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Summary 

• The largest source of nitrogen (N) is the atmospheric pool of molecular nitrogen (N2), which is 

exclusively available to the ocean via biological N2-fixation. Marine N2-fixation has 

classically been ascribed to cyanobacteria such as Trichodesmium or Crocosphaera present at 

the sea surface and only to a minor part to non-phototrophic diazotrophs. In contrast to this 

classical view, we demonstrated the presence of 8 novel non-cyanobacterial clusters (P1-P8) 

by detecting the key functional marker gene for N2-fixation nifH, in oxygen minimum zone 

(OMZ) waters off Peru. Those clusters were present in high abundances up to 105 nifH copies 

per L detected and quantified by cluster specific TaqMan- qPCR from surface waters down to 

> 4000 m and are distributed in specific patterns along vertical and horizontal gradients. The 

only cyanobacterial diazotroph detected in the OMZ off Peru was Crocosphaera, however, 

abundances were comparatively low (~ 102 nifH copies L-1). 

• Clusters P1 and P4 were dominating the diazotrophic community from the shelf to about 

83°W at 10°S and to 77°W at 16°S. Thus, those clusters are considered highly important for 

N2-fixation in this area. While the deep branching P1 cluster, which is closest related to 

spirochaeta, appears associated with deeper waters (100- 300 m) and thus lower oxygen (O2) 

conditions, clusters P2, P3 and P4, were rather present in surface to sub-surface waters. 

Hence, we hypothesize that those newly identified clusters occupy different niches within the 

OMZ. 

• Cluster P8 was present throughout the Peruvian OMZ with highest abundances up to106 nifH 

copies L-1 in the nutrient depleted open ocean region along a north-south transect dominating 

the respective diazotrophic community. Completely unexpected, this cluster was present down 

to > 4000 m depth; however, no cut-off with regard to depth has been defined. 

• These most abundant clusters P1, P4 and P8 were detected at comparatively high nitrate  

(NO3
-) concentrations up to ~40 μM, and moreover a significant correlation of P1 and nitrite 

(NO2
-) has been determined. The abundant presence of those diazotrophs combined with N2-

fixation activity at high concentrations of those reactive N-compounds challenges the classical 

view that the habitats of marine diazotrophs are limited to N-depleted waters as those 

diazotrophs do not seem to be considerably inhibited by the present reactive N species (NO3
-, 

NO2
-,). Thus, we hypothesize that marine diazotrophic niches need to be extended towards 

low O2/ high NO3
- environments. 

• The detection of active N2-fixation in the presence of novel nifH clusters along 10°S in the 

OMZ off Peru points towards a key role of those novel clusters in re-generating the N-loss by 

denitrification or anaerobic ammonia oxidation (anammox).  

• Moreover, some of those newly identified clusters were significantly triggered by glucose 

addition in incubation experiments; thus, we conclude that some of those diazotrophs are 
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heterotrophs. We interpret this as an important fact particularly with regard to ongoing 

eutrophication of the ocean.  

• We demonstrated the co-occurrence of nifH and active N2-fixation with key functional genes 

of nitrification, denitrification and anammox, pointing towards a close spatial coupling of N-

input and N-loss processes in the OMZ off Peru, and most likely in other OMZs as well. The 

linear correlation between cluster P1 and nitrite and the key functional marker gene for 

anammox, hzo, has been detected in large parts of the OMZ off Peru.  

• In addition, transient extreme anoxia as detected in coastal waters off Peru at a spontaneous 

sulphidic event (up to 3.5µM S2- present in the water column) were demonstrated to trigger 

N2-fixation massively over short time periods. At this S2- event, we measured vertically 

integrated water column N2-fixation rates of 840 µmol N d-1 m-2, comparable to rates reported 

from areas dominated by major Trichodesmium blooms. Although the occurrence of anoxic 

events is temporally and locally limited, our results suggest that they contribute significantly 

to the N-input into the marine system. However, this term is difficult to quantify, it might 

provide an additional explanation for the deficit in fixed N in the ocean determined by model 

studies. 

• Thus, we conclude that both findings, the presence of N2-fixation in OMZ waters also below 

the photic zone and most likely even in deeper waters, as well as significant N2-fixation during 

transient anoxic events consequently require an upward revision of the oceanic fixed N 

budget.  

• The formation of oceanic nitrous oxide (N2O) via nitrification has previously been exclusively 

ascribed to ammonia-oxidizing β- and y-proteobacteria (AOB). Our results state the first 

experimental evidence for oceanic N2O production by ammonia-oxidizing archaea (AOA) in 

OMZs based on both field studies as well as pure culture experiments using the only 

cultivable archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1.  

• We demonstrated that archaeal ammonia monooxygenase genes (amoA), the key functional 

genes for ammonia oxidation, were abundant throughout the water column of the eastern 

tropical North Atlantic (ETNA) and large parts of the eastern tropical South Pacific Oceans. 

The maxima in abundance and expression of archaeal amoA genes (1.9 x 105 and 6 x 104 

amoA copies mL–1, respectively) correlated with the maximum in N2O concentration and the 

oxygen minimum, most pronounced in the ETNA, whereas the abundances of bacterial amoA 

genes were negligible in both areas.   

• The selective inhibition of archaea by N1-guanyl-1,7-diaminoheptane (GC7), specifically 

inhibiting the archaeal cell cycle in seawater incubations from the OMZ in the ETNA 

decreased the N2O production in two experiments significantly. This finding points towards a 

major contribution of archaea to N2O production, in this area. 

• We further showed that archaea are able to produce N2O in pure cultures as exemplarily 

demonstrated for the archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1. A 
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significant enhancement of N2O production by N. maritimus at low oxygen concentrations as 

present in the oxycline off Mauritania (50- 100 µM) has been detected. This finding explains 

the accumulation of N2O in the OMZ in the ETNA and in large parts of the OMZ off Peru. 

N2O production from two AOB cultures (Nitrosococcus oceani, Nitrosomonas marina) was 

comparably low under similar conditions: While N2O yields from NH4
+ oxidation ranged from 

0.002%-0.03% in N. maritimus cultures; AOB cultures produced 0.001%-0.006% N2O during 

NH4
+ oxidation. 

• Combining our findings with the results of Kalvelage et al. (Kalvelage et al., unpublished), 

which show by isotope pairing studies that aerobic ammonia oxidation takes place at much 

lower oxygen concentrations as previously assumed (down to 1 µM), we propose, that marine 

N2O is largely produced by archaeal nitrification. Particularly under suboxic to hypoxic 

conditions, at which N2O production was previously ascribed to denitrification, nitrification 

might contribute to a larger extent, as it has classically been suggested. This changes the 

classical view of N2O production significantly. In the context of climate change and thus the 

ongoing deoxygenation of OMZs and increasing hypoxia of the world’s oceans, these results 

are highly alerting.  

• In summary, our observations demonstrated the overall importance of OMZs as hotspots of N-

turnover processes. The presence of a newly identified source of N2-fixation in OMZ waters 

performed by clusters, among which some are heterotrophs, has been demonstrated. 

Moreover, ammonia-oxidizing archaea were demonstrated to produce N2O in the ocean and in 

pure cultures; a pronounced sensitivity towards dissolved oxygen concentrations in archaeal 

cultures was determined thus possibly explaining the high amounts of N2O present in OMZs. 

The present low O2 concentrations provide a niche, where apparently N-loss and N-input via 

N2-fixation are tightly coupled. Thus, we conclude that understanding future changes 

occurring in these relatively small areas, compared to the global ocean, is crucial to estimate 

the marine N-budget. 
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Zusammenfassung 

• Die größte globale Stickstoff (N)-Quelle ist die Atmosphäre, die zu 78% aus molekularem 

Stickstoff (N2) besteht. Dieser molekulare Stickstoff ist dem Ozean ausschließlich über 

biologische N2-Fixierung zugänglich. Bisher wurde die ozeanische N2-Fixierung vorwiegend 

Cyanobakterien, die vor allem an der Meeresoberfläche vorkommen, so wie Trichodesmium 

und Crocosphaera, zugeschrieben. Der Beitrag von nicht- phototrophen Organismen in 

tieferen Gewässern zur ozeanischen N2-Fixierung wurde als eher gering eingeschätzt. Dem 

entgegen wurden in dieser Studie in der Sauerstoffminimumzone (SMZ) vor Peru, auch in 

Gewässern unterhalb der euphotischen Zone, acht bisher unbekannte Cluster von N2-Fixierern 

über das nifH-Gen, dass allgemein als funktioneller Marker für N2-Fixierung benutzt wird, 

nachgewiesen. Diese Cluster wurden in hoher Abundanz  bis zu 105 nifH Kopien pro L (mit 

Cluster-spezifischer TaqMan qPCR quantifiziert) detektiert. Sie waren horizontal und vertikal 

in der Wassersäule von der Oberfläche bis zu einer Tiefe von > 4000 m in spezifischen 

Mustern verteilt. Die einzige cyanobakterielle Sequenz, die in der SMZ vor Peru gefunden 

wurde, ist phylogenetisch mit Crocosphaera assoziiert, kommt aber in vergleichsweise 

geringer Abundanz vor  (~ 102 Kopien L-1). 

• Cluster P1 und P4 dominierten unter den Diazotrophen vom Schelf  bis ca. 83°W bei 10°S und 

bis zu 77°W bei 16°S. Daher wurden diese Cluster als wichtig in Hinblick auf die N2-

Fixierung erachtet. Das P1 Cluster, das sich phylogenetisch stark von den anderen detektierten 

Sequenzen unterscheidet, jedoch die größte Ähnlichkeit zu Spirochaeten zeigt, scheint vor 

allem in tieferen Wasserschichten (100 – 300 m) und daher auch bei niedrigeren O2 

Bedingungen vorzukommen. Dagegen kommen die Cluster P2, P3 und P4 eher in der 

Wasseroberfläche oder oberflächennahen Wasserschichten vor. Diese spezifischen 

Verteilungsmuster legen den Schluss nahe, dass diese neuen Cluster unterschiedliche Nischen 

in der SMZ einnehmen. 

• Cluster P8 wurde in der gesamten SMZ vor Peru detektiert. Höchste Abundanzen von bis zu 

106 nifH Kopien L-1 wurden entlang eines Nord-Süd Transekts im Nährstoff-verarmten 

offenen Ozean gefunden. Hier dominierte P8 und wurde völlig unerwartet bis zu einer Tiefe 

von > 4000 m gefunden. 

• Die höchst abundanten Cluster P1, P4 und P8 und aktive N2-Fixierung wurden zudem in 

Wassertiefen mit hohem Nitratgehalt bis zu ~ 40 µM NO3
- detektiert, darüber hinaus wurde 

eine signifikante Korrelation zwischen P1 und Nitrit (NO2
-) nachgewiesen. Dies lässt darauf 

schließen, dass bei diesen Organismen die N2-Fixierung nicht durch die vorhandenen 

reaktiven N-Spezies (NO3
-, NO2

-) gehemmt wird. Dieser Befund bricht damit klassische 

Paradigmen der N2-Fixierung; die ökologischen Nischen von N2-Fixierern müssen somit neu 

definiert werden, wobei SMZ mit hohem Nitrat-Gehalt mit einbezogen werden müssen. 
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• Darüber hinaus wurde in Inkubationsexperimenten eine signifikante Verstärkung der N2-

Fixierung durch Glukosezugabe bei einigen dieser Cluster beobachtet, woraus wir schließen, 

dass diese Organismen heterotroph (im Gegensatz zu den vorher beschriebenen phototrophen 

N2-Fixierern) sind. Im Hinblick auf die fortschreitende Eutrophierung der Ozeane wird dieses 

Ergebnis als ausgesprochen wichtig eingeschätzt.  

• Zudem wurde das gleichzeitige Vorkommen des nifH-Gens und aktiver N2-Fixierung 

zusammen mit Schlüsselgenen der Nitrifizierung, Denitrifizierung und Anammox in unseren 

Studien nachgewiesen, was auf eine enge räumliche Kopplung dieser Prozesse in der SMZ vor 

Peru und höchst wahrscheinlich auch in anderen ozeanischen SMZ schließen lässt. Eine 

lineare Abhängigkeit speziell des Clusters P1 von Nitrit und darüber hinaus von hzo, dem 

funktionellen Markergen für Anammox, wurde in großen Teilen der SMZ vor Peru 

nachgewiesen, was die Hypothese einer räumlichen Kopplung dieser Prozesse unterstützt.  

• Zusätzlich zur N2-Fixierung in tiefen Gewässern, könnten kurzlebige Anoxien, wie die, in 

Küstengewässern der SMZ vor Peru detektierte sulfidische (S2-) Anoxie von Bedeutung für 

die N2-Fixierung sein. Hier wurde über einen kurzen Zeitraum hinweg eine massive 

Verstärkung der N2-Fixierung gemessen mit Fixierungsraten von 840 µmol N d-1 m-2, 

vergleichbar mit Raten, die in Gewässern mit großen Trichodesmium-Blüten gemessen 

wurden. Trotz schwieriger Quantifizierbarkeit könnten diese Ereignisse eine zusätzliche 

Erklärung für das durch mathematische Modelle bestimmte ozeanische N-Defizit sein. 

• Zusammenfassend erfordern sowohl der Nachweis der N2-Fixierung unterhalb der 

euphotischen Zone, als auch die signifikante Verstärkung der Fixierungsraten an kurzlebigen 

anoxisch-sulfidischen Ereignissen eine dringliche Korrektur der N2-Fixierung in 

mathematischen Modellen des ozeanischen N-Budgets nach oben hin.  

• Die Bildung von Lachgas (N2O) durch Nitrifizierung wurde früher ausschließlich den β- and 

y-Proteobakterien zugeschrieben. Unsere Studien zeigen zum ersten Mal experimentell, dass 

die ozeanische N2O-Bildung tatsächlich auf Archaeen zurückgehen könnte. Diese Erkenntnis 

basiert auf Feldstudien und Experimenten mit einer  Reinkultur von Nitrosopumilus maritimus 

SCM1, dem einzigen kultivierbaren archaeellen Ammonium-Oxidierer.  

• Wir konnten archaeelle Ammonium-Monooxygenasegene (amoA) in der ganzen Wassersäule 

im tropischen Nord-Ost Atlantik und in großen Teilen des tropischen Süd-Ost Pazifiks 

nachweisen. Maximale Abundanzen und die höchste Genexpression des archaeellen amoA 

Gens (je 1.9 x 105 und 6 x 104 Kopien mL–1) korrelierten mit maximalen N2O Konzentrationen 

und dem O2 Minimum; diese Korrelation war am stärksten im tropischen Nord-Ost Atlantik 

nachweisbar. Entgegen hoher archaeeller amoA Abundanzen waren bakterielle amoA Gene  in 

beiden Untersuchungsgebieten kaum detektierbar. 

• Die selektive Hemmung des archaeellen Zellzyklus durch N1-guanyl-1,7-diaminoheptane 

(GC7) in Seewasserinkubationen mit Seewasserproben aus der SMZ des tropischen Nord-Ost 

Atlantiks, zeigte eine signifikante Verringerung der N2O Produktion in zwei Experimenten. 
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Dies wird als starker Hinweis auf eine N2O Produktion durch Archaeen in diesem Gebiet 

gedeutet. 

• Unsere Studien zeigten darüber hinaus eine signifikante Verstärkung der N2O-Bildung in 

Archaeen bei niedrigeren Sauerstoffkonzentrationen, wie sie in der Oxykline der SMZ vor 

Mauretanien vorkommen, was eine Erklärung für die Akkumulation von N2O im tropischen 

Nord-Ost Atlantik und in großen Teilen der SMZ vor Peru bietet. Die N2O Produktion durch 

zwei AOB Kulturen (Nitrosococcus oceani, Nitrosomonas marina) war vergleichsweise 

gering: Während in N. maritimus Kulturen 0.002%-0.03% N2O aus durch Oxidation aus NH4
+ 

gewonnen wurde, produzierten die AOB Kulturen nur 0.001%-0.006% N2O bei der NH4
+ 

Oxidation. 

• Zieht man nun die Ergebnisse von Kalvelage et al. (Kalvelage et al., unpublished) hinzu, die 

durch Isotopenstudien zeigen, dass Ammonium-Oxidation bei deutlich niedrigeren 

Sauerstoffkonzentrationen, als bisher vermutet, stattfinden kann (bis hin zu 1µM O2), schlagen 

wir vor, dass archaeelle Ammonium-Oxidation für einen Großteil der ozeanischen N2O 

Produktion auch unter suboxischen und hypoxischen Bedingungen verantwortlich ist, was die 

klassische Betrachtungsweise der ozeanischen N2O Produktion durch Nitrifizierung stark 

verändert und ihr eine wichtigere Rolle im Vergleich zur Denitrifizierung zuschreibt. Im 

Hinblick auf den Klimawandel, der einhergeht mit der fortschreitenden Sauerstoffverarmung 

und Ausdehnung ozeanischer SMZ, die unserer Studie zur Folge die Produktion des 

Treibhausgases N2O stark fördern, sind unsere Ergebnisse alarmierend.  

• Zusammenfassend zeigt diese Studie die große Bedeutung der SMZ für verschiedene Prozesse 

im Stickstoffkreislauf. Neue Cluster von Stickstofffixierern in SMZ Gewässern wurden 

identifiziert, unter denen auch einige heterotrophe Cluster sind, und die sich von allen bisher 

bekannten Clustern stark unterscheiden. Die N2-Fixierung in SMZ könnte maßgebend die 

Berechnungen des ozeanischen N-Budgets verändern, die bisher nur oberflächennahe N2-

Fixierung berücksichtigt. Darüber hinaus wurde N2O Produktion durch ammonium- 

oxidierenden Archaeen in Kultur und in Umweltproben nachgewiesen, die stake 

Empfindlichkeit gegenüber Sauerstoff wurde gezeigt, die eine Erklärung dafür bietet, warum 

N2O in maximalen Konzentrationen in und in der Nähe von SMZ vorhanden ist. Die niedrigen 

Sauerstoffkonzentrationen formen eine einzigartige ökologische Nische, in der N-verbrauch 

und N–eintrag (durch N2-Fixierung) eng gekoppelt vorkommen. Daher ist es unabdingbar, 

diese Systeme zu verstehen, um zukünftige Veränderungen im Hinblick auf den marinen 

Stickstoffkreislauf in diesen, im Verhältnis zum globalen Ozean vergleichsweise kleinen 

Arealen, vorher zu sagen. 
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Introduction 

Oxygen minimum zones in tropical ocean areas 

Oxygen minimum zones (OMZs) are ocean areas with intermediate low oxygen layers (Fig.1) of 

various ranges, e.g. hypoxic in the tropical Atlantic and suboxic in the Indian ocean and eastern 

tropical Pacific ((Stramma et al. 2008; Stramma et al. 2010), Fig. 2). The total volume of OMZ in the 

ocean is according to current estimates ~40 x 1015 m3, when considering oxygen (O2) concentrations < 

90 µM, the volume of suboxic ocean areas (O2 < 4.5 µM) accounts for approximately 0.5 x 1015 m3. 

Global warming leads to increased stratification of the upper ocean which in turn may cause a 

decrease of dissolved O2 in tropical ocean areas with unknown impacts on marine biogeochemical 

processes such as the marine nitrogen (N) cycle (Bange et al. 2005; Codispoti 2010; Stramma et al. 

2010). 

 

 

 
Fig. 1: Example of an oxygen minimum zone at an eastern boundary upwelling system with the classical 

vertical distribution of key processes involved in the marine N-cycle modified from Capone and Knapp, 

2007: N-regeneration and -loss processes are assumed taking place within the OMZ, recycling the available 

nitrogen, this results in an nitrogen-to-phosphorus ratio is less than 16:1 in upwelling waters in contact with 

OMZs (excess P* (P* > 0)). Nitrogen fixation is assumed balancing the N:P ratio towards the open ocean  

(Capone and Knapp 2007). 

 

 

The distribution of dissolved O2 in the oceanic water body is strongly influenced and controlled by a 

combination of physical, chemical and biological processes all of which react to an unknown extent to 

global warming (Bopp et al. 2002; Karstensen et al. 2008; Stramma et al. 2008; Stramma et al. 2010). 

This results in an expansion and ongoing deoxygenation of OMZs as predicted by model studies 
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(Bopp et al. 2002) and by  the statistical analysis of a 50 years time series (Stramma et al. 2008). Two 

examples of OMZs of different intensities are represented by the eastern tropical North Atlantic 

(ETNA) and the eastern tropical South Pacific (ETSP) Oceans. O2 concentrations in the ETNA are 

commonly above 40 µmol L–1, however, the very recent detection of a subsurface eddy near the 

islands of Cape Verde, nearly fully depleted in O2 demonstrated that also in the ETNA O2 

concentrations can drop dramatically on a local scale (Brandt, Karstensen, unpublished). In the ETSP, 

a large and persistent OMZ with O2 concentrations below the detection limit of conventional analytical 

methods (~2 µmol L–1) is present off Peru and Chile (Fig. 2); with intermediate waters between ~75 

and 600 m strongly depleted in O2 (Stramma et al. 2008). 

 

 
Fig. 2: Global distribution of O2 at 400 m depth modified from Karstensen (unpublished): The major 

regions of low oxygen in the world ocean are all located in the tropical oceans, at shallow to intermediate depths. 

The area off Peru represents one of the most pronounced OMZs (Karstensen, unpublished). The investigated 

areas in (A) the eastern tropical South Pacific and (B) the eastern tropical North Atlantic Oceans are marked with 

circles. 

 

 

Despite their relatively low contribution to the overall ocean volume (Codispoti 2010) the occurrence 

of hypoxic and anoxic zones is of particular importance with regard to the O2 sensitivity of oceanic 

nutrient budgets, particularly with regard to the N-budget. Thus, the future development of the marine 

oceanic N-cycle will essentially depend on the extent of changing O2 conditions in OMZs as relatively 

small key areas accounting for ~ 0.1 % of the oceans’ volume (Capone 2008; Codispoti 2010). 

 Associated with wind-driven upwelling regions (Capone 2008), OMZ waters are fuelled with 

remineralized nutrients thus favouring N-turnover processes such as nitrification, anammox and 

denitrification. Current estimates ascribe 30–50% of the global N-loss to OMZs (Emery et al. 1955; 

Codispoti et al. 2001; Gruber 2004). Moreover, N-loss due to nitrate (NO3
-) consumption by 

anammox and denitrification is supposed to result in low N/P ratios (leading to low N* values; i.e. 

excess nitrogen; (Fig. 3 (Deutsch et al. 2007)) which are proposed to promote N2-fixation. 

