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Abstract. We consider repetitions in words and solve a longstanding open

problem about the relation between the period and the length of its longest

unbordered factor. A word u is called bordered if there exists a proper prefix
that is also a suffix of u, otherwise it is called unbordered. In 1979 Ehrenfeucht

and Silberger raised the following problem: What is the maximum length of a
word w, w.r.t. the length τ of its longest unbordered factor still allowing that τ

is shorter than the period π of w. We show that if w is longer than 7(τ − 1)/3
then τ = π which gives the optimal asymtotic bound.

Introduction

Combinatorial problems about repetitions lie at the core of algorithmic questions
regarding strings (called words here), being it search, compression, or coding algo-
rithms. Despite a long tradition of research many questions about the combinatorial
properties of data structures as simple as words remain open. The focus of this
paper is on the solution of such a question namely the problem by Ehrenfeucht and
Silberger which had been open for about three decades.

When repetitions in words of symbols are considered then two notions are central:
the period, which gives the least amount by which a word has to be shifted in order
to overlap with itself, and the shortest border, which denotes the least (nontrivial)
overlap of a word with itself. Both notions are related in several ways, for example,
the length of the shortest border of a word w is not larger than the period of w, and
hence, the period of an unbordered word is its length. Moreover, a shortest border
itself is always unbordered. Deeper dependencies between the period of a word
and its unbordered factors have been investigated and exploited in applications for
decades; see also the references to related work below.

Let us recall the problem by Ehrenfeucht and Silberger. Let w be a (finite) word
of length |w|, let τ(w) denote the length of the largest unbordered factor of w,
and let π(w) denote the period of w. Certainly, τ(w) ≤ π(w) since the period of
a factor of w cannot be larger than the period of w itself. Moreover, it is well-known
that τ(w) = π(w) when |w| ≥ 2π(w). So, the interesting cases are those where
|w| < 2π(w). Actually, the interesting cases are also the most common ones. By far
most words have a period that is longer than one half of their length. When such
words are considered, a bound on |w|, enforcing τ(w) = π(w), that depends on τ(w)
becomes more interesting than one depending on π(w).

The problem by Ehrenfeucht and Silberger asks about a bound of |w| depending
on τ(w) such that τ(w) = π(w) is enforced. In this paper we establish the following
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fact for all finite words w:

If |w| > 7
3

(τ(w)− 1) then τ(w) = π(w) .

This bound on the length of w is asymtotically tight (see the following example).

Previous Work. Ehrenfeucht and Silberger raised the problem described above in [7].
They conjectured that |w| ≥ 2 τ(w) implies τ(w) = π(w). That conjecture was
falsified shortly thereafter by Assous and Pouzet [1] by the following example:

w = anban+1banban+2banban+1ban

where n ≥ 1 and τ(w) = 3n + 6 and π(w) = 4n + 7 and |w| = 7n + 10, that
is, τ(w) < π(w) and |w| = 7/3 τ(w) − 4 > 2τ(w). Assous and Pouzet in turn
conjectured that 3τ(w) is the bound on the length of w for establishing τ(w) = π(w).
Duval [5] did the next step towards answering the conjecture. He established that
|w| ≥ 4 τ(w) − 6 implies τ(w) = π(w) and conjectures that, if w possesses an
unbordered prefix of length τ(w), then |w| ≥ 2 τ(w) implies τ(w) = π(w). Note
that a positive answer to Duval’s conjecture yields the bound 3 τ(w) for the general
question. Despite some partial results [12, 6, 8] towards a solution Duval’s conjecture
was only solved in 2004 [9, 10] with a new proof given in [11]. The proof of (the
extended version of) Duval’s conjecture lowered the bound for Ehrenfeucht and
Silberger’s problem to 3 τ(w)− 2 as conjectured by Assous and Pouzet [1]. However,
there remained a gap of τ(w)/3 between that bound and the largest known example
which is given above. The bound of 7τ(w)/3 has been conjectured in [9, 10]. This
conjecture is proved in this paper, and the problem by Ehrenfeucht and Silberger is
finally solved.

Other Related Work. The result related most closely to the problem by Ehrenfeucht
and Silberger is the so called critical factorization theorem (CFT).

