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Abstract

A finite word is called bordered if it has a proper prefix which is also a suffix
of that word. Costa proves in (Theoret. Comput. Sci., 290(3):2053–2061,
2003) that a bi-infinite word w is of the form ωfgfω, for some finite words f
and g, if, and only if, there is a factorization w = suv, with u ∈ A∗ such that
every factor s′uv′, with s′ 4 s and v′ ≤ v, is bordered. We present a shorter
proof of that result in this paper.
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We give a shorter proof for a strong result due to J. Costa (see Theorem 1
below). Let us fix our notations first. We refer to [3] for more basic and
general definitions on combinatorics of words. We consider a finite alphabet
A of letters. Let A∗ denote the monoid of all finite words over A including
the empty word, denoted by ε. Let ωA and Aω and ωAω denote the set of
all left- and right- and bi-infinite words over A, respectively. We denote the
length of a word w by |w|. Suppose w = uv, if u is finite, it is called a prefix
of w, denoted by u ≤ w, and, if v is finite, it is called a suffix of w, denoted
by v 4 w. A nonempty word u ∈ A∗ is a border of a word w ∈ A∗, if
w = uv = v′u for some suitable nonempty words v and v′ in A∗. Note, that
every bordered word w has a shortest border u such that w = uvu, where u
is unbordered. Let δ(w) denote the length of the shortest border of w where
δ(w) = 0 if w is unbordered.
Costa proved the following result in [1].

Theorem 1. Let w be a bi-infinite word. Then there exist f, g ∈ A∗ such

that w = ωfgfω, if, and only if, there is a factorization w = suv, with u ∈ A∗

such that every factor s′uv′, with s′ 4 s and v′ ≤ v, is bordered.

The rest of the paper is devoted to the proof of Theorem 1. The next
lemma follows from the critical factorization theorem, cf. [2].

Lemma 2. Let w be unbordered. There exists a factorization w = u0u1,

where u0 and u1 are not empty words, such that for any word x, we have

uixui+1, where the indices are modulo 2, is either unbordered or has a mini-
mum border z with |z| ≥ |w|.

Such a factorization is called critical and |u0| is called a critical point of w.
Let w = suv be a bi-infinite word, where u ∈ A∗, such that s′uv′ is bordered
for all s′ 4 s and v′ ≤ v. Clearly, for every finite suffix t of s there exists
a minimal m′

t
such that δ(tuv′) ≤ m′

t
, for all v′ ≤ v, since δ(tuv′) ≤ |tu|,

for all v′ ≤ v, otherwise there is an unbordered prefix w′ of w such that
|w′| > |tu| contradicting our assumption on the shape of w. Moreover, there
is a maximum integer mt such that mt = δ(tuv′) for infinitely many v′ ≤ v.
Let χ(t) denote the prefix of length mt of tu. Note, that χ(t) is unbordered.

Lemma 3. Let w = suv be a bi-infinite word, where u ∈ A∗, such that s′uv′

is bordered for all s′ 4 s and v′ ≤ v. There exists an integer k such that for

every suffix t of s longer than k there is a critical point p in χ(t) with p ≤ |t|.

Proof. The case is clear if there are only finitely many suffixes t of s such
that p > |t| for all critical points p in χ(t).
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Assume there are infinitely many suffixes t of s such that p > |t| for all
critical points p in χ(t). Surely, there is a prefix u′ of u such that there are
infinitely many suffixes t of s with χ(t) = tu′ and p > |t| for all critical points
p in χ(t). Then tu′ occurs in v inifinitely often. Let v′tu′ ≤ v denote any such
occurence. Now, let t′ be a suffix of s such that χ(t′) = t′u′ and |t′| ≥ |uv′tu′|
and p > |t′| for all critical points p in χ(t′). Surely, the shortest border z
of t′uv′tu′ is shorter than uv′tu′, and hence, shorter than t′. However, z is
longer than tu′ since t′u′ is unbordered and tu′ 4 t′u′. So, u′ occurs in t′, and
hence, t′u′ has no critical point larger than |t′|; a contradiction.

Lemma 4. Let w = suv be a bi-infinite word, where u ∈ A∗, such that s′uv′

is bordered for all s′ 4 s and v′ ≤ v. Then w = ωxyzω.