A 

B 
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Fig. 3: Global distribution of N* at 400 m depth modified from Karstensen, unpublished:  

N* is calculated according to: N* = (NO3
- -16 PO4

3- + 2.9) x 0.87 (µmol/kg) on the 26.6 isopycnal surface. The 

area off Peru is strongly depleted in reactive nitrogen, whereas the tropical Atlantic region is rather balanced 

with regard to the Redfiled ratio (N/P = 16/1). 

 

 

Therefore, it has been suggested by model studies that N-loss and N-input via N2-fixation are spatially 

linked in OMZs (Deutsch et al. 2007). However, direct evidence for such a linkage of N-loss and N2-

fixation in the ocean has been missing, so far, and the extent of a possible co-occurrence remains to be 

unravelled. Moreover, OMZs are predicted hotspots for the production of the climate relevant trace 

gas nitrous oxide (N2O) by promoting biological formation via nitrification and denitrification at 

suboxic to anoxic conditions (Codispoti 2010; Naqvi et al. 2010).  

 

The marine N- cycle 

Nitrogen is an essential nutrient and a fundamental component of living organisms in general 

(Galloway 1996; Gruber and Sarmiento 1997; Gruber 2004). However, the atmospheric pool of 

dinitrogen (N2) is only available to the ocean via biological N2-fixation, which is restricted to a limited 

group of prokaryotes called diazotrophs (Capone 2008). During N2-fixation, N2 gas is reduced to 

ammonia; this energy consuming reaction is catalyzed by the O2-sensitive enzyme nitrogenase (Fig. 4) 

and is performed as follows: 

 

N2 + 8H+ + 16 ATP + 8e- → 2 NH3 + H2 + 16 ADP + 16 Pi 

 

In environmental molecular studies used the nifH gene, encoding for the nitrogenase reductase enzyme 

(Fig. 4), as the functional genetic marker for N2-fixation (Zehr et al. 1998).  
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The availability of fixed (i. e. bio-available inorganic) N is a limiting factor for oceanic primary 

productivity on a global scale (Gruber 2004) because oceanic N2-fixation with a globally estimated 

rate of ~135 Tg N y-1 (Codispoti 2007) cannot balance the removal of fixed inorganic N-species by N-

loss processes; consequently, current estimates propose an oceanic N-deficit of ~234 Tg N y-1 

(Codispoti 2007). However, until recently, oceanic N2-fixation was mainly attributed to phototrophic 

cyanobacteria, such as Trichodesmium or Crocosphaera, which are due to their light demand restricted 

to usually nutrient depleted surface to subsurface waters (Capone et al. 1997; Zehr and Turner 2001). 

Thus, estimates of N2-fixation might be strongly biased as they focused exclusively on N2-fixation by 

those cyanobacterial diazotrophs in the euphotic zone (Codispoti 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Structure of the nitrogenase with co-factors  
(source: http://www.case.dtu.dk/English/Research/Electrochemicaln2fixation)  

 

 

Nevertheless, a broad diversity of non-cyanobacterial diazotrophs has been monitored in surface 

waters and OMZs, thus demonstrating the ubiquity of those diazotrophs in the ocean (Farnelid et al. 

2011).  

The environmental conditions leading to the distribution patterns of diazotrophs (Fig. 5) are still not 

fully understood, however temperature, iron and phosphorous supply and dissolved oxygen are 

regarded as key factors (as recently overlooked in Sohm et al.(2011)). An active involvement in N2-

fixation of non-cyanobacterial, potentially heterotrophic diazotrophs as a previously unrealized source 

of fixed N, particularly in the eastern tropical South Pacific, has been suggested ((Sohm et al. 2011), 

Fig. 5).  
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Further, the application of a novel method (Mohr et al. 2009) to determine in situ rates of N2-fixation 

demonstrated that the apparent imbalance of N-loss and N-input might have partially been caused by a 

severe methodological-derived underestimation of N2-fixation rates (Grosskopf et al., submitted) by 

the previously used classical method (Montoya et al. 1996a). The major difference between the classic 

and the novel method consists of adding 15N2 enriched filtered seawater instead of the direct injection 

of a 15N2 gas bubble to the seawater incubations. Thus, upward revisions might most likely be required 

due to N2-fixation by organisms other than previously considered ones and due to the described 

methodological underestimations. 

 

 
Fig. 5: Distribution of N2-fixation rates, diazotrophs and nutrient limitation (Sohm et al. 2011): Relative 

N2-fixation and the prevailing limiting nutrient are shown in each area by the fill colour and outline, 

respectively. Particularly, the low abundance of unicellular cyanobacteria in the eastern tropical South Pacific 

region is striking (DDA - diatom diazotroph association; EQ – equator). 

 

 

N2-fixation is highly sensitive towards dissolved O2 (Dixon and Kahn 2004; Leigh and Dodsworth 

2007), as the nitrogenase (Fig. 4), is inhibited by O2 (Dixon and Kahn 2004). Thus, low oxygen 

conditions as present in OMZs sustain a potential niche for diazotrophs. However, high amounts of 

dissolved inorganic N compounds such as nitrate are commonly present in OMZs, which are 

classically regarded to inhibit N2-fixation.   

Nitrogen is continuously removed by anaerobic ammonium oxidation with nitrite (NO2
-) to N2  

(anammox, (Thamdrup and Dalsgaard 2002; Kuypers et al. 2003; Kuypers et al. 2005; Francis et al. 

2007)) which has been proposed the dominating N-loss process for instance in the OMZ waters off 

Namibia (Kuypers et al. 2005), Oman (Jensen et al. 2011), Peru (Hamersley et al. 2007) and Chile 

(Thamdrup et al. 2006). Moreover, N is lost or recycled via denitrification (the 4-step reduction of 
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nitrate (NO3
-) to N2 (Devol 2008)), DNRA (the dissimilatory nitrate reduction to ammonia, as 

hypothesized by Lam, et al. (Lam et al. 2009)) and nitrification (the aerobic oxidation of ammonia via 

NO2
- to NO3

- (Ward 2008), Fig. 6). The resulting overall net N-loss resulting from those processes to 

the ocean as well as the relative contribution of the respective processes is again strongly impacted by 

the present O2 concentrations (Kalvelage et al., unpublished), with decreasing O2 concentrations 

favouring N-loss processes, in general. In OMZs enhanced N-loss (Deutsch et al. 2007) resulting in a 

N-deficit (low N*, see Fig. 3) and the simultaneous gain of phosphorous (P) from anoxic shelf 

sediments (resulting in high P*, i.e. excess P (Ingall and Jahnke 1994)), is proposed to provide niches 

for diazotrophs and thus may promote N2-fixation.  A spatial connection of N-loss and N-input via N2-

fixation in OMZs is therefore hypothesized. A very recently published study already demonstrated the 

co-occurrence of denitrification and N2-fixation in an anoxic lake (Halm et al. 2009); however, 

evidence for a coupling of those processes in the ocean is currently missing.  

 

 

 
 
Fig. 6: The marine N-cycle with all known processes (pink)  including key genes (blue) modified from Francis, 

et al. (Francis et al. 2007) 
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Besides the classical N-loss of fixed N via anammox and denitrification, the formation of the highly 

potent greenhouse gas and major ozone depleting compound N2O (Denman 2007; Ravishankara et al. 

2009) constitutes a minor N-loss term (~6 Tg N y-1). Nevertheless, the production is of significant 

importance for both, the atmospheric chemistry and the Earth’s climate (Bange 2006b; Codispoti 

2007). The contribution of the marine N2O emissions from the ocean (incl. coastal areas and rivers) to 

the atmosphere accounts for about 21% of the natural sources and 10% of the anthropogenic sources 

(Denman 2007). Thus, the ocean is a major source of N2O to the atmosphere. Tropical upwelling 

regions such as the Arabian Sea and the south-eastern Pacific (off Peru and Chile, (Naqvi et al. 2005b; 

Cornejo et al. 2007)) show enhanced production of N2O under low O2 conditions as present at the 

boundaries of OMZs.  

N2O is biologically formed by prokaryotes via two major pathways (Fig. 5); both strongly sensitive to 

O2: Under suboxic to hypoxic conditions, N2O is mainly formed via denitrification. As an 

intermediate, N2O can be produced and with further decreasing O2 conditions consumed as well. In 

oxic to suboxic environments, N2O is produced as a by-product during nitrification, which is the 

oxidation of ammonium via nitrite (NO2
-) to NO3

-. Until recently, N2O production via nitrification was 

exclusively ascribed to ammonia-oxidizing bacteria (Goreau et al. 1980), however, the discovery of 

archaeal ammonia oxidation (Wuchter et al. 2006), their dominant abundance in various ocean regions 

(Molina and Farias 2009; Molina et al. 2010; Santoro et al. 2010) and the very recent publication of 

N2O production detected in a archaeal enrichment cultures (Santoro et al. 2011) point towards a major 

role of those organisms in marine N2O production. Moreover, a combination of both processes 

(denitrification and nitrification, connected via the intermediate product NO2
-) has been demonstrated 

to enhance production of N2O (Cantera and Stein 2007); however, information on the N2O yield by the 

so called nitrifier-denitrification in the ocean is sparse. Additionally, production via DNRA and 

anammox is suggested (Kaspar and Tiedje 1981; Kaspar 1982; Welsh et al. 2001; Kartal et al. 2007; 

Lam et al. 2009) but the overall contribution of those processes to the marine N2O budget has yet not 

been demonstrated. The yield of produced N2O depends strongly on the present O2 conditions 

(Codispoti et al. 2001; Codispoti 2010). Rapid changes of anoxic to oxic conditions, temporally and 

spatially, favour in general nitrification activity (Schweiger et al. 2007) and under suboxic conditions 

(1- 30 % O2 saturation) N2O production as well (Codispoti 2010). Sulphide pulse experiments indicate 

that during re-oxygenation partial nitrification (the oxidation of NH4
+ to NO2

-) associated with a 

significant formation of N2O is triggered (Erguder et al. 2008; Yu et al. 2010). On the other hand, 

hypoxic conditions and spontaneous deoxygenation favour rapid N2O production via denitrification 

(Naqvi et al. 2000; Codispoti 2010). Thus, highly dynamic systems as present in the OMZ off Peru 

with rapidly changing O2 conditions are locations favouring N2O formation by nitrification and 

denitrification, considerably. Hence, future oceanic net N2O production will be substantially 

influenced by changing O2 conditions in OMZs (Fig. 7, (Capone 2008; Codispoti 2010)), thus, the 

future development of OMZs is predicted to severely influence the future climate by critically 

impacting on N2O production. 
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Fig. 7: A future perspective of a generic eastern boundary system in present-day and future 

oceans from Codispoti, 2010 (Codispoti 2010): Suboxia can extend further offshore than shown here, 

but is absent from a large portion of the oceanic eastern boundary. 

 

Marine Metagenomics/ -transcriptomics 

The global N-cycle is predominantly driven by prokaryotes. A deeper understanding of the community 

structure and specific spatial distribution of microorganisms involved in the N-cycle is crucial. In 

marine suboxic environments with a high complexity of microbial N-transformations it is impossible 

to distinguish between the various processes using conventional chemical rate measurements.  

To accomplish this task, the detection of functional genes of the N-cycle is of particular interest in 

revealing co-occurring processes and complex microbial community structures. The optimized high 

resolution monitoring of cluster specific distribution and expression patterns along horizontal and 

vertical gradients along with rates derived from onboard incubation experiments allow to assess the 

relative contribution of organism groups to N-turnover processes. 

The inability to cultivate the majority of microorganisms present in the environment (99% according 

to current estimates (Amann et al. 1995)), particularly in the ocean demonstrates the need for culture- 

independent approaches. A variety of methods developed over the recent years achieves to overcome 

this bottleneck (Handelsman 2004; Weiland et al. 2010). In order to assess the present genetic and 

metabolic potential, novel techniques such as pyrosequencing of DNA and cDNA libraries, TaqMan- 

based quantitative real time PCRs and microarrays for gene abundance and expression studies are 

available, now, thus allowing an in-depth analysis of complex communities. The comparison of 

traditional Sanger sequencing to pyrosequencing is expected to show a higher saturation by this novel 

technique; hence, the broader coverage compared to conventional methods demonstrates the need for 

those novel applications. Moreover, microarrays allow fast screening of large numbers of samples for 

target genes and their expression (Taroncher-Oldenburg et al. 2002). High resolution gene 
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quantification by qPCR allow a higher precision compared to clone library abundances (Langlois et al. 

2005a) and further enable an absolute quantification of gene and transcript copy numbers. 

Open questions and major goals of this project 

The potential future changes of the marine N-cycle are a topic of emerging importance in 

biogeochemical studies, particularly in the context of climate change. However, the microbial key 

processes in OMZs, the O2 tolerance or sensitivity of the contributing organisms and the spatial and 

temporal variation of the various N-turnover processes and contributing organisms remain to be 

unravelled. Field studies on the tolerable O2 ranges of the various N-turnover processes have 

previously been missing. Potential overlaps and co-occurrences of N-cycle processes have yet not 

been described. Additionally, the discrepancy between N-loss and N-input by N2-fixation in the ocean 

has still not been explained; investigations on N2-fixation below the euphotic zone are not available. 

Moreover, the organisms responsible of the formation of oceanic N2O have not directly been 

identified.  

Hence, this thesis aimed to investigate the effects of O2 on microbial communities involved in N-loss, 

N2-fixation (Chapter 1) and N2O production (Chapter 2, 3)  in OMZ waters. High resolution 

measurements of nutrients, O2, N2O and key functional genes involved in the N-cycle were used to 

identify regions of active N-transformations and key players of the N-cycle in and near the 

investigated OMZs (see Fig. 2). Rate measurements of N2-fixation and N2O production were 

conducted at various O2 concentrations via on-board incubation experiments, the involved 

microorganisms were identified using molecular techniques and in case of N2O production by 

performing inhibitor experiments. To assess the abundances of organisms involved in the N-cycle and 

their active involvement, a set of key genes has been used as functional markers (Fig. 5). The gene 

abundance and expression determined in high resolution along vertical and horizontal gradients in the 

water column has been used to estimate the genetic potential and active contribution of the various 

pathways of the N-cycle. Thus, key organisms and their reaction towards changes in dissolved O2 

were identified in order to estimate (i) future changes of the community structure and their active 

involvement in the N-cycle, (ii) the ability of microorganisms to react on changing O2 conditions and 

(iii) the overall impact on biologically driven N-cycle processes. 
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Chapter 1: Nitrogen fixation in the oxygen minimum zone off Peru 

 

Summary 

 

Marine dinitrogen (N2) fixation is quantitatively the most important source of new nitrogen (N) to the 

ocean (Duce et al. 2008). It is of global importance because the availability of fixed N controls 

primary production in large areas of the surface ocean. Classically, marine N2-fixation is regarded as a 

process predominantly ascribed to cyanobacteria present in the euphotic zone (Capone et al. 2005). 

However, assuming that the oceanic N-inventory is at steady-state (Codispoti 2007), cyanobacterial 

N2-fixation in surface waters alone cannot balance oceanic nitrogen losses. Thus, current estimates of 

the oceanic N budget led to the proposal that oceanic oxygen minimum zones (OMZ) may provide 

additional niches for N2-fixing organisms, possibly balancing oceanic N-loss terms. 

Here, we report a high diversity of diazotrophs, including novel potentially heterotrophic clades, 

exhibiting specific distribution patterns and actively contributing to N2-fixation throughout the water 

column in the OMZ off Peru, thus extending the habitat of marine diazotrophs to low oxygen/ high 

NO3
- areas. Moreover, the co-occurrence of the functional marker gene for N2-fixation, nifH, and 

active N2-fixation with key functional genes of nitrification, anammox and denitrification suggests that 

a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. Further, N2-

fixation in OMZs and adjacent surface waters is proposed to significantly contribute to the oceanic N-

budget, thus stating a substantial paradigm shift of the traditional view of the oceanic N-cycle. 

Particularly with regard to ocean deoxygenation as a result of global warming, our results demonstrate 

the increasing importance of OMZs as hotspots of N2-fixation. 

 

Introduction 

 

The atmospheric pool of dinitrogen (N2) is made available to the ocean by biological N2-fixation, a 

process exclusively performed by diazotrophs, a special group of prokaryotes (Capone 2008; 

Moisander et al. 2010). Global estimates, mainly based on N2-fixation by photoautotrophic 

diazotrophs in surface waters (~150 Tg N y-1) cannot balance the nitrogen (N) loss (~ 400 Tg N y-1) 

(Karl et al. 2002; Codispoti 2007) resulting from microbial processes such as anammox (the anaerobic 

oxidation of ammonium with nitrite to N2 (Dalsgaard et al. 2003; Kuypers et al. 2003)) and 

denitrification (the 4-step reduction of nitrate (NO3
-) to N2 (Falkowski 1997; Codispoti 2007)). 

However, all those processes, including N2-fixation, are strongly sensitive towards dissolved oxygen 

(O2). Hence, oxygen minimum zones (OMZs), such as present in the Arabian Sea and the Pacific 

Ocean (Stramma et al. 2008), particularly the large and persistent OMZ off Peru with O2 

concentrations below the detection limit of conventional methods, are suggested to provide niches for 

organisms involved in the N- cycle and are proposed hotspots of N-turnover (Capone 2008; Codispoti 
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2010). Low O2 concentrations, excess phosphorous (P) (Deutsch et al. 2007), resulting from enhanced 

N-loss and from the release of reactive phosphate into the water column from the sediment (Ingall and 

Jahnke 1994), and the availability of dissolved iron in OMZs are environmental conditions generally 

proposed to favour N2-fixation; however, the diazotrophic communities detected in OMZ waters by 

recent molecular studies differ strongly from the classic marine diazotrophic communities (Fernandez 

et al. 2011; Hamersley et al. 2011) (Zehr et al. 2000; Zehr and Turner 2001; Falcon et al. 2002; 

Langlois et al. 2005a). Further, information on the spatial distribution of diazotrophs present in OMZs 

and their relative contribution to the fixed N budget in the ocean are currently missing.  

According to the low O2 conditions and the present excess P (Deutsch et al. 2001; Deutsch et al. 

2007), we propose that N2-fixation in OMZs and adjacent surface waters has significantly been 

underestimated (partially due do a lack of measurements) and might at least partially balance the 

apparent deficit in fixed N (~200 Tg N y-1, (Codispoti 2007)). 

Here, we present a dataset of two cruises to the eastern tropical North Pacific (ETSP) off Peru (M77/3 

and M77/4 on the German research vessel Meteor, Dec. 2008- Feb. 2009). By combining molecular 

tools with in situ rate measurements using 15N- incubations, seven novel nifH clusters have been 

identified only distinctly related to previously described marine diazotrophs, some potentially 

heterotrophic as suggested by glucose addition experiments. The cluster specific nifH abundance and 

expression, along with active N2-fixation throughout the water column and with the presence of key 

genes of N-loss processes, was determined. Further, the co-occurrence of N2-fixation and N-loss 

processes has been estimated; sustaining a novel niche for diazotrophs in OMZs. 

 

Results 

 

Diversity of novel nifH clusters in the OMZ off Peru 

Unexpectedly, high diazotrophic diversity in nifH sequences was detectable in the OMZ off Peru. 

From a total of 600 DNA and cDNA sequences from various depths, seven novel nifH clusters (further 

referred to as P1- P7) were identified from nifH clone libraries of several stations during two cruises 

(M77/3, M77/4, 2008/2009) to the OMZ off Peru (Fig. 1.1, map). Those clusters, which have 

previously not been described, were in large parts amplified from OMZ waters below the euphotic 

zone, which points towards a non-phototrophic metabolism in those organisms. None of those clusters 

present in our clone libraries was affiliated to the filamentous non-heterocystous cyanobacterium 

Trichodesmium sp., to the diatom endosymbiont Richelia sp. or to group A, all of which were 

previously considered key diazotrophs in the ocean occurring at high abundances (Zehr and Ward 

2002; Montoya et al. 2004; Church et al. 2005a). Sequences of group B closest related to 

Crocosphaera (Zehr et al. 1998) were the only cyanobacterial sequences recovered to a small extent 

from some of our libraries (1 of ~300 sequences). P8, previously identified in other studies (Fernandez 

et al. 2011; Halm et al. 2011), was mainly present in clone libraries from M77/4 along the North-

South transect at 85.83°W (Fig. 1.1) down to more than 4000 m.   
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The presence of a diazotrophic community largely differing from those previously described, strongly 

points towards the fact that the current understanding of marine N2-fixation needs to be reassessed. 

Clusters P1 and P2, which are phylogenetically closest related to spirochaeta and archaea, 

respectively, do not contain many marine diazotrophic representatives. The presence of those deep 

branching clusters demonstrates that other groups than previously considered might significantly 

contribute to oceanic N2-fixation. Present throughout the water column of the OMZ off Peru, cluster 

P1 was amplified from all clone libraries, thus dominating large parts of the system. Besides those 

deep branching clusters, clusters P3-P7 are related to different branches of the proteobacteria,  

showing some similarity to nifH genes amplified from hypoxic basins in the Californian Bight and the 

OMZs off Peru and Chile (Fernandez et al. 2011; Hamersley et al. 2011). Although none of them was 

identical to previously published sequences, proteobacterial diazotrophs seem to be abundant in OMZs 

and thus might be of importance with regard to expanding OMZs (Stramma et al. 2008).  

The phylogenetic analysis of nifH genes demonstrated a surprisingly broad diversity of sequences 

falling into clusters previously not considered abundant or important for N2-fixation in the ocean. The 

presence of those clusters indicates a potential to fix N2 in OMZ waters. Thus, current budgets of 

oceanic N2-fixation mainly based on photoautotrophic diazotrophs in the photic zone (Codispoti 2007) 

might have led to a significant underestimation of oceanic N2-fixation; however, the present N-deficit 

indicates that N2-fixation within the OMZ does not fully balance the present N-deficit (Deutsch et al. 

2007). 
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Fig. 1.1: Phylogenetic tree of nifH sequences: sequences were derived from   DNA nifH clone libraries from 

the OMZ of Peru, sequences highlighted in light green are related to cyanobacteria, and red highlighted 

sequences are proteobacterial. The depth integrated P* distribution throughout the OMZ is shown on the map, 

the three main transects along (A) 10°S, (B) 16°S and (C) 85.83°W are indicated by black boxes. 

 

Spatial distribution and abundance of novel nifH clusters  

The vertical and horizontal distribution of the nifH gene of those novel diazotrophic clusters 

throughout the water column of the OMZ off Peru from surface waters down to 1000 m (P8 at transect 

C, Fig. 1.1 map, along 85.833°W) and most likely even deeper, points towards an important 

contribution of N2-fixation below the photic zone to the marine N-budget. The detected diazotrophic 

clusters were distributed in specific patterns with high nifH gene copy numbers (Fig. 1.2). Clusters P1 

and P4 were present in significant abundances up to 105 copies per L (detected by cluster specific 

TaqMan- qPCR), thus dominating the diazotrophic community from the shelf to about 83°W at 10°S 

and to 77°W at 16°S. While the P1 cluster appears associated with deeper waters (100- 300 m), and 

lower O2 conditions other clusters (P2, P3, P4 Fig. 1.2 and Fig. S1) were present in surface to sub-
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surface waters. Hence, those novel identified clusters appear to occupy different niches within the 

OMZ. 