What is the CFT? Let w = uv be a factorization of a word w into u and v. The
local period of w at the point |u| is the length q of the shortest square centered
at |u|. More formally, let x be the shortest word such that x is a prefix of vy and
a suffix of zu for some y and z, then q = |x|. It is straightforward to see that
q is not larger than the period of w. The factorization uv is called critical if q
quals the period of w. The CFT states that a critical factorization exists for every
nonempty word w, and moreover, a critical factorization uv can always be found
such that |u| is shorter than the period of w. The CFT was conjectured first by
Schützenberger [13], proved by Césari and Vincent [2], and brought into its current
form by Duval [4]. Crochemore and Perrin [3] found a new elegant proof of the CFT
using lexicographic orders, and realized a direct application of the theorem in a new
string-matching algorithm.

How does the CFT relate to the problem by Ehrenfeucht and Silberger? Observe
that the shortest square x2 centered at some point in w is always such that x is
unbordered. If x results from a critical factorization and occurs in w, then w contains
an unbordered factor of the length of its period. Therefore, it follows from the CFT
that |w| > 2π(w)− 2 implies τ(w) = π(w). This bound is asymptotically optimal.
In this paper, we establish the asymptotically optimal bound on |w| enforcing the
equality τ(w) = π(w) in terms of τ(w) instead of π(w). This rounds off the long
lasting research effort on the mutual relationship between the two basic properties
of a word w, that is τ(w) and π(w).
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1. Notation and Basic Facts

Let us fix a finite set A of letters, called alphabet, for the rest of this paper. Let
A∗ denote the monoid of all finite words over A including the empty word denoted
by ε. Let w = uv ∈ A∗. Then u−1w = v and wv−1 = u. In general, we denote
variables over A by a, b, c, and d and variables over A∗ are usually denoted by f ,
g, h, r through z, and α through δ, and ξ including their subscripted and primed
versions. The letters i through q are to range over the set of nonnegative integers.

Let w = a1a2 · · · an. The word anan−1 · · · a1 is called the reversal of w denoted
by w. We denote the length n of w by |w|, in particular |ε| = 0. Let 0 ≤ i ≤ n. Then
u = a1a2 · · · ai is called a prefix of w, denoted by u ≤p w, and v = ai+1ai+2 · · · an
is called a suffix of w, denoted by v ≤s w. A prefix or suffix is called proper when
0 < i < n. The longest common prefix w of two words u and v is denoted by u ∧p v
and is defined by w = u, if u ≤p v, or w = v, if v ≤p u, or wa ≤p u and wb ≤p v
for some different letters a and b. The longest common suffix of u and v, denoted
u ∧s v, is definied similarly, as one would expect. An integer 1 ≤ p ≤ n is a period
of w if ai = ai+p for all 1 ≤ i ≤ n − p. The smallest period of w is called the
period of w, denoted by π(w). A nonempty word u is called a border of a word w,
if w = uy = zu for some nonempty words y and z. We call w bordered, if it has
a border, otherwise w is called unbordered. Let τ(w) denote the maximum length
of unbordered factors of w, and τ2(w) denote the maximum length of unbordered
factors occurring at least twice in w. We have that

τ(w) ≤ π(w) .

Indeed, let u = b1b2 · · · bτ(w) be an unbordered factor of w. If τ(w) > π(w) then
bi = bi+π(w) for all 1 ≤ i ≤ τ(w) − π(w) and b1b2 · · · bτ(w)−π(w) is a border of u;
a contradiction.

Let C be a total order on A. Then C extends to a lexicographic order, also
denoted by C, on A∗ with u C v if either u ≤p v or xa ≤p u and xb ≤p v and a C b.
Let C denote a lexicographic order on the reversals, that is, u C v if u C v. Let Ca

and Cb denote lexicographic orders where the maximum letter a or the minimum
letter b is fixed in the respective orders on A. A C-maximum prefix (suffix ) α of a
word w is defined as a prefix (suffix) of w such that v C α (v C α) for all v ≤p w
(v ≤s w).

The notions of maximum pre- and suffix are symmetric. It is general practice that
facts involving the maximum ends of words are mostly formulated for maximum
suffixes. The analogue version involving maximum prefixes is tacitly assumed.

The following remarks state some facts about maximum suffixes which are folklore.
They are included in this paper to make it self-contained.

Remark 1.1. Let w be a bordered word. The shortest border u of w is unbordered,
and w = uzu. The longest border of w has length equal to |w| − π(w).

Indeed, if u is a border of w, then each border of u is also a border of w. Therefore
u is unbordered, and it does not overlap with itself. If v is a border of w then |w|−|v|
is a period of w. Conversely, the prefix of w of length |w| − π(w) is a border of w.

