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Abstract. Pseudo-repetitions are a generalization of the fundamental
notion of repetitions in sequences. We develop the algorithmic founda-
tions for questions on pseudo-repetitions and extend the work by L. Kari
et.al. on the combinatorial properties of pseudo-repetitions, who investi-
gated a restricted version of that notion in the context of bioinformatics.

1 Introduction

The notions of repetition and primitivity are fundamental concepts on sequences
used in a number of fields, among them being stringology and algebraic coding
theory. A word is said to be a repetition (or power) if it can be written as the
repeated concatenation of one of its prefixes. In this article, we investigate algo-
rithmic and combinatorial questions of a generalization of that concept, namely
pseudo-repetitions in words. A word w is said to be a pseudo-repetition if it can
be written as the repeated concatenation of one of its prefixes t and its image
f(t) under some anti-/morphism f , more precisely, w ∈ t{t, f(t)}+.

Pseudo-repetitions, introduced in a restricted form by L. Kari et.al., lacked
so far a developed algorithmic part, something that is usually quite important
in the field where this theory originates from — bioinformatics. Our algorithmic
results aim to fill this gap. We document results on natural algorithmic ques-
tions about finding pseudo-repetitions in a word for a given anti-/morphism and
decide pseudo-primitivity of a word for any anti-/morphism thereby improv-
ing the results from [1]. Together with these considerations, some fundamental
combinatorial properties are established.

A central result for both algorithmic and combinatorial questions regarding
sequences is the so called Fine and Wilf theorem [2]. It states in a general context
that if one can construct using two different words u and v two different sequences
in such a way that one starts with u and the other with v, and they share a
common prefix of at least the sum of the lengths of the two words minus their
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greatest common divisor, then the two sequences are equal and, moreover, u
and v are both powers of a factor of length equal to the greatest common divisor
of their lengths. Up to now several generalizations of this theorem have been
investigated, [3–6]. We contribute to that line of research by stating Fine and
Wilf style results for pseudo-repetitions in this paper.

Background and Motivation. The notions of pseudo-repetition and -primitivity
were first introduced in [6] by Czeizler, Kari, and Seki. Their motivation origi-
nated from the field of computational biology in the fact that the Watson-Crick
complement can be formalized as an antimorphic involution, and the fact that
both a single-stranded DNA and its complement basically encode the same in-
formation. Until now, pseudo-repetitions were considered only in the restricted
cases of anti-/morphic involutions, following the original motivation.

A natural extension of these concepts is to consider anti-/morphisms in gen-
eral, which is done in this paper. Considering that the notion of repetition is
central in the study of combinatorics of words and the plethora of applications
that this concept has, the study of pseudo-repetitions seems even more attrac-
tive, at least from a theoretical point of view. While the biological motivation
seems appropriate only for the case when f is an antimorphic involution, one
can imagine a series of real-life scenarios where we are interested in identifying
factors of words which can be written as the iterated concatenation of a word
and its encoding through some simple function f .

Some Basic Concepts. For more detailed definitions we refer to [7, 6].
Let V be a finite alphabet. The length of a word w ∈ V ∗ is denoted by |w|.

The empty word is denoted by ε. Moreover, we denote by alph(w) the alphabet
of all letters that occur in w. A word u is a factor of a word v, if v = xuy, for
some x, y. We say that u is a prefix of v, if x = ε and a suffix of v if y = ε.
We denote by w[i] the symbol at position i in w, and by w[i..j] the factor of w
starting at position i and ending at position j, consisting of the concatenation
of the symbols w[i], . . . , w[j], where 1 ≤ i ≤ j ≤ n. Moreover, we denote by
w = u−1v, whenever v = uw. The powers of a word w are defined recursively
by w0 = ε, for n ≥ 1, wn = wwn−1, and wω = ww · · · , an infinite concatenation
of the word w. If w cannot be expressed as a power of another word, then w is
said to be primitive.

The following well known result plays an important role in our investigation:

Theorem 1 (Fine and Wilf [2]). Let u and v be in V ∗ and d = gcd(|u|, |v|).
If two words α ∈ u{u, v}∗ and β ∈ v{u, v}∗ have a common prefix of length
greater than or equal to |u|+ |v|−d, then u and v are powers of a common word
of length d. Moreover, the bound |u|+ |v| − d is optimal.

For some anti-/morphism f : V ∗ → V ∗ we say that f is uniform if there
exists a number k with f(a) ∈ V k, for all a ∈ V ; if k = 1 then f is called literal.
If f(a) = ε for some a ∈ V , then f is called erasing, otherwise non-erasing. We
say that a word w is an f -repetition, or, alternatively, an f -power, if w is in
t{t, f(t)}+, for some prefix t of w. If w is not an f -power, then w is f -primitive.
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As an example, we see that abcaab is primitive from the classical point of
view (that is, 1-primitive, where 1 is the identical morphism) and, moreover, for
an f with f(a) = b, f(b) = a and f(c) = c, the word is also f -primitive. However,
when considering the morphism f(a) = c, f(b) = a and f(c) = b, we note that
abcaab is the concatenation of ab, f(ab) = ca and ab, thus, being an f -power. It
is worth noting that in [6, 8] the authors were able to prove generalizations of the
Fine and Wilf Theorem for f -repetitions, when f is an anti-/morphic involution.

