
ON THE INDEPENDENCE OF EQUATIONS

IN THREE VARIABLES
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Abstract. We prove that an independent system of equations in three vari-

ables with a nonperiodic solution and at least two equations consists of bal-

anced equations only. For that, we show that the intersection of two different
entire systems contains only balanced equations, where an entire system is

the set of all equations solved by a given morphism. Furthermore, we estab-

lish that two equations which have a common nonperiodic solution have the
same set of periodic solutions or are not independent.

1. Introduction

Systems of word equations in three variables are investigated in this article.
Consider for example the following system S of two equations

xyz = zyx and xyyz = zyyx

which has a solution α with α(x) = α(z) = a and α(y) = b. This solution is called
nonperiodic since α(x), α(y), and α(z) are not powers of the same word. The
system S is also independent since there exist the solutions β and γ, with β(x) = a
and β(y) = b and β(z) = aba and γ(x) = a and γ(y) = b and γ(z) = abba, which
solve either one of the two equations but not the other. Both equations in this
example are balanced, that is, the number of occurrences of each variable on the
left and the right hand side is the same.

The main result of this article states that every independent system with at least
two equations and a nonperiodic solution, consists of balanced equations only.

Let α be a nonperiodic solution. We call the set of all equations solved by α
the entire system of equations generated by α. It is shown that the intersection of
two different entire systems can only contain balanced equations. Furthermore, we
establish that two equations which have a common nonperiodic solution have the
same set of periodic solutions or are not independent. These two facts prove the
result mentioned above.

Even though this result is interesting in its own right, it also provides more
insight into the following question: Does there exist an independent system of three
equations in three variables that has a nonperiodic solution? If it does, it must
contain balanced equations only. This question was implicitely raised by Culik II
and Karhumäki [3] first in 1983.

This introduction is followed by the preliminaries, Section 2, where the notations
for this article are fixed. Section 3 introduces Spehner’s [7] characterization of
solutions of equations in three variables which is compared with an earlier result
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by Budkina and Markov [1] in Section 4. The intersection of Spehner’s entire
systems is investigated in Section 5 which provides the foundation for the proof of
the main result in Section 6. This paper ends with concluding remarks in Section 7.

2. Preliminaries

In this section we fix the notations for this paper. We refer to [4, 5, 2] for more
basic and general definitions.

Let X = {x, y, z} be a fixed set of three variables and let X+ denote the semi-
group of all finite, nonempty words over X. Let ε denote the empty word. A word
v is a prefix of u, denoted by v ≤ u, if there exists a word w such that u = vw.
If w 6= ε, then v is a proper prefix of u, denoted by v < u. Accordingly, v 4 u and
v ≺ u denote that v is a suffix and proper suffix of u, respectively, that is u = wv.

An equation in X is any pair (u,w) of words in X+, usually written as u = w.
An equation is called balanced if every variable has the same number of occurrences
on each side. Let e be an equation u = w, then we abbreviate v1 ≤ u and v2 ≤ w
by (v1, v2) ≤ e, and v1 4 u and v2 4 w by (v1, v2) 4 e. We say that an equation
e starts (or ends) with v1 and v2, if (v1, v2) ≤ e (or (v1, v2) 4 e, respectively) or
(v2, v1) ≤ e (or (v2, v1) 4 e, respectively). Let A = {a, b} be a fixed set of two
letters. A solution of an equation u = w is a morphism α : X+ → A+ such that
α(u) = α(w). Note, that for any solution in a finite set of letters a solution in A
can be found, since any finitely generated semigroup can be embedded in A+. An
equation u = w is called reduced if ε is the greatest common prefix and suffix of u
and w. Note, that every equation can be transformed into its reduced form, that
is by dropping common pre- and suffixes, without changing its set of solutions.

Two morphisms α : X+ → A+ and β : Y + → B+ are isomorphic if there exist
two isomorphisms ρ1 : X+ → Y + and ρ2 : A+ → B+ such that ρ2α = βρ1, that is,
the following diagram commutes:

X+ α−−−−→ A+

ρ1

y yρ2
Y + β−−−−→ B+

We call α a permutation of β if X = Y and A = B. A morphism is called periodic
if it is isomorphic to a morphism in {a}+, that is, there exists a word w such that
α(x) ∈ {w}+ for all x ∈ X; otherwise it is called nonperiodic. Let v ∈ X+ and α be
as before, then Aα(v) and Bα(v) denote the number of occurrences of the letters a
and b, respectively, in α(v). We might abbreviate α(v) with v, if the context is
clear.

A system of equations, or system for short, is a nonempty set of equations.
A solution of a system is a morphism that solves all equations in the system. Two
systems are equivalent if they have exactly the same set of solutions. A system of
equations is called independent if it is not equivalent to any of its proper subsets.

Let α : X+ → A+ be a morphism. Then the kernel

ker(α) = {(u,w) | α(u) = α(w)} = α−1 ◦ α
of α is also called an entire system generated by α in the context of equations, see
[7], denoted by Kα. Here, Kα consists of all equations for which α is a solution.
A subset C of A+ is called a base of C+ if C = C+ \ (C+)2. A subset C of A+ is
called incontractable if C is a base of C+ and for any D ⊆ A+, if C+ and D+ are
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isomorphic, then
∑
v∈C |v| ≤

∑
v∈D |v|. We call α an incontractable morphism if

the base of α(X+) is an incontractable subset of A+.
Consider for example equation xyx = zz which is solved by all of the following

morphisms αp defined by

x 7→ (ab)pa y 7→ baab z 7→ (ab)p+1a

where p ≥ 0. Now, α0, that is x 7→ a and y 7→ baab and z 7→ aba, is incontractable,
whereas αp, for any p ≥ 1, is not incontractable. Note, that αp is a principal
solution (cf. [4]) for all p ≥ 0.

For the rest of this paper we consider nontrivial reduced equations and systems
of equations in X and solutions in A+ only.

3. A Characterization of Incontractable Solutions

In this section we will give Spehner’s characterization, see Proposition 2.5 in [7],
of nonperiodic incontractable solutions of entire systems.

Theorem 1. For every entire system S generated by a nonperiodic morphism,
there exists a unique, up to permutation, incontractable nonperiodic morphism α
such that S = Kα.

Let α : X+ → A+ be a nonperiodic incontractable solution, then α is of one
of the following types. We define α by a triple (α(x), α(y), α(z)), and we fix that
gcd(p+ 1, q + 1) = 1 in the following.

(1) Let p, q ≥ 1, then

α :
(
a, bq+1, bp+1

)
.

(2) Let p, q, k ≥ 1 and i, j ≥ 0 and i+ j ≤ k, then

α :
(
a,
(
bak
)q
b, ai

(
bak
)p
baj
)
.

(3) Let p > q ≥ 1 and 1 ≤ i, j < k < i+ j, then

α :
(
a,
(
bak
)q
b, ai

(
bak
)p−q−1

baj
)
.

Note that q + 1 6= p− q since gcd(p+ 1, q + 1) = 1 by assumption.
(4) Let q ≥ 1 and 1 ≤ i, j ≤ k < i+ j and n ≥ 0 and kt ≥ 0, for all 1 ≤ t ≤ n,

then

α :
(
a,
(
vbak

)q
vb, aibaj

)
where v = bak1+i+jbak2+i+j · · · bakn+i+j .

Spehner gives n ≥ 1 in [7], but this is a misprint. Indeed, we have thet
equation xyxyx = zyz implies an entire system with an incontractable
solution where y 7→ bab and z 7→ aba which is not in any of Spehner’s
types.

(5) Let p, q, i, j ≥ 1 and m ≥ 0, then

α :
(
a,
(
bai+j+m

)q
baj , aib

(
ai+j+mb

)p)
.

In Spehner’s paper the second component in α(X) is b
(
ai+jb

)q
aj which

we think is a typo.
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(6) Let q ≥ 1 and i, i′, j, j′ ≥ 0 and ii′ = jj′ = 0 and n ≥ 0 and kt ≥ 0, for all
1 ≤ t ≤ n, then

α :
(
a,
(
ai

′
bak1+i+jbak2+i+j · · · bakn+i+jbaj

′
)q
, aibaj

)
.

As for type 4, Spehner gives n ≥ 1 in [7], but this is a misprint. Indeed, the
equation x = z implies an entire system with an incontractable solution
where y 7→ b and z 7→ a which would not be in any of Spehner’s types.
However, this example could belong to case 1, if p, q ≥ 0 there. But then
the entire system implied by xy = zx is not contained in any type here
since y 7→ ba and z 7→ ab. So, assuming n ≥ 0 in types 4 and 6 closes the
gap leaving type 1 as given in [7].

Note, that if i′ + j′ < i+ j then q = 1 otherwise α does not satisfy any
nontrivial equation.

(7) In this type

α : (a, b, ε) .

We observe that no nonerasing morphism is isomorphic to a morphism of
this type. Since we consider only nonerasing solutions here, type 7 will not
be further investigated.