Remark 1.2. Any maximum suffix of a word w occurs only once in w and is longer
than |w| − π(w).

Indeed, let α be the C-maximum suffix of w for some order C. Then w = xαy
and α C αy implies y = ε by the maximality of α. If w = uvα with |v| = π(w), then
uα ≤p w gives a contradiction again.
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Remark 1.3. Let α be its own maximum suffix w.r.t. some order C, and let x be
a prefix of α of length π(α). Then x is unbordered.

Indeed, suppose on the contrary that x is bordered, that is, x = ghg for some
nonempty g. Let α = xy. We have gy C α, by assumption, which implies y C hgy.
Note that gy is not a prefix of α otherwise |gh| < |x| is a period of α contradicting
the choice of x. Hence, za ≤p y and zb ≤p hgy for some different letters a and b
with a C b. But, y ≤p α, since |x| = π(w), implies za ≤p α which contradicts the
maximality of α (since za ≤p α C zb ≤p hgy).

Let an integer q with 0 ≤ q < |w| be called point in w. A nonempty word x is
called a repetition word at point q if w = uv with |u| = q and there exist words y
and z such that x ≤s yu and x ≤p vz. Let π(w, q) denote the length of the shortest
repetition word at point q in w. We call π(w, q) the local period at point q in w.
Note that the repetition word of length π(w, q) at point q is necessarily unbordered
and π(w, q) ≤ π(w). A factorization w = uv, with u, v 6= ε and |u| = q, is called
critical, if π(w, q) = π(w), and if this holds, then q is called a critical point. Let
C be an order on A and J be its inverse. Then the shorter of the C-maximum
suffix and the J-maximum suffix of some word w is called a critical suffix of w.
Similarly, we define a critical prefix of w by the shorter of the two maximum prefixes
resulting from some order and its inverse. This notation is justified by the following
formulation of the so called critical factorization theorem (CFT) [3] which relates
maximum suffixes and critical points.

Theorem 1.4 (CFT). Let w be a nonempty word and γ be a critical suffix of w.
Then |w| − |γ| is a critical point.

Remark 1.5. Let rs be an unbordered word where |r| is a critical point. Then s
and r do not overlap and sr is unbordered with |s| as a critical point.

Let us highlight the following definitions. They are not standard but will be
central in the proof of Theorem 2.1.

Definition 1.6. Let words g and w be given. The longest prefix g shorter than g
that is also a suffix of w will be called the g-suffix of w.

The number |ws−1|, where s is the g-suffix of w, is called the g-period of w,
denoted by πg(w).

The shortest prefix w′ of w satisfying πg(w′) = πg(w) is called the g-critical prefix
of w.

Remark 1.7. Note that zd, where d is a letter, is the g-critical prefix of w if and
only if zd is the longest prefix of w satisfying πg(z) < πg(zd).

Example 1.8. Consider w = ababbaababab of length 12 and g = ababb. The g-
suffix of w is abab, whence πg(w) = 8. The g-critical prefix of w is ababbaababa
of length 11, since

πg(ababbaababa) = 8 ,
and

πg(ababbaabab) = 6 .

a b a b b a a b a b a b
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Note that, by definition, the g-suffix of w can be empty, but it cannot be equal to g.
For example, the abb-suffix of aabb is empty. Therefore, the abb-critical prefix of
aabb is aabb itself.

2. Solution of the Ehrenfeucht-Silberger Problem

This entire section is devoted to the proof of the main result of this paper: the
solution of the Ehrenfeucht-Silberger problem.

Theorem 2.1. Let w ∈ A∗. If |w| > 7
3 (τ(w)− 1) then τ(w) = π(w).

We identify two particular unbordered factors w and show that the assumption
of the theorem, namely that these factors are strictly smaller than 3

7 |w|+ 1, leads
either to a contradiction or to τ(w) = π(w).

Note that the claim holds trivially if every letter in w occurs only once because
τ(w) = π(w) = |w| holds in that case. Let

w = v′uzuv

such that |u| = τ2(w) and z is of maximum length. It is clear that such a factorization
exists whenever a letter occurs more than once in w. Based on such a factorization
of w we fix some more notation for the rest of this proof. Let

t = v ∧p zu and t′ = v′ ∧s uz .

