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Abstract. We investigate the density of critical factorizations of infinte se-

quences of words. The density of critical factorizations of a word is the ratio

between the number of positions that permit a critical factorization, and the

number of all positions of a word.

We give a short proof of the Critical Factorization Theorem and show that

the maximal number of noncritical positions of a word between two critical

ones is less than the period of that word. Therefore, we consider only words

of index one, that is words where the shortest period is larger than one half of

their total length, in this paper.

On one hand, we consider words with the lowest possible number of critical

points and show, as an example, that every Fibonacci word longer than five

has exactly one critical factorization and every palindrome has at least two
critical factorizations.

On the other hand, sequences of words with a high density of critical points
are considered. We show how to construct an infinite sequence of words in four

letters where every point in every word is critical. We construct an infinite
sequence of words in three letters with densities of critical points approaching
one, using square-free words, and an infinite sequence of words in two letters

with densities of critical points approaching one half, using Thue–Morse words.
It is shown that these bounds are optimal.

Introduction

The Critical Factorization Theorem (CFT) [3, 7] relates local periods with the
global period of finite words. Let w = uv with |u| = p and z be the shortest suffix
of w1u and prefix of vw2 for suitable w1 and w2, then z is the shortest repetition
word of w at position p. The CFT states that in every finite word w there is a
position p where the shortest repetition word z is as long as the global period d of w,
moreover, p < d. The position p is called critical. Actually, we have at least one
critical position in every d − 1 consecutive positions in w. Consider the following
example:

w = ab.aa.b

that has two critical positions 2 and 4 which are marked by dots. The period d of w
equals 3 and w is of index 1, since 2d > |w|. The shortest repetition word in both
critical positions is aab and baa, respectively. Note, that the shortest repetition
words in the positions 1 and 3 are ba and a, respectively. The ratio of the number
of critical positions and the number of all positions is called the density of critical
positions. The density of w in our example is one half.

Date: September 12, 2002.

1991 Mathematics Subject Classification. 68R15.
Key words and phrases. combinatorics on words, repetitions, critical factorization theorem,

density of critical factorizations, Fibonacci words, Thue–Morse words.

1



2 TERO HARJU AND DIRK NOWOTKA

The CFT is often claimed to be one of the most important results about words.
However, it does not seem to be well understood due to its little number of applica-
tions and known implications. We investigate the frequenzy of occurences of critical
factorizations in words in this paper to get a better understanding of critical points
in general. We are concerned with words of a very low density, that is one or two
critical factorizations in the whole word, and of an as high as possible density of
critical factorizations. Prominent classes of words are used in our studies, namely,
Fibonacci words, palindromes, and Thue–Morse words.

After we have fixed the basic notations in Section 1, we give a technically im-
proved version of a proof [5] of the Critical Factorization Theorem [3, 7] and give
a statement about the maximal distance between two critical points in a word. In
Section 2 we show that Fibonacci words, which can be defined by palindromes [6],
of length greater than five have exactly one critical position in contrast to the fact
that palindromes themselves have at least two critical positions. This result also
implies immediately the two well-known facts that the period of a Fibonacci word
is a Fibonacci number and that the Fibonacci word is not ultimately periodic, both
proven differently in the literature. Section 3 contains the constructions of infinite
sequences of words in four letters with density one for every word, infinite sequences
of ternary words which has a limit of their densities at one, using square-free words
[12, 1, 2], and infinite sequences of binary words which has a limit of their densities
at one half, using Thue–Morse words [11, 10, 1, 2]. We also show that these limits
are optimal.

1. Preliminaries

In this section we fix the notations for this paper. We refer to [8, 4] for more
basic and general definitions.