(8) Let p, q, r ≥ 1 and i, j ≥ 0, then

α :
(
a,
(
bai+j+r

)q
baj+r, ai+rb

(
ai+j+rb

)p)
.

The following theorem completes Spehner’s characterization.

Theorem 2. Any incontractable solution β is equal to a permutation of α in one
of the eight previous types.

Furthermore, we observe the following fact.

Lemma 3. If α is an incontractable solution then α(x′) = a, up to renaming of a,
for some x′ ∈ X.

4. A Comparison of Spehner’s and Budkina & Markov’s
Characterization

Let a semigroup that is isomorphic to a subsemigroup with k generators of a free
semigroup be called F -semigroup with k generators. All F -semigroups with 3
generators have been completely characterized by Budkina and Markov in 1973
[1] and by Spehner in 1976 [6]. We use Spehner’s presentation on the Semigroups
conference in 1986 [7] to base our result on. Unfortunately, we had to correct some
details of Proposition 2.5 in [7] as mentioned in the previous section. In order to
justify these corrections we will compare our version of Spehner’s Proposition 2.5
with Budkina and Markov’s Theorem 1 in [1].

Budkina and Markov establish that any F -semigroup S with three generators is
of one of the following types.

(i) S is isomorphic to a subsemigroup of {a}+.
(ii) S is isomorphic to the free product of an F -semigroup with two generators

and an infinite monogenic semigroup, that is,

{a, b, c}+ or {aq, b, ap}+

with p, q ≥ 1 and gcd(p, q) = 1.
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(iii) S is isomorphic to{
a, bak1b · · · baknbaj

′
, aib

}+

or
{
a, ai

′
bak1b · · · baknb, baj

}+

where i, j ≥ 1 and i′, j′, n ≥ 0 and kt ≥ i and kt ≥ j, for all 1 ≤ t ≤ n,
respectively.

(iv) S is isomorphic to {
a, bak1b · · · baknb, aibaj

}+
where i, j ≥ 1 and n ≥ 0 and kt ≥ i+ j, for all 1 ≤ t ≤ n.

(v) S is isomorphic to{
a, ai

′ (
bak
)q
baj

′
, ai
(
bak
)p
baj
}+

where k, p, q ≥ 1 and 0 ≤ i, i′, j, j′ ≤ r and gcd(p + 1, q + 1) = 1 and
ii′ = jj′ = 0.

(vi) S is isomorphic to {
a,
(
bak
)q
b, aibaj

}+

where q ≥ 1 and 1 ≤ i, j ≤ k and k < i+ j.
(vii) S is isomorphic to{

a,
(
bak1b · · · baknbak

)q
bak1b · · · baknb, aibaj

}+

where q ≥ 1 and 1 ≤ i, j ≤ k and k < i + j and n ≥ 0 and kt ≥ i + j, for
all 1 ≤ t ≤ n.

We observe the following correspondence between Spehner’s and Budkina & Mar-
kov’s types.

Budkina & Markov Spehner
(ii) (1) and (6), where i+ j = 0
(iii) (6) where i+ j > 0 and ij = 0
(iv) (6) where ij > 0
(v) (2), (3), where p > q + 1, (5), (8)
(vi) (3), where p = q + 1, (4), where n = 0
(vii) (4), where n > 0

Note, that if α is of type (6) and i = j = 0, then (α(X))
+

is isomorphic to {a, b}+,
note also, that {a}+ and {a, b, c}+ are not of rank 2.

5. About the Intersection of Entire Systems

In this section we show that entire systems with nonperiodic solutions intersect
with balanced equations only. We investigate Spehner’s types of entire systems for
that purpose. Recall that we require solutions to be nonerasing. So, type (7) will
not be considered here.

For the rest of this section, let α, β : X+ → A+ be two nonperiodic incontractable
morphisms which are not identical up to renaming of a and b. Let us fix an equation
u = w, denoted by e, and let α and β both satisfy e. Assume that e is not balanced.

We can assume that α(x) = a without restriction of generality. Let τα and τβ
denote the type of α and β, respectively. In general, let us subscript variables with
α and β to indicate the solution they belong to.
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The numbers of occurences of letters a and b will be frequently made use of in
the proofs of this section. Therefore, observe that

|u|x +Aα(y)|u|y +Aα(z)|u|z = |w|x +Aα(y)|w|y +Aα(z)|w|z

and

Bα(y)|u|y +Bα(z)|u|z = Bα(y)|w|y +Bα(z)|w|z
which implies

Aα(z)Bα(y)−Aα(y)Bα(z)

Bα(y)
=
|w|x − |u|x
|u|z − |w|z

.

Case: Assume α(x) = β(x) = a. Then we have

Bβ(y)|u|y +Bβ(z)|u|z = Bβ(y)|w|y +Bβ(z)|w|z

which implies

(1)
Bα(y)

Bα(z)
=
|w|z − |u|z
|u|y − |w|y

=
Bβ(y)

Bβ(z)
.

Case: Assume α(x) = β(y) = a. Then we have

Bβ(x)|u|x +Bβ(z)|u|z = Bβ(x)|w|x +Bβ(z)|w|z

which implies

Bβ(z)

Bβ(x)
=
|w|x − |u|x
|u|z − |w|z

and

Aα(z)−Aα(y)
Bα(z)

Bα(y)
=
Bβ(z)

Bβ(x)
(2)

and

Aβ(z)−Aβ(x)
Bβ(z)

Bβ(x)
=
Bα(z)

Bα(y)
.(3)

Case: Assume α(x) = β(z) = a. Then we obtain in the same way

Aα(y)−Aα(z)
Bα(y)

Bα(z)
=
Bβ(y)

Bβ(x)
(4)

and

Aβ(y)−Aβ(x)
Bβ(y)

Bβ(x)
=
Bα(y)

Bα(z)
.(5)

The first lemma states that we can assume α and β to be of a certain shape.

Lemma 4. If all equations v1 = v2 in Kα ∩Kβ such that

α(x1) ≤ α(x2) ⇐⇒ β(x2) ≤ β(x1)

where x1 ≤ v1 and x2 ≤ v2 and x1, x2 ∈ X are balanced, then all equations in
Kα ∩Kβ are balanced.
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Proof. Assume v1 = v2 is any equation in Kα ∩Kβ .
Case: α(x1) = α(x2) or β(x1) = β(x2). Note that if α(x1) = α(x2) and

β(x1) = β(x2), then v1 = v2 is balanced by assumption.
Let α(x1) = α(x2) and β(x1) < β(x2), the other case is symmetric. Assume that

v1 = v2 is not balanced. Since α and β are incontractable, we have α(x) = a and
α(y) = α(z) = b up to permutation of letters and variables as can be easily seen
from the types of incontractable solutions in Section 3. Now, |v1|x = |v2|x, and
we have also β(x) = a, otherwise the shape of β implies that either |v1|y = |v2|y
or |v1|z = |v2|z, since Bβ(v1) = Bβ(v2), and v1 = v2 is balanced, which is a
contradiction. But now, equation (1) gives

Bα(y)

Bα(z)
=
Bβ(y)

Bβ(z)
= 1 ;

a contradiction again since we have necessarily gcd(Bβ(y), Bβ(z)) = 1 and also
max{Bβ(y), Bβ(z)} > 1, otherwise β is a permutation of α.

Case: α(x1) < α(x2) and β(x1) < β(x2). Let α′ : X+ → A+ and β′ : X+ → A+

such that

α′(x2) = α(x1)−1α(x2) and β′(x2) = β(x1)−1β(x2)

and α′(x3) = α(x3) and β′(x3) = β(x3) for all x3 ∈ X such that x3 6= x2, and let
σ : X+ → X+ such that

σ(x2) = x1x2

and σ(x3) = x3 for all x3 ∈ X such that x3 6= x2. Let v′1 = v′2 be the reduced
equation σ(v1) = σ(v2).

Now, α′ and β′ are both solutions for v′1 = v′2 and

v′1 = v′2 ∈ Kα′ ∩Kβ′

and it is easy to see by the shape of σ that v1 = v2 is balanced, if, and only if,
v′1 = v′2 is balanced.

Let α′′ and β′′ be incontractable morphisms such that Kα′ = Kα′′ and also
Kβ′ = Kβ′′ . Then α′′ is of smaller size than α and β′′ is of smaller size than β.
Now, either v′1 = v′2 is balanced or we can repeat this construction. In the former
case we have that v1 = v2 is balanced. By repetition of the above construction,
we get a sequence of equations where the size of the corresponding incontractable
solutions gets strictly smaller. Therefore, the sequence of equations must end with
a balanced equation which implies that also v1 = v2 is balanced. �

Remark 5. Since, by Lemma 4, only equations v1 = v2 in Kα ∩Kβ such that

α(x1) ≤ α(x2) ⇐⇒ β(x2) ≤ β(x1)

where x1 ≤ v1 and x2 ≤ v2 and x1, x2 ∈ X need to be shown to be balanced, the
case where α(x) = β(x) = a and u = w begins or ends with x does not need to be
investigated in the following.

