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Abstract

A finite word is called bordered if it has a proper prefix which is also a suffix
of that word. Costa proves in (Theoret. Comput. Sci., 290(3):2053-2061,
2003) that a bi-infinite word w is of the form “f¢gf*, for some finite words f
and g, if, and only if, there is a factorization w = suv, with u € A* such that
every factor s'uv’, with s’ < s and v' < v, is bordered. We present a shorter
proof of that result in this paper.
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We give a shorter proof for a strong result due to J. Costa (see Theorem 1
below). Let us fix our notations first. We refer to [3] for more basic and
general definitions on combinatorics of words. We consider a finite alphabet
A of letters. Let A* denote the monoid of all finite words over A including
the empty word, denoted by . Let “A and A¥ and “A“ denote the set of
all left- and right- and bi-infinite words over A, respectively. We denote the
length of a word w by |w|. Suppose w = uwv, if u is finite, it is called a prefix
of w, denoted by v < w, and, if v is finite, it is called a suffiz of w, denoted
by v < w. A nonempty word u € A* is a border of a word w € A*, if
w = uv = v'u for some suitable nonempty words v and v’ in A*. Note, that
every bordered word w has a shortest border u such that w = uwvu, where u
is unbordered. Let §(w) denote the length of the shortest border of w where
0(w) = 0 if w is unbordered.

Costa proved the following result in [1].

Theorem 1. Let w be a bi-infinite word. Then there exist f,g € A* such
that w = “fgf*, if, and only if, there is a factorization w = suv, with u € A*
such that every factor s'uv’, with ' < s and v' < v, is bordered.

The rest of the paper is devoted to the proof of Theorem 1. The next
lemma follows from the critical factorization theorem, cf. [2].

Lemma 2. Let w be unbordered. There exists a factorization w = uguq,
where uy and uy; are not empty words, such that for any word x, we have
u;xu;1, where the indices are modulo 2, is either unbordered or has a mini-
mum border z with |z| > |w|.

Such a factorization is called critical and |uy| is called a critical point of w.
Let w = suv be a bi-infinite word, where u € A*, such that s'uv’ is bordered
for all s’ < s and v/ < v. Clearly, for every finite suffix ¢ of s there exists
a minimal m} such that §(tuv’) < mj, for all v < v, since §(tuv’) < |tul,
for all v < v, otherwise there is an unbordered prefix w’ of w such that
|w'| > |tu| contradicting our assumption on the shape of w. Moreover, there
is a maximum integer m; such that m; = §(tuv’) for infinitely many v’ < v.
Let x(t) denote the prefix of length m; of tu. Note, that x(¢) is unbordered.

Lemma 3. Let w = suv be a bi-infinite word, where u € A*, such that s'uv’
is bordered for all s' < s and v' < v. There exists an integer k such that for
every suffiz t of s longer than k there is a critical point p in x(t) with p < |t|.

Proof. The case is clear if there are only finitely many suffixes ¢ of s such
that p > |t| for all critical points p in x(t).
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Assume there are infinitely many suffixes ¢ of s such that p > |¢| for all
critical points p in x(¢). Surely, there is a prefix v’ of u such that there are
infinitely many suffixes ¢ of s with x(¢) = tu’ and p > |¢| for all critical points
pin x(t). Then tu' occurs in v inifinitely often. Let v'tu’ < v denote any such
occurence. Now, let t' be a suffix of s such that x(t') = t'v/ and [t'| > |uv't/|
and p > |t'| for all critical points p in x(#'). Surely, the shortest border z
of tuv'tu’ is shorter than wv'tu’, and hence, shorter than ¢’. However, z is
longer than tu’ since t'u’ is unbordered and tu’ < t'u/. So, v’ occurs in ¢/, and
hence, t'u/ has no critical point larger than |¢'|; a contradiction. O

Lemma 4. Let w = suv be a bi-infinite word, where u € A*, such that s'uv’
is bordered for all 8" < s and v' <wv. Then w = “xyz*.

Proof. Firstly, we show that there exists a suffix ¢ of s such that x(¢) has
a critical factorization tot;, with |to| < [t| and t = tof, and totity < tu and
x(t) = x(t). Consider the integer k from Lemma 3.

If |x ()| is bounded for all ¢ < s, then let ¢ be a suffix of s such that
|t| > k and x(¢) is maximal. If |x(¢')| is not bounded for all ¢ < s, then let
t be the shortest suffix of s such that x(¢) > k and x(¢) has a critical point
p with p < |¢|.

We have that tu = x(t)u’ and there is a critical factorization x(t) = tot;
with [to| < [t|. We have that v'tgt; < v for infinitely many prefixes v’ of v.
Let t = tot. We have 6(t,u/v'ty) > [tot1] for every occurence of tot; in v by
Lemma 2, and hence, x(#) > x(t). In fact, x(£) = x(t), by the choice of t,
and tu = totlto’&.

Now, since the number of different shortest borders of tuv’ for all pre-
fixes v' of v is bounded by [tu|, there exists a prefix vy of v such that
d(tuvy) < |x(t)| for every vy < v with vy < vj. Note, that x(t) = tot; occurs
infinitely often in v. Let vy < v{ such that vjtot; < v. Consider the shortest
border 2’ of titguvjty, where we have that |2’| > |t1ty| by Lemma 2. Since
x(t) = x(t), there are only finitely many prefixes of the kind of v}, such that
|2'| > |t1to|. So, let v; < v such that vy < vy and 2’ = 1t for every vitot; < v
for every v; < v}. Now, tuvitot; = totitouvytitot; for every occurence of tyt;
in v right of v;. By Lemma 2, the shortest border of tot;touv|t; is tot;. Now,
we have that every of the inifinitely many occurences of tyt; in v right of v
is immediately preceded by tot;, and hence, v = v{t;(tot1)".

The claim w = “xyz* follows by symmetry. O

Lemma 5. Ifw = “xyz¥, where xyz € A*, such that x'yz" is bordered for all
¥ <xand 2 <z, thenw =“fgf“, where fg € A*.

Proof. Certainly, the word w can be factored into “fgf"“ such that every
factor containing ¢ is bordered and f and f’ are Lyndon words w.r.t. some



order < where a € A is minimal in <. Surely, we can assume that a occurs
both in f and f’ and that @ < f and a < f’. Assume that |f| < |f/|
by symmetry. It is easy to see that every factor of w containing fgf’ has to
have a shortest border that is not longer than |f|. Assume that f # f'.

If f < f'. Then the shortest border of fgf’ implies that a prefix f; of f is
a suffix of f/, and fy < f’ implies that f’ is not minimal in <; a contradiction.

If f/ < f. Then f = focfi and f' = fobf] for some b,c € A and b # ¢
and b < c. It is clear that fyb does not occur in ff otherwise f is not
minimal w.r.t. <. Let fjb be the longest unbordered suffix of fyb. Consider
the factor ficfifgf'fob of w with the shortest border s'. If |s'| < |f{| then
f{b is bordered; a contradiction. If s’ = fJb then b = ¢; a contradiction. If
|10 < |8'] < |fob| then f}b is not maximal; a contradiction. If |fob| < |¢|
then fyb occurs in f f; a contradiction.

Therefore, f = f' and w =“fgf“. O

Proof of Theorem 1. (=) Clearly, if w = “fgf* then there is a factorization
w = suv, with u € A* such that every factor s'uv’, with s’ < s and v/ < w, is
bordered. Take for example u = fgf.

(<) The claim follows from Lemma 4 and 5. O
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