Proof. Firstly, we show that there exists a suffix t of s such that χ(t) has
a critical factorization t0t1, with |t0| ≤ |t| and t = t0t̂, and t0t1t0 ≤ tu and
χ(t̂) = χ(t). Consider the integer k from Lemma 3.
If |χ(t′)| is bounded for all t′ 4 s, then let t be a suffix of s such that

|t| ≥ k and χ(t) is maximal. If |χ(t′)| is not bounded for all t′ 4 s, then let
t be the shortest suffix of s such that χ(t) ≥ k and χ(t) has a critical point
p with p ≤ |t|.
We have that tu = χ(t)u′ and there is a critical factorization χ(t) = t0t1

with |t0| < |t|. We have that v
′t0t1 ≤ v for infinitely many prefixes v′ of v.

Let t = t0t̂. We have δ(t1u
′v′t0) ≥ |t0t1| for every occurence of t0t1 in v by

Lemma 2, and hence, χ(t̂) ≥ χ(t). In fact, χ(t̂) = χ(t), by the choice of t,
and tu = t0t1t0û.
Now, since the number of different shortest borders of tuv ′ for all pre-

fixes v′ of v is bounded by |tu|, there exists a prefix v0 of v such that
δ(tuv′0) ≤ |χ(t)| for every v

′

0 ≤ v with v0 ≤ v′0. Note, that χ(t) = t0t1 occurs
infinitely often in v. Let v0 ≤ v′0 such that v

′

0t0t1 ≤ v. Consider the shortest
border z′ of t1t0ûv

′

0t0, where we have that |z
′| ≥ |t1t0| by Lemma 2. Since

χ(t̂) = χ(t), there are only finitely many prefixes of the kind of v ′0 such that
|z′| > |t1t0|. So, let v1 ≤ v such that v0 ≤ v1 and z

′ = t1t0 for every v
′

1t0t1 ≤ v

for every v1 ≤ v′1. Now, tuv
′

1t0t1 = t0t1t0ûv
′′

1 t1t0t1 for every occurence of t0t1
in v right of v1. By Lemma 2, the shortest border of t0t1t0ûv

′′

1 t1 is t0t1. Now,
we have that every of the inifinitely many occurences of t0t1 in v right of v1

is immediately preceded by t0t1, and hence, v = v′′1 t1(t0t1)
ω.

The claim w = ωxyzω follows by symmetry.

Lemma 5. If w = ωxyzω, where xyz ∈ A∗, such that x′yz′ is bordered for all

x′ 4 x and z′ ≤ z, then w = ωfgfω, where fg ∈ A∗.

Proof. Certainly, the word w can be factored into ωfgf ′ω such that every
factor containing g is bordered and f and f ′ are Lyndon words w.r.t. some
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order C where a ∈ A is minimal in C. Surely, we can assume that a occurs
both in f and f ′ and that a ≤ f and a ≤ f ′. Assume that |f | ≤ |f ′|
by symmetry. It is easy to see that every factor of w containing fgf ′ has to
have a shortest border that is not longer than |f |. Assume that f 6= f ′.
If f C f ′. Then the shortest border of fgf ′ implies that a prefix f0 of f is

a suffix of f ′, and f0 C f ′ implies that f ′ is not minimal in C; a contradiction.
If f ′ C f . Then f = f0cf1 and f

′ = f0bf
′

1 for some b, c ∈ A and b 6= c

and b C c. It is clear that f0b does not occur in ff otherwise f is not
minimal w.r.t. C. Let f ′

0b be the longest unbordered suffix of f0b. Consider
the factor f ′0cf1fgf

′f0b of w with the shortest border s
′. If |s′| ≤ |f ′0| then

f ′0b is bordered; a contradiction. If s
′ = f ′0b then b = c; a contradiction. If

|f ′0b| < |s′| ≤ |f0b| then f
′

0b is not maximal; a contradiction. If |f0b| < |s′|
then f0b occurs in ff ; a contradiction.
Therefore, f = f ′ and w = ωfgfω.

Proof of Theorem 1. (⇒) Clearly, if w = ωfgfω then there is a factorization
w = suv, with u ∈ A∗ such that every factor s′uv′, with s′ 4 s and v′ ≤ v, is
bordered. Take for example u = fgf .
(⇐) The claim follows from Lemma 4 and 5.
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