In contrast to the general assumption that diazotrophs thrive mainly in N-depleted waters, clusters  P1, 

P4 and P8 were present at nitrate (NO3
-) concentrations up to ~40 μM (Fig. 1.2), indicating that the 

expression and activity of the nitrogenase is apparently not inhibited by those NO3
- concentrations, in 

case the nitrogenase is active. In contrast to P1 and P4 with highest abundances at coastal stations, 

cluster P8, although present throughout the Peruvian OMZ (Fig. 1.2, 1.3), dominated the diazotrophic 

community and had highest abundances up to 106 nifH copies L-1 in the nutrient depleted open ocean 

region along the north-south transect (transect C, Fig. 1.1,1.3). Thus, P1 with highest abundances on 

the shelf and P8 with highest abundances off-shore, are spatially inversely correlated (Fig. S2)  

Crocosphaera (CR) a cyanobacterium, commonly regarded as one of the most important diazotrophs 

in the ocean (Zehr et al. 2001; Church et al. 2005b), was mainly present off-shore in waters with high 

NO3
- concentrations. At 16°S, nifH genes affiliated to CR were only detected in copy numbers up to 

1.8 x 102 copies L-1 on the shelf (Fig. 1.2). The distribution of CR suggests that parameters other than 

NO3
- influence the presence of CR. Abundances of CR are generally rather low compared to other 

detected diazotrophs and it remains unclear if CR is actively fixing N2 in the OMZ off Peru. 
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        (A)         (B) 
 
Fig. 1.2: Distribution of NO3

-, O2 and the newly identified nifH clusters: NO3
- (µM), nifH clusters P1, P4, P8 

and Crocosphaera (log10 copies L-1), the oxycline (µM O2) is indicated with white contour lines along (A) 10°S 

and (B) 16°S. 
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Fig. 1.3: Depth integrated horizontal distribution of functional key genes of N-loss processes and N2-

fixation in the upper 350 m in the Peruvian OMZ: archaeal amoA (functional marker for archaeal ammonia 

oxidation), nirS (functional marker for denitrification), hzo (functional marker for anammox), nifH for 

diazotrophs clusters P1, P8 and total nifH (log10 copies per L). The section shows the vertical distribution of the 

dominant nifH cluster P8 (log10 copies L-1, measured by qPCR) along a North-South transect at 85.83°W as 

indicated by the black box on the map, the oxycline (µM O2) is indicated as contour lines. 

 

In situ N2-fixation 

We demonstrated active N2- fixation in the presence of novel nifH clusters detected along 10°S 

pointing towards a key role of the newly identified clusters for N2-fixation in this area. A broad peak 

of N2-fixation extending into the OMZ (beginning at ~ 40 m) could be observed offshore from 

79.134°W to 81.361°W (Fig. 1.4, Fig. S3). Analysis of endpoints of 15N2-incubation experiments (Fig. 

1.4) demonstrated the exclusive presence of P1, P4 and P7 nifH genes in the different treatments (Fig. 

1.4, Fig. S4 shows a similar experiment at a more coastal station).  In those experiments, N2-fixation 

was promoted by the addition of 10 µM glucose and further more by the combined addition of 

oxygenated water (2 µM O2) and glucose. This suggests that heterotrophic diazotrophs present in the 

upper portion of the OMZ are limited by the availability of reduced carbon compounds (see also Fig. 

S4).  

While the addition of glucose stimulated the growth of clusters P1, P4 and P7, the combined addition 

of glucose and oxygen promoted exclusively the growth of P7, whereas P1 and P4 were not 

significantly affected. Highest N2-fixation rates in this experiment were present along with an increase 

of nifH copy numbers of a combination of P1, P4 and P7 when no O2 was added (in situ O2 

concentrations ~ 1.85 µM), pointing towards an active contribution of those clusters at the present low 

O2 conditions in the ETSP. The additional supply of O2 suggests a potential switch from a 

       total nifH [copies m-2]              archaeal amoA [copies m-2]                  nirS [copies m-2]                              hzo 
2

P8 nifH [copies m-2] P1 nifH [copies m-2] 
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combination of clusters towards P7 when O2 is transported (e.g. by O2 intrusions or lateral mixing) 

into the OMZ, demonstrating the capability of the diazotrophic community to react to rapidly 

changing O2 conditions.  

 

 
Fig. 1.4: Vertical profiles of N2- fixation: (A) Water column N2- fixation determined by 24h 15N2- incubation 

experiments along the initial vertical distribution of nifH clusters P1 and P4 at station #3 (Fig. 1.1, map, 10°S/ 

81.3°W) and (B) along O2 and nutrient gradients. (C) The effect to the addition of glucose (2µM) and oxygen 

(10 µM) on N2-fixation as well as on the nifH gene abundances of the detectable clusters P1, P4 and P7 (both as 

end-point measurements in 24 h incubations, samples from 95m depth indicated by an arrow in panel A)) were 

determined.  
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Further south, N2-fixation rates increased, showing higher activity in surface waters than at depth, 

consistent with low N/P ratios (resulting in high P*), there. Highest N2-fixation rates of 24.8 ± 8.4 

nmol N d-1 L-1 were measured at a sulphidic station (12.37°S/ 77°W) in surface waters, where nifH of 

CR and P1 was actively expressed (samples specifically collected for mRNA purification, Fig. 1.5). At 

this station, large parts of the water column were fully anoxic (Fig. 1.5), and hydrogen sulfide (H2S) 

was present. Below 30 m depth, the water column was depleted in NO3
- and NO2

-, the key substrates 

for anammox and denitrification, thus N-loss processes were partially hindered. However, ammonia 

was present in concentrations of 2-4 µM below the oxycline. Integrated water column N2-fixation rates 

exceeded 1 mmol N d-1 m-2 comparable to rates reported from major Trichodesmium blooms (Capone 

et al. 2005) (although possibly underestimated, as very recently demonstrated (Grosskopf; Mohr et al. 

2010)). The peak in nifH expression of P1 present at 80 m along with a maximum in N2-fixation 

indicates an active involvement of this cluster in N2-fixation, at this depth (Fig. 1.5). Moreover, 

surface N2-fixation might mainly result from P5, which was the only cluster present in cDNA clone 

libraries, here, although the nifH gene and active gene expression of P5 was only detectable from 15-

30 m depth (Fig. S5). The measured high N2-fixation rate detected at this sulphidic station 

demonstrates that, in addition to an underestimation of oceanic N-input due to deep N2-fixation, 

spontaneous sulphidic events, previously been reported to occur in intense OMZs (Naqvi et al. 2000), 

might sporadically trigger significant N2-fixation, potentially providing an important N-input to the 

ocean. In addition to a spatial underestimation of the diazotrophic habitat, those temporally restricted 

events sustain hotspots of N2-fixation in OMZs and adjacent surface waters. Hence, N2-fixation in and 

near OMZs is proposed to significantly contribute to the oceanic fixed N budget; yet, further studies 

have to follow focusing on quantifying this source. 
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Fig. 1.5: Vertical distribution of (A) the nifH gene abundance, (B) the measured N2-fixation and nifH gene 

expression (dashed line, second x- scale, samples have specifically collected for RNA extraction), and (C) 

chemical parameters (O2, NO3
-, NO2

-, NH4
+) at a coastal sulphidic station (M77/3, #19, 12.37°S/ 77°W) 

 

 

Co-occurrence of N2-fixation and N-loss processes 

High nifH gene abundances of cluster P1 coincided with maxima in abundance of key genes of 

archaeal ammonia- oxidizers (archaeal amoA, coding for the ammonia monooxygenase), denitrifiers 

(nirS, coding for the cd1-containing nitrite reductase) and anammox bacteria (hzo, coding for the 

hydrazine oxidoreductase), suggesting a close spatial coupling between N2-fixation and N-loss (Fig. 

1.3), as previously proposed by the model prediction of Deutsch et al. (Deutsch et al. 2007). N2-

fixation may be responsible for the progressive increase in N: P ratio from the inshore waters to the 

open ocean. A linear correlation of P1 and NO2
- was indicated by a principal component analysis (Fig. 

S6), which is most pronounced along 10°S (n = 112, r = 0.799, Fig. S6). This finding is in line with 

the significant correlation of P1 and hzo (n = 113, r = 0.591) and P1 and archaeal amoA (n = 237, r = 

0.56), at 10°S. Total microbial cell numbers (Fig. S7) show that archaeal ammonia oxidizers largely 

dominate the system, making up to 80 % of total microbial cells, while the abundance of diazotrophs 

is ~ 3 orders of magnitude lower, assuming one nifH or one amoA gene copy per cell. Anammox has 

been demonstrated to be the major active process in N-loss during the sampling period in the OMZ off 

Peru  (Kalvelage et al., unpublished), thus a co-occurrence of N2-fixation and anammox rather than 

denitrification, is likely. Evidence for the co- occurrence of N-loss and N2-fixation mainly ascribed to 
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Chlorobium-like diazotrophs has previously been documented for an anoxic lake (Halm et al. 2009) 

and is proposed to play a major role in marine N2-fixation, as well. We hypothesize, that hotspots of 

N-loss processes, such as OMZs, provide niches for N2-fixers. Consequently, the marine N-budget 

might essentially depend on the future development of OMZs. 

 

Conclusions 

 

At the time of sampling, the OMZ off Peru supported a diverse community of diazotrophs, with 

selected phylotypes reaching abundances that suggest they play a role in N2- fixation. This has been 

demonstrated by the detection of several novel nifH clusters, their presence and expression along with 

active N2-fixation. The abundance of nifH throughout the water column down to 1000 m points 

towards a significant contribution to N2-fixation in OMZ waters and most likely even deeper; 

sustaining additional N-input in addition to surface N2-fixation. We conclude that the apparent deficit 

in oceanic fixed N might largely result from underestimating deep N2-fixation, as current estimates of 

the marine N-budget exclusively focus on photoautotrophic N2-fixation in the photic zone. Moreover, 

high N2-fixation during transient events, such as described, here, might significantly contribute to the 

oceanic N-input and might require additional upwards revision of the oceanic fixed N term.  Further, 

we obtained evidence that the presence of reactive N-compounds (NO3
-, NO2

-) in the Peruvian OMZ 

does not negatively impact N2-fixation, thus significantly challenging the current view of N2-fixation 

in high N environments. 

 A major contribution of heterotrophic diazotrophs to N2-fixation among the novel clusters is 

suggested, as demonstrated in fertilization experiments with glucose. The co-occurrence of cluster P1 

with key functional genes of mainly nitrification and anammox suggests a spatial coupling of N-input 

and N-loss processes in the OMZ off Peru, normalizing the N- deficit present on the shelf towards the 

open ocean. Detected at highest N2-fixation rates, a particular importance of this cluster is indicated. 

Those findings represent major paradigm shifts in understanding oceanic N2-fixation, by extending the 

niches of diazotrophs towards high nitrogen and low oxygen environments, demonstrating the co-

occurrence of N2-fixation and N-loss and indicating a major dependency of diazotrophic clusters on O2 

and reduced carbon compounds.  

In the context of eutrophication (Duce et al. 2008) and expanding OMZs (Stramma et al. 2008), 

understanding the importance of N2-fixation in OMZs and of diazotrophs affiliated to those preferably 

anoxic heterotrophic clusters  is crucial for estimating future changes in the marine N-budget. 

 

 

 



                       Sensitivity of the biological oceanic nitrogen cycle to changes in dissolved oxygen  
 

 32

Methods summary 

 

Hydrographic parameters and nutrients 

Samples for salinity, O2 concentrations and nutrients were taken from a 24-Niskin- bottle rossette 

equipped with a CTD sensor or a pump-CTD. Oxygen concentrations were determined according to 

the Winkler method; salinity and nutrient concentrations were determined as decribed (Grasshoff 

1999) . 

 

Molecular genetic methods 

Samples for the extraction of DNA/ RNA were taken by filtering a volume of about 2 L (exact 

volumes were determined and recorded continuously) of seawater through 0.2 µm polyethersulfon 

membrane filters (Millipore, Billerica, MA, USA). The filters were immediately frozen and stored at -

80°C. Specific RNA samples were taken by filtering recorded volumes of seawater for a time intervall 

not exceeding 20 min. 

DNA and RNA was extracted using the Qiagen DNA/RNA All prep Kit (Qiagen, Hilden, Germany) 

according to the manufacturers protocol. Nucleic acid concentrations were determined using 

PicoGreen and RiboGreen (Invitrogen, Carlsbad, CA) measurements.  

Residual DNA was removed from the purified RNA  by a Dnase I treatment (Invitrogen, Carlsbad, 

CA), purity of RNA was checked by 16S rDNA PCR amplification prior reverse transcription. The 

extracted RNA was gene specifically reverse transcribed to cDNA using the Superscript III First 

Strand synthesis Kit (Invitrogen, Carlbad) following the manufacturers’ protocol.  

NifH was amplified by PCR with primers and probes according to (Zani et al. 2000; Langlois et al. 

2005a). For the novel nifH clusters, qPCR primers and probes were designed with the Primer Express 

software package, oligonucleotide sequences and qPCR conditions are given in Tab.1. AmoA PCRs 

and quantitative PCRs were performed as described in Loescher (submitted 2011); nirS and hzo were 

amplified according to Lam (2007) and Schmid (2010). 

Cloning of PCR amplicons was performed using the Topo TA Cloning®Kit (Invitrogen, Carlsbad, CA) 

according to the manufacturers’ instructions. Sanger sequencing was carried out by the Institute of 

Clinical Molecular Biology, Kiel. Sequences were analyzed using the ClustalW multiple alignment 

tool on a 321 bp fragment for nifH, sequence differences were set on a minimum of 5%, phylogenetic 

trees were made using distance-based neighbour-joining analysis. 

Pure cultures of Azotobacter vinelandi (DSMZ 332), Klebsiella pneumoniae M5A1 and 

Methanosarcina mazei Gö1 were grown under N2-fixing conditions, mRNA was purified using 

Qiagen DNA/RNA All prep Kit and consequtively used for RT-qPCR using the Qiagen Quantitect 

SybrGreen RT Kit (both from Qiagen, Hilden, Germany). 
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15N2 seawater incubations 

Seawater incubations were performed in triplicates at 6 stations in the OMZ off Peru (M77/3) as 

previously described (Montoya et al. 1996b, 1996a; Capone 2001). P* was calculated according to 

Deutsch et al. (Deutsch et al. 2007). 
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Tab 1: Primers and PCR conditions. For real-time qPCR, the initial denaturing step was 10 min at 95°C, 

annealing temperatures were the same as in the end point PCRs, no final extension step took place, 40 cycles 

were performed followed by melting curve analysis.   

 

Cluster reference 

sequence 

Forward primer 5’- 

3’ 

Reverse primer 

5’- 3’ 

Probe annealing 

temperature 

[°C] 

P1 M773_3_70_4 GGACTACATTCGG

ACTAG 

GTCGTAACCA

CGATCTAG 

TCTTCAAAATCCCGCGTCCC

G (antisense) 

60 

P2 M773_3_150_7 GGTGTTCTATGTG

TTGAA 

GTAGGAGTTA

CGAATTGG 

TCGCCTAGCACATCATAGAT

CAC (antisense) 

50 

P3 M773_56_100_

1 

CACAGTTAGAGAG

GTAGG 

CAAGGTCGTC

AGTAAAAG 

AGCTCGACAAGGTAATGTTC

ACA (sense) 

54 

P4 M773_22_30_1 CTCGCACAGAAAT

CAGTG 

GCATGTTAAT

GGAAGTGATG 

ACGTCGAACTCGAAGACATC

CG (sense) 

60 

P5 M773_56_100_

11 

GGAAGTCTTACTT

GAAGG 

CACCATTTTCC

TCAAGAA 

ATTGCTGTAATAACGCCTCT

GC (antisense) 

60 

P6 M773_56_85_3 GCTCAATCTACAA

TTATGC 

GCTGTAATAA

CTCCTCTAC 

ACCACCTGACTCAGTACAAT

TAATGT  (antisense) 

50 

P7 M773_28_115_

1 

GGTTCTGTTGAAG

ACATC 

CGAAGTCTAA

GTCTTCTTC 

ATCGCTGTGATTACACCACG

AC (antisense) 

52 

P8 

 

M774_800m_11

B14a 

ACTCGTCTGACTT

CAC 

TTAATACATCG

TTCCA 

AAAGCACAGAATCATG  52 
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Supplemental material 

 
Distribution of additional novel nifH clusters 

Although clusters P2, P3, P6 and P7 showed lower nifH abundance than the previously discussed 

clusters, they show a specific distribution along vertical and horizontal gradients. Generally, those 

clusters appear in higher abundance at 16°S, where N/P ratios were rather low. C P3 was present in 

highest abundances in surface waters, potentially favouring present high P* value.  
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Fig. S1: Distribution of P*, NO2

-, novel nifH clusters and total nifH: P*, NO2
- (µM), nifH clusters P2, P3, P6 

and P7 and total nifH (log10 copies L-1, total nifH = tot nifH, sum of all detected clusters)), the oxycline (µM O2) 

is indicated with white contour lines along (A) 10°S and (B) 16°S. 
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Fig. S2: P1 nifH gene abundance versus P8 nifH gene abundance  

 
Fig. S3: Vertical profiles of N2- fixation: 24h 15N2- incubation experiments at two stations at 

10°S (# 805 at 79.134°W is marked with black triangles, and # 811 at 81.361°W with open 

circles). 

 
Fig. S4: N2-fixation measured in seawater incubation experiments: N2-fixation was triggered by glucose and 

glucose/ oxygen addition (#807, 20 m depth). 
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Fig. S5: Phylogenetic tree of nifH sequences: blue sequences were derived from cDNA nifH clone libraries 

from #19 (H2S present), black sequences are derived from DNA nifH clone libraries. 
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Fig. S6: Correlation of nifH P1 and NO2

- : (A) The principle component analysis shows a linear correlation of 

cluster P1and NO2
-, indicated by the red circle. (B) A significant correlation of P1 and NO2

- is detected along 

10°S (black dots). (C) P1 [log10 copies L-1] and (D) NO2
- [µM], nirS, hzo and amoA sections section overlaid by 

P1 [log10 copies L-1] indicated by dashed white contour lines. 

 

 

 
Fig. S7: Distribution of total non-green microorganisms along (A) 10°S and (B) 16°S. 
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O2 dependency of the degradation of nifH transcripts 

Compared to the sulphidic station, nifH gene expression was rather low or below the detection limit at 

other stations and in the non-sulphidic surface sample at this station; although, active N2-fixation was 

detected. This discrepancy might be potentially due to the fact, that the presence of H2S might have 

maintained the anoxic character of the seawater over the filtration period, thus protecting the nifH 

transcripts from degradation in samples with H2S present. Degradation of nifH transcripts in other 

samples might have been due to a possible regulatory effects in response to O2 on the transcription of 

the nifH gene or due to low stability of the mRNA in the presence of O2 (T1/2 = 2.4 min) as previously 

reported for mRNAs in Prochlorococcus  (Steglich et al. 2010).  We observed in pure culture studies 

with two diazotrophic bacteria, Azotobacter vinelandi (DSMZ 332), Klebsiella pneumoniae M5A1 and 

the diazotrophic archaeon Methanosarcina mazei Gö1 (of which the first is microaerophilic, while the 

latter both are anaerobic organisms) a significant decrease in nifH transcripts (~ 25%) after an 

exposure time to air of 20 min. After 60 min, no nifH transcripts were detectable in cultures of A. 

vinelandi and M. mazei, in K. pneumoniae cultures, no decrease compared to samples taken after an 

exposure time of 20 min was detectable (Fig. S8). In the context of the described discrepancy in nifH 

genes and transcripts, we propose that this is a result of exposure of the cells to O2 during the filtration 

period. Short mRNA half-life times were considered to allow rapid responses to changing 

environmental conditions and might therefore provide advantages in highly dynamic systems. 

Therefore, we hypothesize the low nifH expression being due to the conditions during filtration rather 

than to the absence of transcripts. 
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Fig. S8: Decrease in nifH transcripts over time after exposing cells to O2, measured by RT-qPCR and 

normalized to the initial sample T0, error bars denote the standard deviation of six technical replicates 
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Chapter 2: Marine pathways to nitrous oxide 
 

Introduction 

 

There is no doubt that oceanic N2O emissions play a major role in the atmospheric N2O budget. The 

quantification of the oceanic N2O emissions and the identification of the marine pathways of N2O 

formation and consumption have received increasing attention during the last few decades. The very 

first study of oceanic N2O (in the South Pacific Ocean) was published by Craig and Gordon (Craig and 

Gordon 1963), followed by studies in the North Atlantic Ocean by Junge and Hahn during the late 

1960s and early 1970s (Junge and Hahn 1971; Junge 1974). Junge and Hahn were the first to quantify 

the oceanic source of atmospheric N2O. In 1976 Yoshinari published his now ‘classical’ study of N2O 

profiles in the Sargasso and Caribbean Seas, which turned out to be groundbreaking because it was the 

first study to report the inverse correlation between N2O and O2 concentrations in the water column 

(Yoshinari 1976). He also introduced the term ΔN2O (for a definition see below) as a measure of the 

‘apparent N2O production’ and found a linear correlation between ΔN2O and AOU (apparent oxygen 

utilization)  (Yoshinari 1976). Based on this, he suggested that ‘N2O production in the sea is related in 

some way to the oxidation sequence of organic matter’, which was an early hint of nitrification (i.e. 

microbial oxidation of NH4
+ to NO3

–) as a major N2O formation process in the ocean. Cohen and 

Gordon (Cohen and Gordon 1978), Cohen (Cohen 1978) and Elkins et al. (Elkins et al. 1978) were the 

first to report a significant N2O consumption in the oxygen minimum zone in the subsurface waters of 

the eastern tropical Pacific Ocean and the anoxic waters of the Saanich Inlet basin (off Vancouver 

Island). They attributed the N2O loss to microbial reduction of N2O to N2 (i.e. denitrification). In order 

to verify the marine pathways to N2O, isotope studies have been introduced in recent years: first, 

measurements of the δ 15N value of dissolved N2O were presented by Yoshida et al. (Yoshida et al. 

1984) and nine years later Kim and Craig (Kim and Craig 1993) published the first measurement of 

the dual isotope signature (δ15N and δ 18O) of oceanic N2O. This was followed by the publication of 

the isotopomeric signature of N2O (which makes it possible to distinguish the position of 15N within 

the asymmetric N2O molecule: NNO) by Popp et al. (Popp et al. 2002) and Toyoda et al. (Toyoda et 

al. 2002). 