In the next two subsections we investigate the intersection of entire systems
of different type first and of the same type then.
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5.1. Entire Systems of Different Type. The entire systems Kα and Kβ are
assumed to be of different type throughout this subsection.

Lemma 6. If τα = 1 or τβ = 1 then Kα ∩Kβ contains only balanced equations.

Proof. If τα = 1 then |u|x = |w|x which implies β(x) = a, for, otherwise |u|y = |w|y
or |u|z = |w|z, by counting the number of occurences of b in β(y) and β(z), and
u = w is balanced. Now, τβ ∈ {2, 6} since u = w starts and ends with y and z.
But, α implies (yx1, zx2) ≤ e where x1, x2 ∈ {y, z} which implies that τβ 6= 2 since
kβ ≥ 1. But, also τβ 6= 6 since equation (1) gives

qα + 1

pα + 1
= Bβ(y) or

qα + 1

pα + 1
=

1

Bβ(z)
;

a contradiction since gcd(pα + 1, qα + 1) = 1. �

We will not consider type (1) for the rest of this section anymore.

Lemma 7. If (y, z) ≤ e and α(x) = β(x) = a then Kα∩Kβ contains only balanced
equations.

Proof. Since α(x) = a, we have that b ≤ α(y) and b ≤ α(z) and α must be of type
2 or 6, and since β(x) = a we have b ≤ β(y) and b ≤ β(z) and β must be of type 2
or 6. Equation (1) gives that Bα(y)/Bα(z) is an integer if α is of type 6, and if α is
of type 2 then Bα(y)/Bα(z) is not an integer since gcd(pα+1, qα+1) = 1. The same
holds for Bβ(y)/Bβ(z). So, α and β must be of the same type; a contradiction. �

Lemma 8. If (x, y) ≤ e and α(x) = β(y) = a then Kα∩Kβ contains only balanced
equations.

Proof. We have a ≤ α(y) and a ≤ β(x) and b ≤ α(z) and b ≤ β(z). It follows that
τα = 6 and α is of the shape

x 7→ a

y 7→
(
ai

′
αbak1,α+jαb · · · bakn,α+jαbaj

′
α

)qα
z 7→ bajα

where qα, i
′
α ≥ 1 and jα, j

′
α ≥ 0 and jαj

′
α = 0 and kt,α ≥ 0, for all 1 ≤ t ≤ nα and

nα ≥ 0, and

(6) (xi
′
αz, y) ≤ e .

Case: Assume τβ = 2. Then β is of the shape

x 7→ aiβ
(
bakβ

)pβ
bajβ

y 7→ a

z 7→
(
bakβ

)qβ
b

where pβ , qβ , kβ , iβ ≥ 1 and jβ ≥ 0 and iβ + jβ ≤ kβ . We have that solution β
implies (xykβ−jβz, y) ≤ e and we have kβ = jβ , by equation (6), a contradiction,
or (xykβ−iβ−jβx, y) ≤ e and kβ = iβ + jβ and equation (3) gives

−qα(nα + 1) =
1

kβ

a contradiction.
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Case: Assume τβ = 3. Then β is of the shape

x 7→ aiβ
(
bakβ

)pβ−qβ−1
bajβ

y 7→ a

z 7→
(
bakβ

)qβ
b

where pβ > qβ ≥ 1 and 1 ≤ iβ , jβ < kβ < iβ + jβ . Solution β implies (xy, y) ≤ e
which contradicts α, see equation (6).

Case: Assume τβ = 4. Then β is of the shape

x 7→ aiβbajβ

y 7→ a

z 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbakβ

)qβ
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβb

where qβ ≥ 1 and 1 ≤ iβ , jβ < kβ < iβ + jβ and kt,β ≥ 0, for all 1 ≤ t ≤ nβ and

nβ ≥ 0. Now, (xi
′
αz, yiβz) ≤ e and by the shape of β(z) necessarily i′α ≥ nβ + 1. If

i′α = nβ + 1 then kβ = jβ , and if i′α > nβ + 1 then kβ = iβ + jβ ; a contradiction in
both cases.

Case: Assume τβ = 5 or τβ = 8. Then a ≤ β(x) and b 4 β(x) and a = β(y)
and b ≤ β(z) and a 4 β(z) and e ends in y and z which implies jα = j′α = 0 and
equation (2) gives

Bβ(z)

Bβ(x)
= −Aα(y)

Bα(y)
;

a contradiction. �

Lemma 9. If (x, z) ≤ e and α(x) = β(y) = a then Kα∩Kβ contains only balanced
equations.

Proof. We have a ≤ α(z) and b ≤ α(y) and b ≤ β(x) and b ≤ β(z), and it follows
that τβ ∈ {2, 6}.

Case: Assume τβ = 2. Then β is of the shape

x 7→
(
bakβ

)qβ
b

y 7→ a(7)

z 7→
(
bakβ

)pβ
bajβ

or

x 7→
(
bakβ

)pβ
bajβ

y 7→ a(8)

z 7→
(
bakβ

)qβ
b

where 0 ≤ jβ ≤ kβ .
Subcase: Assume jβ = 0. Then both shapes of τβ are symmetric and we

consider only case (7). Note, equations solved by β end with x and z which gives
τα ∈ {3, 4, 6}. If τα = 3 then kα = jα since β implies (x, zy) ≤ e but this contradicts
the definition of type 3 where kα > jα. If τα = 4 or τα = 6 then equation (3) gives

Bα(y) =
qβ + 1

kβ (pβ − qβ)
;
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a contradiction since gcd(pβ + 1, qβ + 1) = 1.
Subcase: Assume jβ > 0 and β is of shape (7). Then e ends with y and z, and

τα = 6. Solution β implies now (xy, zykβ−jβ ) ≤ e and kβ = jβ or α(y) = b by the
shape of α. If kβ = jβ then equation (3) gives

Bα(y) =
qβ + 1

kβ (pβ + 1)
;

a contradiction since gcd(pβ + 1, qβ + 1). If α(y) = b then equation (2) gives

qβ + 1

pβ + 1
= iα ;

a contradiction since gcd(pβ + 1, qβ + 1) = 1.
Subcase: Assume jβ > 0 and β is of shape (8). Then e ends with x and y, and

τα ∈ {5, 6, 8}.
If τα = 5 or τα = 8 then α implies (x, zx) ≤ e and β implies (x, zy) ≤ e;

a contradiction.
If τα = 6 then β implies (xykβ−jβ , zy) ≤ e and kβ = jβ by the shape of α. Now,

equation (3) gives

−kβ =
1

qα(nα + 1)
;

a contradiction.
Case: Assume τβ = 6. Then β is of the shape

x 7→ bajβ

y 7→ a(9)

z 7→
(
bak1,β+jβb · · · baknβ,β+jβbaj

′
β

)qβ
or

x 7→
(
bak1,β+jβb · · · baknβ,β+jβbaj

′
β

)qβ
y 7→ a(10)

z 7→ bajβ

where qβ , i
′
β ≥ 1 and jβ , j

′
β ≥ 0 and jβj

′
β = 0 and kt,β ≥ 0, for all 1 ≤ t ≤ nβ and

nβ ≥ 0.
Subcase: Assume β is of shape (9). Then equation (3) gives

Bα(z)

Bα(y)
= Aβ(z)−Aβ(x)Bβ(z)

which implies Bα(y) = 1, but then τα = 6; a contradiction.
Subcase: Assume β is of shape (10). Then equation (3) gives

Bα(z)

Bα(y)
= jβ −

Aβ(x)

Bβ(x)
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where jβ ≥ 1 and j′β = 0 and e ends with y and z which implies τα = 2 with iα ≥ 1
and jα = 0. So, α is of the shape

x 7→ a

y 7→
(
bakα

)qα
b

z 7→ aiα
(
bakα

)pα
b

where iα ≤ kα. If iα = kα then equation (2) gives

1

qβ(nβ + 1)
= kα

pα + 1

qα + 1

a contradiction since gcd(pα + 1, qα + 1) = 1. If iα < kα then α implies that
(xkαy, xkα−iαz) 4 e which gives qβ = jβ = 1 and nβ = 0 But now, equation (3)
gives

pα + 1

qα + 1
= 1 ;

a contradiction since gcd(pα + 1, qα + 1) = 1. �

Lemma 10. If (y, z) ≤ e and α(x) = β(y) = a then Kα∩Kβ contains only balanced
equations.

Proof. Since α(x) = a we have b ≤ α(y) and b ≤ α(z) and α must be of type 2 or 6,
and since β(y) = a we have a ≤ β(z) and b ≤ β(x).

Case: Assume τα = 2. Then iα = 0 and α is of the shape

x 7→ a

y 7→
(
bakα

)qα
b

z 7→
(
bakα

)pα
bajα

where pα, qα, kα ≥ 1 and jα ≥ 0 and jα ≤ kα. Now, α implies

(11) (yxkα , zxkα−jα) ≤ e

and

(12) (xkα−jαyxjα , xkα−jαz) 4 e .