2 Extensions of the Fine and Wilf Theorem

We say that a function f : V ∗ → V ∗ is a morphism if f(xy) = f(x)f(y), for any
words x and y, over V . Further, f is an antimorphism if f(xy) = f(y)f(x), for
any words x and y over V . Note that, when we want to define a morphism or
an antimorphism it is enough to give the definitions of f(a), for all a ∈ V . We
write anti-/morphism whenever we want to say “antimorphism or morphism”.
Also, an anti-/morphism f : V ∗ → V ∗ is an involution when f(f(a)) = a for all
a ∈ V .

The following lemma is well known:

Lemma 1. For a word w, if ww = xwy with x 6= ε and y 6= ε, then x, y and w
are powers of the same word t.

The study of generalizations of the Fine and Wilf theorem for the case of
pseudo-repetitions started in [6] and was continued in [8].

Theorem 2. Let u and v be two words over an alphabet V and f : V ∗ → V ∗

a morphic involution. If u{u, f(u)}∗ and v{v, f(v)}∗ have a common prefix of
length greater than or equal to |u| + |v| − gcd(|u|, |v|), then there exists t ∈ V ∗
such that u, v ∈ t{t, f(t)}∗. Moreover, the bound |u|+|v|−gcd(|u|, |v|) is optimal.

Theorem 3. Let u and v be two words over an alphabet V and f : V ∗ → V ∗

an antimorphic involution.
1. If |v| = 2 gcd(|u|, |v|) and u{u, f(u)}∗ and v{v, f(v)}∗ have a common prefix
of length greater than or equal to 2|u|−bgcd(|u|, |v|)/2c, then there exists t ∈ V ∗
such that u, v ∈ t{t, f(t)}∗.
2. If |v| > 2 gcd(|u|, |v|) and u{u, f(u)}∗ and v{v, f(v)}∗ have a common prefix
of length greater than or equal to 2|u|+ |v|− gcd(|u|, |v|)−bgcd(|u|, |v|)/2c, then
there exists t ∈ V ∗ such that u, v ∈ t{t, f(t)}∗.

The bulk of this work deals with the case of literal bijective anti-/morphisms;
at the end we give a series of results that explain why other types of anti-
/morphisms are not interesting in this context. The results presented here gen-
eralize the original Fine and Wilf Theorem [2], as well as the corresponding
generalizations of this theorem presented by Kari et al. [6, 8].

We start with the simple remark that for a two letter alphabet {a, b}, the
case of bijective literal anti-/morphisms is quite trivial, since either f is the
identity, or f is an involution (f(a) = b and f(b) = a). The results are given by
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Theorem 1 and its generalizations from [6, 8]. Thus, for the rest of this section
we consider alphabets of three or more letters.

Note that if f is a bijective function from V to V , then one can see f as a
permutation of V . Therefore, there exists a minimum m > 0 such that fm is the
identity of V . Generally, this value is denoted by ord(f), called the order of f ,
and is less than g(|V |), where g is the Landau function3; clearly, ford(f)(x) = x,
for all x ∈ V ∗.

The following observation helps us with proofs throughout the paper:

Lemma 2. Let w be a word over V and f : V ∗ → V ∗ a bijective literal anti-
/morphism. If u = f(u), then, for any letter a ∈ alph(u), we have f2(a) = a.

Proof. Let us denote w = a1 · · · an with ai ∈ V , where 1 ≤ i ≤ n. Since
f(w) = w, then f2(w) = f(f(w)) = f(w), and it follows that w = a1 · · · an =
f2(a1) · · · f2(an). Thus, ai = f2(ai) for all i with 1 ≤ i ≤ n. ut

3 The Fine and Wilf Theorem for morphisms

Using standard techniques similar to the one in [9] one can prove the following
first important result:

Theorem 4. Take u, v ∈ V ∗ and f : V ∗ → V ∗ an isomorphism with ord(f) =
k + 1. If a word α ∈ u{u, f(u), . . . , fk(u), v, f(v), . . . , fk(v)}∗ has a common
prefix of length greater than or equal to |u| + |v| − gcd(|u|, |v|) with a word β ∈
v{u, f(u), . . . , fk(u), v, f(v), . . . , fk(v)}∗, then there exists a t ∈ V ∗, such that
u, v ∈ t{t, f(t), . . . , fk(t)}∗.

Proof. In the Fine and Wilf’s case the proof follows by induction after the length
of |u|+ |v|. For the base case we consider |u| = |v| (note that this case includes
the case when |u|+ |v| = 2), thus, we get that u = v, and the result follows.

Now assume without loss of generality that |u| > |v|. Then for some word
w we have u = vw. Observe that the prefix of length v of v−1β is an iteration
of f(v). Denoting this iteration by z and changing appropriately all occurrences
from α and β of iterations of f over v with iterations over z, one gets

v−1α ∈ w{w, f(w), . . . , fk(w), z, f(z), . . . , fk(z)}∗

and

v−1β ∈ z{w, f(w), . . . , fk(w), z, f(z), . . . , fk(z)}∗.