Let A be a finite nonempty alphabet and A∗ be the monoid of all finite words
in A; the empty word is denoted by ε. Let Aω denote the set of all infinite words in A
that have a beginning. An infinite word w ∈ Aω is called ultimately periodic if there
exist two words u, v ∈ A∗ such that w = uvω. Let w ∈ A∗ in the following. The
length of w is denoted by |w| and its ith letter is denoted by w(i). By definition
|ε| = 0. If w = w1uw2 then u is called a factor of w. If w = uv then u and v
are called prefix of w, denoted by u ≤ w, and suffix of w, denoted by v 4 w,
respectively, and let u = wv−1 and v = u−1w. Note, that ε and w are both prefixes
and suffixes of w. A word w is called bordered if there exists a word v 6= ε such that
w = vuv. A prefix u of a word w such that 0 < |u| < |w| which is also a suffix of w
is called a border of w. A word w is called primitive if w = vk implies that k ≤ 1.

An integer d, with 1 ≤ d ≤ |w|, is called a period of w if w(i) = w(i+d), for
all 1 ≤ i ≤ |w| − d. The smallest period of w is denoted by ∂(w) and it is also
called the minimal period or the global period of w. We define the index ind(w) of
a word w by

ind(w) =

⌊
|w|

∂(w)

⌋
.

Note, that the index is often defined by ind(w) = |w|/∂(w) in the literature, how-
ever, we use the integer part here, only. Let an integer p with 1 ≤ p < |w| be called
position or point in w. Intuitively, a position p denotes the place between w(p)

and w(p+1) in w. A word u 6= ε is called a repetition word at position p if w = xy
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with |x| = p and there exist x′ and y′ such that u 4 x′x and u ≤ yy′. For a point p
in w, let

∂(w, p) = min
{
|u|

∣∣ u is a repetition word at p
}

denote the local period at point p in w. Note, the repetition word of length ∂(w, p)
at point p is unbordered and ∂(w, p) ≤ ∂(w). A factorization w = uv, with u, v 6= ε
and |u| = p, is called critical if ∂(w, p) = ∂(w), and, if this holds, then p is called
critical point, otherwise it is called noncritical point. Let η(w) denote the number
of critical points in a word w. We shall represent critical points of words by dots.
For instance, the critical points of w = abaaba are 2 and 4, and we show this by
writing w = ab.aa.ba. In this example, ∂(w) = 3.

Let w̃ = w(n) · · ·w(2)w(1) denote the reverse of w = w(1)w(2) · · ·w(n). We call
a word w a palindrome if w = w̃.

Let C be an ordering of A = {a1, a2, . . . , an}, say a1 C a2 C · · · C an. Then C
induces a lexicographic order on A∗ such that

u C v ⇐⇒ u ≤ v or u = xau′ and v = xbu′ with a C b

where a, b ∈ A. A suffix v (prefix u) of w is called maximal w.r.t. C if v′ C v
(and ũ′ C ũ) for any suffix v′ (prefix u′) of w. We will identify orders on alphabets
and their respective induced lexicographic orders throughout this article. Let C−1

denote the inverse order, say an C
−1 · · · C−1 a2 C

−1 a1, of C. Let µC(w) and
µB(w) denote the maximal suffixes of w w.r.t. C and C−1, respectively, and let
νC(w) and νB(w) denote the maximum prefixes of w w.r.t. C and C−1, respectively.
If the context is clear, we may write µC, µB, νC, and νB for µC(w), µB(w), νC(w),
and νB(w), respectively. We only consider alphabets of size larger than one in the
following.

The critical factorization theorem (CFT) was discovered by Césari and Vin-
cent [3] and developed into its current form by Duval [7].

Theorem 1 (Critical Factorization Theorem). Every word w, with |w| ≥ 2, has
at least one critical factorization w = uv, with u, v 6= ε and |u| < ∂(w), i.e.,
∂(w, |u|) = ∂(w).

This theorem is a direct consquence from the following proposition which de-
scribes one critical point in any word and will be technically more useful in the
following. The proof of Proposition 2 is a technically improved version of the proof
of the CFT by Crochemore and Perrin in [5]. Note, that µC(w) 6= µB(w) for any
word w since they start with a different letter.

Proposition 2. Let w be a word of length n ≥ 2, and let β be the shorter of the
two suffixes µC(w) and µB(w). Then |wβ

−1| is a critical point.