Subcase: Assume τα = 2 and τβ = 3. Then β is of the form

x 7→
(
bakβ

)qβ
b

y 7→ a

z 7→ aiβ
(
bakβ

)pβ−qβ−1
bajβ

where 1 ≤ iβ , jβ < kβ < iβ + jβ and equations solved by β end with y and z, which
implies jα = 0. But now, by (11) and (12), we have iβ = jβ = 1 and 1 < kβ < 2; a
contradiction.

Subcase: Assume τα = 2 and τβ = 4. Then β is of the form

x 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbakβ

)qβ
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβb

y 7→ a

z 7→ aiβbajβ
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where qβ ≥ 1 and 1 ≤ iβ , jβ ≤ kβ < iβ + jβ and nβ ≥ 0 and equations solved
by β end with y and z, which implies jα = 0. From (11) and (12) follows that
iβ = jβ = kβ = 1 and nβ = 0 and also kα = 1. Equation (2) gives

Bβ(x) =
qα + 1

pα − qα
;

a contradiction since gcd(qα + 1, pα + 1) = 1.
Subcase: Assume τα = 2 and τβ = 5 or τβ = 8. Then an equation solved by β

ends in x and y, and hence, cannot be solved by α.
Subcase: Assume τα = 2 and τβ = 6 and β is of the form

x 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbaj

′
β

)qβ
y 7→ a

z 7→ aiβbajβ

where iβ ≥ 1 and jβ , j
′
β ≥ 0 and qβ ≥ 1 and jβj

′
β = 0. Note, that actually

j′β = 0 since equations solved by α end with y and z or x and z. If kα = jα then

equation (2) gives

Bβ(x) =
qα + 1

kα(pα + 1)
;

a contradiction since gcd(qα + 1, pα + 1) = 1. Hence, kα > jα and α implies
(yx, zx) ≤ e, but for equations solved by β we have (y, zz) ≤ e or (y, zy) ≤ e;
a contradiction.

Subcase: Assume τα = 2 and τβ = 6 and β is of the form

x 7→ bajβ

y 7→ a

z 7→
(
ai

′
βbak1,β+jβb · · · baknβ,β+jβbaj

′
β

)qβ
where i′ ≥ 1 and jβ , j

′
β ≥ 0 and qβ ≥ 1 and jβj

′
β = 0. Note, that actually jβ = 0

since equations solved by α end with y and z or x and z. Equation (3) gives

pα + 1

qα + 1
= Aβ(z) ;

a contradiction since gcd(pα + 1, qα + 1) = 1.
Case: Assume τα = 6. Then iα = i′α = 0 and α is of the shape

x 7→ a

y 7→
(
bak1,α+jαb · · · baknα,α+jαbaj

′
α

)qα
z 7→ bajα

where qα ≥ 1 and jα, j
′
α ≥ 0 and jαj

′
α = 0 and kt,α ≥ 0, for all 1 ≤ t ≤ nα and

nα ≥ 0. We observe for later considerations that if

(13) (ysx, zty) ≤ e

with s, t ≥ 1, and if qα > 1 or s > 1 then we have
(
bajα

)nα
baj

′
αb ≤ α(u) and(

bajα
)nα+1

b ≤ α(w) and jα = j′α = 0 and kt,α = 0, for all 1 ≤ t ≤ nα. But,
then |u|x = |w|x and since β(y) = a we have also |u|z = |w|z and e is bal-

anced; a contradiction. Hence, qα = s = 1 and then
(
bajα

)nα
baj

′
αa ≤ α(u) and
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bajα

)nα+1
b ≤ α(w) and jα > 0 and j′α = 0 and equations solved by α end with x

and z.
Subcase: Assume τα = 6 and τβ = 2. Then β is of the form

x 7→
(
bakβ

)qβ
b

y 7→ a

z 7→ aiβ
(
bakβ

)pβ
bajβ

where pβ , qβ , kβ , iβ ≥ 1 and jβ ≥ 0 and iβ + jβ ≤ kβ . Solution β implies that
(yiβx, zykβ−iβ−jβz) ≤ e or (yiβx, zykβ−jβx) ≤ e. If kβ = iβ + jβ then equation (3)
gives

Bα(y) =
qβ + 1

kβ(pβ + 1)
;

a contradiction since gcd(pβ+1, qβ+1) = 1. Therefore, (yiβx, zy) ≤ e which implies
that e ends with x and z by equation (13), and hence, jβ = 0 and iβ = 1, since
s = 1 for equation (13). Now, either (yx, xz) 4 e or (yx, yz) 4 e. In the previous
case equation (3) implies

Bα(y) =
qβ + 1

pβ + 1
;

a contradiction since gcd(pβ + 1, qβ + 1) = 1. In the latter case we have then(
bajα

)nα
ba 4 α(u) and

(
bajα

)nα
bbajα 4 α(w) and nα = 0, since jα > 0, and we

have Bα(y) = 1. Equation (3) gives

kβ
pβ − qβ
qβ + 1

+ 1 = 1 ;

a contradiction.
Subcase: Assume τα = 6 and τβ = 3. Then β is of the form

x 7→
(
bakβ

)qβ
b

y 7→ a

z 7→ aiβ
(
bakβ

)pβ−qβ−1
bajβ

where iβ , jβ ≥ 1 and kβ < iβ + jβ and pβ > qβ ≥ 1. Equation (3) gives

1

Bα(y)
= kβ

(
pβ − qβ
qβ + 1

− 1

)
+ iβ + jβ

and pβ < qβ since iβ + jβ > kβ ; a contradiction.
Subcase: Assume τα = 6 and τβ = 4. Then β is of the form

x 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbakβ

)qβ
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβb

y 7→ a

z 7→ aiβbajβ

where qβ ≥ 1 and 1 ≤ iβ , jβ ≤ kβ < iβ + jβ and nβ ≥ 0. Equations solved by β
end with y and z which implies jα = j′α = 0. Equation (2) gives

−Aα(y)

Bα(y)
=

1

Bβ(x)
;

a contradiction.
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Subcase: Assume τα = 6 and τβ = 5 or τβ = 8. Then β is of the form

x 7→ b
(
aiβ+jβ+mβb

)qβ
ajβ x 7→ b

(
aiβ+jβ+rβb

)qβ
ajβ+rβ

y 7→ a or y 7→ a

z 7→ aiβb
(
aiβ+jβ+mβb

)pβ
z 7→ aiβ+rβb

(
aiβ+jβ+rβb

)pβ
where pβ , qβ , iβ , jβ , rβ ≥ 1 and mβ ≥ 0. Solution β implies (yx, y) 4 e which
contradicts solution α. �

Lemma 11. If (y, z) ≤ e and α(x) = β(z) = a then Kα∩Kβ contains only balanced
equations.

Proof. We have b ≤ α(y) and b ≤ α(z) and b ≤ β(x) and a ≤ β(y). It follows that
τα ∈ {2, 6}.

Case: Assume τα = 2. Then iα = 0 and α is of the shape

x 7→ a

y 7→
(
bakα

)qα
b

z 7→
(
bakα

)pα
bajα

where pα, qα, kα ≥ 1 and jα ≥ 0 and kα ≥ jα. Now, α implies

(14) (yxkα , z) ≤ e .

Subcase: Assume τα = 2 and τβ = 3. Then kβ = jβ since equations solved
by β begin with (yzkβ−jβ , z) ≤ e; a contradiction by the definition of type (3).

Subcase: Assume τα = 2 and τβ = 4. Then β is of the form

x 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbakβ

)qβ
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβb

y 7→ aiβbajβ

z 7→ a

where pβ > qβ ≥ 1 and 1 ≤ iβ , jβ ≤ kβ < iβ + jβ and nβ ≥ 0 and kt,β ≥ 0, for
all 1 ≤ t ≤ nβ . Equation (14) gives by the shape of β that (yxkα , ziβx) ≤ e which
implies either jβ = kiβ ,β + iβ + jβ , if iβ ≤ nβ , or kβ = jβ ; a contradiction in both
cases.

Subcase: Assume τα = 2 and τβ = 5 or τβ = 8. Then β is of the form

x 7→
(
baiβ+jβ+mβ

)qβ
bajβ x 7→

(
baiβ+jβ+rβ

)qβ
bajβ+rβ

y 7→ aiβb
(
aiβ+jβ+mβb

)pβ
or y 7→ aiβ+rβb

(
aiβ+jβ+rβb

)pβ
z 7→ a z 7→ a

where pβ , qβ , iβ , jβ , rβ ≥ 1 and mβ ≥ 0, and β implies (yz, z) ≤ e which contra-
dicts (14).