The conclusion follows from a previous step of the induction. ut
3 The Landau function is defined for every natural number n to be the largest order of

an element of the symmetric group Sn. Equivalently, g(n) is the largest least common
multiple of any partition of n, or the maximum number of times a permutation of n
elements can be recursively applied to itself before it returns to its starting sequence.
It is known that limn→∞

ln(g(n))√
n ln(n)

= 1
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This generalizes both Fine and Wilf and Kari et al. periodicity results.

Corollary 1. Take u, v ∈ V ∗ and f : V ∗ → V ∗ an isomorphism with ord(f) =
k+1. If u{u, f(u), . . . , fk(u)}∗ and v{v, f(v), . . . , fk(v)}∗ have a common prefix
of length greater than or equal to |u|+ |v|−gcd(|u|, |v|), then there exists t ∈ V ∗,
such that u, v ∈ t{t, f(t), . . . , fk(t)}∗. The bound is optimal.

Next we show that in the case of arbitrary bijective literal morphisms the
result of Theorem 4 is optimal also regarding the number of different iterations
of the function f that are used in expressing both u and v. The counterexample
obtained in this result exploits the algebraic properties of f , as permutation.

Proposition 1. Let f : V ∗ → V ∗ be an isomorphism with ord(f) = k+1. There
exist u, v ∈ V ∗ with |u| = |v| + gcd(|u|, |v|) and vf(v) a prefix of u2, such that
u is not part of t{f i1(t), . . . , f i`(t)}∗ for any common prefix t of u and v with
v ∈ t{t, f(t), . . . , fk(t)}∗, and {i1, . . . , i`} a set strictly included in {1, . . . , k}.

Proof. Let us assume that V = {a1, . . . , an}. As we explained, f is seen as a per-
mutation of V . Assume that f has m disjoint cycles and let ci = (ji,1, . . . , ji,pi

)
for 1 ≤ i ≤ m denote these cycles (we assume that the numbers in a cycle are
ordered increasingly). Also let xi be the word obtained by concatenating the
letters ai,j of a cycle for 1 ≤ j ≤ pi and denote x = x1 . . . xm. Now take

u = xfk(x)fk−1(x) · · · f(x) and v = xfk(x)fk−1(x) · · · f2(x),

where u basically contains all possible iterations of f , while v only k factors.
Note that gcd(|u|, |v|) = |x| and that |u| = |v| + |x|. It is straightforward to
check that vf(v) is a prefix of length |u|+ |v| − |x| of u2.

Now we show that there does not exist a word t, such that

u ∈ t{f i1(t), . . . , f i`(t)}∗ and v ∈ t{t, f(t), f2(t), . . . , fk(t)}∗

for any set {i1, . . . , i`} strictly included in {1, . . . , k}.
If such a word t exists, then its length is a divisor of n (as it divides both

|u| = (k+ 1)n and |v| = kn). If |t| = n one would not be able to generate all the
factors of length n of u using only the factors f i1(t), . . . , f i`(t), as the order of f
is k+1 > `. If |t| < n, then x = tf j1(t) . . . f jp(t) for a set of numbers {j1, . . . , jp}
included in {i1, . . . , i`}. Let us assume that f is not a cyclic permutation. If t
does not contain any symbol of xm, then these symbols do not appear in f `(t)
for any `, thus a contradiction with the fact that x = tf j1(t) . . . f jp(t). Hence,
t has as suffix a part of xm and f jp(t) is included in xm; from this we get that
t contains only symbols from xm, another contradiction. It follows that f is a
cyclic permutation (thus, of order n) and that all the factors of length n of u
begin with a different letter. Therefore, all iterations of f must be used in writing
u as the catenation of factors of the form f i(t). ut

Following the results of Kari et al. a natural questions that comes up is what
are good bounds for the case when we consider descriptions given by some prefix
of the words and applications of a morphism to that prefix. The rest of this
section is dedicated to finding such optimal bounds.
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Example 1. Let i be a natural number. Consider the words u = bidaicaie and
v = bidaic, and an isomorphism f with f(a) = b, f(b) = a, f(c) = d, f(d) = e
and f(e) = c. The words u2 and vf(v)2 share a prefix of length |u|+ |v| − 1 and
no word t exists, such that u, v ∈ t{t, f(t)}∗. 2

Proposition 2. Take u, v ∈ V ∗ such that |u| > |v| = 2 gcd(|u|, |v|) and f :
V ∗ → V ∗ an isomorphism. If α ∈ u{u, f(u)}∗ and β ∈ v{v, f(v)}∗ have a
common prefix of length greater than or equal to |u|+|v|, then there exists t ∈ V ∗,
such that u, v ∈ t{t, f(t)}∗. The bound is optimal.

Proof. Let v1 be the prefix of length gcd(|u|, |v|) of v, where v = v1v2. It is rather
easy to see that u ∈ v{v, f(v)}∗v1 or u ∈ v{v, f(v)}∗f(v1).