If t 6= v, then let

• ta be a prefix of zu and tb be a prefix of v with a 6= b,
• δa be the Ca-maximum suffix of t′uta for some fixed order Ca such that a

is the maximum in A,
• α be the Ca-maximum suffix of t′u, and
• β be the Ja-maximum suffix of t′u where Ja is the inverse order of Ca.

The notation introduced so far is exemplified by the following figure where we
assume that t 6= v and t′ 6= v′ and |t′| < |z| < |t| < |δ| < |αt| and |α| < |β| < |u|.

v′

t′

u

β

α

t

δ

a

z

t′

u

β

α

t

δ

b

v

The example of long words where the period exceeds the length of the longest
unbordered factors by Assous and Pouzet (see page 2) turns out to highlight the
most interesting cases of this proof. We therefore use it as a running example
throughout this section. The notation introduced above applied to a word of Assous
and Pouzet is illustrated by the following figure. In this case t′ is empty.
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a a b a a a b a a b a a a a b a a b a a a b a a

v′ u z u v

ta = δa tb

α

β

α

β

We can suppose w.l.o.g. that v′ is as short as possible. This in particular implies
the following claim.

Claim 2.2.

(1) |α| ≤ |u| and |β| ≤ |u| .

Proof. If α is longer than u, then the prefix û of α of length π(α) is unbordered by
Remark 1.3. It is of length at least |u|, otherwise u is bordered. From |u| = τ2(w)
follows |û| = |u| since û occurs at least twice in w. We have a factorization v̂′ûẑûv̂
of w where v̂′ = v′uα−1 and |ẑ| = |z| and v̂ = û−1αv; contradicting the minimality
of |v′|. � �

2.1. The First Factor. In this subsection we describe, using the factorization
introduced above, a particular factor of w, which is likely to be unbordered and long;
see the factor uzuv0d in the proof of Claim 2.4 below. The basic assumption of our
proof, namely that there are no too long unbordered factors, will yield important
additional restrictions on w.

Let γ denote the shorter of α and β, and let yα and yβ denote the α- and β-suffix
of uv for the rest of this proof. Moreover, let y be the shorter of yα and yβ and let ξ
be either α or β so that y = yξ. The following figure shall illustrate the considered
setting by an example where |α| < |β| and |yα| > |yβ |, that is, we have γ = α,
y = yβ and ξ = β.

v′ u

β = ξ

yβ = y

α = γ

yα

ta

z u

β = ξ

α = γ

tb

v

yα

yβ = y

The same situation for our running example is depicted next.

a a b a a a b a a b a a a a b a a b a a a b a a

v′ u z u v

yβ = y ta tb

yαα = u

β = ξ = γ

yβ = y

α = u

β = ξ = γ yβ = y
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We prove the following property of γ first.

Claim 2.3. If v0γ is a prefix of γv with v0 6= ε, then uzuγ−1v0γ is unborderd.

Proof. Suppose on the contrary that uzuγ−1v0γ has a shortest border h. Note that
h is, like every shortest border of a factor in w, not longer than |u| = τ2(w). In fact
|h| < |u| since |h| = |u| contradicts the maximality of |z|. If |γ| < |h| < |u| then
γ occurs more than once in u contradicting Remark 1.2. And finally, if |h| ≤ |γ|
then u is bordered by h since then h ≤s γ ≤s u; a contradiction which concludes
the proof. � �

We shall now consider the ξ-critical prefix of w in order to prove the following
inequalities.

Claim 2.4.

|v′| < |u| and |v| < |u| and |v| ≤ |ty|.

Proof. Within this proof suppose w.l.o.g. that |v′| ≤ |v|. Note, the assumption that
v′ is as short as possible does not harm generality.

The claim is trivial if |y| ≥ |v|. We therefore suppose that the ξ-critical prefix of
w can be written as v′uzuv0d, where d is a letter. We let g denote the ξ-suffix of
v′uzuv0.

Assume first that gd = ξ as illustrated in the next figure.

v′ u

y = yξ

ξ = gd

z u

ξ = gd

v

y = yξ

v0d

gd = ξ

Then the word uzuv0d is unbordered, by Claim 2.3. From |v| < |v0dξ| we obtain
|uzuv0d| > |zuv|. Therefore |uzuv0d| ≥ |w|/2 + 1 > 3

7 |w|+ 1; a contradiction. This
implies that gc is a prefix of ξ with c 6= d.