Subcase: Assume τα = 2 and τβ = 6. Then β is of the form

x 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbaj

′
β

)qβ
y 7→ aiβbajβ(15)

z 7→ a
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or

x 7→ bajβ

y 7→
(
ai

′
βbak1,β+jβb · · · baknβ,β+jβbaj

′
β

)qβ
(16)

z 7→ a

where qβ ≥ 1 and iβ , i
′
β , jβ , j

′
β , nβ ≥ 0 and iβi

′
β = jβj

′
β = 0 and kt,β ≥ 0, for all

1 ≤ t ≤ nβ . If β is of shape (15) then (14) implies (yx, ziβx) ≤ e. We get either
jβ = k1,β + iβ + jβ , a contradiction, or nβ = jβ = j′β = 0 and equation (5) gives

qα + 1

pα + 1
= iβ ;

a contradiction since gcd(pα+1, qα+1) = 1. If β is of shape (16) then equation (5)
gives

qα + 1

pα + 1
= Aβ(y)− jβBβ(y) ;

a contradiction since gcd(pα + 1, qα + 1) = 1.
Case: Assume τα = 6. Then α is of the shape

x 7→ a

y 7→
(
bak1,α+jαb · · · baknα,α+jαbaj

′
α

)qα
z 7→ bajα

where jα, j
′
α, nα ≥ 0 and jαj

′
α = 0 and kt,α ≥ 0, for all 1 ≤ t ≤ nα.

Subcase: Assume τα = 6 and τβ ∈ {2, 3, 5, 8}. Then equation (4) gives

qβ + 1

pβ + 1
= Aα(y)− jαBα(y) ;

a contradiction since gcd(pβ + 1, qβ + 1) = 1.
Subcase: Assume τα = 6 and τβ = 4. Then β is of the form

x 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbakβ

)qβ
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβb

y 7→ aiβbajβ

z 7→ a

where qβ ≥ 1 and 1 ≤ iβ , jβ ≤ kβ < iβ + jβ and nβ ≥ 0 and kt,β ≥ 0, for all
1 ≤ t ≤ nβ . Equations solved by β end with y and z, hence, jα = j′α = 0 and
equation (4) gives

qβ + 1

pβ + 1
= Aα(y) ;

a contradiction since gcd(pβ + 1, qβ + 1) = 1. �

Lemma 12. If (x, y) ≤ e and α(x) = β(z) = a then Kα∩Kβ contains only balanced
equations.

Proof. We have a ≤ α(y) and b ≤ α(z) and b ≤ β(x) and b ≤ β(y). It follows that
τα = 6. Equation (4) gives

Bβ(y)

Bβ(z)
= Aα(y)−Aα(z)Bα(y)
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which implies τβ = 4 and either a ≤ β(x) or a ≤ β(y) since β(z) = a; a contradic-
tion. �

Lemma 13. If (x, z) ≤ e and α(x) = β(z) = a then Kα∩Kβ contains only balanced
equations.

Proof. We have a ≤ α(z) and a ≤ β(x) and b ≤ α(y) and b ≤ β(y).
Case: Assume τα = 2. Then α is of the shape

x 7→ a

y 7→
(
bakα

)qα
b

z 7→ aiα
(
bakα

)pα
bajα

where iα ≥ 1 and jα ≥ 0 and iα + jα ≤ kα. Solution α implies

(xiαy, zxkα−jαy) ≤ e(17)

or

(xiαy, zxkα−iα−jαz) ≤ e .(18)

Subcase: Assume τα = 2 and τβ = 3. Then β is of the form

x 7→ aiβ
(
bakβ

)pβ
bajβ

y 7→
(
bakβ

)qβ
b

z 7→ a

where 1 ≤ iβ , jβ < kβ < iβ + jβ . Solution β implies (xzkβ−jβ , z) ≤ e which
contradicts (17) and (18).

Subcase: Assume τα = 2 and τβ = 4. Then β is of the form

x 7→ aiβbajβ

y 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbakβ

)qβ
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβb

z 7→ a

where qβ ≥ 1 and 1 ≤ iβ , jβ ≤ kβ < iβ + jβ and nβ ≥ 0 and kt,β ≥ 0, for all
1 ≤ t ≤ nβ . Solution β implies (x, ziβy) ≤ e and kα = iα and jα = 0. But,
equations solved by α end with y and z, and equations solved by β end with x
and z; a contradiction.

Subcase: Assume τα = 2 and τβ = 5 or τβ = 8. Then β is of the form

x 7→ aiβb
(
aiβ+jβ+mβb

)pβ
x 7→ aiβ+rβb

(
aiβ+jβ+rβb

)pβ
y 7→

(
baiβ+jβ+mβ

)qβ
bajβ or y 7→

(
baiβ+jβ+rβ

)qβ
bajβ+rβ

z 7→ a z 7→ a

where pβ , qβ , iβ , jβ , rβ ≥ 1 and mβ ≥ 0. Solution β implies (zy, z) 4 e and jα = 0,
and α implies (xy, z) 4 e; a contradiction.

Subcase: Assume τα = 2 and τβ = 6. Then β is of the form

x 7→ aiβbajβ

y 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbaj

′
β

)qβ
z 7→ a
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or

x 7→
(
abk1,β+jβa · · · abknβ,β+jβabj

′
β

)qβ
y 7→ b

z 7→ a

where qβ , iβ ≥ 1 and jβ , j
′
β ≥ 0 and jβj

′
β = 0 and nβ ≥ 0 and kt,β ≥ 0, for all

1 ≤ t ≤ nβ . In both cases, solution β implies (x, ziβy) ≤ e which gives either
kα = jα or kα = iα + jα by (17) and (18), respectively. Equation (4) gives

Bβ(y) = −kα or
1

Bβ(x)
= −kα

respectively; a contradiction.
Case: Assume τα = 3. Then α is of the shape

x 7→ a

y 7→
(
bakα

)qα
b

z 7→ aiα
(
bakα

)pα−qα−1
bajα

where pα > qα ≥ 1 and 1 ≤ iα, jα < kα < iα + jα.
Subcase: Assume τα = 3 and τβ = 6 and β is of the form

x 7→ aqβ

y 7→ b

z 7→ a

where qβ ≥ 1. Then |u|y = |w|y and the shape of α implies |u|z = |w|z and u = w
is balanced.

Subcase: Assume τα = 3 and β is not of the previous shape. Then α implies
(x, zx) ≤ e and β does not solve e; a contradiction.

Case: Assume τα = 4. Then α is of the shape

x 7→ a

y 7→
(
bak1,α+iα+jαb · · · baknα,α+iα+jαbakα

)qα
bak1,α+iα+jαb · · · baknα,α+iα+jαb

z 7→ aiαbajα

where qα ≥ 1 and 1 ≤ iα, jα ≤ kα < iα + jα and nα ≥ 0 and kt,α ≥ 0, for all
1 ≤ t ≤ nα. Solution α implies (xiαy, zxk1,αz · · · zxknα,αzxkα−jαy) ≤ e.

Subcase: Assume τα = 4 and τβ ∈ {2, 3, 5, 8}. Then equation (4) gives

Aα(y)−Aα(z)Bα(y) =
qβ + 1

pβ + 1
;

a contradiction since gcd(pβ + 1, qβ + 1) = 1.
Subcase: Assume τα = 4 and τβ = 6. Then β is of the form

x 7→ aiβbajβ

y 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbaj

′
β

)qβ
z 7→ a
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or

x 7→
(
ai

′
βbak1,βb · · · baknβ,βbaj

′
β

)qβ
y 7→ b

z 7→ a

where qβ , iβ ≥ 1 and jβ , j
′
β ≥ 0 and jβj

′
β = 0 and nβ ≥ 0 and kt,β ≥ 0, for all

1 ≤ t ≤ nβ . In both cases, β implies (x, ziβy) ≤ e and kt,α = 0, for all 1 ≤ t ≤ nα,
and kα = jα and equation (4) gives

−iα(qα + 1)− jα =
Bβ(y)

Bβ(x)
;

a contradiction.
Case: Assume τα = 5. Then α is of the shape

x 7→ a

y 7→
(
baiα+jα+mα

)qα
bajα

z 7→ aiα
(
baiα+jα+mα

)pα
b

where pα, qα, iα, jα ≥ 1 and mα ≥ 0.
Subcase: Assume τα = 5 and τβ = 2. Then α implies (x, zx) ≤ e and β implies

(x, ziβy) ≤ e where iβ ≥ 1; a contradiction.
Subcase: Assume τα = 5 and τβ ∈ {3, 4, 8}. Then equations solved by α end

with x and y, but equations solved by β end with x and z or y and z; a contradiction.
Subcase: Assume τα = 5 and τβ = 6. Then β is of the form

x 7→ aiβbajβ

y 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbaj

′
β

)qβ
z 7→ a

or

x 7→
(
ai

′
βbak1,βb · · · baknβ,βbaj

′
β

)qβ
y 7→ b

z 7→ a

where qβ , iβ ≥ 1 and jβ , j
′
β ≥ 0 and jβj

′
β = 0 and nβ ≥ 0 and kt,β ≥ 0, with

1 ≤ tβ ≤ nβ . Equation (5) gives

qα + 1

pα + 1
= Aβ(y)−Aβ(x)Bβ(y) and

qα + 1

pα + 1
= −Aβ(x)