Proof. Assume β = µB(w) by symmetry. Let α = µC(w), so, α = u′β. Let z be
an unbordered repetition word at |wβ−1|. We show that |z| is a period of w, which
will prove the claim.

If w is a factor of z2, then obviously |z| is a period of w. If w = w1βw2 for
some w2 6= ε, then β C−1 βw2 contradicts the choice of β. If wβ−1 = yz, then,
by the above, z ≤ β, say β = zβ′; but then z2β′ = zβ C−1 β = zβ′ implies that
β = zβ′ C−1 β′; a contradiction. Consequently, β = zw′ and w = z1zw

′ for a suffix
z1 of the unbordered word z. Therefore u′ is a suffix of z, and hence, u′w′ is a suffix
of α. Consequently, u′w′ C α = u′β, and so w′ C β, which together with w′ C−1 β
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implies that w′ ≤ β. Therefore β = zw′ = w′z′, and thus β = zkz2 for some z2 ≤ z,
which shows that |z| is a period of w. ¤

The CFT follows since |wβ−1| < ∂(w). For a different proof of the CFT by
Duval, Mignosi, and Restivo, see Chapter 8 in [9]. The next theorem justifies why
we are only interested in words of index one in our investigation of the density of
critical points.

Theorem 3. Each set of ∂(w) − 1 consecutive points in w, where |w| ≥ 2, has
a critical point.

Proof. If w = uiu1, where u1 ≤ u and ∂(w) = |u|, then the maximal suffixes w.r.t.
any orders of A are longer than |ui−1u1|. Hence w has a critical point at point p,
where p < ∂(w).

Let p be any critical point of w = uv, where |u| = p, and let z be the smallest
repetition word at position p. So, |z| = ∂(w).

We need to show that if |v| ≥ ∂(w), then there is critical point at p+ k for
1 ≤ k < ∂(w). We have z ≤ v and ∂(v) = ∂(w). For, if ∂(v) < ∂(w), then z
is bordered; a contradiction. Now, v has a critical point k such that we have
k < ∂(v) = ∂(w). Clearly, this point p + k is critical also for w since the smallest
repetition word at point p+k is a conjugate of z. Now, (p+ k)− p = k < ∂(w). ¤

Maybe an even stronger motivation for considering only words of index one, is
that in wk, with k ≥ 3, the critical points of the first factor w are inherited by the
next k − 2 factors w. That is, if wk = w1.w2w

k−1, where |w1| is a critical point,
then also |ww1| is a critical point of wk.

2. Words with Exactly One Critical Factorization

Every word longer than one letter has at least one critical factorization. We
investigate words with only one critical factorization in this section. Trivially, words
of length two have no more than one critical point. We do not consider such cases
but arbitrary long words. However, the following lemma limits our investigation to
words in two letters.

Lemma 4. A word w with only one critical factorization is binary, that is, it is
over a two-letter alphabet.

Proof. Assume a word w contains the letters a, b, and c and has exactly one critical
factorization. Let a C b C c. By symmetry, we can assume that |µB| < |µC|. Then
p = |wµ−1

B | is a critical point of w by Proposition 2. Let a J c J b. Now, either
|wµ−1

J | or |wµ−1
I | is a critical point p′ of w, again by Propposition 2. But, p 6= p′

since µB begins with c and µJ and µI begin with a and b, respectively. So, w has
at least two critical points; a contradiction. ¤

By Lemma 4, we will only consider words in a and b in the rest of this section.
Let a C b. Note, that µC 6= µB and νC 6= νB for any word since µC and µB start
and νC and νB end with different letters. Proposition 2 straightforwardly leads to
the following two facts.

Lemma 5. If a word w has exactly one critical point, then either

w = νCµB and νC ≤ νB and µB 4 µC
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or

w = νBµC and νB ≤ νC and µC 4 µB .

The inverse of Lemma 5 does not hold in general. Consider w = aa.bb.abab which
has two critical points, but we do have

νC = aa ≤ aabb = νB and µB = bbabab 4 aabbabab = µC

and w = νCµB.

Proposition 6. Every palindrome has at least two critical factorizations.

