenario (models one and
two).
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Figure 11. Synthetic models based on a salt struc-
ture in the North Sea. The first row presents the
models where the top of the salt is located
275 m below the sea floor. For the second row,
the depth to the top of the salt structure is
725 m. The left two panels show the models with-
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3D inversion of the salt dome data

For the 3D inversion study, we use subsets of data from salt dome
models with and without overhang at five out of 22 frequencies (10,
1, 0.1, 0.01, and 0.001 Hz) that has been presented in the previous
section. Our experience from previous synthetic studies shows that
it is enough to use only five frequencies for this experiment. To
simulate these observed data, the modeling domain consisted of
320 × 160 × 13 prisms. We add 5% random noise to the simulated

data and use an 11 Ωm half-space model as an initial guess for all
subsequent inversion runs.
To reduce the computation time and to create a more realistic

scenario, for the inversion we choose a smaller, coinciding model-
ing and inversion domain of N ¼ Nx × Ny × Nz ¼ 129 × 69×
13 ¼ 115; 713 rectangular prisms, with dx ¼ dy ¼ 250 m that only
covers a part of the large salt structures (see black rectangle in
Figure 7). Horizontal and vertical slices through the inversion
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Figure 13. Comparison of sea floor apparent resis-
tivities and phases across the side of the salt struc-
tures. The top of the salt structures is located
725 m below the sea floor. Circles, triangular,
and squares show the responses at 0.01 Hz for
without, with 1 and 2 km wide overhang, respec-
tively (models six, seven, and eight in
Figure 11).
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results are shown in Figures 14, 15, 16, and 17.
In an attempt to improve these results, we add
two more frequencies per decade and continue
to run the inversion. However, the value of data
misfit is nearly the same whether five or 13 fre-
quencies are used and no improvement is
achieved.
In our first experiment with these salt dome

models (Figures 14 and 15), we use a subset
of 1995 sea floor MT sites with 500 m spacing.
All sites are positioned inside the black dashed
rectangle in Figure 14, covering part of the inver-
sion domain. The 3D IE forward modeling code
requires a layered background everywhere out-
side the modeling domain. Hence, the responses
near the edge where the true salt dome structure
extends outside the modeling/inversion domain
cannot match the simulated data, and the true
resistivity values near this edge can not be
recovered. This effect is strongly reduced about
5 km from that edge and we obtain good results
throughout the rest of the inversion domain.
Inversion runs based on 5 and 200 Ωm half-
spaces initial models deliver similar results
(not shown here). The inversion of these data
demonstrates that the salt structure can be
resolved (see Figure 14). A distinction between
models with and without overhang is possible
closer to the end of the salt structure (Profile
C) and it becomes more and more difficult to dis-
tinguish the overhang when we move away from
this edge (see Figure 15).
Because the coverage by 1995 MT sites is not

feasible in reality, we also study the effect of
sparser coverage. We use data along three pro-
files crossing the salt structures (see Figure 7).
Each profile consists of 35 equally spaced MT
sites. The distance between adjacent sites is
now 500 m and the distance between profiles
is 6 km. Large distances (6 km) between the
profiles enforces a need for a strong regulariza-
tion along the salt structure (along x axis).
Accordingly, we chose values of ax ¼ 8 and
ay ¼ 3 in the “additional regularization” of
equations 5 and 6.
Figures 16 presents horizontal slices through

the inversion result for model without overhang.
For this inversion, we again used an 11 Ωm half-
space as a starting model. From this figure one
can see that reasonable resistivity values are
recovered immediately below the MT sites and
at ≈1 km lateral distance from the profiles.
Figure 17 shows three vertical cross sections

through the resulting inversion models without
and with overhang (left and right panels, respec-
tively). The cross sections presented are just
beneath the profiles A, B, and C. Comparing
the recovered image with the true model, we
see that the shape and the position of the resistive
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Figure 15. Comparison of the 3D inversion results for models without (left column) and
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Figure 14. Comparison of the 3D inversion result (upper row) to the true model (lower
row) of the salt dome with overhang. Each panel shows horizontal slices through the
model. For the inversion we used responses at five frequencies from 1995 MT sites with
500 m spacing located inside the black dashed rectangle. Five percent noise was added
to the simulated data.
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anomalies are recovered well. Presence of the
salt overhang can be identified for profiles C
and B, whereas for profile A it is difficult to
see the overhang.

CONCLUSIONS

In this paper, we perform a salt dome overhang
detectability study. For this, we first adjust our
inversion approach to the specific problem of a
resistive salt structure. We test various model
parameterizations and regularization functionals
and demonstrate on a relatively small-sized mod-
el of two adjacent blocks that a parametrization
with logarithms of conductivities and a regular-
ization functional based on the first-derivatives,
rather than the Laplace operator, are the most
suitable choices.
Comparing the responses for two salt dome

models with and without overhang shows that
MT is very sensitive to shallow salt structures.
The anomalous responses due to the salt struc-
tures and the overhang are localized, nearly
repeating the shape of the 3D anomaly. Hence,
the responses are not influenced by other nearby
structures and it is sufficient to place MT sites
immediately in the vicinity of the anomaly. To
resolve the salt structures dense MT site coverage
over its flanks is advantageous. We apply our
improved 3D MT inversion algorithm to simu-
lated data. Our results demonstrate that structures
like the salt dome are potentially resolved with
3D and profile MT data and a salt overhang
may be resolved even with profile data only.
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Figure 17. Comparison of the 3D inversion results for models without (left column) and
with overhang (right column). Each panel presents a vertical cross section through the
model. For the inversions, we used responses at five frequencies from 105 MT sites
located along three profiles (see Figure 7). Five percent noise was added to the simulated
data.

Figure 16. Comparison of the 3D inversion result (upper row) to the true model (lower
row) of the salt dome with overhang. Each panel shows horizontal slices through the
model. For the inversion, we used responses at five frequencies from 105 MT sites lo-
cated along 3 profiles (horizontal dotted lines). Five percent noise was added to the
simulated data.
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