When u ends with v1, it follows that v2 is a prefix of u or f(u), since the first
u of α is followed by either u or f(u). In the first case, v2 is a prefix of v and,
thus v1 = v2. In the second case, we have v2 = f(v1). Moreover, looking at what
follows v2 in β, either f(v2) = v1 or f(v2) = f(v1). In both cases, one may take
t = v1 and obtain that u, v ∈ t{t, f(t)}∗.

Let us now analyse the case when u ends with f(v1). Here, we obtain as
above, that f(v2) is either a prefix of u or of f(u). First, we obtain that f(v2) =
v1, and, looking at what follows the prefix uf(v2) of β we once more get that
v2 ∈ {v1, f(v1)}. Similarly, in the second case, f(v2) = f(v1), thus, v2 = v1.
In both cases, one may take t = v1 and obtain that u, v ∈ t{t, f(t)}∗. The
conclusion follows with the optimality derived from Example 1. ut

However, when the length of the shortest word is strictly greater than two
times the greatest common divisor of the two words, the result is a bit more
complicated. Considering that f is a permutation, and taking into account again
the algebraic properties that follow from this, we get the following results.

Proposition 3. Take u, v ∈ V ∗ such that |u| > |v| > 2 gcd(|u|, |v|), and f :
V ∗ → V ∗ an isomorphism. If α ∈ uu{u, f(u)}∗ and β ∈ v{v, f(v)}∗ have a
common prefix of length greater than or equal to 2|u|, then there exists t ∈ V ∗,
such that u, v ∈ t{t, f(t)}∗. The bound is optimal.

Proof. Denote by u′ the longest prefix of u with u′ ∈ v{v, f(v)}∗ and by v1 the
prefix of v with |v1| = |u| − |u′|. Obviously, gcd(|v1|, |v|) = d 6= |v|/2.

Let us assume first that |v1| < |v|/2 and denote v = v1v2v3, where |v2| = |v1|.
Consider the case when α = u′v1uα

′ = u′v1v1v2v3u
′′α′, where α′ ∈ {u, f(u)}∗

and u = vu′′. Note that u′ is a prefix of β, such that β = u′vβ′, with β′ ∈
{v, f(v)}∗. The discussion follows now several cases.

If β = u′vvβ′′, then by Lemma 1 we obtain that both v1 and v are power of
the same word t. Thus, we easily get that u, v ∈ t{t, f(t)}∗.

Now take β = u′vf(v)β′′. We get that v3 = v`1x, for some positive number `
and x ∈ V ∗ a prefix of v1 such that |x| < |v1| with x possibly empty. Denoting
v1 = xy we obtain that yx = f(v1). If u′′ starts with v we have the prefix yxv1
of yxu′′ equal to the prefix f(v1)f(v1) of β′. Therefore, f(v1) = v1. It follows
that f is the identity on the alphabet of the words u and v, and the conclusion
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follows from Theorem 1. If u′′ starts with f(v), then u′′ = (f(v1))`−1f(xyx).
But the suffix f(yx) matches either a factor f(v1) of β or a factor v1 of β. In
the first case we get that f is the identity on the alphabet of u and v, and we
conclude by Theorem 1, while in the second case we get that f2(v1) = v1, and,
thus, f is an involution on the alphabet of u and v, and conclude by Theorem 2.

Next, we analyse the case when α = u′f(v1)uα′ = u′f(v1)v1v2v3u
′′α′, where

α′ ∈ {u, f(u)}∗ and u = vu′′. Note that u′ is a prefix of β such that β = u′f(v)β′

with β′ ∈ {v, f(v)}∗. Here f(v2) = v1 and the suffix f(v1) of the u factor
occurring before α′ in α matches an f(v2) or a v2 factor from β. In the first case
we obtain that f is the identity on all letters of u and v, and and we conclude
by Theorem 1, while in the second case we get that f2(v1) = v1 and, thus, f is
an involution on the alphabet of u and v, and we conclude by Theorem 2.

We move now to the case when |v1| > |v|/2 and set v = v1v2 with |v2| < |v1|.
Assume first that α = u′v1uα

′ = u′v1v1v2u
′′α′, where α′ ∈ {u, f(u)}∗ and

u = vu′′. Note that u′ is a prefix of β such that β = u′vβ′ with β′ ∈ {v, f(v)}∗.
Clearly, v2 is a prefix of v1. If β′ starts with v, then by Lemma 1 both v1 and v
are powers of some t, and, therefore, u and v are in t{t, f(t)}∗. If β′ starts with
f(v), then f(v1) has v2 as a suffix.

If u′′ starts with v we obtain that the suffix f(v2) of the prefix f(v) of β′

matches the prefix v2 of the prefix v of u′′. Thus, f is the identity on the symbols
of v2. It is easy to see that the symbols of v1 are those of v2 and f(v2), and so,
f is the identity also for the symbols of v1 and, consequently, for the symbols of
u and v. The conclusion follows from Theorem 1.

Now, consider the case when u′′ starts with f(v). If β′ starts with f(v)f(v)
we obtain that f(v2) is a suffix of f(v1) and, thus, it is equal to v2. As in the
previous case, this leads to the conclusion that f is the identity on the alphabet
of u and v, and the conclusion follows from Theorem 1. If β′ starts with f(v)v we
obtain that f(v2) is a suffix of v1 and, thus, f2(v2) is a suffix of f(v1). Therefore,
f is an involution on the alphabet of v2 and an involution on the alphabet of u
and v. The conclusion follows from Theorem 2.