Proof. Let w be a palindrome. Assume w has exactly one critical point. By sym-
metry, we can also assume that µB 4 µC. By the definition of maximal prefix and
suffix and since w is a palindrome we have

µC(w) = ν̃C(w̃) = ν̃C(w) and µB(w) = ν̃B(w̃) = ν̃B(w)

where ν̃B(w) and ν̃C(w) denote the reversal of νB(w) and νC(w), respectively. Now,
ν̃B 4 ν̃C, and hence, νB ≤ νC, which contradicts Lemma 5 since νB 6= νC in any
case. ¤

Let us now consider the critical points of Fibonacci words. Fibonacci numbers
are defined by

f0 = 1 , f1 = 1 , fk+2 = fk+1 + fk .

Fibonacci words are defined by

F1 = a , F2 = ab , Fk+2 = Fk+1Fk .

Obviously, |Fi| = fi. Let F = limn→∞ Fn be the Fibonacci word. Observe that
Fi ≤ Fn, if 1 ≤ i ≤ n. It is also clear that all Fibonacci words are primitive. The
following lemma will be used to estimate the number of critical points in Fibonacci
words.

Lemma 7. We have that fn−2 < ∂(Fn) ≤ fn−1 for all n > 2.

Proof. The cases for F3 and F4 are easily checked. Assume n > 4. Clearly,
∂(Fn) ≤ fn−1 in any case. If ∂(Fn) < fn−2, then Fn−2 is not primitive since

Fn−2Fn−2 ≤ Fn−2Fn−3Fn−2 = Fn ,

a contradiction. If ∂(Fn) = fn−2, then Fn ≤ F 3
n−2, and Fn−2 4 Fn implies that

Fn−1 or Fn−2 is not primitive; a contradiction. ¤

Remark 8. Fibonacci words have a close connection to palindromes as the following
properties show. Firstly, Fn = αndn where n ≥ 3 and αn is a palindrome and
dn = ab if n is even and dn = ba if n is odd. This result has been credited
to Berstel in [6]. Secondly, Fn = βnγn, where n ≥ 5 and βn and γn are palindromes
of length fn−1 − 2 and fn−2 + 2, respectively, by de Luca [6]. Moreover, de Luca
shows that these two properties define the set of Fibonacci words.

Given Remark 8 and Proposition 6, every palindrome has at least two critical
factorizations, Theorem 10 is rather surprising.
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Example 9 (Fibonacci words). We have

F2 = a.b , F3 = a.b.a , F4 = ab.aa.b .

By the following Theorem, however, every Fibonacci word Fn, with n > 4 has
exactly one critical point, and that critical point is at position fn−1 − 1.

Theorem 10. A Fibonacci word Fn, with n > 4, has exactly one critical point p.
Moreover, p is at position fn−1 − 1.

Proof. Let n ≥ 7, and let p be a critical point of Fn. Then p > fn−2, because
otherwise

Fn−2Fn−2 ≤ Fn−2Fn−3Fn−2 = Fn

implies that ∂(w, p) ≤ fn−2 contradicting Lemma 7. Consider the factorization

Fn = Fn−2Fn−3Fn−2 = Fn−2Fn−4Fn−5Fn−2 .

Then p > fn−2 + fn−4, since otherwise

Fn−3Fn−4Fn−4Fn−4 = Fn−2Fn−4Fn−4 < Fn−2Fn−4Fn−5Fn−2 = Fn ,

implies |Fn−3Fn−4| < p ≤ |Fn−3Fn−4Fn−4| which gives ∂(w, p) ≤ fn−4, a contra-
diction.

By induction we obtain

Fn−2 Fn−4 · · · Fn−2i+1 Fn−2i Fn−2i Fn−2i

= Fn−2 Fn−4 · · · Fn−2i+2 Fn−2i Fn−2i

< Fn−2 Fn−4 · · · Fn−2i+2 Fn−2i Fn−2i−1Fn−2

= Fn

where 1 ≤ i ≤
⌈

n
2

⌉
− 2, and

p >

dn

2 e−2∑

i=1

fn−2i .