Bβ(x)

respectively; a contradiction since gcd(pα + 1, qα + 1) = 1.
Case: Assume τα = 6. Then α is of the shape

x 7→ a

y 7→
(
ai

′
αbak1,α+iα+jαb · · · baknα,α+iα+jαbaj

′
α

)qα
z 7→ aiαbajα
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qα ≥ 1 and iα, i
′
α, jα, j

′
α ≥ 0 and iαi

′
α = jαj

′
α = 0 and nα ≥ 0 and kt,α ≥ 0, for all

1 ≤ t ≤ nα.
Subcase: Assume τα = 6 and τβ ∈ {2, 3, 5, 8}. Then equation (4) gives

qβ + 1

pβ + 1
= Aα(y)−Aα(z)Bα(y) ;

a contradiction since gcd(pβ + 1, qβ + 1) = 1.
Subcase: Assume τα = 6 and τβ = 4. Then β is of the shape

x 7→ aiβbajβ

y 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbakβ

)qβ
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβb

z 7→ a

where qβ ≥ 1 and 1 ≤ iβ , jβ ≤ kβ < iβ + jβ and nβ ≥ 0 and kt,β ≥ 0, for
all 1 ≤ t ≤ nβ . Now, i′α = j′α = 0 and (xiαy, ziβy) ≤ e and kt,β = 0, for all
1 ≤ t ≤ nβ , and iα = nβ + 1. This implies kβ = jβ and kt,α = 0, for all 1 ≤ t ≤ nα
and equation (4) gives

(qβ + 1)(nβ + 1) = −qα(iα + jα) ;

a contradiction.
Case: Assume τα = 8. Then we use arguments similar to case τα = 5. �

The previous lemmas and Remark 5 imply the following conclusion.

Proposition 14. The intersection of two different entire systems of different type
contains only balanced equations.

5.2. Entire Systems of Equal Type. Let τ be the type where α and β are
both taken from, and let ρ : A+ → A+ be an isomorphism such that ρ(a) = b and
ρ(b) = a.

Lemma 15. If α(x) = β(x) = a then Kα ∩Kβ contains only balanced equations.

Proof. We have for type 1 that

pα + 1

qα + 1
=
|w|x − |u|x
|u|z − |w|z

=
pβ + 1

qβ + 1

and pα = pβ and qα = qβ otherwise gcd(p+ 1, q+ 1) > 1 for at least one of the two
solutions, but now α is a permutation of β; a contradiction.

For all other types Remark 5 implies that equations solved by α and β begin
and end with y and z, and we have only to consider types 2 and 6 further.

Case: Assume τ = 2. Then iα = jα = iβ = jβ = 0 and equation (1) gives

qα + 1

pα + 1
=
qβ + 1

pβ + 1

which implies pα = pβ and qα = qβ otherwise gcd(p+ 1, q + 1) > 1 for at least one
of the two solutions. Equations solved by α and β imply

(yxkαx1, zx
kαx2) ≤ e and (yxkβx1, zx

kβx2) ≤ e

respectively, where x1, x2 ∈ {y, z} which gives kα = kβ and α is a permutation of β;
a contradiction.
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Case: Assume τ = 6. Then iα = i′α = jα = j′α = iβ = i′β = jβ = j′β = 0 and

equation (1) gives

qα(nα + 1) = qβ(nβ + 1) or qα(nα + 1) =
1

qβ(nβ + 1)
.

In the latter case we get qα = qβ = 1 and nα = nβ = 0 and α is a permutation
of β; a contradiction. In the former case, we have α(z) = β(z) = b and (y, vy) ≤ e
where v ∈ {x, z}+. Now, y = vsv′, with s ≥ 0 and v′ ≤ v, which implies together
with Bα(y) = Bβ(y) that α(y) and β(y) are equally defined, and hence, α is a
permutation of β; a contradiction. �

Lemma 16. If α(x) = β(y) = a and τ = 2 then Kα ∩Kβ contains only balanced
equations.

Proof. Let α be of the shape

x 7→ a

y 7→
(
bakα

)qα
b

z 7→ aiα
(
bakα

)pα
bajα

where pα, qα, kα ≥ 1 and iα, jα ≥ 0 and iα + jα ≤ kα. Now, β is of the shape

x 7→ aiβ
(
bakβ

)pβ
bajβ

y 7→ a(19)

z 7→
(
bakβ

)qβ
b

or

x 7→
(
bakβ

)qβ
b

y 7→ a(20)

z 7→ aiβ
(
bakβ

)pβ
bajβ

where pβ , qβ , kβ ≥ 1 and iβ , jβ ≥ 0 and iβ + jβ ≤ kβ .
Case: Assume β is of shape (19). Then iα, jα ≥ 1 and iβ = jβ = 0 since

equations solved by α and β begin and end with x and z. By Lemma (4) we have
pβ > qβ . Now, α implies (x, zxkα−jαy) ≤ e or (x, zxkα−iα−jαz) ≤ e and β implies
(x, zy) ≤ e which gives that kα = jα; a contradiction since now kα < iα + jα ≤ kα.

Case: Assume β is of shape (20). If e begins with x and z then iα ≥ 1 and iβ = 0
and qβ > pβ by Lemma (4) and α implies (x, zxkα−jαy) ≤ e or (x, zxkα−iα−jαz) ≤ e
and β implies(x, zy) ≤ e which gives that kα = jα; a contradiction since we require
kα < iα+ jα ≤ kα. If e begins with y and z then iβ ≥ 1 and qα > pα by Lemma (4)
and iα = 0 and α implies (yxkα , zxkα−jαy) ≤ e or (yxkα , zxkα−jαz) ≤ e and solution
β implies (yiβxykβ−iβ , zykβ−jβx) ≤ e or (yiβxykβ−iβ , zykβ−iβ−jβz) ≤ e and in any
case kα = jα = 1, since kβ − iβ ≥ 1. Now, equation (2) gives

pα + 1

qα + 1
=
pβ + 1

qβ + 1

but, equation (3) gives

kβpβ + iβ + jβ − kβqβ
pβ + 1

qβ + 1
=
pβ + 1

qβ + 1
;
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a contradiction. �

Lemma 17. If α(x) = β(y) = a and τ ∈ {3, 4, 5, 8} then Kα ∩Kβ contains only
balanced equations.

Proof. Equations solved by α begin with x and z whereas equations solved by β
begin with x and y or y and z; a contradiction. �

Lemma 18. If (x, y) ≤ e and α(x) = β(y) = a and τ = 6 then Kα ∩Kβ contains
only balanced equations.

Proof. Let α be of the shape

x 7→ a

y 7→
(
ai

′
αbak1,α+jαb · · · baknα,α+jαbaj

′
α

)qα
z 7→ bajα

where qα, i
′
α ≥ 1 and jα, j

′
α ≥ 0 and jαj

′
α = 0 and nα ≥ 0 and kt,α ≥ 0, for all

1 ≤ t ≤ nα. Actually, jα ≥ 1 and j′α = 0, otherwise equation (2) gives

−Aα(y)

Bα(y)
=
Bβ(z)

Bβ(x)
;

a contradiction. So, u = w ends in x and z. Now, β is of the shape

x 7→ aiβb

y 7→ a(21)

z 7→
(
bak1,β+iβb · · · baknβ,β+iβb

)qβ
or

x 7→
(
ai

′
βbak1,βb · · · baknβ,βb

)qβ
y 7→ a(22)

z 7→ b

where qβ , iβ , i
′
β ≥ 1 and nβ ≥ 0 and kt,β ≥ 0, for all 1 ≤ t ≤ nβ .

Case: Assume β is of shape (21). Then equation (3) gives

1

qα(nα + 1)
= qβ

 ∑
1≤t≤nβ

kt,β − iβ

 = 1

which implies qα = qβ = 1 and nα = 0, and equation (2) gives

jα − i′α = nβ + 1

which implies jα > i′α ≥ 1. Now, α implies (x, yx) ≤ e and β implies (x, yiβz) ≤ e;
a contradiction.

Case: Assume β is of shape (22). Equation (3) gives

1

Bα(y)
= −Aβ(x)

Bβ(x)
;

a contradiction. �
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Lemma 19. If (x, z) ≤ e and α(x) = β(y) = a and τ = 6 then Kα ∩Kβ contains
only balanced equations.