Suppose c Ca d and consider βzuv0d. Since |βzuv0d| > |zuv|, it must be bordered,
as above. Let hd be its shortest border. We proceed by a case distinction on the
length of h.

Suppose |h| ≤ |g| as illustrated in the next figure.

v′ u

gc

hc

β

hd

z u

β

v

v0d

gd

hd

Then hd is a prefix of β and the occurrence of hc ≤s gc in ξ, and hence also in β,
contradicts the maximality of β since hd Ja hc.

Suppose |g| < |h| < |β| as illustrated in the next figure.
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v′ u

β = ξ

gc

hd

gd

z u

β = ξ

v

v0d

gd

hd

Then gd occurs in u and ξ = β since gd Ja gc. Therefore h contradicts the
assumption that g is the ξ-suffix of v′uzuv0.

It remains that |h| ≥ |β| which implies β ≤p h as illustrated next.

v′ u

β t

hd

z u

β

v

v0d

β

hd

The choice of u implies |h| < |u|, whence either h = βv0 or the word uzuv0h
−1β is

unbordered, by Claim 2.3. From |h| < |u| we have |uzuv0h
−1β| > |zuv| > |w|/2 + 1.

Therefore, h = βv0, which implies v0d ≤p t, and |v| ≤ |ty|. The remaining
inequalities follow from |βv| ≤ |βv0dy| = |hdy| < |uβ|, where the last inequality
uses |hd| ≤ |u| and |y| ≤ |yβ | < |β|. The possibility d Ca c is similar considering
αzuv0d. � �

Suppose that v 6= t. Recall that tb is a prefix of v, and ta a prefix of zu. From
|v| ≤ |ty|, and from |y| ≤ |yα| we deduce that utb and yα have in uv an overlap rb
where r is nonempty. In other words, r is a suffix of ut such that uv = utr−1yα.

u v

t b

yα

r

Since |yα| < |α|, we have

(2) |t| > |v| − |α|+ |r| .

The word rb is a prefix of α, and ra is a suffix of uta, which is a prefix of uzu.
The maximality of α implies that ra is not a factor of t′u, and thus

(3) |r| > |t|+ |t′| − |z| .
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u z u

t

t′

r

2.2. The Second Factor. Let us now turn our attention to the word δ. In partic-
ular, we consider the factor δt−1zuvδd as defined below in the proof of Claim 2.6.

The following claim points out that every factor of t′uv is strictly less than δa
w.r.t. Ca. In particular, δa does not occur in t′uv.

Claim 2.5. Let f be a factor of t′uv. Then f Ca δa and f 6= δa.

Proof. Suppose on the contrary that there exists a factor f of t′uv such that
δa Ca f . Note that the maximality of δ is contradicted, if f occurs in t′ut or yα.
Therefore, we have that there exists a prefix f ′b of f such that f ′ ≤s t

′ut. But,
we have f ′a ≤s t

′uta, and hence, f ′a Ca δa. The contradiction follows now from
f ′b Ca f ′a. � �

Let yδ denote the δa-suffix of w. Note that

|yδ| < |v| − |t|,(4)

since otherwise there is a suffix t0 of t′ut such t0b is a prefix of yδ, and t0a is a suffix
of t′uta contradicting the maximality of δ.

Consider the following figure which already gives an illustration of the factor
δt−1zuvδd that will be defined below in the proof of Claim 2.6.

v′ u

t

δ

yδ a

z u

t

δ

b

v

yδ

vδdδt−1zuvδd

Our running example gives the following setting, with d = b.

a a b a a a b a a b a a a a b a a b a a a b a a

v′ u z u v

ta = δa tb yδ

δt−1zuvδd
vδd

Claim 2.6.

(5) |δ| − |t|+ |z|+ |u|+ |v| − |yδ| <
3
7
|w|+ 1
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Proof. Let δt−1zuvδd be the δa-critical prefix of v′uzuv and let g denote the δa-
suffix of δt−1zuvδ. This implies that |vδd| ≥ |v| − |yδ| (in particular, |vδ| ≥ |t|) and
that gc is a prefix of δa and c 6= d. Note that d Ca c, since all factors of uv are less
than δa w.r.t. Ca by Claim 2.5.