Assume now that α = u′f(v1)uα′ = u′f(v1)v1v2u
′′α′, where α′ ∈ {u, f(u)}∗

and u = vu′′. Note that u′ is a prefix of β such that β = u′f(v)β′ with β′ ∈
{v, f(v)}∗ and f(v2) is a prefix of v1.

Assume first that β′ starts with f(v). If u′′ starts with f(v1), then f(v2) is
a prefix of f(v1). But f2(v1) is a prefix of f(v1) as well, so f is the identity on
v2. As in the previous cases, we obtain that f is the identity on all letters of u
and v, and with the help of Theorem 1 reach the conclusion.

When u′′ starts with v, if β′ starts with f(v)v we get that v1 has the suffix v2.
Thus, f(v2) = v2 and f is the identity for the alphabet of u and v. The conclusion
follows again from Theorem 1. If β′ starts with f(v)f(v) we get that u′′ starts
with either vv or with vf(v1). In the latter case the conclusion follows as in the
case when u′′ starts with f(v1). In the first case, the analysis is restarted, ending
up with either a solution as in the case when β′ starts with f(v)v, or the case
when u′′ starts with f(v1), as u ends with f(v1). Hence, we conclude that this
case leads also to what we wanted to prove.
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Finally, assume that β′ starts with v. If u′′ starts with v1 we obtain that both
f(v2) and v2 are prefixes of v1, so f is the identity on the alphabet of u and v.
If u′′ starts with f(v1), then f(v1) starts with v2, so f2(v2) = v2. Thus, f is an
involution on the alphabet of u and v, and we conclude by Theorem 2.

The optimality of the result is obtained from Example 2. ut

Example 2. Let i be a natural number. Consider the words

u = (deadebdec)idec and v = (deadebdec)i,

and an isomorphism f with f(a) = c, f(b) = a, f(c) = b, f(d) = d and f(e) = e.
The words u2 and vf(v)2 share a common prefix of length 2|u| − 1 and no word
t exists, such that u, v ∈ t{t, f(t)}∗. 2

Proposition 4. Take u, v ∈ V ∗ such that |u| > |v| > 2 gcd(|u|, |v|) and f :
V ∗ → V ∗ an isomorphism. If α ∈ uf(u){u, f(u)}∗ and β ∈ v{v, f(v)}∗ have a
common prefix of length greater than or equal to 2|u| + gcd(|u|, |v|), then there
exists t ∈ V ∗ such that u, v ∈ t{t, f(t)}∗. The bound is optimal.

Proof. As in the proof of Proposition 3 denote by u′ the longest prefix of u
with u′ ∈ v{v, f(v)}∗. Moreover, for some factorization v = v1 · · · vm with |vi| =
gcd(|u|, |v|) = d for all 1 ≤ i ≤ m denote by v′ = v1 · · · vi the prefix of v for which
|v′| = |u|−|u′|. It is straightforward that gcd(|v′|, |v|) = gcd(|u|, |v|) = d 6= |v|/2,
so gcd(i,m) = 1. Following the same proof of Proposition 3 u = u′v1, where
u′ ∈ v{v, f(v)}∗ and v1 is a proper prefix of v or f(v) such that gcd(|v1|, |v|) =
gcd(|u|, |v|) = d 6= |v|/2. Let v = x1x2 . . . xn, where |xi| = d. It follows that
v1 = y1 . . . yk with gcd(k, n) = 1 and either yi = xi for all 1 ≤ i ≤ k or
yi = f(xi) for all 1 ≤ i ≤ k. The rest of the proof is case analysis.

Assume first that α = u′v1 . . . vif(u)α′, where α′ ∈ {u, f(u)}∗, and note that,
since u′ is a prefix of β, we have a factorization β = u′vβ′ with β′ ∈ {v, f(v)}∗. It
is rather plain that v ∈ {v1, f(v1), . . . , fk(v1)}∗, where ord(f) = k+1. Indeed, we
obtain first that f(v1) = vi+1, and then, we obtain that f(vi+1) = v(2i+1) mod m

or f(vi+1) = f(v(2i+1) mod m); this holds as we look at the factor of β′ matching
the factor f(vi+1) from the prefix f(u) of f(u)α′ and the choice depends on the
starting word of β′, namely v or f(v)). So v(2i+1) mod m ∈ {f(v1), f2(v1)} and so
on: we always look at the factor f(v(`i+1) mod m) from f(u) and see what word of

β′ matches it. Basically, we get that v(`i+1) mod m ∈ {v1, f(v1), . . . , fk(v1)} for
all ` ≥ 1. Since i and m are coprime, {(`i+ 1) mod m | ` ∈ N} = {1, 2, . . . ,m}
and vj ∈ {v1, f(v1), . . . , fk(v1)} for all 1 ≤ j ≤ m.

If i < m/2, then f(v1) = vi+1 and f2(v1) = f(vi+1) = v2i+1. For the prefix of
α′ we may have v1 or f(v1), depending if either v or f(v) occur at that position.