 

In this chapter we present a short overview of the current knowledge about the role of the ocean as a 

source of N2O and a short description about oceanic N2O distribution. It is followed by a discussion of 

the major marine pathways to N2O. In the concluding section we discuss possible consequences of 

climate change for both the marine pathways of N2O and the oceanic emissions of N2O. More 

information about N2O in the ocean can be found in a recently published overview article by Bange  

(Bange 2008).  
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The role of the ocean for the global budget of atmospheric nitrous oxide 

 

The oceanic N2O emissions play a major role in the atmospheric N2O budget (see for example Bange, 

(Bange 2006a)). In the 4th assessment report of the IPCC, mean annual N2O emissions (ranges are 

given in parenthesis) of 3.8 (1.8–5.8) × 1012g (Tg) N and 1.7 (0.5–2.9) Tg N were attributed to the 

open ocean and coastal areas (including rivers), respectively (IPCC 2007). According to the IPCC 

report, open ocean and coastal areas (including rivers) represent about 21 per cent and 10 per cent of 

the total natural and anthropogenic N2O sources of 17.7Tg N yr–1, respectively (IPCC, 2007). There 

are various reasons for the considerable ranges of uncertainty in the global N2O emission estimates 

(Bange et al. 2008): (1) different methodological approaches (empirical models versus extrapolation of 

measurements), (2) the application of different air–sea exchange models and (3) the fact that the 

applied classification of coastal areas is not uniform. 

 

Nitrous oxide in the ocean 

 

Concentrations of dissolved N2O are usually expressed as nmol litre–1 or nmol kg–1. The degree of N2O 

saturation (given in per cent) is defined as the ratio of the measured N2O concentration to the 

theoretical N2O equilibrium concentration. The equilibrium concentration in turn depends on the water 

temperature, salinity, ambient air pressure and the atmospheric N2O dry mole fraction at the time 

when the water mass was last in contact with the atmosphere (Weiss and Price 1980). An N2O surface 

saturation of 100 per cent indicates that the water phase is in equilibrium with the overlying 

atmosphere. N2O saturation values <100 per cent indicate undersaturation (i.e. uptake of N2O into the 

water phase when measured in the ocean surface layer) whereas saturation values >100 per cent stand 

for supersaturation (i.e. N2O release from the water phase to the atmosphere when measured in the 

ocean surface layer). The N2O excess (or N2O anomaly) is defined as the difference between the 

measured N2O and the theoretical N2O equilibrium value. It can be expressed either as a difference in 

concentration units, [∆N2O], or as a difference in partial pressures, ∆pN2O. 

 

Surface ocean 

 

Nevison et al. (Nevison et al. 1995) calculated a global mean N2O surface saturation of 103.5 per cent, 

which indicates that the ocean, on a global scale, is supersaturated with N2O and acts as a net source of 

N2O to the atmosphere. N2O saturations in the ocean surface layer are not uniform and can show 

considerable seasonal variability (Nevison et al. 1995). However, the current data coverage does not 

make it possible to decipher the seasonality in most parts of the ocean. Global maps of ∆pN2O in the 

upper 10m of the world’s oceans have been computed by Nevison et al. (Nevison et al. 1995) and 

Suntharalingam and Sarmiento (Suntharalingam and Sarmiento 2000). Common features of both maps 
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(Fig. 2.1) are: (1) enhanced N2O anomalies in the equatorial upwelling regions of the eastern Pacific 

and Atlantic Oceans, enhanced N2O anomalies along coastal upwelling regions such as along the west 

coasts of North and Central America, off Peru, off Northwest Africa and in the north-western Indian 

Ocean (Arabian Sea); and (2) N2O anomalies close to zero (i.e. near equilibrium) in the North and 

South Atlantic Ocean, the South Indian Ocean and the central gyres of the North and South Pacific 

Oceans. 

 

 
Fig. 2.1: Maps of ∆pN2O (in natm) in the surface layer of the world’s oceans: (A) map by Nevison et al. 

(1995) and (B) map by Suntharalingam and Sarmiento (2000). Please note that the colour coding is non-linear 

and different for both maps. Differences in the two maps result mainly from different computation methods. 

Additionally, both maps are biased by insufficient data coverage in some parts of the ocean (for example in the 

Indian and western Pacific Oceans).  
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Coastal areas 

 

In general, enhanced N2O emissions in coastal areas are found in upwelling systems and nitrogen-rich 

estuaries (Seitzinger et al. 2000; Nevison et al. 2004). However, as in the case of the open ocean 

emissions, flux estimates from coastal areas are heavily biased by a seasonal variability, which is, in 

the majority of the studies, only inadequately resolved. 

 

The narrow bands of coastal upwelling systems such as those found in the northwestern Indian Ocean 

(Arabian Sea) and in the southeastern Pacific Ocean (off central Chile) have been identified as ‘hot 

spots’ for extremely high N2O anomalies with N2O saturations of up to 8250 per cent and 2426 per 

cent, respectively (Naqvi et al. 2005a; Cornejo et al. 2007). In nitrogen-rich estuarine systems, high 

N2O anomalies are usually only found in the estuaries themselves, whereas the adjacent shelf waters, 

which are not influenced by the river plumes, are close to equilibrium with the atmosphere. Bange 

(Bange 2006b), for example, computed mean N2O saturations of 113 per cent and 467 per cent for 

European shelf and estuarine systems, respectively.  

 

Nitrous oxide distribution in the water column 

 

The shapes of N2O profiles generally fall into three categories: 

[b]** Cat. I profiles from oceanic regions with dissolved oxygen concentrations [O2] >10µmol litre-1 

throughout the water column (for example in the Atlantic Ocean, the South Indian Ocean and the 

central North Pacific and central South Pacific Oceans); 

** Cat. II profiles from regions with sub-oxic environments (0 <[O2] <2–10µmol litre–1, (Codispoti et 

al. 2005)) such as found in intermediate water depths from about 200m to about 800m in the Arabian 

Sea and the eastern North/South Pacific Ocean; 

** Cat. III profiles from regions with anoxic deep water masses with [O2] = 0µmol litre-1 and 

hydrogen sulphide present. Anoxic water masses are found only in a few regions of the world’s 

oceans. Perennial anoxic environments occur in the Black Sea and the Cariaco Basin off Venezuela. 

Temporarily occurring anoxic conditions have been reported from the deep basins of the central Baltic 

Sea. 

 

Typical N2O profiles illustrating Cat. I-III profiles are shown in Figure 2.2 (additional examples and 

references can be found in Bange, 2008). It is obvious that the shapes of the N2O profiles undergo a 

significant change when [O2] falls below the threshold for sub-oxic conditions. For instance, the one-

peaked profiles (Cat. I) observed in the southern Arabian Sea turn into two-peaked profiles in the 

central Arabian Sea where sub-oxic conditions are found in the intermediate layers (Bange et al. 
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2001). Cat. III show no pronounced N2O peak at the boundary of the oxic and anoxic water masses 

(Hashimoto et al. 1983; Walter 2006; Westley et al. 2006). 

The characteristics of the profiles described above are valid for ‘static’ oceanic systems under steady-

state conditions with turnover times much longer than one year. Some coastal areas, however, show a 

dynamic behaviour, with a rapid seasonal overturning from oxic via sub-oxic to anoxic conditions and 

vice versa (for example the shelf off West India, the western Baltic Sea, the shelf off Chile, an 

upwelling area off southwest Africa and the Gulf of Mexico). In these kinds of transient systems, 

significant amounts of N2O can accumulate temporarily during the short transition time when the 

system is about to change its oxygen regime. Interestingly, the timing of the N2O accumulation occurs 

at different transition stages and seems to be characteristic for different coastal systems: in the south-

western Baltic Sea, N2O only accumulates when the system is shifting from anoxic to oxic conditions 

(Figure 2.3, (Schweiger et al. 2007)), whereas N2O accumulates when the systems are shifting from 

oxic to sub-oxic (off central Chile) or to anoxic (off West India) conditions (Naqvi et al. 2006; 

Cornejo et al. 2007) . During the transition stages, the accumulation of N2O does not occur in the 

anoxic zones itself but at the oxic/anoxic boundaries. In anoxic zones, N2O is usually found at very 

low or even undetectable concentrations. 
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Fig. 2.2: Typical N2O profiles (right column) and dissolved O2 (left column): (panel A) Cat. I profiles from 

the tropical North Atlantic Ocean; (panel B) Cat. II profiles from the Guinea Dome in eastern Tropical North 

Pacific Ocean; (panel C) Cat. II profile from the Landsort Deep in the western Gotland Basin (central Baltic Sea) 
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Fig. 2.3: N2O saturations (A) and O2 concentrations (B) at the time series station Boknis Eck (south-

western Baltic Sea, 54°31’N, 10°02’E, max. depth 28m) measured on a monthly basis from July 2005 to May 

2006 

 

Major pathways 

 

Today’s prevailing view is that there are only two dominating microbial processes, i.e. bacterial 

nitrification and bacterial denitrification, during which oceanic N2O is formed either as a by-product 

or as an intermediate (Figures 2.4 and 2.5). The global budget of oceanic N2O sources and sinks given 

in Bange and Andreae (Bange and Andreae 1999) indicates that about 35 per cent of the oceanic N2O 

is produced during denitrification, with the rest resulting from nitrification. 

 

(A)

(B)
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Fig. 2.4: Simplified sketch of the oceanic nitrogen cycle 

 

 
Fig. 2.5: Overview of processes, which influence the N2O distribution in the ocean.  

 

Bacterial denitrification 

 

Denitrification results in a loss of bio-available (fixed) nitrogen in the form of gaseous products such 

as N2O and N2 (for details on denitrification see the overview article by  (Devol 2008)): 

NO3
– → NO2

– → NO → N2O → N2. 

As can be seen from the denitrification reaction sequence, N2O is an intermediate, with its 

concentration at any time determined by the balance between production and consumption to N2. The 

net accumulation of dissolved N2O depends on the dissolved O2 concentrations (see below). Under 

extreme O2 depletion (such as found in the intermediate depths of the eastern tropical Pacific Ocean 

and the Arabian Sea, see above) there is a net N2O consumption during denitrification, resulting in low 

N2O concentrations. Denitrification is a well-known feature of many different bacteria species in 

terrestrial and oceanic environments. Denitrifiers are facultative anaerobic bacteria, which can reduce 
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NO3
– when oxygen becomes limiting. Thus the occurrence of denitrification is favoured under sub-

oxic (0 <O2 <2–10µmol litre–1, (Codispoti et al. 2005)) conditions. Denitrification does not occur 

under anoxic conditions (O2 = 0µmol litre–1, hydrogen sulphide present). 

 

Bacterial nitrification 

 

Nitrification is the oxidation of ammonium, NH4
+, to NO3

– via hydroxylamine, NH2OH, and nitrite, 

NO2
–. For details about nitrification see the overview article by Ward (2008). Autotrophic nitrification 

represents the final step of the remineralization of nitrogen containing organic matter and is performed 

in two steps by AOB (for example Nitrosomonas, Nitrosospira and Nitrosococcus) and nitrite-

oxidizing bacteria (NOB) (for example Nitrobacter and Nitrospira), respectively: 

AOB: NH4
+ → NH2OH (→ NO) → NO2

– 

NOB:  NO2
– → NO3

– 

NO is not known to be an obligatory intermediate during ammonium oxidation. It can be produced by 

AOB but the mechanism is not well understood. During autotrophic nitrification N2O can be formed 

by AOB either via the pathways NH2OH → N2O and NO → N2O or via the pathway NO2
– → NO → 

N2O (the latter is part of the so-called nitrifier–denitrification process). Nitrification is an aerobic 

process, however, under low-oxygen (sub-oxic) conditions, N2O yields are enhanced. Alternatively, 

N2O can be formed during heterotrophic nitrification (i.e. nitrification linked to aerobic denitrification) 

via the reaction NO2
– → NO → N2O as well, but the enzymes involved in the heterotrophic reaction 

sequence are different from those involved in the autotrophic pathway. Under oxic conditions, N2O 

yields from heterotrophic nitrification are higher than those from autotrophic nitrification. However, 

the relevance of heterotrophic nitrification in the marine environment is not known yet. 

 

Both nitrification and denitrification as sources and sinks of oceanic N2O have been described in the 

water column, in the sediments and in association with suspended particles (for example (Schropp et 

al. 1985; Seitzinger 1990; Michotey and Bonin 1997; Nevison et al. 2003; Codispoti et al. 2005)). N2O 

yields from nitrification range from 0.004 per cent to 0.4 per cent, whereas the N2O yield from the 

denitrifying sub-oxic zone in the Arabian Sea was estimated to be about 2 per cent (see overview in 

Bange (Bange et al. 2008)). Culture studies with strains of nitrifiers revealed that the N2O yield from 

nitrification is significantly enhanced (up to 10 per cent) under sub-oxic conditions (Goreau et al. 

1980). N2O yields from sedimentary denitrification range from 0.1 per cent to 0.5 per cent, with values 

up to 6 per cent in nutrient-rich regions (see overview in (Seitzinger and Kroeze 1998)). 

 

 

 

 



                     Sensitivity of the oceanic biological nitrogen cycle to changes in dissolved oxygen  
 

 49

Nitrous oxide–oxygen gas relationship 

 

The relationship between oceanic N2O production/consumption and dissolved O2 concentrations is 

shown schematically in Figure 2.6. While the influence of O2 concentrations on the N2O production 

via nitrification is still lacking a mechanistic explanation, the influence of O2 on denitrification and 

thus N2O production results from two factors: (1) the redox potential of NO3
– respiration favours 

denitrification under reduced O2 concentrations (see for example (Falkowski et al. 2008)) and (2) the 

enzyme involved in N2O consumption, N2O reductase, is sensitive to O2 concentrations (Firestone and 

Tiedje 1979). For example, Naqvi et al. (Naqvi et al. 2000) attributed the accumulation of N2O off 

West India to the onset of denitrification at low O2 concentrations, with the assumption that the 

activity of the N2O reductase could not be established because of frequent aeration of the shallow shelf 

waters (so-called stop-and-go denitrification). 

The apparent oxygen utilization (AOU) is a measure of the amount of O2 consumed during organic 

matter remineralization (oxidation) in the ocean. Because nitrification is part of the organic matter 

oxidation sequence, plots of ∆N2O versus AOU have been used to identify the prevailing formation 

and consumption processes of N2O in the water column. The overwhelming majority of the Cat. I 

profiles (see above) show positive linear ∆N2O/AOU relationships, suggesting that nitrification is the 

main N2O formation process in most parts of the oceans (Bange and Andreae 1999). This is supported 

by the fact that in most oxic water columns N2O is positively correlated with dissolved nitrate (NO3
–), 

the final product of nitrification (see for example (Walter 2006)). However, there are caveats against a 

straightforward interpretation of the linear ∆N2O/AOU relationship as an indicator for N2O formation 

via nitrification because a linear ∆N2O/AOU relationship may not necessarily result from nitrification 

alone: most recently, based on N2O isotopomeric data (see below), Yamagishi et al. (Yamagishi et al. 

2005) argued that net N2O formation in the oxygen minimum zone (OMZ) of the western North 

Pacific Ocean mainly results from denitrification with only a small contribution from nitrification. 

 
Fig. 2.6: N2O production versus O2 saturation in the ocean, modified from Codispoti et al. (Codispoti et al. 

1992) 
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They showed that this N2O, when diffusing into deep waters, produces a reasonably linear ∆N2O/AOU 

relationship. Moreover, by applying a two end-member mixing model, Nevison et al. (Nevison et al. 

2003) showed that isopycnal mixing of water masses with different preformed N2O and O2 

concentrations can result in a linear ∆N2O/AOU relationship, which can mask the ‘true’ biological 

N2O production. They state:  

 

We find that the biological N2O yield per mole O2 consumed cannot be 

calculated with great confidence from cross-plot correlation slopes. The essential 

problem is that the N2O yield is spatially variable. As a result, strong mixing 

gradients exist in the data that can overwhelm more subtle N2O production terms 

(Nevison et al. 2003). 

 

A linear ∆N2O/AOU relationship does not exist in sub-oxic and anoxic water masses (i.e., Cat. II and 

Cat. III profiles, see above) indicating a complex interplay between N2O formation and consumption 

during denitrification and/or a coupling of nitrification and denitrification at the upper boundary of the 

sub-oxic zones (see for example (Bange et al. 2005; Walter et al. 2006; Westley et al. 2006; Farías et 

al. 2007; Yamagishi et al. 2007)). 

 

Isotope studies 

 

The isotope ratio 15N/14N of N2O is expressed as δ 15Natm relative to atmospheric N2: 

δ 15Natm (sample) [‰] = ((15N/14N)sample / (15N/14N)std – 1) × 1000. 

 

In the same way, the isotope ratio 16O/18O of N2O is usually expressed as δ 18OVSMOW relative to 

Vienna standard mean ocean water (VSMOW). However, in some cases δ 18Oatm relative to O2 in the 

atmosphere is reported; δ 18OVSMOW can be converted to δ 18Oatm with the equation (Kim and Craig 

1993):  

δ 18Oatm = –23.0 + δ 18OVSMOW / 1.0235  

 

Mean δ 15Natm and δ 18OVSMOW of N2O in the troposphere are 6.72 ± 0.12 per ml and 44.62 ± 0.21 per 

mil, respectively (Kaiser et al. 2003). 

 

The isotopic composition of oceanic N2O is determined by its atmospheric imprint, the isotopic signals 

of biological sources and sinks, and mixing processes within the ocean. This, in turn, implies that there 

are characteristic signals of enrichment or depletion (so-called fractionation), which can be attributed 

to different biological processes as well as physical processes. The isotopic signature of biologically 
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derived N2O depends on the isotopic composition of the substrates such as NO3
– (denitrification) and 

NH4
+ (nitrification) and the isotopic depletion/enrichment during these processes. An overview of the 

isotopic depletion/enrichment of N2O from culture experiments is shown in Figure 2.7. It is obvious 

that the range of the resulting nitrogen depletion in N2O during denitrification and nitrification is 

similar. The isotopic signal of oxygen in N2O produced during nitrification is introduced by the δ 18O 

value of both dissolved O2 and H2O  (Ostrom et al. 2000). The isotopic signal resulting from air–sea 

exchange is small compared to the biological processes; therefore, biological N2O formation should 

yield a clear isotopic signature in oceanic N2O. However, the identification of nitrification or 

denitrification as N2O producing processes strongly depends on the knowledge of the isotopic 

signatures of the substrates, which can vary temporarily and spatially. A detailed overview of studies 

of the isotopic signature of oceanic N2O is given in (Bange 2008). The main results of actual N2O 

isotopic studies are summarized in the following sections. 

Repeated measurements of N2O depth profiles at the Hawaii ocean time series station ALOHA in the 

subtropical North Pacific Ocean revealed that δ 15N and δ 18O of N2O were in equilibrium with 

tropospheric N2O at the ocean surface and steadily decreased from the ocean surface to minimum 

values at about 100–300m depth at the base of the euphotic zone, followed by an increase to 

maximum values at 800m. The depletion of both 15N and 18O was attributed to nitrification  (Dore et 

al. 1998; Ostrom et al. 2000; Popp et al. 2002). A more detailed study at ALOHA that included 

measurements of δ 18O in dissolved O2 and H2O, revealed that N2O might be formed by two different 

pathways: first, by nitrification via NH2OH or NO at most depths and, second, by nitrifier–

denitrification via reduction of NO2
– (between 350 and 500m (Ostrom et al. 2000)). 

 

The situations in the central Arabian Sea and the eastern tropical North Pacific Ocean are more 

complex. N2O was found to be strongly enriched in both 15N and 18O in the denitrifying oxygen 

minimum zone, whereas N2O in the surface layer was depleted in 15N but slightly enriched in 18O 

compared to tropospheric N2O (Yoshinari et al. 1997; Naqvi et al. 1998b; Naqvi et al. 1998a). N2O in 

the core of the oxygen minimum zone was obviously formed by denitrification, since the final 

reduction step to N2 should result in enriched N2O. However, the ‘light’ N2O found above the OMZ 

might be explained by a coupled nitrification-denitrification pathway where NO is formed during 

nitrification which is then reduced to N2O during denitrification (Yoshinari et al. 1997; Naqvi et al. 

1998b; Naqvi et al. 1998a). 
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Fig. 2.7: Isotopic depletion/ enrichment for nitrogen and oxygen in N2O relative to the substrates NO3

– and 

NH4
+, and the product N2; Note: Values are given in ‰, Source: Bange (2008). 

 

 

As mentioned in the introduction, N2O is an asymmetrical molecule and therefore it is possible to 

distinguish so-called isotopomers according to the position of 15N within the N2O molecule (the 

corresponding δ notation is given in parenthesis): 14N15NO (δ 15Nα) and 15N14NO (δ 15Nβ) (Toyoda and 

Yoshida 1999). The 15N site preference (SPN2O) in N2O is given as δ 15Nα – δ15Nβ. Measurements of 

SPN2O should allow for the identification of the mechanisms of N2O formation according to the 

different microbial pathways  (Sutka et al. 2003, 2004). Based on the results of a study with cultures of 

AOB, nitrifier–denitrifiers and denitrifiers, Sutka et al. (Sutka et al. 2006) concluded that the 

characteristic SPN2O of nitrification and denitrification (including nitrifier–denitrification) are generally 

~33 per mil and ~0 per mil, respectively. Thus, isotopomers might be used to distinguish between N2O 

produced during oxidation (nitrification) and reduction (denitrification and nitrifier–denitrification) 

processes; however, it seems that isotopomers cannot be used to reveal subtle differences such as that 

between nitrifier–denitrification and denitrification  (Schmidt et al. 2004; Sutka et al. 2006). So far, 

the oceanic distributions of N2O isotopomers have been determined at a few stations in the North and 

South Pacific Oceans(Popp et al. 2002; Toyoda et al. 2002; Yamagishi et al. 2005; Charpentier et al. 

2007), in the sub-oxic eastern tropical North Pacific Ocean and Gulf of California (Yamagishi et al. 

