
Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

Detection and Utilization of Potential
Parallelism in Software Systems

Christian Wulf

30.11.2012

1/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

Outline

1 Introduction

2 Approach

3 Details

4 Conclusions

2/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

Evolution of Multi-core Processors
In the context of desktop computers

(a) 2000: 1 core (b) 2005: 2 cores

(c) 2006: 4 cores (d) 2011: 8 cores

⇒ Parallel programming is no longer optional for increased speed-up

0
http://www.intel.de, http://www.amd.de

3/20

http://www.intel.de
http://www.amd.de

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

Challenges of Automating Parallelization

Synchronization ⇒ Deadlocks, Starvation, etc.
Detection of promising parallelization regions
Non-faulty transformation

0Acknowledgements to FreeDigitalPhotos.net and Sira Anamwong

4/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

Requirements

Automatic or assisting tools
Program restructuring
Dependence analysis

5/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

Related Work

Loops and arrays [ROR+08, YTT+00], rarely I/O
access
Static [HAM+05] or dynamic analysis, rarely both
C or Java byte code [FGN12], rarely Java source code
No business applications for evaluation

⇒ Goal: A more high-level approach

6/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

using

System dependence
graph (SDG)

Parallelism
plan

S3

Legend:
 S1: SDG construction
 S2: Gathering
 S3: SDG Enrichment
 S4: Ranking
 S5: Pattern detection
 S6: Transformation

S4

S6

S5

using

Semi-automatic transformation

Runtime
information

Static
information

Parallelization
pattern

Candidate
pattern

Sequential program

Figure 1: Overview of the approach
7/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

using

System dependence
graph (SDG)

Parallelism
plan

S3

Legend:
 S1: SDG construction
 S2: Gathering
 S3: SDG Enrichment
 S4: Ranking
 S5: Pattern detection
 S6: Transformation

S4

S6

S5

using

Semi-automatic transformation

Runtime
information

Static
information

Parallelization
pattern

Candidate
pattern

Sequential program

Figure 2: S1: SDG construction
8/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

using

System dependence
graph (SDG)

Parallelism
plan

S3

Legend:
 S1: SDG construction
 S2: Gathering
 S3: SDG Enrichment
 S4: Ranking
 S5: Pattern detection
 S6: Transformation

S4

S6

S5

using

Semi-automatic transformation

Runtime
information

Static
information

Parallelization
pattern

Candidate
pattern

Sequential program

Figure 3: S2: Gathering runtime information
9/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

using

System dependence
graph (SDG)

Parallelism
plan

S3

Legend:
 S1: SDG construction
 S2: Gathering
 S3: SDG Enrichment
 S4: Ranking
 S5: Pattern detection
 S6: Transformation

S4

S6

S5

using

Semi-automatic transformation

Runtime
information

Static
information

Parallelization
pattern

Candidate
pattern

Sequential program

Figure 4: S3: SDG enrichment
10/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

using

System dependence
graph (SDG)

Parallelism
plan

S3

Legend:
 S1: SDG construction
 S2: Gathering
 S3: SDG Enrichment
 S4: Ranking
 S5: Pattern detection
 S6: Transformation

S4

S6

S5

using

Semi-automatic transformation

Runtime
information

Static
information

Parallelization
pattern

Candidate
pattern

Sequential program

Figure 5: S4: Ranking
11/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

using

System dependence
graph (SDG)

Parallelism
plan

S3

Legend:
 S1: SDG construction
 S2: Gathering
 S3: SDG Enrichment
 S4: Ranking
 S5: Pattern detection
 S6: Transformation

S4

S6

S5

using

Semi-automatic transformation

Runtime
information

Static
information

Parallelization
pattern

Candidate
pattern

Sequential program

Figure 6: S5: Pattern detection
12/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

using

System dependence
graph (SDG)

Parallelism
plan

S3

Legend:
 S1: SDG construction
 S2: Gathering
 S3: SDG Enrichment
 S4: Ranking
 S5: Pattern detection
 S6: Transformation

S4

S6

S5

using

Semi-automatic transformation

Runtime
information

Static
information

Parallelization
pattern

Candidate
pattern

Sequential program

Figure 7: S6: Semi-automatic transformation
13/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

variable access

socket access

file access

array access

display access

Figure 8: More high-level: Parallelize I/O accesses automatically

14/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

Distinguish I/O accesses
An Example

constructor of I/O type

filename as argument

15/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

Distinguish I/O accesses
An Example

file operation

16/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

for entry

for
compare

for body

for exit

int i = 0

i < a.length

i++

Figure 9: Exemplary candidate pattern
17/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

for entry

for
compare

for body

for exit

int i = 0

i < a.length

i++

i (r/o)
array (r/o)
I/O (unique)

Figure 10: Exemplary candidate pattern
18/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

for entry

for
compare

body to
queue

for exit

thread
pool

await
completion

int i = 0

i < a.length

i++

i (r/o)
array (r/o)
I/O (unique)

Figure 11: One associated parallelization pattern
19/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

Conclusions

Figure 12: Software lags behind hardware development

No standard supporting parallelization tools available
Pattern-matching approach to assist in parallelization

0Acknowledgements to FreeDigitalPhotos.net and digitalart

20/20

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

References
www.freedigitalphotos.net.

Min Feng, Rajiv Gupta, and Iulian Neamtiu.
Effective parallelization of loops in the presence of i/o operations.
In Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation, PLDI ’12, pages 487–498, New
York, NY, USA, 2012. ACM.

Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao,
and Monica S. Lam.
Interprocedural parallelization analysis in suif.
ACM Trans. Program. Lang. Syst., 27(4):662–731, July 2005.

Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges,
and David I. August.
Parallel-stage decoupled software pipelining.
In Proceedings of the 6th annual IEEE/ACM international symposium on
Code generation and optimization, CGO ’08, pages 114–123, New York,
NY, USA, 2008. ACM.

Chao-Tung Yang, Shian-Shyong Tseng, Chang-Jiun Tsai, Cheng-Der
Chuang, and Sun-Wen Chuang.

appendix

Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

A new model of exploiting loop parallelization using knowledge-based
techniques.
In Proceedings of the Seventh International Conference on Parallel and
Distributed Systems: Workshops, ICPADS ’00, pages 9–, Washington,
DC, USA, 2000. IEEE Computer Society.

appendix

	Introduction
	Approach
	Details
	Conclusions