So, we have

Fn = Fn−2Fn−4 · · ·F3F2Fn−2 or Fn = Fn−2Fn−4 · · ·F4F3Fn−2

where p > fn−1 − 2 and p > fn−1 − 3, respectively, and fn−1 > p by Lemma 7 and
Theorem 3. So, p = fn−1 − 1 or p = fn−1 − 2, that is, a critical point has to exist
in the suffix

F2Fn−2 4 Fn or F3Fn−2 4 Fn

where the former case gives the result. The latter case leaves the possibilities
a.b.aFn−2 4 Fn. But since b 4 F4, we have bab.aFn−2 4 Fn and only the marked
position is critical which proves the claim. ¤

The following well known facts follow immediately from Theorem 10.

Corollary 11. A Fibonacci word Fn has the period fn−1, and the Fibonacci word F
is not ultimately periodic.

The Fibonacci words are certainly not the only words with exactly one critical
factorization.
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Example 12. Let w = aibaj, with i 6= j and i + j > 0, then η(w) = 1. If i > j,
then ∂(w) = |aib| and i is the only critical point of w. Similarly for i < j, where
i+ 1 is the only critical point of w. See Lemma 14 for the case when i = j.

3. Words with a High Density of Critical Factorizations

We investigate the densities of the critical points in words. The density δ(w) of
a word w is defined by

δ(w) =
η(w)

|w| − 1
.

Notice that in the above |w| − 1 is the number of all positions in w, and recall that
η(w) denotes the number of critical positions in w.

Throughout this section we require all words to be of index one, otherwise, for
any given alphabet {a1, a2, . . . , ak} and n > 0, we have

δ
(
(a1a2 · · · ak)

n
)
= 1

that is, every position is critical. Moreover, there exists a sequence of words of
index one in the alphabet A = {a, b, c} such that the limit of their densities is one.

Example 13 (Square-free words). Consider the endomorphism ψ : A∗ → A∗ with

a 7→ abc b 7→ ac c 7→ b

by Thue [12], cf[1, 2], and let

T2k+1 = a ψ2k+1(a) c and T2k = a ψ2k(a) b,

for all k > 0, then

lim
n→∞

δ(Tn) = 1

because every word Tn has a square prefix and suffix and ψ
n(a) is square-free, so,

η(Tn) = |Tn| − 3 and δ(Tn) = 1− 2/(|Tn| − 1).

Of course, any square-free word with suitable borders can be used in Example 13.
It is also clear that with an alphabet with at least four letters, say a, b, c, and d, the
sequence {T ′

n}, with n ≥ 1 and T ′

n = d ψn(a) d, consists of words with density one,
only. Words in two letters, however, cannot be square-free, if they are longer than
three. So, the question arises: What is the highest density for words in A = {a, b}?
The following lemma implies that ab, ba, aba, and bab are the only words in A
which have density one.

Lemma 14. If w is of index one and has two consecutive critical points, then either
w = aibai or w = biabi, with i ≥ 1.

Proof. Assume, two consecutive critical points in w that are around b. Let i and j
be maximal integers such that w = w1a

i.b.ajw2. Clearly, i, j ≥ 1. If w1 = ε = w2,
then necessarily i = j, see Example 12. Assume, i 6= j. By symmetry, we can
assume that w1 6= ε, that is, w = vbaibajw2. If j ≥ i, then w has the repetition
bai at the first critical point: w = v[bai][bai]aj−iw2, where ∂(w) = |ba

i|. But then
w has index greater than one; a contradiction. Therefore, j < i, and in this case,
w2 = ε in order to avoid repetition inside w at the second critical point. Also,
∂(w) = |ajb|, which implies that i = j; again a contradiction. ¤
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By Lemma 14 we have lim supn→∞
δ(wn) ≤ 1/2, for any infinite sequence w1,

w2, w3, . . . of words in a binary alphabet A, and this bound is tight by the following
example.