2005; Yamagishi et al. 2007), and in the anoxic Black Sea (Westley et al. 2006). In general, the 

conclusions from the SPN2O distribution are in overall agreement with the ∆N2O/AOU relationships 

and bulk isotopic signatures of N2O as described above. In the North Pacific Ocean SPN2O values of up 

to 35 per mil were determined, indicating that nitrification is the main N2O formation process 

throughout the water column  (Popp et al. 2002; Toyoda et al. 2002).  
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An additional significant contribution by nitrifier–denitrification within particles was suggested for the 

pycnocline at 250–350m in the central South Pacific subtropical gyre because a SPN2O minimum of 

only 10–12 per mil was found at that depth range (Charpentier et al. 2007). In contrast, Yamagishi et 

al. (Yamagishi et al. 2005) suggested a net N2O formation in the oxygen minimum zone of the western 

North Pacific Ocean, which mainly results from both formation and consumption during 

denitrification, with only a minor contribution by nitrification. SPN2O data from sub-oxic (eastern 

tropical North Pacific Ocean, Gulf of California) and anoxic (Black Sea) environments indicate that 

N2O production via nitrification and N2O production/consumption via denitrification can be coupled 

and might even be concurrent at the oxic to sub-oxic/anoxic interfaces (Westley et al. 2006; 

Yamagishi et al. 2007). 

 

Marine pathways to nitrous oxide and climate change 

 

The lesson from the past 

 

The atmospheric history of N2O is illustrated by the ice core records which now reach back to 650,000 

years before the present (yr BP) (Spahni et al. 2005). It seems that atmospheric N2O concentrations 

followed glacial climate changes but in a complex way (Spahni et al. 2005). The significant variability 

of the atmospheric N2O concentrations have been attributed to concurrent changes in both the 

terrestrial source and in the oceanic source (Sowers et al. 2003; Flückiger et al. 2004). However, the 

ice core data do not allow for identification of the key parameters responsible for the abrupt changes 

of the N2O sources. More recently, coupled climate/biogeochemistry models were applied to 

investigate the role of the oceanic N2O production during fast climate changes such as the Younger 

Dryas cold period (~12,000 yr BP) (Goldstein et al. 2003) and the Heinrich event H5 (~48,000 yr BP) 

(Schmittner and Galbraith 2008). In both models the oceanic N2O production was parameterized as a 

function of AOU. The model results of Goldstein et al. (Goldstein et al. 2003)  suggested that the 

variability of the oceanic N2O source was the main but not the sole contributor to the observed 

changes of atmospheric N2O. The model results of Schmittner and Galbraith (Schmittner and 

Galbraith 2008) showed that the abrupt changes of atmospheric N2O during the Heinrich event H5 

could have been caused by variabilities of the oceanic sources alone. They proposed that changes of 

the ocean circulation results in fast adjustments of the oxygen concentrations in the thermocline, 

which in turn drives the oceanic N2O production via nitrification (Schmittner and Galbraith 2008). 

 

Another line of argument is derived from δ 15N records from sediments underlying sub-oxic 

denitrification zones in the open ocean: several studies showed that the temporal variations of the 

denitrification signal in both the Arabian Sea and the eastern tropical Pacific Ocean during the last 

23,000 years is paralleled by the reconstructed atmospheric N2O concentration from ice core records 

(Figure 2.8) (Suthhof et al. 2001; Thunell and Kepple 2004; Agnihotri et al. 2006; Pichevin et al. 
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2007). These results imply that variations in the amount of the water column denitrification might 

have led to changes in the magnitude of N2O formation and its subsequent release to the atmosphere. 

 

On the basis of the model results and sedimentary δ 15N records introduced above we can conclude that 

the rapid changes observed in the paleorecord of N2O concentration might be dominated by changes in 

the oceanic N2O production (nitrification and/or denitrification) via pronounced changes of the 

dissolved oceanic oxygen concentrations. 

 

The ongoing rapid increase in atmospheric N2O, which started during the 19th century, is mainly 

attributed to the increase of agricultural activities (Kroeze et al. 1999; Ishijima et al. 2007), which in 

turn was caused by the expansion of agricultural land and industrialization that came along with the 

increasing availability of agricultural fertilizers triggered by the development of the Haber-Bosch 

process. A potential indirect contribution by oceanic sources (for example increased N2O emissions as 

a result of eutrophication of coastal areas) has not been quantified yet. 

 

 

 
Fig. 2.8: δ 15N profiles from sediment cores in the Gulf of California/eastern tropical North Pacific, ETNP (core 

no. JPC56) and Arabian Sea (core no. SO90-111KL) compared to reconstructed atmospheric N2O data from the 

GRIP (Greenland Ice Core Project) ice core  
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Present day and future scenarios 

 

Coastal Ocean 

 

As mentioned above, oceanic N2O is exclusively produced by biological processes, thus, its 

production is indirectly linked to the biological productivity of the coastal and open oceans 

(Figure 2.9). This, in turn, implies that we have to understand how eutrophication of the coastal areas 

and fertilization of the open ocean influences the productivity and the resulting O2 depletion during the 

remineralization (oxidation) of organic material. Both nitrification and denitrification are involved in 

the remineralization process and the N2O yield of both processes depends on the prevailing O2 

concentrations (see above). 

On the basis of N2O measurements on the shelf of the west coast of India, Naqvi et al. (Naqvi et al. 

2000) cautioned that the N2O emissions from shallow sub-oxic/anoxic coastal systems might increase 

in the future due to the fact that the number of coastal regions with severely depleted dissolved oxygen 

concentrations is currently increasing worldwide (UNEP 2004; Díaz and Rosenberg 2008). 

Eutrophication can also significantly stimulate the sedimentary N2O formation by denitrification, 

which was demonstrated by Seitzinger and Nixon (Seitzinger and Nixon 1985) in microcosm 

experiments. This is in line with observations that N2O release from mangrove ecosystems appear to 

be very sensitive to eutrophication: N2O release across the mangrove sediment/atmosphere interface 

can be enhanced up to 2800 times when adding NH4
+ and/or NO3

- (Bauza et al. 2002; Muñoz-Hincapié 

et al. 2002; Kreuzwieser et al. 2003). Therefore, it seems realistic to expect that the N2O emissions 

from shallow sub-oxic/anoxic coastal systems (including mangrove ecosystems) will increase in the 

near future due to increasing nutrient inputs caused by the ongoing industrialization and intensification 

of agricultural activities.  
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Fig. 2.9: Simplified scheme of processes leading to enhanced N2O formation in coastal areas.  

 

 

Open Ocean 

 

Only recently, Stramma et al. (Stramma et al. 2008) showed that the oxygen minimum zones of the 

intermediate layers (300 to 700m water depth) in various regions of the ocean are expanding and have 

been losing oxygen with rates ranging from 0.09 ± 0.21µmol kg-1 year-1 (in the eastern equatorial 

Indian Ocean) up to 0.34 ± 0.13µmol kg-1 year-1 (in the eastern tropical Atlantic Ocean) during the last 

50 years. In order to assess the maximum associated N2O formation, we may roughly estimate the 

additional long-term N2O formation in the tropical Atlantic Ocean: assuming a mean ∆N2O/AOU ratio 

of 10-4 (Walter et al. 2006) we compute an additional N2O concentration of 1.7nmol kg-1
. This 

translates into a contribution of 6  per cent of the actual mean N2O background concentration of about 

30nmol kg-1 at 500m depth in the tropical North Atlantic Ocean (Walter et al. 2006). However, an N2O 

accumulation at intermediate water depths in the open ocean will not lead to an immediate release of 

N2O to the atmosphere because these waters are not in direct contact with the atmosphere. A major 

fraction of the accumulated N2O will be subsequently released to the atmosphere from other oceanic 

regions when the water masses are brought back to the ocean surface. 

 

A future increase in N2O emissions have been suggested as indirect results of enhanced productivity 

via increases in nitrogen or iron (Fe) aerosol deposition (Fuhrman and Capone 1991; Jin and Gruber 

2003; Duce et al. 2008), N2 fixation (Karl 1999) and riverine nutrient inputs (Naqvi and Jayakumar 

2000) (Figure 2.10). 
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Fig. 2.10: Simplified scheme of processes leading to future N2O formation and/or consumption. Up and 

down arrows within the ovals stand for increase or decrease, respectively. The plus sign (+) stands for a potential 

enhancement of N2O production, whereas the minus sign (–) stands for a decrease in N2O production. 

 

 

Results from a coupled global climate/ocean-circulation/-biogeochemistry model applying a business-

as-usual CO2 emission scenario indicate that the sub-oxic areas and N2O production in the open ocean 

are not likely to change significantly during the next 100 years (Schmittner et al. 2008). The picture 

changes when the model is run for the next 4000 years: then, indeed, a 64 per cent increase of the 

oceanic N2O production because of decreasing O2 concentrations in the open ocean is predicted  

(Schmittner et al. 2008). A more dramatic short-term expansion of the open ocean sub-oxic areas ([O2] 

<5 µmol litre–1) during the next 90 years was predicted with the same model when using unusually 

high C: N ratios (for the remineralized organic material) that were derived from mesocosm 

experiments simulating future high atmospheric CO2 concentrations (Oschlies et al. 2008). One would 

expect that this also changes the near-future N2O production and emissions, however, the effect of 

high C:N ratios on the N2O production was not investigated in the study by Oschlies et al. (Oschlies et 

al. 2008). 

 

Ocean acidification  (Raven et al. 2005), caused by increasing atmospheric CO2 (CO2 + H2O → 

HCO3
– + H+), could lead to a counteracting effect because it shifts the oceanic NH3/NH4

+ equilibrium 

towards NH4
+ with consequences for AOB because they preferably take up NH3 and not NH4

+ (Ward 

2008). Therefore, an overall decrease of the oceanic NH3 concentrations might lead to a decrease in 

nitrification  (Huesemann et al. 2002) and has the potential to decrease N2O production via 

nitrification as well. 
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Nitrous oxide emissions and winds 

 

The final release or uptake of N2O across the ocean/atmosphere interface depends on physical 

processes such as wind-driven air–sea gas exchange (Wanninkhof 2007) and wind-driven oceanic 

circulation/mixing processes (coastal upwelling, storm events). For example, (Naik et al. 2008) 

showed that a storm can deepen the mixed layer considerably, thereby entraining N2O from the 

subsurface maximum to the surface layer, where it easily escapes to the atmosphere. Therefore, N2O 

emissions triggered by strong wind events may contribute significantly to both the regional and global 

oceanic N2O emissions (Patra et al. 2004; Bange et al. 2008). In view of the fact that the strongest 

tropical cyclones, especially in the northern Indian Ocean, have been increasing in intensity in recent 

years (Elsner et al. 2008), we might expect an increase of N2O emissions triggered by storm events. 

Therefore, any long-term changes of the atmospheric circulation that alter the wind fields with respect 

to the wind speeds and the wind field patterns might lead to changes in the N2O emissions. 

 

Possible alternative pathways to nitrous oxide 

 

Nitrous oxide from anammox? 

 

During the last years, anaerobic ammonium oxidation (anammox, NO2
- + NH4

+ → N2) has received 

increasing attention as an additional, previously not recognized, significant loss process of fixed 

nitrogen in the ocean (see for example (Francis et al. 2007; Devol 2008)). N2O has been found to be 

formed only in small amounts during nitric oxide detoxification (NO2
– → NO → N2O) that seems to 

be performed by the anammox bacterium Kuenenia stuttgartiensis as side reaction of the anammox 

reaction (Kartal et al. 2007). Anammox has been found in the sub-oxic zones of eastern tropical South 

Pacific Ocean, in the upwelling off Namibia (Kuypers et al. 2005; Thamdrup et al. 2006; Hamersley et 

al. 2007) as well as in the central Baltic Sea (Hannig et al. 2007), but not in the sub-oxic zones of the 

central Arabian Sea (Nicholls et al. 2007). The question of whether anammox is involved in the 

production and/or consumption of N2O in the ocean should be the subject of further investigation. 

 

Nitrous oxide from nitrification and denitrification by archaea? 

 

Archaea have been detected in almost all oceanic regions throughout the water column and in the 

sediments (see for example (Karner et al. 2001; Sinninghe Damsté et al. 2002; Francis et al. 2005; 

Teira et al. 2006; Varela et al. 2008)). The successful isolation of a NH4
+ -oxidizing archaeon 

(Könneke et al. 2005) raised the question whether we have overlooked the role of ammonium-

oxidizing archaea (AOA) in the oceanic nitrogen cycle. Meanwhile the gene amoA, which is 

commonly used as a marker gene for the ammonium-oxidizing enzyme ammonia monooxygenase in 
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Crenarchaeota (the dominant group of mesophilic archaea in the ocean), has been detected in the 

North Atlantic Ocean, the North Sea, the Black Sea and in sediments (see for example (Francis et al. 

2005; Wuchter et al. 2006; Lam et al. 2007)). On the basis of the dominant abundance of the AOA 

amoA compared to the bacterial amoA, it has been suggested that Crenarchaeota in the uppermost 

1000m of the North Atlantic Ocean were mainly responsible for NH4
+ oxidation (i.e. the first step of 

nitrification), whereas nitrifying bacteria seem to play only a minor role (Wuchter et al. 2006). Similar 

results were found in estuarine sediments where AOA seem to play a major role as NH4
+ oxidizers 

(Caffrey et al. 2007). Archaea are also capable of performing the classical denitrification pathway, 

including N2O formation and its subsequent reduction to N2 (see for example the overview article by 

Cabello et al. (Cabello et al. 2004), and references therein). Despite the fact that archaea perform the 

same nitrogen transformation processes as bacteria, there are ‘significant differences in the structure 

and regulation of some enzymes involved in the nitrogen metabolism in archaea’ as stated by Cabello 

et al. (Cabello et al. 2004). This might be especially important for interpreting N2O isotopic signatures. 

However, N2O production and/or consumption by archaea have not been studied yet. 

 

Concluding remarks 

 

Based on the points discussed in the sections above, it is clear that the marine pathways to N2O (which 

are exclusively biological processes) have been and will be sensitive to ongoing environmental 

changes. We do not know, however, how the oceanic N2O pathways will be altered and it is even more 

difficult to predict how the future oceanic N2O emissions will be affected. Our rather poor ability to 

predict the future oceanic N2O cycling (and to explain the N2O paleorecord) is due to the fact that we 

still have an only rudimentary knowledge about both the oceanic distribution of N2O and the 

mechanisms of its major production processes. Emerging new aspects such as possible N2O formation 

during anammox or by archaea might have the potential to change our traditional view of the oceanic 

N2O pathways in the near future. 



                       Sensitivity of the biological oceanic nitrogen cycle to changes in dissolved oxygen  
 

 60

Chapter 3: Production of oceanic nitrous oxide by ammonia- oxidizing archaea 

 

The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater 

extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical 

dominance of archaeal ammonia-oxidizers (AOA) over their bacterial counterparts (AOB) in the ocean 

leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic 

production of the strong greenhouse gas nitrous oxide (N2O). Very recently, enrichment cultures of 

marine ammonia-oxidizing archaea have been described to produce N2O (Santoro et al. 2011).  Here, 

we demonstrate that archaeal ammonia monooxygenase genes (amoA) were detectable throughout the 

water column of the eastern tropical North Atlantic and eastern tropical South Pacific Oceans. The 

maxima in abundance and expression of archaeal amoA genes correlated with the N2O maximum and 

the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible.  Moreover, 

selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production 

significantly. Studies with the marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1 

provided the first direct evidence for N2O production in a pure culture of AOA, thus excluding the 

involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high 

N2O production rates under low oxygen concentrations comparable to concentrations existing in the 

oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low 

under similar conditions. Based on our findings, we hypothesize that the observed production of N2O 

in tropical ocean areas results mainly from archaeal nitrification and is largely impacted by the 

decrease of dissolved oxygen in the ocean. 

 

Atmospheric nitrous oxide (N2O) is a strong greenhouse gas  and a precursor of stratospheric ozone 

depleting radicals . The ocean is a major source of N2O contributing approximately 30% of the N2O in 

the atmosphere . Oceanic N2O is exclusively produced during microbial processes such as nitrification 

(under oxic to suboxic conditions) and denitrification (under suboxic conditions) . The formation of 

N2O as a by-product of nitrification was reported for AOB (oxidation of ammonia (NH4
+) via 

hydroxylamine (NH2OH) to nitrite (NO2
–) and in case of nitrifier-denitrification further reduction to 

nitric oxide (NO) and N2O. The accumulation of oceanic N2O is favored in waters with low oxygen 

(O2) concentrations, which is attributed to an enhanced N2O yield during nitrification. The frequently 

observed linear correlation between ∆N2O (i.e., N2O excess) and the apparent oxygen utilization 

(AOU) is usually taken as indirect evidence for N2O production via nitrification (Yoshida et al. 1989). 

The traditional view that oceanic NH4
+ oxidation is only performed by ammonia-oxidizing bacteria 

(AOB) has been challenged by (i) the frequent presence of archaeal amoA genes in metagenomes of 

various environments (Venter et al. 2004b; Venter et al. 2004a; Schleper et al. 2005; Treusch et al. 

2005; Lam et al. 2009), (ii) the successful isolation of the NH4
+ oxidizing archaeon N. maritimus  and 

(iii) the fact that archaea capable of NH4
+ oxidation have been detected in all oceanic regions 
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throughout the water column and in sediments . Moreover, N. maritimus appears to be adapted to 

perform NH4
+ oxidation even under the oligotrophic conditions  that dominate in large parts of the 

open ocean. These observations point towards an important role of AOA (now constituting the novel 

archaeal lineage of Thaumarchaeota (Brochier-Armanet et al. 2008; Spang et al. 2010))  for the 

oceanic nitrogen cycle, which has been overlooked until recently . Archaeal N2O production has been 

proposed to contribute significantly to the upper ocean N2O production in the central California 

Current  and has recently been demonstrated to occur in two AOA enrichment cultures (Santoro et al. 

2011). However, the capacity of AOA to produce N2O in the ocean has yet not been demonstrated 

directly in a pure culture. 

The eastern tropical North Atlantic (ETNA) and the eastern tropical South Pacific (ETSP) Oceans 

represent two contrasting oceanic O2 regimes: While O2 concentrations in the ETNA are commonly 

above 40 µmol L–1, the ETSP regime is characterized by a pronounced depletion of O2 in intermediate 

waters between ~75 and 600 m resulting in a oxygen minimum zone (OMZ) with O2 concentrations 

close or even below the detection limit (~2 µmol L–1) of conventional analytical methods. 

The amoA gene coding for the alpha subunit of the ammonia monooxygenase is present in archaea as 

well as in β- and y-proteobacterial ammonia-oxidizers and is commonly used as a functional 

biomarker for this physiological group (Venter et al. 2004a; Schleper et al. 2005; Treusch et al. 2005; 

Hallam et al. 2006). Thus, in order to identify whether archaeal or bacterial amoA was associated with 

the maximum in N2O concentration in the ocean, we determined the archaeal and bacterial amoA gene 

abundances and expression in relation to N2O concentrations along vertical profiles during three 

cruises (in February 2007, February 2008, and June 2010) to the ETNA and one cruise (in January 

2009) to the ETSP. We further demonstrate the N2O production in a pure culture of N. maritimus 

SCM1, establish the O2 sensitivity of archaeal N2O production which is of highest impact at times of 

ocean deoxygenation (Stramma et al. 2010). N2O production from pure cultures of the two marine 

nitrifying bacteria Nitrosococcus oceani NC10 and Nitrosomonas marina NM22 is low compared to 

the rates achieved by the archaeal isolate. 

 

Vertical distribution of AOA and AOB along N2O depth profiles 

Vertical profiles of N2O showed a distribution with concentrations between 10 and 35 nmol L-1 in the 

ETNA whereas the N2O concentrations in the ETSP were in the range from 10 to 374 nmol L–1 (Fig. 

3.1). In the majority of the sampled stations in the ETNA and ETSP, the accumulation of dissolved 

N2O was associated with minimum O2 concentrations as expected (Codispoti 2010). Maximum N2O 

concentrations in the ETNA were generally lower compared to the ETSP because O2 concentrations in 

the ETSP were extremely depleted below 75 m resulting in enhanced N2O accumulation 

(Suntharalingam et al. 2000; Codispoti 2010).  
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(A)   Sea surface temperature - Eastern tropical North Atlantic (ETNA) 
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(B)   Sea surface temperature - Eastern tropical South Pacific (ETSP) 
 

 
 

 
 
 
Fig. 3.1: Maps of sea surface temperatures (A) from the eastern tropical North Atlantic Ocean and (B) 

from the eastern tropical South Pacific Ocean. The locations of sampling stations are indicated with dots in 

the maps. Selected vertical profiles (I-VI) of O2, NO2
–, N2O (measured in triplicates) and archaeal amoA 

(measured in duplicates by qPCR) are shown; (I) and (IV) are located offshore, (II) and (V) are located on the 

continental slope, and (III) and (VI) are onshore/coastal stations. 
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The well-established linear correlation between ∆N2O and AOU as well as NO3
– was found for the 

ETNA (Fig. 3.2) indicating that nitrification was the likely pathway for N2O production. High copy 

numbers of archaeal amoA genes and high N2O concentrations co-occurred in the ETNA suggesting a 

tight coherence between AOA abundance and N2O accumulation in the layers with low O2 (Fig. 3.3).  

A  coherence of N2O and archaeal amoA was detected at some stations in the ETSP, but was not a 

general feature (Fig. 3.1) possibly resulting from N2O production via other processes such as 

denitrification, nitrifier-denitrification or anammox (Kartal et al. 2007) at present suboxic conditions. 

Gene abundances of archaeal amoA in the ETNA and ETSP were detectable throughout the water 

column and reached values of up to 1.9 x 105 and 6 x104 copies mL–1, respectively (Fig. 3.1). Gene 

abundances of β- and ɣ-proteobacterial amoA were much lower (up to 950 and 735 copies mL–1 in the 

ETNA and ETSP, respectively) and in comparison seem to be negligible. This is in line with previous 

studies reporting 1-4 orders of magnitude higher abundances of AOA than AOB in various oceanic 

regions (Francis et al. 2005; Wuchter et al. 2006; Church et al. 2009; Lam et al. 2009; Santoro et al. 

2010). Thus, we propose that N2O production occurs via archaeal nitrification in the ETNA and might 

also be present in the ETSP despite the fact that we did not find the ∆N2O/AOU correlation in the 

ETSP. A difference of one order of magnitude between amoA copies in RNA and in DNA is present in 

vertical profiles of the ETSP, with copy numbers up to 7 x 104 copies mL-1 present in the DNA and up 

to 1.5 x 103 copies mL-1 in the RNA. A similar tendency is detectable in the ETNA, however, the 

difference is less pronounced compared to the ETSP. This discrepancy, already reported by Lam et al. 

2009 (Lam et al. 2009), is hypothesized to be due to a diurnal cycle of ammonia-oxidation and 

therefore variable amoA expression. Moreover, a sampling bias due to comparably long filtration times 

(up to 30 min) might  have led to RNA degradation; as previous studies reported transcript half-lives 

of down to 0.5 min in Prochlorococcus (Steglich et al. 2010). 

 
Fig. 3.2: ΔN2O versus the apparent oxygen utilization (AOU) and nitrate in the ETNA (data from cruises 

ATA03 and P348), the potential density is colour–coded  
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Fig. 3.3: Archaeal amoA versus N2O and O2 in the ETNA (data from the cruises ATA03, P348 and P399/2). 

