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Evolution of Multi-core Processors
In the context of desktop computers

(a) 2000: 1 core (b) 2005: 2 cores

(c) 2006: 4 cores (d) 2011: 8 cores

⇒ Parallel programming is no longer optional for increased speed-up

0
http://www.intel.de, http://www.amd.de
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Challenges of Automating Parallelization

Synchronization ⇒ Deadlocks, Starvation, etc.
Detection of promising parallelization regions
Non-faulty transformation

0Acknowledgements to FreeDigitalPhotos.net and Sira Anamwong
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Requirements

Automatic or assisting tools
Program restructuring
Dependence analysis
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Related Work

Loops and arrays [ROR+08, YTT+00], rarely I/O
access
Static [HAM+05] or dynamic analysis, rarely both
C or Java byte code [FGN12], rarely Java source code
No business applications for evaluation

⇒ Goal: A more high-level approach
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Figure 1: Overview of the approach
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Figure 2: S1: SDG construction
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Figure 3: S2: Gathering runtime information
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Figure 4: S3: SDG enrichment
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Figure 5: S4: Ranking
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Figure 6: S5: Pattern detection
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Figure 7: S6: Semi-automatic transformation
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Figure 8: More high-level: Parallelize I/O accesses automatically
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Distinguish I/O accesses
An Example

constructor of I/O type 

filename as argument 
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Distinguish I/O accesses
An Example

file operation 
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Figure 9: Exemplary candidate pattern
17/20



Detection and
Utilization of
Potential

Parallelism in
Software Systems

Christian Wulf

1. Introduction

2. Approach

3. Details

4. Conclusions

for entry 

for 
compare 

for body 

for exit 

int i = 0 

i < a.length 

i++ 

i     (r/o) 
array (r/o) 
I/O   (unique) 

Figure 10: Exemplary candidate pattern
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Figure 11: One associated parallelization pattern
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Conclusions

Figure 12: Software lags behind hardware development

No standard supporting parallelization tools available
Pattern-matching approach to assist in parallelization

0Acknowledgements to FreeDigitalPhotos.net and digitalart
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