Example 15 (Thue–Morse words). Let us consider the Thue–Morse endomorphism
ϕ : A∗ → A∗ with

a 7→ ab and b 7→ ba

see [11, 10, 1, 2]. For the sake of brevity, let ϕn denote ϕ
n(a) and ϕ̄n denote ϕ

n(b).
Let

M2k+1 = a2ϕ2k+1b
2 and M2k = a2ϕ2ka

2,

for all k ≥ 0. We show in Theorem 16 that η(Mn) = 2n−1 + 1 and

δ(Mn) =
1

2
−

1

2n+1 + 6

and hence,

lim
n→∞

δ(Mn) =
1

2
.

Note, that ϕn equals ϕ̄n up to exchanging of a and b. Moreover, ϕn does not
contain overlapping factors, that is, factors of the form cucuc where c ∈ A. Note,
also that |ϕn| = 2n.

Theorem 16. Every odd position in Mn, with n ≥ 1, except position 1 and 2n + 3,
is critical.

We consider the following lemma before proving Theorem 16.

Lemma 17. The repetition words at every noncritical position inMn, for all n ≥ 1,
are of length one or two.

Proof. In Mn, for any n > 2, the positions 1, 2, 2n + 2, and 2n + 3 are noncritical,
with repetition words of length one, and the positions 3 and 2n + 1 are critical.

Clearly, the repetition word at every noncritical position in M1 = aaabbb and
M2 = aaabbaaa is of length one.

Assume, the repetition word at every noncritical position in Mk, with k > 2,
is of length one or two. By induction, the repetition word at every noncritical
position in Mk+1 is at most of length two because we have Mk+1 = a2ϕkϕ̄ka

2

and Mk+1 = a2ϕkϕ̄kb
2 for odd end even k, respectively. Note, that, by induction

hypothesis, the repetition word at every noncritical position in Mk is at most of
length two. Clearly, the repetition words of length less or equal than two at positions
2 to 2k − 2 in ϕk are not changed by preceding and succeeding words (a2 or b2).
The repetition word at position |Mk+1|/2 = 2k + 2 in Mk+1 is either b or ba since
ab 4 ϕk or ba 4 ϕk and ba ≤ ϕ̄k.

It remains to show that the positions 2k + 1 and 2k + 3 are critical in Mk+1.
Assume position 2k + 1 or 2k + 3 is not critical.

If k is even, then the repetition word u at position 2k + 1 is of the form abavb
and |u| < 2k +2, otherwise position 2k +1 is critical. The factor uu is followed by b
in Mk+1, otherwise abavbabavba is an overlapping factor of ϕk+1; a contradiction.
But, now we have a 4 v, otherwise b3 is a factor of ϕk+1, a contradiction, and
ababa is a factor of ϕk+1; again a contradiction.
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If k is odd, then the repetition word u at position 2k + 1 is of the form bbava
and |u| < 2k− 1, otherwise position 2k +1 is critical. Certainly, the factor uu must
be preceded by a in Mk+1, otherwise b

3 is a factor of ϕk+1; a contradiction. But,
now abbavabbava is an overlapping factor of ϕk+1; again a contradiction.

Position 2k + 3 is shown to be critical by similar arguments. ¤

Proof of Theorem 16. We show that there are no two consecutive noncritical posi-
tions in Mn except 1 and 2, and 2n + 2 and 2n + 3.

By Lemma 17, the words a, b, ab, and ba are the only repetition words at
noncritical positions in Mn. We need to consider only positions from 4 to 2n, since
positions 3 and 2n + 1 are certainly critical.

Assume a is the repetition word at some position p and position p−1 is noncrit-
ical. Now, a must be the repetition word at position p− 1 and a3 is a factor of ϕn;
a contradiction. The same argument holds if b is the repetition word at position p.

Assume ab is the repetition word at some position p and position p − 1 is non-
critical. Now, ba must be the repetition word at position p−1 and babab is a factor
of ϕn; a contradiction. The same argument holds if ba is the repetition word at
position p.