Finally, we claim that δt−1zuvδd is unbordered. Indeed, suppose on the contrary
that there exists a shortest border hd. Since δa does not occur in uv and hd has
to be shorter than u, we deduce that |h| < |δ|. The maximality of g implies that
|h| ≤ |g|. But now hd is a suffix of gd whence hc is a factor of δa; a contradiction,
since hd ≤p δ and hd Ca hc. � �

2.3. Case Analysis. In order to complete the proof we distinguish the following
cases.

A Special Case. Consider first the special case where t 6= v and z is empty and
u = α. It is not difficult to see that uutb is unbordered.

Indeed, suppose that hb is the shortest border of uutb. The choice of u implies
|h| < |u|, and since u is unbordered, we have h ≤s t. Now hb is a prefix of u and ha
a factor of u; a contradiction to the maximality of α.

By |uutb| ≥ |w|/2 + 1 > 3
7 |w|+ 1 we can exclude this case.

Case 1. Let now either t = v or t′ = v′ but not both. By symmetry, we can suppose
t 6= v and t′ = v′. Note that the assumption that v′ is as short as possible does not
harm the symmetry.

We are now going to show that the inequalities we have obtained in the previous
subsections do not have a common solution. It is an exercise in the application of
the simplex algorithm.

Inequality (3) can be transformed into

L1 := |r| − |t| − |t′|+ |z| − 1 ≥ 0.(6)

Inequalities (4) and (5) imply,

|δ|+ |z|+ |u| < 3
7
|w|,

which together with |δ| ≥ |r| and |w| = |v|+ |v′|+ 2|u|+ |z| yield

L2 := 3|v′|+ 3|v| − |u| − 4|z| − 7|r| > 0.(7)

Similarly, if we use (5) with |δ| ≥ |yδ|, we obtain

L3 := 7|t| − 4|v|+ 3|v′| − |u| − 4|z|+ 7 > 0.(8)

One can now check that under the assumption |v′| = |t′| we have

28 L1 + 4 L2 + 3 L3 + 7 |v′ut| = −7,

a contradiction.

Case 2. Suppose t 6= v and t′ 6= v′. By the special case above, we can assume

L0 := |u| − |α|+ |z| − 1 ≥ 0.(9)

Inequality (2) can be transformed into

L4 := |t|+ |α| − |r| − |v| − 1 ≥ 0,(10)

The symmetry of v and v′ yields, as a mirror variant of (8), the inequality

L5 := 7|t′|+ 3|v| − 4|v′| − |u| − 4|z|+ 7 > 0.(11)
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One can now check that

7 L0 + 21 L1 + 2 L2 + 2 L3 + 7 L4 + 3 L5 = 0,

again a contradiction.

Now, we have already proved that if τ(w) < 3
7 |w|+ 1, then v is a prefix of zu,

and v′ is a suffix of uz. It remains to consider this one more case.

Case 3. Let t = v and t′ = v′. Then π(w) ≤ |uz|. Clearly, we can suppose that
π(w) > |u|, since otherwise trivially π(w) = τ(w) = |u|. Let w = rs be a critical
factorization of u. Then szr is unbordered of length π(w), unless r is a prefix, and
s is a suffix of z; see Remark 1.5. Suppose the latter possibility. Now, either one
of the words uz and zu is unbordered of length π(w) or u is both prefix and suffix
of z. We are therefore left with the case w = v′uiz′ujv, with i, j ≥ 2, where u is
not a suffix of uz′ and not a prefix of z′u. Moreover, v′ is a suffix of u and v is a
prefix of u. The assumption π(w) > |u| now implies that z′ is nonempty. Suppose,
without loss of generality, i ≤ j.

Similarly as above, we have that either sz′uj−1r or z′uj is unbordered. From
|ujz′| < 3

7 |w|+ 1 we deduce

(12) |v′v| >
(

4
3
j − i

)
|u|+ 4

3
|z′| − 7

3
≥

(
4
3
j − i

)
|u| − 1 .

Case 3.1: i = j. If v′ is a suffix of uz′ and v a prefix of z′u, then we have
π(w) = τ(w) = |z′uj |. Otherwise we obtain from Case 1 and Case 2 an unbordered
factor of v′uz′uv of length at least 3

7 |v
′uz′uv|+ 1. Moreover, this factor contains u

as a factor, which can be substituted with uj to obtain an unbordered factor of w
of length at least 3

7 |v
′ujz′ujv|+ 1.

Case 3.2: i < j. Since j ≥ 3, we obtain from (12) that |v′v| ≥ 2|u|−1; a contradiction
with Claim 2.4.

This concludes the proof of Theorem 2.1.
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