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Abstract

Recently visibly pushdown automata have been extended to so called k-phase multi-
stack visibly pushdown automata (k-MVPAs). On the occasion of introducing k-
MVPAs, it has been asked whether the extension of Propositional Dynamic Logic
with k-MVPAs still leads to a decidable logic. This question is answered negatively
here.

Key words: Propositional Dynamic Logic, Visibly Pushdown Automata,
Multi-Stack Visibly Pushdown Automata, Decidability, Satisfiability

1 Introduction

Propositional Dynamic Logic (PDL) is a modal logic introduced by Fischer
and Ladner [1] which allows to reason about regular programs. In PDL, there
are two syntactic entities: formulas, built from boolean and modal operators
and interpreted as sets of worlds of a Kripke structure; and programs, built
from the operators test, union, composition, and Kleene star and interpreted
as binary relations in a Kripke structure. Hence, the occuring programs can be
seen as a regular language over an alphabet that consists of tests and atomic
programs. However, the mere usage of regular programs limits the expressive-
ness of PDL as for example witnessed by the set of executions of well-matched
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calls and returns of a recursive procedure, cf. [2]. Therefore, non-regular exten-
sions of PDL have been studied quite extensively [2–5]. An extension of PDL
by a class L of languages means that in addition to regular languages also
languages in L may occur in modalities of formulas. One interesting result on
PDL extensions, among many others as summarized in [2], is the extension of
PDL with visibly pushdown languages [6] which are the languages recognized
by visibly pushdown automata (VPA). A VPA is a pushdown automaton,
where the stack operation is determined by the input in the following way;
the alphabet is partitioned into letters that prompt a push, internal, or pop
action, respectively. Löding, Lutz, and Serre [4] showed that satisfiability of
a PDL extension with VPL is complete for deterministic doubly exponential
time. Note that for this result, every visibly pushdown language occuring in a
formula must be over the same partition of the alphabet.

Recently, k-phase multi-stack visibly pushdown automata (k-MVPAs), a nat-
ural extension of VPAs, have been introduced in [7]. A k-MVPA is an au-
tomaton equipped with n stacks where, again, the actions on the stacks are
determined by the input, more precisely, every input symbol specifies on which
stack a push or pop operation or whether an internal operation is done. More-
over, a k-MVPA is restricted to accept only words that can be obtained by
concatenating at most k phases, where a phase is a sequence of input sym-
bols that invoke pop actions from at most one stack. Note that k-MVPAs
with one stack coincide with VPAs. The language class k-MVPL that is de-
scribed by k-MVPAs has various effective closure properties and a decidable
nonemptiness problem. Therefore it is an interesting question to ask if the
corresponding extension of PDL is still decidable. This question was raised
in [7] and is answered negatively in this note. We prove Σ1

1
-completeness for

this PDL extension. A Σ1

1
lower bound already holds, if we extend PDL with

two fixed languages each accepted by some 2-MVPA over two stacks, namely
{(a1b2)

n(a2b1)
n | n ≥ 1} and {(a2b1)

n(a1b2)
n | n ≥ 1}. For this, we give an easy

reduction of PDL with the two languages {anbn | n ≥ 1} and {bnan | n ≥ 1},
proven to be Σ1

1
hard in [3], to the latter PDL extension.

2 Propositional Dynamic Logic Extensions

Fix some countable set P of atomic propositions, some finite alphabet Σ and
a class of languages L ⊆ 2Σ

∗

. The set of formulas Φ and the set of tests Tests
of the logic PDL+L are the smallest sets that satisfy the following conditions:
(i) if p ∈ P, then p ∈ Φ, (ii) if ϕ1, ϕ2 ∈ Φ, then ϕ1 ∨ϕ2,¬ϕ1 ∈ Φ, (iii) if ϕ ∈ Φ,
then ϕ? ∈ Tests, and (iv) if ϕ ∈ Φ and Ψ ⊂ Tests is finite, then 〈χ〉ϕ ∈ Φ,
where χ is a regular expression over Σ ∪ Ψ or χ ∈ L.