The O2 concentration is colour-coded.  

 

 

Phylogenetic diversity of archaeal amoA 

The diversity of AOA present in the ETNA was determined based on the analysis of 106 amoA 

sequences from 7 stations of 2 cruises (P348, ATA03). Sequences were derived from 10 depths 

between the ocean surface and 1000 m. The sequences split into two main clusters, with sequences 

from the O2 minimum clustering mainly in cluster B  (Fig. 3.4). Only 2.7% of sequences derived from 

samples from the O2 minimum fall into cluster A. Sequences derived from depths between the surface 

and the upper oxycline were distributed over both clusters (Fig.3.4). In the ETSP, sequences from 

within as well as from depths above the OMZ separated into both clusters, with the majority of 

absolute sequence numbers from the OMZ affiliating with cluster B (Fig. 3.4), as already observed for 

the sequences from the O2 minimum in the Atlantic Ocean.  
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Fig. 3.4: Distance-based neighbour-joining phylogenetic tree of archaeal amoA sequences from the ETNA 

(cruises ATA03 and P348) and ETSP (cruise M77/3). Sequences derived from the oxygen minimum zone 

(OMZ) of the ETNA are in italics, bold and marked with solid stars, sequences from above the OMZ are in 

italics. Sequences from the OMZ of the ETSP are in italics and bold; sequences from above the OMZ are in 

italics. 
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Potential importance of cluster B affiliated Thaumarchaeota for N2O production  

The distribution of archaeal amoA genotypes along vertical profiles in the ETNA with the majority of 

cluster B sequences present in clone libraries from the OMZ suggest a production of N2O by 

Thaumarchaeota affiliated with cluster B, which was previously reported to be a deep marine cluster 

(Hallam et al. 2006) associated mainly with O2 and NH4
+ poor waters (Molina et al. 2010). These 

findings suggest a niche separation based on O2 concentrations of cluster B affiliated AOA, which is 

consistent with our data from the ETSP. Regarding the potential decrease in dissolved O2 

concentrations in tropical ocean areas (Stramma et al. 2010), we hypothesize that cluster B affiliated 

AOA might dominate the production of N2O and the balance between reduced and oxidized nitrogen 

species in the ocean, gradually.  

 

N2O production in the ETNA 

In two out of three 24h seawater incubations performed at three different stations in the ETNA at the 

depth of the OMZ, N2O production was significantly lower in samples treated with N1-guanyl-1,7-

diaminoheptane (GC7), a hypusination inhibitor shown to selectively inhibit the cell cycle of archaea 

(Jansson et al. 2000) (Fig. 3.5). In the third experiment a similar trend was observed, however it was 

not statistically significant. These findings support the hypothesis that N2O production in large parts of 

the ETNA occurs within the OMZ and is mainly carried out by archaea. 

 

 

 
Fig. 3.5: N2O production determined from seawater incubations at three different stations (1-3) from the 

ETNA (P399). Delta N2O was calculated as the difference of N2O concentrations over the incubation time (i.e. 

24h). Open columns represent samples with no inhibitor, filled columns represent samples with the archaeal 

inhibitor GC7. Error bars indicate the standard deviation of three technical replicates 
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N2O production in N. maritimus pure culture experiments 

A direct evidence for N2O production in archaea was detected in experiments with pure cultures of N. 

maritimus. Production of N2O in N. maritimus cultures was inversely correlated to O2 concentrations 

(Fig. 3.6) which were chosen according to the O2 concentrations present in the ETNA (112, 223 and 

287 µmol L-1, Fig. 3.1). N. maritimus cultures grew at comparable rates under the varying O2 

conditions and showed similar nitrification rates. Thus, the observed variation of the measured N2O 

production can be assumed to exclusively depend on the prevailing initial O2 conditions. N2O 

production rates from the two AOB cultures (Nitrosomonas marina NM22 and Nitrosococcus oceani 

NC10) were considerably lower compared to the N2O produced by N. maritimus  (Fig. 3.6, Tab S1). 

The N2O yields from NH4
+ oxidation ranged from 0.002%-0.03% in the culture of N. maritimus to 

0.001%-0.006% in the AOB cultures.  The N2O production rates derived from our AOB experiments 

are in accordance to those reported by Goreau et al. (Goreau et al. 1980), even though a different 

experimental setup was used. Culture experiments such as those presented here, are performed with 

AOB cell densities (~105 cells mL–1) which are much higher than usually found in the ocean (102-103 

cells mL–1) (Wuchter et al. 2006; Lam et al. 2009). Thus, the N2O production rates from the AOB 

cultures are probably overestimated and not representative as N2O production per cell by 

AOB is also depending on the present cell densities (Frame 2010). In contrast, the AOA cell 

densities in our culture experiment (~105 -107 cells mL–1) were comparable to those present in 

the oceanic environment (~105 cells mL–1) and thus seem to be reasonably representative. 

Using the results from culture experiments as an approximation, the observed archaeal N2O 

production rate for low O2 conditions (140 nmol L-1 d-1; normalized to 106 cells mL-1 yielding 

~24 nmol L-1 d-1, see Tab. S1) translates roughly estimated into a maximal potential oceanic 

production rate of about 14 nmol m-2 s-1 under the assumption of a low O2 layer thickness of 

about 50 m as typically found in the ETNA. Compared to estimates of N2O emissions from 

the ETNA to the atmosphere of up to 2 nmol m-2 s-1 (Wittke et al. 2010), potential oceanic 

archaeal N2O production might be indeed significant.  
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Fig. 3.6: N2O (A), O2 (B), NH4

+ and NO2
– (C) as well as cell abundances (D) determined from incubation 

experiments with pure cultures of N. maritimus. Experiments are colour-coded according to their initial O2 

concentrations: red (112 µmol L–1); violet (223 µmol L–1); and blue (287 µmol L–1). N2O and cell abundances 

were measured in triplicates and the associated error ranges are indicated (please note that in the most cases the 

error bars are too small to be visible in the figure). 
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Potential pathways for archaeal N2O production 

AOB can produce N2O from NH2OH during nitrification or from NO2
–  during nitrifier- denitrification 

(Shaw et al. 2006; Kool et al. 2010). In AOA however, no equivalent to the hydroxylamine-

oxidoreductase, which catalyzes the oxidation of NH2OH to NO2
– during nitrification, has been 

identified (Könneke et al. 2005; Martens-Habbena et al. 2009). In contrast, the detection of the nitrite 

reductase gene nirK in the sequenced genomes of cultured Thaumarchaeota (Könneke et al. 2005; 

Martens-Habbena et al. 2009) led to the theory that AOA might produce N2O by nitrifier- 

denitrification. To identify the origin of N2O formation isotopomeric studies were performed with N. 

maritimus pure cultures. A 15N site preference (SPN2O) in N2O of 34 ± 12 ‰ was detected, consistent 

with results from AOA enrichments (Santoro et al. 2011), which is in agreement with the SPN2O of 

~33‰ typically found in AOB cultures performing NH4
+ oxidation (Sutka et al. 2006) (for 

comparison: nitrifier-denitrification of AOB results in a SPN2O of about 0‰). Thus, a production via 

the oxidation of NH4
+ to NO2

–, potentially via an unknown intermediate, is suggested, whereas N2O 

production via nitrifier-denitrification is unlikely.  

 

Summary 

 

Taken together, the dominating abundance of archaeal amoA relative to AOB, the coherence of N2O 

accumulation and amoA, the inhibition of N2O production in seawater experiments in the presence of 

the archaeal inhibitor GC7 as well as the N2O production by N. maritimus point to the fact that, in 

large parts of the ocean, N2O is produced by archaeal, rather than by bacterial, nitrification. Further, 

the archaeal N2O production appears to be highly sensitive to the dissolved O2 concentration, with 

highest N2O production rates at low O2 concentrations such as those present in the OMZ of the ETNA. 

The expansion of OMZs in the future in many parts of the ocean (Stramma et al. 2008) may lead to an 

enhanced N2O production in the ocean and therefore may have severe consequences for the budget of 

N2O in the atmosphere as well. 
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Methods summary 

 

Hydrographic parameters and nutrients 

Samples for salinity, O2 concentrations and nutrients were taken from a 24-Niskin- bottle rossette. 

Oxygen concentrations were determined according to the Winkler method, salinity and nutrient 

concentrations were determined as decribed in Grasshoff et al. (Grasshoff 1999) . 

 

Determination of dissolved N2O concentrations 

Triplicate samples for N2O analysis were taken from CTD/rosette casts during the cruises P348 

(February 2007), ATA03 (February 2008), P399 (June 2010) to the ETNA and M77/3 (January 2009) 

to the ETSP. N2O was measured according to the method described in Walter et al. (Walter et al. 

2006). ∆N2O and AOU were calculated accordingly. 

 

Molecular genetic methods 

Sampling 

Samples for the extraction of DNA and RNA were rapidly taken by filtering  (~30min filtration time) a 

volume of about 2 L (exact volumes were determined and recorded continuously) of seawater through 

0.2 µm polyethersulfon membrane filters (Millipore, Billerica, MA, USA). The filters were 

immediately frozen and stored at -80°C. 

 

Nucleic acid purification 

DNA and RNA was extracted using the Qiagen DNA/RNA All prep Kit (Qiagen, Hilden, Germany) 

according to the manufacturers protocol with a small modification. A lysozyme treatment  (50 µg mL−1 

for 10 min at room temperature) followed by a proteinase K treatment was performed prior starting the 

extraction. Extracts of DNA and RNA were quantified fluorometrically using a NanoDrop 2000 

(Thermo Scientific Fischer). A  treatment with Dnase I (Invitrogen, Carlsbad, CA) was performed with 

the extracted RNA to remove any residual DNA, purity of RNA was checked by 16S rDNA PCR 

amplification before reverse transcription. 

 

PCR and quantitative PCR 

The extracted RNA was reverse transcribed to cDNA by using the QuantiTect®reverse transcription 

Kit (Qiagen, Hilden, Germany) following the manufacturers’ protocol.  

Bacterial and archaeal amoA as marker genes for nitrification, bacterial nirS, nirK and nosZ as marker 

genes for denitrification were PCR- amplified from DNA and cDNA. PCR and quantitative PCR 
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conditions and primers are listed in Tab. S2. PCRs were performed using 0.1 µL FlexiTaq (Promega 

Corporation, USA). 

Absolute quantification of bacterial and archaeal amoA was performed with standard dilution series; 

quantification was performed in duplicates. Standards for  quantitative PCRs were obtained from 

Nitrosococcus oceani NC10, Nitrosomonas marina NM22 and NM51 for bacterial amoA and from an 

environmental clone for crenarchaeotal amoA (GenBank accession number JF796147). Reactions were 

performed in a final volume of 25µL using 0.5µL of each primer, 6.5µL nuclease free water and 

12.5µL SYBR qPCR Supermix W/ROX (Invitrogen, Carlsbad, CA) . Reactions were performed using 

an ABI 7300 Real Time PCR system (Applied Biosystems, Carlsbad, CA) according to Lam et al. 

(Lam et al. 2007). 

 

Construction of clone libraries and phylogenetic analysis 

Cloning of PCR amplicons was performed using the Topo TA Cloning®Kit (Invitrogen, Carlsbad, CA) 

according to the manufacturers’ instructions.  

Sequencing was carried out by the Institute of Clinical Molecular Biology, Kiel. Sequences for 

archaeal amoA  were analyzed using the ClustalW multiple alignment tool on a 495 bp fragment 

(sequences were submitted to GenBank under accession numbers JF796145- JF796179), sequence 

differences were set on a minimum of 5%, phylogenetic trees were made using distance-based 

neighbour-joining analysis (Saitou and Nei 1987).  

 

Seawater incubations 

Seawater incubations were performed at three different stations in the ETNA (cruise P399). 25mL 

serum bottles were filled with seawater from 200- 250m depth from the CTD, closed with an air-tight 

butyl rubber stopper and aluminium crimp-capped. Triplicate samples were taken to determine the 

initial N2O concentration, six bottles were incubated, one triplicate as a control and one triplicate was 

treated with 1mM of the hypusination inhibitor N1-guanyl-1,7-diaminoheptane (GC7) (Jansson et al. 

2000). 

 Incubations were kept for the duration of the experiment (24h) in the dark at 8°C. The experiment was 

stopped by HgCl2 addition, followed by the determination of the final N2O concentrations. 

 

Culture experiments  

Pure cultures of Nitrosopumilus maritimus SCM1, Nitrosococcus oceani NC10  and Nitrosomonas 

marina NM22 were grown in triplicates in 125 mL serum bottles according to Goreau et al. and 

Koenneke et al. (Goreau et al. 1980; Könneke et al. 2005). Serum bottles were closed with an air-tight 

butyl rubber stopper and aluminium crimp-capped. Cultures were kept for the duration of the 

experiment in the dark. Cell abundances were monitored microscopically after staining with the 

fluorescent DNA-binding dye 40 ,6 0-diamidino-2-phenylindole (DAPI) and with by flow cytometry 

(FACScalibur, Becton, Dickinson) after staining with Sybr Green I (Invitrogen, Carlsbad). Cultures 
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were checked for heterotrophic contaminants microscopically and by 16S rDNA analysis.  

 N2O concentrations were measured by gas chromatography using the headspace method as described 

above, oxygen concentrations were determined using Winkler titration. NH4
+ and NO2

- concentrations 

were determined at several time points over the complete incubation time frame (Grasshoff 1999). In 

order to exclude chemical N2O production from the medium cultures toxified  with mercury chloride 

were measured in parallel; no N2O production could be detected. 

Isotopomeric studies were performed with cultures of 0.5L volume, grown in Serum bottles, 

supplemented with 15NH4
+ (10% of total NH4

+). Measurements were performed  as described in 

Fehling et al. (Fehling and Friedrichs 2010). 

 
Tab S1: N2O production in culture experiments: Mean O2 and N2O concentrations (in triplicate samples) of 

pure cultures of N. maritimus, N. marina and N. oceani after 264 h incubation, the initial NH4
+ concentration (~1 

mmol L-1) was completely converted to NO2
- in the end of the experiment in AOB cultures, NO2

- was below the 

detection limit at the initial time point of the incubation 

 

Culture N2O [nmol L-1] O2 [µmol L-1] 

ratio N2O / 

NH4
+ [%] 

max. N2O production 

[nmol L-1 day-1 10-6 cells] 

Nitrosopumilus 

maritimus SCM1 254.75 ± 16.86 33.5 0.026 24.27 

  82.63 ± 1.89 121.1 0.009 5.6 

  15.57 ± 2.38 203.2 0.002 0.44 

Nitrosomonas 

marina NM22 41.71 ± 0.039 44.7 0.006 4.17 

  14.4 ± 0.4 142.9 0.003 1.44 

Nitrosococcus 

oceani NC10 36.78 ± 1.33 49.8 0.005 3.68 

  11.91 ± 0.33 163.7 0.001 1.21 
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Tab S2: Primers and PCR conditions. For real-time qPCR the initial denaturing step was 10 min at 95°C, 

annealing temperatures  were the same as in the end point PCRs, no final extension step took place, 40 cycles 

were performed followed by melting curve analysis.  A fragment of 175 bp was amplified in qPCRs of archael 

amoA. 

 

Target 
organism 

Target 
gene 

oligonucleotide Sequence (5’  3’) PCR 
conditions 

reference 

β-
proteobact. 
ammonia-
oxidizers 
 

amoA amoA1F’ 
amoA2R 
 
amoA-1F 
(qPCR) 
amoAR_new 
(qPCR) 

GGGGTTTCTACTGGTGG 
CCTCKGSAAAGCCTTCTTC 
 
GGGGTTCTACTGGTGGT 
CCCCTCGGCAAAGCCTTCTT
C 

94°C for 5 
min, 30 x 
(94°C for 
20 s, 55°C for 
1 min, 72°C 
for 1min), 
72°C for 10 
min 
 

(Rotthauwe et 
al. 1997) 

γ-
proteobact. 
ammonia-
oxidizer 

amoA amoA3F 
amoA4R 
 
 
A189 (qPCR) 
A682 (qPCR) 
 

GGTGAGTGGGYTAACMG 
GCTAGCCACTTTCTGG 
 
 
GGCGACTGGGACTTCTGG 
GAACGCCGAGAAGAACGC 

94°C for 5 
min, 30x 
(94°C for 20s, 
48°C for 1 
min, 72°C for 
1 
min), 72°C for 
10 min 
 

(Purkhold et 
al. 2000) 

archaeal 
ammonia-
oxidizers 
 

amoA Arch-AmoAF 
Arch-AmoAR 
 
 
 
AamoA_for 
(qPCR) 
AamoA_rev 
(qPCR) 

STAATGGTCTGGCTTAGACG 
GCGGCCATCCATCTGTATGT 
 
 
 
GGGCGACAAAGAAGAATAA
ACACTCGC 
ACCTGCGGTTCTATCGGCGT 

95°C for 5 
min, 30x 
(94°C for 45s, 
50°C for 1 
min, 72°C for 
1 min), 72°C 
for 10min 
 

(Francis et al. 
2005) 
 
 
 
 
this study 
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Chapter 4: Construction and screening of marine metagenomic libraries 

 

Abstract 

Marine microbial communities are highly diverse and have evolved during extended evolutionary 

processes of physiological adaptations under the influence of a variety of ecological conditions and 

selection pressures. They harbor an enormous diversity of microbes with still unknown and probably 

new physiological characteristics. Besides, the surfaces of marine multi-cellular organisms are 

typically covered by a consortium of epibiotic bacteria and act as barriers where diverse interactions 

between microorganisms and hosts take place. Thus microbial diversity in the water column of the 

oceans and the microbial consortia on marine tissues of multi-cellular organisms are rich sources for 

isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large 

insert metagenomic libraries from marine habitats and exemplarily one function based screen of 

metagenomic clones. 

Key Words: Isolation of metagenomic DNA, 16S rDNA phylogenetic analysis, fosmid library, 

function-based screen  

Introduction 
 

Current estimates indicate that more than 99 % of the microorganisms present in many natural 

environments are not readily cultivable with conventional approaches (Amann et al. 1995). To 

overcome the difficulties and limitations associated with cultivation techniques, several DNA-based 

molecular methods have been developed in order to explore the diversity and potential of microbial 

communities (Streit and Schmitz 2004; Lorenz and Eck 2005; Pham et al. 2007; DeLong 2009). The 

new and rapidly developing field of so called ‘metagenomics’ tries to analyze the complex genomes 

and genomic information of microbial communities present in the different environmental habitats. 

Primarily employed to study non-cultivable microbiota for a better understanding of global microbial 

ecology in different environmental niches (Handelsman 2004), metagenomic data also provide 

information on the functional role of the different microbes within the community. This is emphasized 

by several recent examples, e.g. the discovery of a new bacterial rhodopsin, proteorhodopsin (Beja et 

al. 2000; Beja et al. 2001; de la Torre et al. 2003) and the recent insights into symbiosis between a 

marine oligochaete and its microbial community (Woyke et al. 2006). In recent years, efficient DNA 

isolation techniques for various habitats and vector systems for cloning large metagenomic DNA 

fragments (such as cosmids, fosmids or BACs) allowing to screen large clone libraries for functional 

activities have been established and are available as commercial kits (Shizuya and Kouros-Mehr 2001; 

Wild et al. 2002).  
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The oceans are the largest ecological systems on earth (Azam 1998) harbouring marine 

microorganisms with an average cell density of approximately 5 x 105 cells/ml, leading to the 

estimation that the oceans are a living space for approximately 3.6 x 1028 microorganisms (DeLong 

and Karl 2005). Marine microbial communities are highly diverse and have evolved during extended 

evolutionary processes of physiological adaptations under the influence of a variety of ecological 

conditions and selection pressures. They harbour an enormous diversity of metabolically complex 

microbes with still unknown and probably new physiological characteristics and are thus rich sources 

for isolating novel bioactive compounds and genes (Karl 2007). Microbes are also known to form 

symbiotic relationships with various marine invertebrates, e.g. sponges, corals and squids, and are thus 

suspected to produce particular biologically active and pharmacologically valuable natural products 

(Kennedy et al. 2007). Furthermore, the microbial consortia on marine multicellular organisms are 

attractive model systems to understand the complex interplay between microbes and their host cells 

that may be also relevant to the human barrier organs and its microbiota providing insight into the 

development of human diseases and identification of new drug targets.  

 

Materials 

1. Sampling  

1.1. Marine water sampling 

1. membrane pump with respective membranes (polycarbonate or polyvinylidenfluoride 

membrane filters of 10 µm and 0.22 µm pore size) or a Conductivity-, Temperature-, Depth 

sensor (CTD) equipped with a 24 Niskin 10 L bottle rosette   

2. peristaltic pump to accelerate the filtration 

3. in situ pumps for marine deep water sampling 

4. liquid nitrogen to freeze the filters for long term storage at -80°C 

1.2. Sampling from marine invertebrates 

1. equipment for sampling marine organisms, e.g. clean buckets, bottles, a dip net 

2. autoclaved seawater to wash away loosely attached microorganisms 

3. sterile Petri dishes and sterile cotton-tipped applicators to swab microorganisms from the 

surfaces of the marine eukaryote 

4. liquid nitrogen to freeze the filters for long term storage at -80°C 

 

2. Isolation of metagenomic DNA 

1. 37 °C and 65 °C incubator, centrifuge  

2. DNA extraction buffer: 100 mM Tris/HCl pH 8.0, 100 mM sodium-EDTA, 100 mM sodium-

phosphate, 1.5 M NaCl, 1 % CTAB (vol/vol) 
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3. TE buffer: 10 mM Tris/pH 8.0, 1 mM EDTA  

4. 20 mg/ml Proteinase K (Fermentas, St. Leon-Rot), 50 mg/ml Lysozyme (Roth, Karlsruhe), 

RNase A (Qiagen, Hilden), 20 % SDS, chloroform, 100 % isopropanol, 70 % ethanol  

 

3. 16S rDNA phylogenetic analysis  

1. reaction tubes, pipettes, thermocycler  

2. Bacteria-specific primer 27F (5’-AGAGTTTGATCCTGGCTCAG-3’) and the universal 

primer 1492R (5’-GGTTACCTTGTTACGACTT-3’)  

3. archaea-specific primer set 20F (5`-TTCCGGTTGATCCCTGCCAGG-3`) and 958R (5`-

TCCGGCGTTGAACTCCAATT-3`) 

4. 10 x Taq reaction buffer, 25 mM MgCl2, 10 mM dNTPs, Taq polymerase (e.g. Fermentas, St. 