When we have f(v1), this may match a word v2i+1 or f(v2i+1) from β′. In the
first case we obtain that f is the identity on the letters of v1 and the conclusion
follows from Theorem 1, while in the latter v1 = v2i+1, f is an involution on the
letters of v1 and the conclusion follows from Theorem 2.

In the second case, the word v1 may match a word v2i+1 or a word f(v2i+1)
from β′. If v1 = v2i+1, then f is an involution on the letters of v1 and we conclude
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by Theorem 2. Otherwise, denote u = vu′′. If both f(u′′) and β′ begin with f(v),
then the conclusion follows from Lemma 1, since from f(v1 . . . vm−i) and f(v)
being powers of some word t′ we get that v1 . . . vm−i and v are powers of a word
t with f(t) = t′, and the conclusion follows immediately. If f(u′′) begins with
f2(v) and β′ begins with v we get that f2(v1) = vi+1, and so f is the identity
on the letters of v1 and the conclusion follows from Theorem 1. Finally, if f(u′′)
begins with f2(v) and β′ with f(v), or f(u′′) begins with f(v) and β′ with v we
continue the discussion exactly as above but looking at the words that follow
in f(u′′) and β′, respectively. However, f(u′′) has the suffix f(v1 . . . vi) and this
matches the beginning of a factor f(v) of β′ (as f(v2i+1) appears at position
|u|+ 1 in vi+1 . . . vmβ

′). Thus, f(v1) = f(vi+1), f is the identity on v1, and the
conclusion follows from Theorem 1.

When i > m/2, we have 2i+ 1 > m and f2(v1) = f(vi+1) ∈ {v(2i+1) mod m,
f(v(2i+1) mod m)}. Both cases are treated analogously to the previously pre-
sented ones and the conclusion follows in the same manner.

Finally, assume that α = u′f(v1 . . . vi)f(u)α′, where α′ ∈ {u, f(u)}∗ and
u = vu′′. Note that u′ is a prefix of β such that β = u′f(v)β′ with β′ ∈ {v, f(v)}∗.
As in the previous case, it is rather plain that v ∈ {v1, f(v1), . . . , fk(v1)}∗, where
ord(f) = k+ 1. Now, we only have to look what is the prefix of β′. If this prefix
is f(v) the conclusion follows from Lemma 1. Otherwise, v is a prefix of β′,
f(v1) = f(vi+1), and so v1 = vi+1 and vi+1 ∈ {f(v1), f2(v1)}. Hence, f is either
the identity or an involution on v1 and the conclusion follows.

The optimality of the result is obtained from Example 3. ut

Example 3. Let i be a natural number. Consider the words

u = (abcabdabe)iabc and v = (abcabdabe)i

and an isomorphism f with f(a) = a, f(b) = b, f(c) = d, f(d) = e and f(e) = c.
The words uf(u)ab and v3 share a common prefix of length 2|u|+gcd(|u|, |v|)−1
and no word t exists such that u, v ∈ t{t, f(t)}∗. 2

4 The Fine and Wilf Theorem for antimorphisms

For a literal bijective antimorphism f and a word t, denote by f−1(t) the unique
word x with f(x) = t; clearly, f2ord(f)−1(t) = f−1(t), as f2ord(f)(x) = x, but
not necessarily ford(f)(x) = x, as for some even integer k, fk+1(x) is x mirrored.

First, we note that a result similar to that of Theorem 4 does not hold in this
case, even when we allow the size of the common prefix to be arbitrarily large.

Example 4. Let i be a natural number. Consider the words u = aibic and v =
aibi, and a literal antimorphism f with f(a) = e, f(b) = d, f(c) = c. Moreover,
f can be chosen as involution. The infinite word w = aibic(diei)ω can be written
as w = uf(v)ω = vf(u)f(v)ω and all three words u, v and w are f -primitive. 2

So which are the bounds in the antimorphism case? When |v| = 2 gcd(|u|, |v|)
the following result is not difficult to prove:
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Proposition 5. Take u, v ∈ V ∗ with |u| > |v| = 2 gcd(|u|, |v|) and a bijective
literal antimorphism f : V ∗ → V ∗. If α ∈ u{u, f(u)}∗ and β ∈ v{v, f(v)}∗ have
a common prefix of length greater than or equal to 2|u| − bgcd(|u|, |v|)/2c, then
exists t ∈ V ∗ such that u, v ∈ t{t, f(t)}∗ or u, v ∈ t{t, f−1(t)}∗. The bound is
optimal.

Proof. Since |v| = 2 gcd(|u|, |v|), it follows that there exists a factorization of
v = v1v2 and u = v1v2 . . . v2k+1 with |v1| = |v2| = gcd(|u|, |v|) and k ≥ 1.