Proof. Let α be of the shape

x 7→ a

y 7→
(
bak1,α+iα+jαb · · · baknα,α+iα+jαbaj

′
α

)qα
z 7→ aiαbajα

where qα, iα ≥ 1 and jα, j
′
α ≥ 0 and jαj

′
α = 0 and nα ≥ 0 and kt,α ≥ 0, for all

1 ≤ t ≤ nα. Now, β is of the shape

x 7→ bajβ

y 7→ a(23)

z 7→
(
bak1,β+jβb · · · baknβ,β+jβbaj

′
β

)qβ
or

x 7→
(
bak1,β+jβb · · · baknβ,β+jβbaj

′
β

)qβ
y 7→ a(24)

z 7→ bajβ

where qβ ≥ 1 and jβ , j
′
β ≥ 0 and jβj

′
β = 0 and nβ ≥ 0 and kt,β ≥ 0, for all

1 ≤ t ≤ nβ .
Case: Assume β is of shape (23). Then we have β(z) < β(x) by Lemma (4),

and hence, qβ = 1 and j′β = nβ = 0 and equation (3) gives

1

qα(nα + 1)
= −jβ ;

a contradiction.
Case: Assume β is of shape (24). If jβ = 0 then equation (3) gives

1

qα(nα + 1)
= −Aβ(x)

Bβ(x)
;

a contradiction. So, jβ ≥ 1 and jα = j′α = j′β = 0 since e ends in y and z. Now,

equation (2) gives

iα −
∑

1≤t≤nα kt,α

nα + 1
=

1

qβ(nβ + 1)

which implies nα + 1 ≥ nβ + 1 and equation (3) gives

1

qα(nα + 1)
=
jβ −

∑
1≤t≤nβ kt,β

nβ + 1

which implies nα + 1 ≤ nβ + 1, and hence, nα = nβ and qα = qβ = 1 and

(25) iα −
∑

1≤t≤n

kt,α = jβ −
∑

1≤t≤n

kt,β = 1
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where n = nα = nβ . Solution α implies (xiαy, z) ≤ e and β implies (xy, z) ≤ e
which gives iα = 1, and α also implies (xy, z) 4 e and β implies (xyjβ , z) 4 e which
gives jβ = 1. From equation (25) follows

α : x 7→ a β : x 7→ (ba)nb

y 7→ (ba)nb and y 7→ a

z 7→ ab z 7→ ba

By Proposition 2.5 in [7] we get the same generic equation for both entire systems
Kα and Kβ generated by α and β, respectively, namely

xy = zn+1

and hence, Kα and Kβ are not different; a contradiction. �

Lemma 20. If (y, z) ≤ e and α(x) = β(y) = a and τ = 6 then Kα ∩Kβ contains
only balanced equations.

Proof. Let α be of the shape

x 7→ a

y 7→
(
bak1,α+jαb · · · baknα,α+jαbaj

′
α

)qα
z 7→ bajα

where qα ≥ 1 and jα, j
′
α ≥ 0 and jαj

′
α = 0 and nα ≥ 0 and kt,α ≥ 0, for all

1 ≤ t ≤ nα. Actually, jα ≥ 1 and j′α = 0 since otherwise equation (2) gives

−Aα(y)

Bα(y)
=
Bβ(z)

Bβ(x)
;

a contradiction. So, e ends in x and z. Now, β is of the shape

x 7→ b

y 7→ a(26)

z 7→
(
ai

′
βbak1,βb · · · baknβ,βb

)qβ
or

x 7→
(
bak1,β+iβb · · · baknβ,β+iβb

)qβ
y 7→ a(27)

z 7→ aiβb

where qβ , iβ , i
′
β , j
′
β ≥ 1 and nβ ≥ 0 and kt,β ≥ 0, for all 1 ≤ t ≤ nβ .

Case: Assume β is of shape (26). Then equation (3) gives

1

qα(nα + 1)
= qβ

i′β +
∑

1≤t≤nβ

kt,β

 = 1

which implies qα = qβ = i′β = 1 and nα = kt,β = 0, for all 1 ≤ t ≤ nβ . Now,

α implies (yxjα , z) 4 e and β implies (yxnβ+1, z) 4 e which gives jα = nβ + 1, and
we have α = ρ ◦ β; a contradiction.
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Case: Assume β is of shape (27). Then equation (2) gives

jα −
∑

1≤t≤nα kt,α

nα + 1
=

1

qβ(nβ + 1)
= 1

which implies nα + 1 ≥ nβ + 1, and equation (3) gives

1

qα(nα + 1)
=
iβ −

∑
1≤t≤nβ kt,β

nβ + 1
= 1

which implies nβ + 1 ≥ nα + 1, and hence, nα = nβ and qα = qβ = 1 and

(28) jα −
∑

1≤t≤n

kt,α = iβ −
∑

1≤t≤n

kt,β = 1

where n = nα = nβ . Solution α implies (yx, z) ≤ e and β implies (yiβx, z) ≤ e
which gives iβ = 1, and α also implies (yxjα , z) 4 e and β implies (yx, z) 4 e which
implies jα = 1. From equation (28) follows

α : x 7→ a β : x 7→ (ba)
n
b

y 7→ (ba)
n
b and y 7→ a

z 7→ ba z 7→ ab

By Proposition 2.5 in [7] we get the same generic equation for both entire systems
Kα and Kβ generated by α and β, respectively, namely

yx = zn+1

and hence, Kα and Kβ are not different; a contradiction. �

Lemma 21. If α(x) = β(z) = a and τ = 2 then Kα ∩Kβ contains only balanced
equations.

Proof. Let α be of the shape

x 7→ a

y 7→
(
bakα

)qα
b

z 7→ aiα
(
bakα

)pα
bajα

where pα, qα, kα ≥ 1 and iα, jα ≥ 0 and iα + jα ≤ kα. Now, β is of the shape

x 7→ aiβ
(
bakβ

)pβ
bajβ

y 7→
(
bakβ

)qβ
b(29)

z 7→ a

or

x 7→
(
bakβ

)qβ
b

y 7→ aiβ
(
bakβ

)pβ
bajβ(30)

z 7→ a

where pβ , qβ , kβ , iβ , jβ ≥ 1 and iβ + jβ ≤ kβ .
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Case: Assume β is of shape (29). Then iα, jα ≥ 1 since e must begin and end
with x and z. Now, solution α implies (x, zxkα−jαy) ≤ e or (x, zxkα−iα−jαz) ≤ e
and solution β implies (x, ziβy) ≤ e which gives kα = iα + jα. Equation (4) gives

−kα =
qβ + 1

pβ + 1
;

a contradiction.
Case: Assume β is of shape (30). Then iα = jα = 0 and α implies (yx, z) ≤ e

and β implies (yzkβ−iβ−jβy, z) ≤ e or (yzkβ−jβx, z) ≤ e which gives kβ = jβ ;
a contradiction. �

Lemma 22. If α(x) = β(z) = a and τ = 3 then Kα ∩Kβ contains only balanced
equations.

Proof. Let α be of the shape

x 7→ a

y 7→
(
bakα

)qα
b

z 7→ aiα
(
bakα

)pα−qα−1
bajα

where pα > qα ≥ 1 and 1 ≤ iα, jα < kα < iα + jα. Now, β must be of the shape

x 7→ aiβ
(
bakβ

)pβ−qβ−1
bajβ

y 7→
(
bakβ

)qβ
b

z 7→ a

where pβ > qβ ≥ 1 and 1 ≤ iβ , jβ < kβ < iβ + jβ . Solution α implies (x, zx) ≤ e
and β implies (x, ziβy) ≤ e; a contradiction. �

Lemma 23. If α(x) = β(z) = a and τ = 4 then Kα ∩Kβ contains only balanced
equations.

Proof. Let α be of the shape

x 7→ a

y 7→
(
bak1,α+iα+jαb · · · baknα,α+iα+jαbakα

)qα
bak1,α+iα+jαb · · · baknα,α+iα+jαb

z 7→ aiαbajα

where qα ≥ 1 and 1 ≤ iα, jα ≤ kα < iα + jα and nα ≥ 0 and kt,α ≥ 0, for all
1 ≤ t ≤ nα. Now, β must be of the shape

x 7→ aiβbajβ

y 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbakβ

)qβ
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβb

z 7→ a

where qβ ≥ 1 and 1 ≤ iβ , jβ ≤ kβ < iβ + jβ and nβ ≥ 0 and kt,β ≥ 0, for all
1 ≤ t ≤ nβ . Solution α implies (xiαy, zxk1,αz · · · zxknα,αzxkα−jαy) ≤ e and β

implies (xzk1,βx · · ·xzknβ,βxzkβ−jβy, ziβy) ≤ e which gives that kt,ζ = 0, for all
1 ≤ t ≤ nζ and ζ ∈ {α, β}, and kα = jα and kβ = jβ . Equation (4) gives

−(qα + 1)iα − jα = (qβ + 1)(nβ + 1) ;

a contradiction. �
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Lemma 24. If α(x) = β(z) = a and τ ∈ {5, 8} then Kα ∩ Kβ contains only
balanced equations.

Proof. Equations solved by α end in x and y whereas equations solved by β end
in x and z or y and z; a contradiction. �

Lemma 25. If (x, y) ≤ e and α(x) = β(z) = a and τ = 6 then Kα ∩Kβ contains
only balanced equations.