Leon-Rot), sterile water 

5. Gel extraction and Purification Kit (e.g. Macherey-Nagel, Düren) 

6. TA cloning Kit (e.g. Invitrogen, Karlsruhe) 

7. Sequencing Reaction Kit (BigDye® Terminator v3.1 Cycle Sequencing Kit, Applied 

Biosystems, Darmstadt) and a capillary sequencer  

 

4. Construction of a metagenomic large insert library 

1. CopyControl™ Fosmid Library Production Kit (Epicentre, Madision, WI) 

2. TE buffer: 10 mM Tris/pH 8.0, 1 mM EDTA  

3. 0.025 µm cellulose filters type VS from Millipore (Schwalbach)  

4. Phage-dilution buffer: 10 mM Tris/HCl pH 8.3, 100 mM NaCl, 10 mM MgCl2 

5. LB containing 10 mM MgSO4 for growth of EPI300-T1R host cells  

6. LB plates supplemented with 12.5 µg/ml chloramphenicol  

7. microtiter plates (96 wells) containing 150 µl LB supplemented with 12.5 µg/ml 

chloramphenicol  

8. Dimethylsulfoxid (DMSO)  

 

5. Screening metagenomic libraries for cellulose degrading enzymatic activity  

1. CMC agar plates: 0.4 % carboxymethyl cellulose (CMC) is dissolved in water by short time 

heating. LB-plates supplemented with 0.2 % CMC are prepared by adding the 0.4 % CMC 

solution to the dry ingredients of the medium prior to sterilisation by autoclaving.  

2. 48er or 96er steel stamps  

3. Congo Red solution (Roth, Karlsruhe) 

4. 1 M NaCl solution  

5. 1 M HCl  
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Methods 

1. Sampling procedures 

1.1. Marine surface water sampling 

Surface water can be collected by either membrane pumps or any other highly effective clean pumping 

system on board. Further, samples can also be taken by a Conductivity-, Temperature-, Depth sensor 

(CTD), equipped with a 24 Niskin 10 L bottle rosette (Fig. 4.1). Samples from the potentially high 

productive surface layer around chlorophyll maxima should exceed a volume of 100 L but do not 

necessarily need to be larger than 200 L, due to the high abundance of microorganisms there. After 

collecting, pre-filtration with filters of 10 µm pore size is performed directly followed by a 

consecutive filtration with polycarbonate or polyvinylidenfluoride membrane filters of 0.22 µm pore 

size (see Note 3). To carry out this large volume filtration in an appropriate time frame, an efficient 

pumping system is requested, for example a peristaltic pump (see Note 2). Filters are immediately 

frozen and stored at -80°C (see Note 4). 

1.2. Marine deep water sampling 

Samples from below the euphotic zone, where not much cell material is present, should be collected in 

larger volumes of at least 200 L. A CTD equipped with a 24 Niskin 10 L bottle rosette can be used for 

the collection of such samples; filtration is then carried out as described above. As this sampling 

method is limited to a certain volume, mostly 240 L, it is highly time consuming, and may lead to 

stress responses due to dramatically changing environmental conditions during the filtration time on 

board (light, temperature, pressure). In this case, a sample collection by in situ pumps should be 

preferred. Those pumps can be set at the depth of interest, depending on the cable length of the ships’ 

winch (Fig. 4.2A); this method further allows simultaneous deployment of several pumps at different 

depth. Therefore, the use of in situ pumps is highly time saving, and additionally leads to a higher 

conservation and consequently to a more realistic image of the microbial community (see Note 1).  

Moreover, a filtration of higher volumes of water is possible, depending on the pump type up to 5.000 

L. Filtration is also conducted using carbonate membrane filters of 0.22 µm pore size, and a pre-

filtration is not required. After recovering the pumps, filters are immediately removed from the pumps 

(Fig. 4.2B), frozen and stored as described above. 

1.3. Sampling from marine invertebrates 

After sampling, the marine organisms are thoroughly rinsed with filtered (0.22 μm) and autoclaved 

seawater to remove loosely attached microorganisms. If possible the organisms are then placed in 

sterile Petri dishes and an area of approximately 2 - 5 cm² (depending on the amounts of microbes and 

down stream applications) is swabbed with a sterile cotton-tipped applicator. In case of a fragile 

organism, the complete animal can be extracted for DNA isolation, resulting in a mixture of 

prokaryotic and eukaryotic DNA of unknown ratio. In this case, enrichment of prokaryotic cells, e.g. 

by fractionated centrifugation can be applied prior to DNA extraction. For comparative phylogenetic 

analysis, ambient seawater should be sampled and filtered as described above.  



                     Sensitivity of the oceanic biological nitrogen cycle to changes in dissolved oxygen  
 

 79

 

 

 
Fig. 4.1: CTD sampling: CTD equipped with a 24 Niskin 10 L bottle rosette on German research vessel 

Meteor 

 
Fig. 4.2: Sample collection: deployment of an in situ pump from RV Meteor (left panel), filter-holder with 

filter of an in situ pump (right panel) 

 

2. Isolation of metagenomic DNA 

DNA from filters or swabs is commonly extracted by a direct lysis of the microorganisms. Additional 

steps prior the lysis may be required to isolate DNA from inhibitor-contaminated habitats or enrich 

prokaryotic cells in order to minimize co-extraction of eukaryotic DNA (Gabor et al. 2003). The 

following modified protocol of Henne et al. (Henne et al. 1999) describes the genomic DNA isolation 

based on direct lysis of the microorganisms from filter or swab samples. The volumes are appropriate 

for 2.5 cm2 of a filter and should be adjusted according to the filter or sample size. 

 

  



                       Sensitivity of the biological oceanic nitrogen cycle to changes in dissolved oxygen  
 

 80

1. 1.35 ml DNA extraction buffer (see Note 7), supplemented with 20 µl Proteinase K (20 

mg/ml) and 200 µl lysozyme (50 mg/ml) are added to the sample followed by an incubation at 

37 °C for 30 min; optional shaking (150 rpm). 

2. 1.5 µl (17,000 U) RNase A are added followed by further incubation at 37 °C for 30 min. 

3. 150 µl 20 % SDS are added followed by an incubation for 2 h at 65 °C and subsequent 

centrifugation at 4,500 x g for 10 min. 

4. Chloroform extraction of the supernatant followed by precipitation of the nucleic acids with 

isopropanol (0.7 vol) for 1 h at room temperature and subsequent centrifugation for 45 min at 

16,000 x g and 4 °C. 

5. The DNA precipitate is washed with 70 % ethanol, dried and solved in 25 µl TE buffer. 

 

This extraction protocol uses enzymatic methods to remove cell walls, resulting in sphaeroplasts or 

protoplasts. The use of sodium dodecyl sulfate (SDS) disrupts mainly tertiary or quartary protein 

structures; cetyl trimethylammonium bromide (CTAB) additionally removes polysaccharides and 

remaining proteins. An increase from 1 % to 5 % CTAB in the DNA extraction buffer allows an 

improved lysis of archaeal cell walls which significantly differ from the bacterial cell walls (Sogin et 

al. 2006; De Corte et al. 2009) (see Note 5). In some cases, e.g. DNA extraction of samples containing 

high amounts of Gram positive bacteria, initial mechanical cell lyses might be necessary, e.g. using a 

bead beater with small glass, ceramic, zirconium, or steel beads (Treusch et al. 2004) (see Note 6). 

Finally, the isolated metagenomic DNA is analyzed by gel electrophoresis and should contain large 

fragments (Fig. 4.3) in case of constructing a metagenomic large insert library. 

 

 

 
Fig. 4.3: Gel electrophoretic analysis of metagenomic high molecular weight DNA 
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3. 16S rDNA phylogenetic analysis  

Bacterial and archaeal 16S rRNA genes present in the metagenomic DNA are commonly PCR 

amplified using the Bacteria-specific primer 27F and the universal primer 1492R (Lane et al. 1991) or 

the archaea-specific primer set 20F and 958R (DeLong 1992), 2-10 ng of extracted DNA (see Note 8) 

and a standard amplification protocol; e.g. 5 min at 95 °C followed by 30 cycles of 30 s at 94 °C,  45 s 

at 55 °C, and 1.5 min at 72 °C. The resulting 1,500 bp bacterial or 1,000 bp archaeal PCR fragments 

(Fig. 4.4) are purified and cloned into a sequencing vector, e.g. a TA cloning vector allowing an 

efficient cloning (Mead et al. 1991), followed by independent and complete DNA sequence analyses 

for both strands using the primers 27F and 1492R or 20F and 958R or universal primers 

complementary to the flanking vector regions (Pages and Holmes 1998; Suarez-Diaz and Anaya-

Munoz 2008). The 16S rDNA analysis not only allows insight into present community structure of the 

respective habitat, it also points out the likely potential of the habitat to detect new biotechnological 

relevant enzymes. In addition to the knowledge gained on the actual microbial diversity, additional 

PCR amplifications can be performed using specific primer sets in order to analyze the presence of 

functional genes, e.g. the nifH gene for diazotrophes, encoding a structural gene of nitrogenase, the 

key enzyme of nitrogen fixation (Langlois et al. 2005b, 2005a; Langlois et al. 2008).  

 

 
Fig. 4.4: 16S rDNA phylogenetic analysis of a marine habitat. (A) 16S rDNA gene amplification of 

metagenomic DNA using universal bacterial (line 2) and archaeal (line 1) primers. (B) Respective 

phylogenetic composition of the marine habitat based on 16S rDNA sequencing analysis. 
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4. Construction of a metagenomic large insert library 

Fosmid and Bacterial Artificial Chromosome (BAC) vectors have been developed to clone large 

genomic DNA fragments of up to 40 kb and ~ 120 kb, respectively. These vectors replicate using the 

single-copy F-factor replicon and show high stability carrying large inserts (Wild et al. 1996). 

Recently, novel large insert vectors have been developed carrying both, the single-copy and an 

additional inducible high copy number origin of replication (Wild et al. 2002). This ensures on the one 

hand insert stability and successful cloning of encoded and expressed toxic proteins and unstable DNA 

sequences, and on the other hand allows increased DNA yields in vector preparations and functional 

screens of clone libraries by induction to high copy numbers (Sektas and Szybalski 1998). Thus, 

BACs and fosmids have become standard tools for constructing genomic clone libraries. Genomic 

library construction kits are commercially available that pursue blunt-end cloning strategies resulting 

in complete and unbiased libraries. The ‘Copy ControlTM Fosmid Library Production Kit’ (e.g. with 

pCC1FOS) (Epicentre, Madison/USA) combines all advantages to stable insert large DNA fragments 

into the vector with little expenditure of time (Fig. 4.5). In the following the corresponding protocol 

according to the manufacture’s instructions is presented: 

Preparation of DNA: High molecular weight (meta)-genomic DNA is isolated as described above and 

diluted in TE buffer at a concentration of  ~ 500 ng/µl (see Note 9) 

 

Shearing: DNA fragments in the range of 20-40 kb are obtained by multiple pipetting the DNA 

solution using a 1000 µl pipette tip  

 

End-Repair of the DNA fragments: The end-repair reaction described below generates blunt-ended, 5'-

phosphorylated DNA fragments and can be scaled up or down depending on the amount of available 

DNA, followed by incubation at room temperature (RT) for 45 min (see Note 10).  

 

Sterile water x µl 

10 x End-Repair buffer 8 µl 

2.5 mM dNTPs 8 µl 

10 mM ATP 8 µl 

Up to 20 µg sheared DNA x µl 

End-Repair enzyme mix 4 µl 

Total reaction volume 80 µl 

 

Dialysis: The End-Repair reaction mix is dialyzed for 30 min at RT against sterile water to remove 

interfering salts. This step can be performed e.g. by using 0.025 µm cellulose filters type VS from 

Millipore (Schwalbach) placed on the surface of sterile water in a Petri dish, on which the reaction mix 

is placed.  
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Ligation: The ligation reaction is mixed in a 10:1 molar ratio of CopyControl pCC1FOS vector to 

insert DNA and incubated for 2 hours at RT followed by overnight incubation at 16 °C (see Note 11). 

The following reagents are combined in the order listed. 

 

Sterile water   x µl 

10 x Fast-Link ligation buffer   1 µl 

10 mM ATP   1 µl 

CopyControl pCC1FOS vector (0.5 mg/ml) 1 µl 

Insert DNA (0.25 µg of 40 kb DNA)   x µl 

Fast-Link DNA ligase   1 µl 

Total reaction volume   10 µl 

 
Packaging reaction: 10 µl of the ligation reaction are added to one-half of the provided MaxPlax 

Lambda Packaging extract (25 µl) in a reaction tube being kept on ice. The packaging reaction is 

incubated at 30 °C. After 90 min the remaining 25 µl of Lambda Packaging Extract are added and 

the reaction is incubated for additional 90 min at 30 °C. Following the incubation, the Phage-Dilution 

buffer is added to 1 ml final volume and mixed gently. For storage at 4 °C, 25 µl of chloroform are 

added.  

 

Titration of the packaged CopyControl fosmid library: Prior transducing the complete packaging 

reaction it is recommended to determine the phage particle titer (e.g. CopyControl Fosmid clones). 10 

µl of the packaging reaction is added to 100 µl of exponentially growing EPI300-T1R host cells (LB 

containing 10 mM MgSO4) followed by incubation at 37 °C for 20 min. Aliquots of the transduced 

EPI300-T1R cells are plated on LB plates supplemented with 12.5 µg/ml chloramphenicol and 

incubated overnight at 37 °C to select for the CopyControl Fosmid clones. Colonies are counted and 

the phage particles titer is calculated.  

 

Transduction and plating the CopyControl fosmid library: According to the titration and the estimated 

number of clones required, the volume of the packing reaction (fosmid library) required for the 

construction of the respective clone library is calculated. The transduction into EPI300-T1R host cells 

is performed as described above in several parallel reactions using the volumes mentioned above. 

Appropriate aliquots of the infected bacteria are plated on LB plates supplemented with 12.5 µg/ml 

chloramphenicol for selection and incubated overnight at 37 °C. Fosmid clones obtained are grown in 

microtiter plates (96 wells) and subsequently stored at -70 °C in the presence of 8 % DMSO. 

 

Induction to higher copy numbers: The fosmid clones of a library can be induced to reach higher 

fosmid copy numbers in order to achieve high fosmid DNA yields for sequencing, fingerprinting or 

other downstream applications. Induction to higher copy numbers is also recommended for direct 
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function-based screening assays of the clone library e.g. on plates. The induction can be achieved in 

any desired culture volume depending on the downstream application. In general, LB medium is 

supplemented with chloramphenicol and 1:1000 of induction solution and 1:10 of the respective 

overnight culture followed by incubation for 5 h at 37 °C with agitation. 

 

 

 

 
 

Fig. 4.5: Construction of a metagenomic library (modified according to Epicentre, Madison/USA) 
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5. Sequence-based screens of metagenomic libraries using a PCR-amplification approach 

A sequence-based analysis of metagenomic DNA can be performed by monitoring the presence of 

respective key genes by PCR amplification in order to identify genes and metabolic pathways. The 

primers are designed based on the sequences known for the respective gene with the primers binding 

to conserved regions of the genes. PCR-amplification is performed using the metagenomic DNA, 

fosmid pools or single fosmids of the metagenomic library. The respective amplified PCR fragment is 

cloned (e.g. into a TA cloning vector) followed by sequence analysis of randomly chosen clones. A 

recent example is the identification of a gene encoding a novel cytochrome P450 monooxygenase with 

a robust catalytic activity in a soil metagenomic library (Kim et al. 2007). Another example is the 

unexpected high diversity and distribution of the nifH-gene, one of the functional key genes for 

nitrogen fixation, discovered in the surface water of the Pacific Ocean (Langlois et al. 2005b; Langlois 

et al. 2008). Large scale sequencing projects such as the one initiated by Craig Venter for the 

metagenome of the Saragossa Sea resulted in the identification of numerous novel genes and is a 

famous example of sequence-based metagenome analyses (Venter et al. 2004b). Recently, large-scale 

sequencing of complete metagenomes by massive parallel sequencing, e.g. a pyro-sequencing 

approach, has been performed followed by bioinformatic analyses and partial assembly of the 

genomes present in the habitats (Tringe et al. 2005; Green and Keller 2006). 

6. Function-based screens of metagenomic libraries 

Functional screens for novel genes in metagenomic libraries explore the genetic potential of a habitat 

by directly monitoring products or enzymatic activity of the metagenomic clones. Metagenomic 

libraries have been screened for various biomolecules, such as biotechnologically relevant enzymes. 

So far, functional screens of metagenomic libraries have identified e.g. several novel antibiotics, e.g. 

turbomycin A and B (Gillespie et al. 2002), aminoacylated antibiotics (Brady et al. 2002) or small 

antimicrobial molecules (MacNeil et al. 2001) from soil metagenomes, exoenzymes such as lipases 

(Henne et al. 2000) and  marine chitinases (Cottrell et al. 1999) or membrane proteins (Majernik et al. 

2001). In the following, the screen for cellulose degrading activity will be exemplarily described.  

 

Screening metagenomic libraries for novel cellulose degrading enzymatic activity.  

 Cellulases refer to a class of enzymes that catalyze the hydrolysis of cellulose by hydrolyzing the 1,4-

ß-D-glycosidic linkages. Several different kinds of cellulases are known which differ structurally and 

mechanistically (Ghose 1987a, 1987b). Cellulases are widely used in the pulp and paper industry for 

various purposes, for pharmaceutical applications (Cohen 2007), in the textile industry and are present 

in laundry detergents. Thus, these enzymes have a high relevance in biotechnology and novel thermal 

or pH-stable cellulases are continuously searched for industrial application. Metagenomic libraries can 

be screened for cellulose degrading activities on agar plates with a rapid and sensitive assay system 

using Congo Red for detection. As Congo Red shows a strong interaction with polysaccharides 

containing contiguous ß-(1,4)-linked D-glucopyranosyl units and a significant interaction with ß-(1,3)-
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D-glucans, zones of cellulose hydrolysis around a metagenomic clone on agar plates can be visualized 

(Teather and Wood 1982). The following protocol exemplarily describes a plate screen for cellulose 

degrading enzymatic activity on plates: 

• Metagenomic clones stored at -70 °C are directly transferred from the 96 well microtiter plates 

to the CMC agar plates with a steel stamp, followed by incubation for 24 h at 37 °C. 

• The plates are flooded with an aqueous 0.2 % solution of Congo Red for 15 min. 

• After pouring off the Congo Red solution the plates are further treated by flooding with 1 M 

NaCl for 15 min. Degradation of cellulose is indicated by a yellow zone around positive 

clones (see Fig. 4.6). 

• The visualized zones of hydrolysis can be stabilized for at least 2 weeks by additional flooding 

the agar plate with 1 M HCl which changes the dye colour to blue and inhibits further enzyme 

activity. 

In order to identify the respective open reading frame (ORF) of a confirmed fosmid conferring the 

desired activity, an in vitro transposon mutagenesis can be performed e.g. using the EZ-

Tn5TM<oriV/KAN-2> Insertion Kit from Epicentre (Madison/USA). Following the transposon 

mutagenesis clones are screened for loss of the desired activity. Fosmid DNA of clones that lost the 

activity are sequenced using primers hybridizing to the 5’ and 3’ end of the transposon reading into the 

flanking metagenomic regions. The obtained DNA sequences flanking the transposon are assembled in 

order to identify the respective ORF, which can be cloned in an expression vector to purify the protein 

in high amounts.  
 

 

 

 
Fig. 4.6: Plate screen for cellulose degrading metagenomic clones 
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Notes 

1. The sampling procedures have to be performed rapidly because of the changing environmental 

conditions.  

2. The filtration should be realized as fast as possible with a supporting peristaltic pump in a cold 

room or for large volumes preferentially using an in situ pump at the respective conditions at 

the sampling site. 

3. Based on the higher number of pores polyvinylidenfluoride filters are preferred to filter high 

water volumes through a single filter especially when working with small filter diameters. 

4. For long time storage filters have to be frozen at -80 °C in practicable dimensions. Before 

liquid nitrogen treatment the filters have to be cut into convenient pieces to rule out needless 

freeze/thaw cycles. 

5. The standard DNA extraction protocol has to be modified when the samples contain high 

amounts of polysaccharides and glycoproteins. In this case the sample should be treated with 

higher percentages of CTAB to support disintegration of samples.  

6. In some cases an additional mechanical cell lyses step might be necessary as some 

bacteria/archaea may not be cracked with enzymatic methods.  

7. Sometimes extracted metagenomic DNA shows a high degradation because of DNases present 

in the sample. In this case addition of EDTA to the DNA extraction buffer helps suppressing 

the damage of DNA. (EDTA is used for scavenging metal ions to deactivate metal-dependent 

enzymes). 

8. The crucial step of the 16S rDNA PCR amplification is to amplify the bacterial/archaeal 16S 

rDNA fragments from the optimal amount of template DNA, which can differ from 1 pg to 1 

µg. 

9. If the extracted metagenomic DNA will be used for library construction the DNA should 

routinely be analyzed for degradation to decide if shearing is necessary or this step might be 

skipped.  

10. Before preparing the End-Repair reaction the DNA concentration has to be determined 

precisely by measuring the absorbance at 260/280 nm, as in the following dNTPs are added 

and all following steps and calculations are based on this DNA quantification.  

11. A size selection of 20 – 40 kb End-Repaired fragments can be performed to ensure that only 

large inserts are ligated into the pCC1FOS vector. In special cases the molar ratio 10:1 of 

fosmid vector to insert DNA can be optimized (5:1 or 7.5:1) to increase the clone number. 
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Discussion 
 

The overall goal of this study was to identify microbes involved in key processes of the marine N-

cycle and to assess their contribution to the respective processes under changing O2 conditions in the 

ocean. We were particularly interested in N2-fixation and the biological production of the greenhouse 

gas N2O. Ultimately, our results were supposed to lead towards predicting future changes of the 

strongly O2-sensitive biological N-cycle processes with regard to the expansion of oceanic OMZs and 

their ongoing deoxygenation.  

In the following, the role of OMZs of different intensities as hotspots for N-turnover processes will be 

discussed; trends and open questions with regard to the marine N-cycle and the potential of meta-

omics for marine studies will be assessed. 

 

 

The N-cycle 

 

N2-fixation and the fixed N deficit in the ocean: 

According to current estimates, a large deficit in oceanic fixed N resulting from a total N-loss term 

exceeding the N-gain is suggested. As an overestimation of the N-loss term appears unlikely 

(Codispoti 2007), the apparent deficit in fixed N (~200 Tg N a-1) is ascribed to an underestimation of 

N2-fixation as the major source for oceanic fixed N. Three major reasons for an underestimation of the 

fixed N2 term were identified during our studies, of which the first is a methodological 

underestimation of N2-fixation rates resulting from using the classical 15N2-tracer technique (Montoya 

et al. 1996). The development of a novel method (Mohr et al. 2010) demonstrated a non-linear 

underestimation of N2-fixation in the environment of up to 6-fold compared to the classical method 

(Grosskopf et al., submitted).  