Assume first that u ∈ v{v, f(v)}∗v1, thus the prefix u is followed by v2 in
α. If uu is a prefix of α, then v1 = v2k+1, v2 = v1 and u ∈ v1{v1, f(v1)}+. If
uf(u) is a prefix of α, then v1 = v2k+1, v2 = f(v2k+1) and, thus, v2 = f(v1).
When u ∈ {v}+v1 we have u ∈ v1{v1, f(v1)}. If exists i such that 1 < i ≤ k and
x2i−1x2i = f(v2)f(v1), we look at the factors that correspond to f(x2i)f(x2i−1)
in the occurrence of f(u) of the prefix uf(u) of α that we analyse; note that
2i ≤ 2|u|−bgcd(|u|, |v|)/2. We have f(x2i)f(x2i−1) ∈ {v1v2, f(v2)f(v1)}. In both
cases we have that f is an involution and the conclusion follows by Theorem 3.

Now assume that u ∈ v{v, f(v)}∗f(v2), that is the prefix u is followed by
f(v1) in α. If uu is a prefix of α, then f(v2) = v2k+1 and f(v1) = v1. Looking
at the prefix of length |v| of the second occurrence of u in α we obtain that
v2 = f(v2) or v2 = v1. In the first case, f is an involution and we conclude by
Theorem 3, while in the second case we have u ∈ v1{v1, f(v1)}+. If uf(u) is a
prefix of α, then f(v2) = v2k+1 and f(v1) = f(v2k+1), and, thus, f(v2) = v1.
As above, if u ∈ {v}+f(v2), then u ∈ v1{v1, f−1(v1)}. If exists i such that
1 < i ≤ k and x2i−1x2i = f(v2)f(v1) we look at the factors that correspond to
f(x2i)f(x2i−1) in the occurrence of f(u) of the prefix uf(u) of α that we analyse;
note that 2i ≤ 2|u| − bgcd(|u|, |v|)/2. The conclusion follows as above.

In conclusion, there always exists a prefix t of u such that u, v ∈ t{t, f(t)}∗
or u, v ∈ t{t, f−1(t)}∗. The optimality of the bound 2|u|−bgcd(|u|, |v|)/2 follows
from the optimality result in Theorem 3. ut

In fact, the following example shows that there are words u and v as in the
statement of the previous proposition for which there exists an unique t such
that u, v ∈ t{t, f(t)}∗ (or, alternatively, u, v ∈ t{t, f−1(t)}∗).

Example 5. This example shows that for any bijective literal antimorphism f :
V ∗ → V ∗ which is not an involution there exist two words u, v ∈ V ∗ such that
|u| > |v| = 2 gcd(|u|, |v|) and the words α ∈ u{u, f(u)}∗ and β ∈ v{v, f(v)}∗
having a common prefix of length greater than or equal to 2|u| + gcd(|u|, |v|)
such that there exists a unique prefix x of v such that u, v ∈ x{x, f−1(x)} and
there exists no prefix t of v such that u, v ∈ t{t, f(t)}∗.

Since f is not an involution, f has at least one cycle of length greater than
or equal to 3; denote the elements of this cycle with x1, x2, . . . , xk with k ≥ 3,
f(xi) = xi+1 for 1 ≤ i ≤ k − 1 and f(xk) = x1. Consider the words

u = x1xkxk−1 . . . x3x2x1x2 . . . xk−1xkx1xkxk−1 . . . x3x2

and
v = x1xkxk−1 . . . x3x2x1x2 . . . xk−1xk.
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The words uf(u) and vf(v)2 are equal, but no word t exists such that u and v are
both in t{t, f(t)}∗. Clearly, an infinite iteration of uf(u) = vf(v)2 still has two
different factorizations: one as a word from u{u, f(u)}∗ and one from v{v, f(v)}∗,
respectively. Also, u = xf−1(x)x and v = xf−1(x), for x = x1xkxk−1 . . . x3x2,
and there is no other prefix t of u and v such that u, v ∈ t{t, f−1(t)}∗.

Similar examples can be devised to show that, for any bijective literal an-
timorphism f : V ∗ → V ∗, there exist two words u, v ∈ V ∗ with |u| > |v| =
2 gcd(|u|, |v|) and the words α ∈ u{u, f(u)}∗ and β ∈ v{v, f(v)}∗ having a com-
mon prefix of length greater than or equal to 2|u|+ gcd(|u|, |v|) such that there
exists a unique prefix x of v such that u, v ∈ x{x, f(x)} and there exists no prefix
t of v such that u, v ∈ t{t, f−1(t)}. Just take, in the above setting,

u = x1xkxk−1 . . . x3x2x3x4 . . . xkx1x2xkxk−1 . . . x3x2

and
v = x1xkxk−1 . . . x3x2x3x4 . . . xkx1x2.

If f is an involution, then we have f−1(x) = f(x) for any word x. Assume
that f is over an alphabet including {a, b}, with f(a) /∈ {a, b}. Let i be a prime
number, and consider the words u = (ab)if((ab)i)(ab)i and v = (ab)if((ab)i).
As in the previous cases, uf(u) = v(f(v))2 and u, v ∈ x{x, f(x)}∗ for x = (ab)i,
but there is no other prefix t of u and v such that u, v ∈ t{t, f(t)}∗. 2

The following result represents a variation of Lemma 1. The proof is done
identifying factors that give equalities as in Lemma 2 and conclude that the
antimorphism is an involution.

Lemma 3. For a word w and a bijective literal antimorphism f defined on the
alphabet of w, if w or f(w) are proper factors of {w, f(w)}2, such that not all
three factors are equal, it is the case that f is an involution.