The claim follows now from Lemma 14. ¤

Remark 18. Is there a sequence with a higher density of critical points than {Mn},
with n > 0? Certainly, there is no sequence with a limit larger than 1/2 by
Lemma 14. Actually, there is no binary word larger than 5 with a density equal
to 1/2 by the following Lemma 19. A word Mn is basically an overlap-free word
with cubic prefix and suffix. In any case, Lemma 21 will show that any infinite
sequence with a limit 1/2 of densities must include infinitely many words where the
first and the last two positions are noncritical. However, could we use other words
than Thue–Morse words to construct {Mn}, with n > 0? If we choose a word
with an overlapping factor, say w = w1au◦a◦uaw2, then w has two consecutive
positions, marked by ◦, that are not critical. Lemma 14 implies that w would not
be a good choice. So, what about other overlap-free words? Any infinite set of
finite overlap-free binary words would certainly do for {Mn}, with n > 0. However,
ϕ is the smallest morphism that takes an overlap-free word to a longer overlap-free
word. So, {Mn}, with n > 0, is optimal from that point of view.

Lemma 19. Every binary word w of index one and length greater than five implies
δ(w) < 1

2 .

Proof. Assume |w| > 5 and δ(w) = 1/2. Then there are no two consecutive critical
points in w by Lemma 14. Certainly, ∂(w) > 3 since ind(w) = 1.

The first and the last position of w is not critical. Otherwise, let a.b ≤ w and
point 1 is critical, then aba and abba are not prefixes of w since the repetition word
in position 1 are then ba and bba, respectively; contradicting ∂(w) > 3. Also, abbbb
is not a prefix of w since then δ(w) < 1/2 by Lemma 14. Hence, abbba ≤ w and
∂(w) = 4 since the smallest repetition word in position 1 is now bbba. So, w equals
a.bbb.aa or a.bbb.aab and has just two critical points; a contradiction. The last
position is a symmetric case.

The claim follows now from Lemma 14. ¤
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Remark 20. The largest binary words of index one and density one half are given
by Lemma 14:

aa.b.aa , bb.a.bb ,

and by the Fibonacci word F4 and its reverse F̃4:

ab.aa.b , ba.bb.a , b.aa.ba , a.bb.ab .

Lemma 21. Let {wn}, with |wn| > 5 for all n > 0, be an infinite sequence of
binary words such that

lim sup
n→∞

δ(wn) =
1

2
.

Then there is an infinite set I of natural numbers such that the first and the last
two positions of wi, for all i ∈ I, are noncritical.

Proof. Let wk be such that δ(wk) > 1/2− ε for some positive real number ε < 1/4.
The first and the last position of wk is not critical by the proof of Lemma 19. We
have |wk| > 1/(2ε) since

η(wk)

2η(wk) + 1
≥ δ(wk) >

1

2
− ε

by the proof of Lemma 19 which implies

η(wk) >
1

4ε
−

1

2

and hence,

|wk| ≥ 2(η(wk) + 1) >
1

2ε

using again the proof of Lemma 19. Assume the second position of wk is critical.
Let aa.b ≤ au ≤ wk where |u| = ∂(wk)− 1. The factor aa does not appear in u.

Actually, u = abk1abk2 · · · abkt , where kj ≥ 1 for all 1 ≤ j ≤ t, and since |wk| > 1/ε
and ind(w) = 1, we have |u| > 1/(4ε) and t > 1/(8ε). Since C = {abi | 1 ≤ i ≤ t}
is a code, we can consider u to be encoded in an alphabet X of size |C|, let u′ be
the encoded u. However, by the assumption that δ(wk) > 1/2− ε, we must have a
factor v in u, with |v| > 1/(4ε), where critical and noncritical positions alternate,
so, bbb is not a factor of v. Let v′ be the encoding in X of the smallest factor that
contains v. Now, v′ must be a square-free word in at most two letters, namely the
once that encode ab and abb. But the longest square-free word in two letters is xyx,
with x, y ∈ X, and hence, |v| < 9; a contradiction.

Let ab.a ≤ w = uv where |u| = ∂(w). Then u = aba∂(w)−2; a contradiction.
Similar arguments hold for the last but one position when u ends in aa or ba. ¤
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