We further demonstrated that the classical view of N2-fixation taking place mainly in nutrient-depleted 

surface waters and to only a minor extent in deeper waters has to be reassessed. The detection of eight 

novel nifH clusters in the ETSP and two novel nifH clusters in the ETNA (Joshi and Löscher, in 

prep.), their presence along with active N2-fixation and at least occasional expression in those areas 

indicated an important role of those clusters, particularly, under extremely anoxic conditions as 

present in the OMZ off Peru. Those diazotrophs consisting at least partially of heterotrophic clades, as 

hypothesized from glucose fertilization experiments, might contribute essentially to the oceanic N-

input. With regard to the ongoing O2 decrease in OMZs along with eutrophication (Codispoti et al. 

2001; Capone 2008; Stramma et al. 2008; Stramma et al. 2010), those clusters, preferably present in 

OMZ waters, might be dominating the oceanic diazotrophic community in the future. In addition, we 

detected highest N2-fixation comparable to those from waters dominated by major Trichodesmium 

blooms connected to an anoxic sulphidic event (Chapter 1). This temporally limited significant 

enhancement of N2-fixation might result from a variety of factors present during this event, e.g. the 
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increased availability of trace metals, such as dissolved iron, predominantly present as Fe2+ during this 

event (Schlosser and Croot, unpublished). Enhanced N-loss processes, as detected at this transient 

event, as well, might have additionally triggered N2-fixation by rising P*. Assuming such events will 

occur more frequently in the futures possibly as a result of large plankton blooms as a consequence of 

ongoing eutrophication and their subsequent degradation; we speculate that this term might 

substantially impact on the marine N-budget. Thus, it is crucial to understand and explore the genetic 

and metabolic potential present in the microbial community to assess the ability to adapt to those 

rapidly changing conditions and thus to the future trend of expanding OMZs.  

OMZs were previously proposed  potential niches for diazotrophs and to promote N2-fixation, as those 

waters are rather depleted in biological available N (Deutsch et al. 2007) as a result of massive N-loss 

(Kuypers et al. 2005; Deutsch et al. 2007). Hence it has been suggested, that  high P* values as present 

in upwelled N-depleted waters connected to OMZs trigger N2-fixation, normalizing the N-deficit 

towards the open ocean as previously predicted by biogeochemical models (Deutsch et al. 2001; 

Deutsch et al. 2007). An even closer spatial link between N-loss and N2-fixation in OMZ waters has 

been suggested by our studies (Chapter 1). The co-occurrence of one novel cluster (P1) with key 

functional genes and transcripts of nitrification, denitrification and anammox as well as the 

demonstrated activity of those processes (mainly nitrification and anammox, detected by isotope 

pairing studies, Kalvelage et al., unpublished) support a co-occurrence of N-loss and N-input in the 

OMZ off Peru. Hence, we propose that the deficit in bio-available N resulting from N-loss processes 

triggers N2-fixation directly. However, we can not directly exclude that N-loss and N2-fixation are 

triggered by a similar unknown parameter. The overall presence of P* in the ETSP (Deutsch et al. 

2007) still points towards the fact that N2-fixation is not able to balance the N-loss in that area. Thus, 

we argue, that the pronounced presence of P*results to major part from enhanced P regeneration in the 

sediments and shelf bottom waters favouring substantially the release of reactive P to the water 

column (Ingall and Jahnke 1994). Consequently, the present P* would not exclusively result from N-

loss. OMZs with high P* might therefore provide an ideal niche for diazotrophs. 

Taking the methodological underestimation (Mohr et al. 2010) along with the suggested major 

contribution of deep heterotrophic N2-fixation and with transient events in rapidly changing systems 

into account, oceanic N2-fixation needs to be revised upwards. Further studies need to focus on 

reassessing the in situ N2-fixation using the novel method and moreover the distribution of the nifH 

gene and the diazotrophs in general to estimate the potential of the diazotrophic community to react to 

changes in dissolved O2. Moreover, the role of OMZs as hotspots for N-turnover as suggested in 

Chapter 1 and thus as potential niches for diazotrophs has to be analyzed in depth. 

 

OMZs as hotspots of N2O production: 

Besides the importance for oceanic N2-fixation, OMZs were also proposed important areas for N2O 

production. Favoured by low O2 conditions as present in O2 deficient waters of the OMZs (Naqvi et 

al., 2010), the biological formation of N2O is predicted to strongly react to even minor changes 
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(Codispoti 2010). However, current estimates ascribe 25-50% of oceanic N2O production to OMZs 

(Suntharalingam et al. 2000); this term might severely increase with ongoing deoxygenation of OMZs 

and their expansion.  

The paradigm shift of N2O production by mainly ammonia-oxidizing archaea (AOA) rather than by 

ammonia-oxidizing bacteria (AOB) as previously proposed (Wuchter et al. 2006; Church et al. 2009; 

Santoro et al. 2010; Santoro et al. 2011) and verified by our studies using a pure culture of 

Nitrosopumilus maritimus, demonstrated the rather poor understanding of major pathways of the 

marine N-cycle. Although the abundant presence of AOA in the water column of the ETNA and ETSP 

along with maxima in N2O has already been observed (Church et al. 2009; Santoro et al. 2010), our 

onboard incubation experiments using an archaea-specific inhibitor were the first direct evidence for 

archaeal N2O production in the ocean (Fig. 3.5, Chapter 2).  

The pronounced inverse correlation of O2 concentrations and N2O formation (Fig. 3.6) determined in 

the presented experiments using pure cultures demonstrates the strong sensitivity of N2O formation to 

changes in dissolved O2, possibly explaining the high amounts of N2O present in OMZs. Although 

further studies are required to identify the O2 threshold for N2O production by AOA, Kalvelage et al. 

(Kalvelage et al., unpublished) showed by rate measurements that ammonia oxidation is possible at O2 

concentrations as low as ~1 µM O2, which is considerably lower than previously expected. Assuming 

an ongoing inverse correlation of N2O production via nitrification at those low O2 conditions and 

moreover additional N2O formation via denitrification, this would possibly explain the maxima in N2O 

detected in and close to OMZs.  

In particular, massive N2O concentrations have been detected in the OMZs off Peru (~370 nM 

Löscher, unpublished) and West India (Naqvi et al. 2000) (Fig. 5.1). While Naqvi et al. (Naqvi et al. 

2000) ascribed large parts of the N2O production at hypoxic conditions to denitrification; we propose a 

combination of denitrification and nitrification in the OMZ off Peru resulting in the present high N2O 

concentrations. Regarding the gene abundance and activity of the archaeal amoA gene, used as the 

functional marker for archaeal ammonia oxidation in this investigation, a contribution of this process 

to N2O production is highly likely. Nevertheless, a ∆N2O/AOU correlation has not been detected, 

(Loescher et al. 2011; Ryabenko et al. 2011) and delta 15N values strongly point towards additional 

denitrification activity (Ryabenko et al. 2011).  Possibly depending on the time point with regard to 

deoxygenation of the water column and later on re-oxygenation, one of those processes might 

dominate the overall production. While Naqvi et al. and Farias et al. (Naqvi et al. 2000; Farías et al. 

2007) proposed high N2O production due to denitrification during deoxygenation; we propose 

additional production of N2O due to beginning nitrification when the water recovers from anoxia. 

Pulse experiments using H2S demonstrated, that nitrification is significantly enhanced during re-

oxygenation after the sulphide pulse (Erguder et al. 2008), those findings in line with observations 

from the Baltic Sea (Schweiger et al. 2007), where nitrification was found to be significantly enhanced 

during re-oxygenation, strongly point towards an important role of ammonia oxidation for N2O 

production at rapidly changing conditions. 
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Fig. 5.1: Maximum N2O concentrations vs. associated O2 concentrations in coastal upwelling regions. For 

comparison a typical N2O surface concentration in the tropical open ocean is shown as well. Data sources: W. 

India and Oman – W. Naqvi, pers. comm.; Open ocean off Mauritania – A. Kock and H.W. Bange, unpublished; 

Chile – Cornejo et al. (2006); Peru – C.R. Löscher and H.W. Bange, unpublished. 

 

These findings demonstrate that under low O2 conditions, as present in OMZs, N2O production in 

those environments is highly complex and might rapidly change over short time periods.  

To improve the understanding of the oceanic distribution of N2O and the physiology and metabolism 

of the major production processes it is crucial to apply novel developed molecular techniques, which 

allow gaining insight into those complex processes responsible for N2O production. 

 

In summary, the classical view of N-turnover processes, of the habitats of the contributing 

microorganisms and their O2 tolerance has to be reassessed, we propose an extension of the 

diazotrophic habitat to low O2, high NO3
- habitats, further, we suggest, that nitrification can occur 

along with anammox and denitrification (Fig. 5.2), and that N2O is mainly produced by AOA and not 

AOB at suboxic to hypoxic conditions. 
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Fig. 5.2: Model of N-cycle processes in and near OMZs: A co-occurrence of nitrification, denitrification and 

anammox in OMZ waters and in the oxycline is proposed. 

 

 

Meta-omics 

 

Applying metagenomics and metatranscriptomics on marine samples 

Although microorganisms are driving the majority of biogeochemical cycles, thus shaping the 

environment of the earth and its oceans, their diversity and metabolic potential is understood to only a 

minor extent (Amann et al. 1995; Venter et al. 2004; DeLong and Karl 2005; DeLong 2009). The 

development of culture-independent approaches, e.g. large insert clone libraries or whole (meta-) 

genome sequencing techniques led to surprising novel insights in the microbial potential in the ocean 

over the last few years, e.g. the identification of  proteorhodopsin (Beja et al. 2000; Beja et al. 2001) 

and the presence of the amoA gene in archaea (Schleper et al. 2005).  A substantial progress in the 

field of marine meta-omics was initiated by the results obtained from the global ocean survey (Venter 

et al. 2004). This large-scale investigation demonstrated the wealth of diversity in marine microbial 

communities and functional genes in the ocean. In addition to classical Sanger-sequencing, which can 

exclusively reveal the diversity in previously selected target genes, the pyrosequencing approach has 

the potential to detect whole (meta-) genomes and thus genes of unknown functions and varying 

molecular structures. Moreover, it allows a substantially deeper insight into the community structure 

present in environmental samples as suggested by the preliminary evaluation of our studies (Fig. 5.3).  
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Fig. 5.3: 16S rDNA Sanger sequencing (I) compared to Pyrosequencing (II): Only major groups (which are 

mentioned in the legend) were detected by classical Sanger sequencing, a broader diversity was recovered from 

the Pyrosequencing dataset (samples from M77/3, #3, 50 m). 

 

Although, the results obtained from those studies are impressing, the bottleneck to overcome 

nowadays is the bioinformatic evaluation of the large amount of obtained metagenomes and –

transcriptomes, particularly with regard to the definition of quality standards, comparability and 

database management.  

The meta-omic results obtained from this projects’ dataset (Schunck et al., unpublished) demonstrate 

the need for improving the bioinformatics tools used in meta-omics. In this dataset, an average relative 

amount of ~ 60 % of sequences present in the obtained libraries was denoted genes of unknown 

function. This amount of e.g. hypothetical proteins, as also detected in comparable proportions in 

other datasets (Tyson et al. 2004; Venter et al. 2004; Tringe et al. 2005) sustains a vast unexploited 

source for novel enzyme driven pathways which might possibly be unravelled by combining gene 

patterns to environmental parameters and present biogeochemical processes (Bohnebeck et al. 2008). 

With regard to high resolution gene profiling, significant progress was made during this project by 

developing highly sensitive qPCR detection systems (gene- and cluster-specific) for all key genes 

known to catalyze reactions in the marine N-cycle. Particularly with regard to the nifH gene, a need 

for cluster specific gene quantification has been demonstrated, as this enables to ascribe certain 

ecotypes to biogeochemical patterns. Thus, a deeper understanding of the cluster specific distribution 

is crucial to assess future changes in the community composition of diazotrophs (in terms of nifH) and 

thus in marine N2-fixation.       

The development of a (70mers) DNA-microarray during this study enables an additional fast and 

highly standardized initial screen of large amounts of samples for genes involved in the N- cycle, 

followed by more quantitative methods, e. g. RT-qPCR. The developed microarray represents a set of 
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key functional genes involved in the N-cycle. It contains 154 different oligomers (Fig. 5.4, 104 

oligomers were deducted from sequences derived from samples from the water column of the ETNA 

and ETSP, a set of 40 oligomers was deducted from genes involved in the N-cycle obtained from the 

NCBI database to cover a broader diversity on the microarray and to include cultivated model 

organisms). Initial evaluation of the microarray showed a very high consistence with qPCR datasets 

for an exemplary sample (Fig. 5.4). 

 

 
 
Fig. 5.4: (A) A 70mer microarray containing a broad set of key genes involved in the N-cycle was constructed; 

(B) a first test run using DNA from the Pacific showed results consistent with the qPCR quantification (C) 

 

Although the detection systems developed during this study appear to reveal realistic distribution 

patterns with regard to gene abundance, the detection of gene expression is still not satisfactory. A 

large discrepancy in gene abundance and gene expression has been detected for all measured genes; 

variations ranged from 1-2 orders of magnitude in case of amoA (Chapters 1, 2) to not even detectable 

expression in case of nifH (Chapter 1). In both cases, the activity of the respective process was 

demonstrated by rate measurements or inhibitor experiments; hence the observed difference is 

proposed to result from a methodological problem. Therefore, we hypothesize, that the low detected 

transcript numbers result from rapid RNA degradation in environmental samples from OMZs, where 
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RNAs might degrade when getting oxygenated. Similar observations have been made in 

Prochlorococcus, where some RNAs encoding for O2-sensitive enzymes degraded very rapidly (T1/2 = 

2.4 min). Preliminary results of experiments using pure cultures of Methanosarcina mazei Gö1, 

Klebsiella pneumoniae M5A1 and Azotobacter vinelandii (DSMZ 332) indicate that the difference in 

gene copies and transcripts results from an O2-dependent RNA degradation, further investigations are 

urgently needed, in order to optimize the sampling method Chapter 1, supplemental material). 

Even though the applied techniques might be biased to a certain degree, they allow to specifically 

detect for key genes of N-cycle pathways, thus helping to understand the diversity and distribution of 

genes and organisms involved in the N-cycle, respectively. Nevertheless, a most realistic assessment 

of the ongoing processes of the oceanic N-cycle leading to valuable future predictions can only be 

achieved by a combination of molecular tools with rate measurements and the determination of the 

distribution of N compounds in the oceans’ water body.  

 

 

Future development of the marine N-cycle under changing O2 conditions 

 

 OMZs of different intensity: ETNA and ETSP 

The pronounced difference between the two investigated areas (ETNA and ETSP), with regard to the 

N-cycle raised the question on the origin of those variations. As basic features of the water mass, the 

age and thus the O2 and nutrient content combined with the depth of the shelf and the overall volume 

are proposed important factors, with large shelf areas, and relatively low water depths leading to 

deoxygenation via a close spatial coupling of plankton blooms and the recycling and respiration of 

sinking organic matter. Independent of the age of the water mass  and the expansion of the shelf, the 

difference in expression of the OMZs in the ETNA and the ETSP another fact might be of importance: 

Both systems show a rather comparable primary production, thus, comparable amounts of organic 

matter (OM) are assumed sinking down to the OMZ. Nevertheless, it appears, that a difference in 

respiration in the OMZ is present thus resulting in a variation in O2 consumption and consequently in 

deoxygenation. Possibly, the residence time of OM in the OMZ of the ETNA is influenced by the 

input of Saharan dust particles (in contrast to the ETSP, where dust input is rather low), increasing the 

sinking speed of OM and enhancing the export from the OMZ, thus shortening the remineralization 

time. Although, information on particle sinking speeds in the ETSP and ETNA is rather sparse, it 

might be one factor shaping OMZs of different intensity (Fig. 5.5). 

Besides these general differences, the occurrence of the transient H2S event demonstrated that such 

extreme situations act as temporally limited hotspots of N-turnover, reflected by highest N2-fixation 

rates and significantly enhanced N2O production. Although data on the frequency of the occurrence of 

those events is rather sparse, eutrophication along with ongoing water deoxygenation might provoke 

them.  
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Fig. 5.5: Particle sinking speeds might influence the formation and future development of OMZs (Bange, 

unpublished). The Saharan dust input in the ETNA might decrease residence times of organic matter in the OMZ 

off Mauritania, decreasing respiration times and ultimately resulting in lower deoxygenation. 

 

The N-cycle in the ocean: future trends and open questions 

Several striking results regarding the marine N-cycle in and close to OMZs were obtained over the 

recent years, e.g. by identifying the importance of anammox, particularly in OMZ waters (Dalsgaard et 

al. 2003; Kuypers et al. 2003), the leading role of archaeal for oceanic ammonia-oxidation (Wuchter et 

al. 2006) and the unexpected higher diversity of diazotrophs, also particularly important in OMZs 

(Fernandez et al. 2011; Hamersley et al. 2011). It has already been speculated, that it will soon be time 

to rewrite the textbooks on the marine N-cycle (Deutsch et al. 2007). However, there are several topics 

and open questions which have to be addressed, before. 

Some lacks of knowledge might be addressed more directly, such as the potential role of archaea for 

other pathways than nitrification in the marine N-cycle. Cabello et al. (Cabello et al. 2004) discussed 

the overall potential of archaea to denitrify in low oxygen environments; however, direct evidence for 

an archaeal contribution to denitrification has yet not been demonstrated in the ocean.  The presence of 

several clusters of crenarchaeota and euryarchaeota (among those e.g. methanogens known to fix N2 

and partially containing several reductase for denitrification) in metagenomes from the OMZ off Peru 

(Löcher, unpublished) might point towards role of those organisms in denitrification of N2-fixation. 

An additional goal would be to identify a key functional marker gene or a similar molecular tool for 

the oxidation of nitrite to nitrate in marine systems, which is currently lacking. Moreover, it is crucial 

to unravel the exact metabolism and the full enzymatic pathway which is used in archaeal ammonia 
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oxidation; the step of N2O formation in those organisms has to be identified and the missing 

intermediate product, which corresponds to hydroxylamine in AOB, must be determined. 

The possibility of N2-fixation in OMZ waters as demonstrated by our studies opened a door for 

consecutive questions including a reassessment of N2-fixation rates at depth, environmental controls 

on N2-fixation and finally a  re-estimation of  the marine N-budget, accordingly. Nevertheless, also 

waters beyond OMZs (as a cut-off with regard to depth could not be determined in our studies; i. e. P8 

was still present at > 4000 m depth in the ETSP), sediment N2-fixation and the rarely explored 

possibility of N2-fixation in cold waters have to be considered, when re-calculating the oceanic N-

budget. 

In a global context with regard to future climate change, it is crucial to determine and understand the 

effects of global warming, ocean deoxygenation and ocean acidification and their co-occurrence on the 

marine N-cycle. Direct impacts of temperature on e.g. on the distribution of diazotrophs have 

previously been described (Langlois et al. 2008; Stal 2009); however, information of temperature 

dependency of other N-cycle processes is sparse. Further, an impact of changes in pH has been 

demonstrated on major clades of diazotrophs. However, previous studies focussed mainly on 

cyanobacterial diazotrophs (Hutchins et al. 2007; Levitan et al. 2007; Ramos et al. 2007; Fu et al. 

2008) and not on heterotrophic diazotrophs in OMZs. Although a decrease in nitrification by ocean 

acidification has been demonstrated (Beman et al. 2011), we speculate, that this would not necessarily 

impact on the production of the by-product N2O, which is consequently attractive to explore. Overall, 

a direct effect of oceanic deoxygenation on N2-fixation and N-loss has been expected and moreover 

been demonstrated in our studies, as all involved processes are strongly sensitive towards changes in 

dissolved O2. Thus, the expansion of OMZs will affect the N-cycle in the future, and thus it will 

impact on the global ocean, with fundamental impacts on marine ecosystems and marine resources. 
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Outlook 
 

Following up the unexpected findings of this study several questions rose with regard to the marine N-

cycle. First, the presence of novel diazotrophic clusters and the application of a novel method allowing 

more accurate N2-fixation rate measurements (Mohr et al. 2010) demonstrated the urgent need for 

reassessing the marine N-budget. The surprisingly broad diversity of diazotrophs recovered from the 

diversity in nifH genes and the fact that some of them are likely heterotrophs as deducted from 

incubation experiments further demonstrated the need to recover partial or complete genomes of those 

organisms in order to assess their complete metabolic potential. This issue will be addressed, now, by 

high throughput sequencing of fosmids, carrying the nifH gene, and enrichments or isolates, gained 

from seawater samples. In addition to unravel unknown genomes of diazotrophs, fosmids carrying the 

amoA, the nirS and the hzo genes are present in already existing metagenomic libraries and are 

attractive being analyzed by high through put DNA sequencing, as well. 

 

An initial fast gene presence and expression screening will be performed on samples from depth 

profile by using the microarray designed and constructed during this study. Moreover, the existing 

TaqMan probes and detection system will be used for high resolution screening of functional genes, 

novel probes might be designed to detect potentially existing additional clusters. 

Over the next years, the functional diversity of microorganisms present in and near to OMZs off Peru 

and Mauritania will be assessed, in detail. Key microorganisms capable of nitrification, DNRA, 

anammox, denitrification, N2O production and N2-fixation in those areas will be identified; their 

distribution will be detected and quantified in high resolution along vertical and horizontal O2 

gradients. Here, our particular interest will be set on gene distribution and activity patterns including 

all novel nifH and amoA clusters. 

The possibility to measure intermediate short lived N compounds, now, such as hydroxylamine 

(NH2OH), hydrazine (N2H4) and nitric oxide (NO) will be used to identify zones of ongoing N 

regeneration, N-loss and N2O production and might further lead to a deeper insight in missing links in 

the marine N-cycle.  

The observed difficulty of RNA degradation will be addressed by developing a filtration system which 

allows pre-filtration leading to shorter filtration periods and which uses a cover gas atmosphere to 

protect O2-sensitive RNAs from O2-dependent degradation. 

Novel mRNA-based techniques developed by Schunck et al (unpublished) will be applied on samples 

along vertical O2-gradients and on samples from O2-manipulation incubation experiments in 

combination with rate measurements using stable isotope tracers.  

To address those goals, we will participate in 4 cruises to the eastern tropical South Pacific OMZ and 

in TENATSO (tropical eastern North Atlantic Time Series Observation, near Cape Verde) sampling. 
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The TENATSO long term study will allow to monitor changing conditions over a time period of 

several years, as it has been monitored by us since 2007, whereas the consecutive cruises to the 

Peruvian OMZ will allow monitoring this system in depth. 
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