A Kripke structure is a tuple K = (X, {→a| a ∈ Σ}, {Xp | p ∈ P}), where X is
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a set of worlds, →a⊆ X×X is a binary relation for each a ∈ Σ, and Xp ⊆ X is
a unary relation for each p ∈ P. For each ϕ ∈ Φ and for each w ∈ (Σ∪Tests)∗,
define the binary relation [[w]]K ⊆ X × X and the set [[ϕ]]K ⊆ X via mutual
induction as follows:

• [[ε]]K = {(x, x) | x ∈ X},
• if ϕ? ∈ Tests, then [[ϕ?]]K = {(x, x) | x ∈ X ∧ x ∈ [[ϕ]]K},
• if a ∈ Σ, then [[a]]K = →a,
• if w ∈ (Σ ∪ Tests)∗ and τ ∈ Σ ∪ Tests, then [[wτ ]]K = [[w]]K ◦ [[τ ]]K ,
• if p ∈ P, then [[p]]K = Xp,
• [[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K ,
• [[¬ϕ]]K = X \ [[ϕ]]K ,
• [[〈χ〉ϕ]]K = {x ∈ X | ∃y ∈ X ∃w ∈ L(χ) : (x, y) ∈ [[w]]K ∧ y ∈ [[ϕ]]K}.

We say that K is a model for ϕ, if x ∈ [[ϕ]]K for some world x of K. We say
that a formula ϕ is satisfiable, if there exists a model for ϕ. The satisfiability

problem asks, given a formula ϕ, whether ϕ is satisfiable.

3 Σ1

1
-Completeness of PDL+k-MVPL

It is not hard to see that satisfiability of PDL+k-MVPL is in Σ1

1
. Firstly,

we can easily adapt the proof of Proposition 9.4 in [2] and show that every
satisfiable PDL+k-MVPL formula ϕ has a countable tree model. Secondly, we
can write down an existential second-order formula over N that is valid if and
only if ϕ is satisfiable.

Before we give the matching Σ1

1
lower bound let us, for finite words u and v,

define the language uNvN := {unvn | n ≥ 1}. In the following, fix the lan-
guage class L0 = {(a1b2)

N(a2b1)
N , (a2b1)

N(a1b2)
N}. The following Proposition

is obvious.

Proposition 1 There exist 2-MVPAs M1, M2 over a common 2-stack alpha-

bet such that L(M1) = (a1b2)
N(a2b1)

N and L(M2) = (a2b1)
N (a1b2)

N .

For the lower bound, we prove that already satisfiability for PDL+L0 is Σ1

1
-

hard. For this, we use the following result.

Theorem 2 ([3]) Satisfiability of PDL+{aNbN , bNaN} is Σ1

1
-hard.

Hence by Fact 1 and Theorem 2 it remains to give a satisfiability preserving
translation from PDL+{aNbN , bNaN} to PDL+L0. The translation is straight-
forward. Define a homomorphism h : {a, b}∗ → {a1, a2, b1, b2}

∗ as follows,
h(a) = a1b2 and h(b) = a2b1. For a PDL+{aNbN , bNaN} formula ϕ, let the
PDL+L0 formula ϕ′ emerge from ϕ by replacing each occurence of a by h(a)

3



and each occurence of b by h(b). Finally, it suffices to prove the following
lemma.

Lemma 3 The formula ϕ is satisfiable if and only if ϕ′ is satisfiable.

PROOF. “Only-if”: Assume ϕ is satisfiable. Let K = (X, {→a,→b}, {Xp |
p ∈ P}) be a model of ϕ, i.e. x0 ∈ [[ϕ]]K for some x0 ∈ X. Let K ′ be the
Kripke structure that is obtained from K by (i) replacing each transition
x →a y by a sequence of two transitions x →a1

z →b2 y for some fresh
world z in K ′, (ii) replacing each transition x →b y by a sequence of two
transitions x →a2

z →b1 y for some fresh world z in K ′, and (iii) keeping Xp

unchanged for each p ∈ P. Now for each x, y ∈ X and for each w ∈ {a, b}∗

we have (x, y) ∈ [[w]]K if and only if (x, y) ∈ [[h(w)]]K ′. By an induction on the
structure of ϕ, one can prove that x0 ∈ [[ϕ′]]K ′. Thus, K ′ is a model for ϕ′.

“If”: Assume ϕ′ is satisfiable. Let K ′ = (X, {→ai
,→bi

| i = 1, 2}, {Xp | p ∈ P})
be a model of ϕ′, i.e. x0 ∈ [[ϕ′]]K ′ for some x0 ∈ X. Now define the Kripke
strucutre K = (X, {→a,→b}, {Xp | p ∈ P}) where →a= {(x, y) ∈ X × X |
∃z : x →a1

z →b2 y} and →b= {(x, y) ∈ X × X | ∃z : x →a2
z →b1 y}. As

above for each x, y ∈ X and for each w ∈ {a, b}∗ we have (x, y) ∈ [[w]]K if and
only if (x, y) ∈ [[h(w)]]K ′ . Again, by an induction on the structure of ϕ, one
can prove that x0 ∈ [[ϕ]]K . Thus, K is a model for ϕ.
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