Proof. Assume first that w = w1 · · ·wn is a proper factor of wf(w), where n is the
length of w. It follows that for some j with 1 < j ≤ n we have that wj · · ·wn =
f(wn) · · · f(wj) and by Lemma 2 we get that for the alphabet of this factor, f is
an involution. Looking now at the equality w1 · · ·wj−1 = wn−j+1 · · ·wn, one can
easily prove that the alphabet of this factor is the same as the one of wj · · ·wn,
and, therefore, f is an involution for all letters in w.

If w is a proper factor of f(w)w, then w1 · · ·wj = f(wj) · · · f(w1) and, again
by Lemma 2, for the alphabet of this factor f is an involution. The equality
wj+1 · · ·wn = w1 · · ·wn−j shows that f is an involution for w.

If w is a proper factor of f(w)f(w), then w1 · · ·wj = f(wj) · · · f(w1) and
wj+1 · · ·wn = f(wn) · · · f(wj+1). Again by Lemma 2, we conclude that f is an
involution for w.

Assume that f(w) is a proper factor of wf(w). It follows that for some j with
1 < j ≤ n we have that f(wn) · · · f(wj) = wj · · ·wn, and by Lemma 2 for the
alphabet of this factor f is an involution. From the equality f(wj−1) · · · f(w1) =
f(wn) · · · f(wn−j+1), one can prove that the alphabet of this factor is the same
as that of wj · · ·wn, and so f is an involution for all letters in w.
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If f(w) is a proper factor of f(w)w, then f(wj) · · · f(w1) = w1 · · ·wj and by
Lemma 2 for the alphabet of this factor f is an involution. From the equality
f(wn) · · · f(wj+1) = f(wn−j) · · · f(w1), one concludes again that f is an involu-
tion for the entire alphabet of w.

Finally, take f(w) a proper factor of ww. Since f(wn) · · · f(wj) = wj · · ·wn

and f(wj−1) · · · f(w1) = w1 · · ·wj−1, by Lemma 2 we conclude that f is an
involution for alph(w). ut

The case of |v| ≥ 3 gcd(|u|, |v|) is proved by looking at the alignment of the
prefix v, or, respectively, suffix f(v), of the second factor of length |u| of α with
the corresponding factors from β.

Proposition 6. Take u, v ∈ V ∗ such that |u| > |v| > 2 gcd(|u|, |v|) and a bijec-
tive literal antimorphism f : V ∗ → V ∗. If α ∈ u{u, f(u)}∗ and β ∈ v{v, f(v)}∗
have a common prefix of length greater than or equal to 2|u|+ |v|−gcd(|u|, |v|)−
bgcd(|u|, |v|)/2c, then there exists t ∈ V ∗, such that u, v ∈ t{t, f(t)}∗.
Proof. The proof of this is based on the key remark that the prefix u in α is
followed by either v, the prefix of u, or f(u), which has f(v) as a suffix. In both
cases, since |v| ≥ 3 gcd(|u|, |v|), we get that either v or f(v) are proper factors of
some word in {v, f(v)}2. If not all factors are equal, we conclude by Lemma 3.

It is important to note here that, when α has uf(u) as a prefix, the suffix
f(v) of f(u) is a proper factor of {v, f(v)}2. This is true since otherwise we have
that for some coprime integers k, k′ with |u| = kd and |v| = k′d ≥ 3d there exists
an integer h such that 2kd = hk′d. Thus, from 2k = hk′ and the fact that k and
k′ are coprime, we get that k = h and k′ = 2, which is a contradiction.

In the other case, denoting u ∈ v{v, f(v)}∗v′ or u ∈ v{v, f(v)}∗f(v′′) for
some appropriate factorization v = v′v′′ and using Lemma 1, we have that v′

and v′′ are powers of the same word. The conclusion easily follows since, then,
also u is an f -power of the same word.

Remark that for f(v) a proper factor of f(v)f(v), we have f(v) = tj for some
integer j with 1 < t ≤ k + 1. In this case v = fk−j+1(t) and f(v) = fk−j+2(t).

It is important to note that the bound we propose in this theorem matches
the one existing for antimorphic involutions, see Theorem 3. ut

5 Conclusion

We conclude this work with three examples showing that results similar to the
ones presented here cannot be devised for more general anti-/morphisms. In
all the following examples f can be considered both as a morphism and as an
antimorphism, over an alphabet including {a, b}, and i ≥ 1 a natural number.

Example 6. 1. Let u = biaibia2ib3i, v = biaibia2ibi, f(a) = ε and f(b) = b. Then,
w = (uf(u)2)ω = (vf(v)4)ω; there is no |t| ≤ |v| such that u, v ∈ t{t, f(t)}∗.
2. Let u = aibia2i and v = aibiai, and f(a) = f(b) = a. We have w =
(uf(u)2)ω = (vf(v)3)ω and there is no t with |t| ≤ |v| such that w is in t{t, f(t)}∗.
3. Let u = (ab)2i−1a and v = a, f(a) = bab and f(b) = aba. Then w =
(uf(u))ω = (vf(v))ω, but u is not part of {v, f(v)}∗.
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