Proof. Let α be of the shape

x 7→ a

y 7→
(
ai

′
αbak1,α+jαb · · · baknα,α+jαbaj

′
α

)qα
z 7→ bajα

where qα, i
′
α ≥ 1 and jα, j

′
α ≥ 0 and jαj

′
α = 0 and nα ≥ 0 and kt,α ≥ 0, for all

1 ≤ t ≤ nα. Now, β is of the shape

x 7→ bajβ

y 7→
(
bak1,β+jβb · · · baknβ,β+jβbaj

′
β

)qβ
(31)

z 7→ a

or

x 7→
(
bak1,β+jβb · · · baknβ,β+jβbaj

′
β

)qβ
y 7→ bajβ(32)

z 7→ a

where qβ ≥ 1 and jβ , j
′
β ≥ 0 and jβj

′
β = 0 and nβ ≥ 0 and kt,β ≥ 0, for all

1 ≤ t ≤ nβ .
Case: Assume β is of shape (31). Then from α(x) < α(y) follows by Lemma (4)

that β(y) < β(x), and hence, jβ ≥ 1 and j′β = 0 and qβ = 1 and nβ = 0, and so,

β(y) = b. But now, equation (5) gives

−jβ = qα(nα + 1) ;

a contradiction.
Case: Assume β is of shape (32). Then equation (4) gives

(33) qα

i′α + j′α − jα +
∑

1≤t≤nα

kt,α

 =
1

qβ(nβ + 1)

which implies qα = qβ = 1 and nβ = 0, and equation (5) gives

jβ − j′β = nα + 1

and we have jβ ≥ 1 and j′β = 0 and e ends with y and z. That implies jα = j′α = 0

and since equation (33) gives

i′α +
∑

1≤t≤nα

kt,α = 1

and i′α ≥ 1, we have that α(y) = ai
′
αbnα+1. Solution α implies (xi

′
αz, y) ≤ e and β

implies (xz, y) ≤ e which gives iα = 1. Solution α implies (y, xznα+1) 4 e and β
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implies (y, xzjβ ) 4 e which gives that nα + 1 = jβ , and now, α = ρ ◦ β; a contra-
diction. �

Lemma 26. If (x, z) ≤ e and α(x) = β(z) = a and τ = 6 then Kα ∩Kβ contains
only balanced equations.

Proof. Let α be of the shape

x 7→ a

y 7→
(
bak1,α+iα+jαb · · · baknα,α+iα+jαbaj

′
α

)qα
z 7→ aiαbajα

where qα, iα ≥ 1 and jα, j
′
α ≥ 0 and jαj

′
α = 0 and nα ≥ 0 and kt,α ≥ 0, for all

1 ≤ t ≤ nα. Now, β is of the shape

x 7→ aiβbajβ

y 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbaj

′
β

)qβ
(34)

z 7→ a

or

x 7→
(
ai

′
βbak1,β+jβb · · · baknβ,β+jβbaj

′
β

)qβ
y 7→ bajβ(35)

z 7→ a

where qβ , iβ , i
′
β ≥ 1 and jβ , j

′
β ≥ 0 and jβj

′
β = 0 and nβ ≥ 0 and kt,β ≥ 0, for all

1 ≤ t ≤ nβ . Note, that if β is of shape (34) or (35) then

(36) (xiαy, z`y) ≤ e
where ` ∈ {iβ , i′β}.

Case: Assume β is of shape (34). From (36) follows that kt,ζ = 0, for all
1 ≤ t ≤ nζ and ζ ∈ {α, β}, and equations (4) and (5) give

qβ(nβ + 1) = qα(j′α − iα − jα) and qα(nα + 1) = qβ(j′β − iβ − jβ)

respectively. This implies j′α, j
′
β > 1 and jα = jβ = 0. Now, e must end in x and y

by α and in y and z by β; a contradiction.
Case: Assume β is of shape (35). From (36) follows that kt,α = 0, for all

1 ≤ t ≤ nα, and equation (4) gives

1

qβ(nβ + 1)
= qα(j′α − iα − jα) = 1

and qα = qβ = 1 and j′α ≥ 1 and jα = nβ = 0 and also jβ = j′β = 0, since e ends

in x and y. Equation (5) gives

−i′β =
Bα(y)

Bαz

a contradiction since i′β > 0 by (x, z) ≤ e. �

Lemma 27. If (y, z) ≤ e and α(x) = β(z) = a and τ = 6 then Kα ∩Kβ contains
only balanced equations.
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Proof. Let α be of the shape

x 7→ a

y 7→
(
bak1,α+jαb · · · baknα,α+jαbaj

′
α

)qα
z 7→ bajα

where qα ≥ 1 and jα, j
′
α ≥ 0 and jαj

′
α = 0 and nα ≥ 0 and kt,α ≥ 0, for all

1 ≤ t ≤ nα. Now, β is of the shape

x 7→ bajβ

y 7→
(
ai

′
βbak1,β+jβb · · · baknβ,β+jβbaj

′
β

)qβ
z 7→ a

or

x 7→
(
bak1,β+iβ+jβb · · · baknβ,β+iβ+jβbaj

′
β

)qβ
y 7→ aiβbajβ

z 7→ a

where qβ , iβ , i
′
β ≥ 1 and jβ , j

′
β ≥ 0 and jβj

′
β = 0 and nβ ≥ 0 and kt,β ≥ 0, for all

1 ≤ t ≤ nβ . We have for any shape of β that β(z) < β(y), and hence, α(y) < α(z)
by Lemma (4). So, qα = 1 and j′α = nα = 0 and equation (4) gives

−jα =
Bβ(y)

Bβ(x)
;

a contradiction. �

The previous lemmas imply the following conclusion.

Proposition 28. The intersection of two different entire systems of the same type
contains only balanced equations.

Proposition 29 follows directly from Proposition 14 and 28.

Proposition 29. The intersection of two different entire systems contains only
balanced equations.

6. About Systems of Equations

This section contains the main result of this article. It states that an inde-
pendent system with at least two equations and a nonperiodic solution consists of
balanced equations only. Before this statement is proved, we observe the following
propositions.

Proposition 30. If two unbalanced equations e1 and e2 have a common nonperiodic
solution, then they have the same set of periodic solutions.

Proof. Let α be a nonperiodic solution of e1 and e2. Let ei = (ui, wi), and let
δx′(ei) = |ui|x′−|wi|x′ where x′ ∈ X and i ∈ {1, 2}. Assume that α is incontractable
and α(x) = a without restriction of generality. Now,

Bα(y)δy(ei) +Bα(z)δz(ei) = 0
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for i ∈ {1, 2}, and

−Bα(y)

Bα(z)
=
δz(e1)

δy(e1)
=
δz(e2)

δy(e2)

and we have sδy(e1) = tδy(e2) and sδz(e1) = tδz(e2) with s, t 6= 0. It is easy to
see that also sδx(e1) = tδx(e2). Clearly, e1 and e2 have the same set of periodic
solutions. �

Proposition 31. If an unbalanced equation e1 and a balanced equation e2 have a
common nonperiodic solution, then every solution of e1 is a solution of e2.

Proof. It is clear that any periodic solution of e1 is a solution of e2 since every
periodic solution is a solution for a balanced equation. Let α be a nonperiodic
solution of e1 and e2. Assume that there exists a nonperiodic solution β of e1 that is
not a solution of e2. Let α and β be incontractable without restriction of generality.
Now, α and β generate two different enire systems since e2 ∈ Kα and e2 6∈ Kβ . But,
e1 ∈ Kα ∩Kβ which implies that e1 is balanced by Proposition 29; a contradiction.

�

The main result of this article follows immediately.

Theorem 32. If a system of equations has a nonperiodic solution and contains an
unbalanced equation then it is not independent or it is a singleton.

Proof. Let S be a system of at least two equations that has a nonperiodic solution α
and contains at least one unbalanced equation e1. Assume that S is independent,
then it contains no balanced equation by Proposition 31. Let e2 be an unbalanced
equation in S different from e1. Since S is independent, there exists a solution β
that solves e1 but does not solve e2. From Proposition 30 follows that β is non-
periodic. We can assume that both α and β are incontractable without restriction
of generality. Furthermore, α and β generate two different entire systems since
e2 ∈ Kα and e2 6∈ Kβ . But, e1 ∈ Kα ∩ Kβ which implies that e1 is balanced
by Proposition 29; a contradiction. �

Corollary 33. An independent system with at least two equations and a nonperi-
odic solution consists for balanced equations only.

7. Conclusions

We have shown that the intersection of the kernel of two different nonperiodic
solutions in three variables contains only balanced equations, Proposition 29. From
that result and the fact that the independence of systems in three variables depends
on their nonperiodic solutions only, Proposition 30 and 31, follows that indepen-
dent systems of equations in three variables that have a nonperiodic solution and
contain more than one equation consist of balanced equations only, Theorem 32
and Corollary 33.

This result is a further step towards an answer of the question whether or not
an independent system of three equations in three variables with a nonperiodic so-
lution exists. We have established here that length arguments do not help to answer
that question.
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