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Abstract

The relationship between the length of a word and the maximum length of
its unbordered factors is investigated in this paper.

Consider a finite word w of length n. Let µ(w) denote the maximum
length of its unbordered factors, and let ∂(w) denote the period of w. Clearly,
µ(w) ≤ ∂(w).

We establish that µ(w) = ∂(w), if w has an unbordered prefix of length
µ(w) and n ≥ 2µ(w)− 1. This bound is tight and solves a 21 year old con-
jecture by Duval. It follows from this result that, in general, n ≥ 3µ(w)− 2
implies µ(w) = ∂(w) which gives an improved bound for the question asked
by Ehrenfeucht and Silberger in 1979.
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val’s conjecture
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1 Introduction

Periodicity and borderedness are two properties of words—the most basic
data structure—which are investigated in this paper. These concepts are
so foundational that they play a rôle (explicitely or implicitely) in virtually
every area of computer science. Just a few of those areas are string searching
algorithms [15, 3, 8], data compression [23, 7], and codes [2], which are classi-
cal examples, but also computational biology, e.g., sequence assembly [19] or
superstrings [4], and serial data communications systems [5] are areas among
others where periodicity and borderedness of words (sequences) are impor-
tant concepts. It is well known that these two word properties do not exist
independently from each other. However, it is somewhat surprising that no
clear relation has been established so far, despite the fact that this basic
question has been around for more than 20 years.

Let us consider a finite word (a sequence of letters) w. We denote the
length of w by |w| and call a subsequence of consecutive letters of a word
factor. The period of w, denoted by ∂(w), is the smallest positive integer p
such that the i-th letter equals the (i + p)-th letter for all 1 ≤ i ≤ |w| − p.
Let µ(w) denote the length of the longest unbordered factor of w. A word
is bordered, if it has a proper prefix that is also a suffix, where we call
a prefix proper, if it is neither empty nor contains the entire word. For the
investigation of the relationship between |w| and the maximality of µ(w), that
is, µ(w) = ∂(w), we consider the special case where the longest unbordered
prefix of a word is of the maximum length, that is, no unbordered factor is
longer than that prefix. Let w be an unbordered word. Then a word wu is
a Duval extension (of w), if every unbordered factor of wu has at most length
|w|, that is, µ(wu) = |w|. We call wu trivial Duval extension, if ∂(wu) = |w|.
For example, let w = abaabb and u = aaba. Then wu = abaabbaaba is
a nontrivial Duval extension of w since (i) w is unbordered, (ii) all factors
of wu longer than w are bordered, that is, |w| = µ(wu) = 6, and (iii) the
period of wu is 7, and hence, ∂(wu) > |w|. Note, that this example satisfies
|u| = |w| − 2.

In 1979 Ehrenfeucht and Silberger initiated a line of research [11, 1,
10] exploring the relationship between the length of a word w and µ(w).
In 1982 these efforts culminated in Duval’s result: If |w| ≥ 4µ(w) − 6 then
∂(w) = µ(w). However, it was conjectured in [1] that |w| ≥ 3µ(w) implies
∂(w) = µ(w) which follows if Duval’s conjecture [10] holds true.

Conjecture 1. Let wu be a nontrivial Duval extension of w. Then |u| < |w|.

After that, no progress was recorded, to the best of our knowledge, for
20 years. However, the topic remained popular, see for example Chapter 8
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in [17]. The most recent results are by Mignosi and Zamboni [20] and the
authors of this article [13]. However, not Duval’s conjecture but rather its
opposite is investigated in those papers, that is: Which words admit only
trivial Duval extensions? It is shown in [20] that unbordered, finite factors
of Sturmian words allow only trivial Duval extensions, with other words, if
an unbordered, finite factor of a Sturmian word of length µ(w) is a prefix of
w, then ∂(w) = µ(w). Sturmian words are binary infinite words of minimal
complexity; see [21] and Chapter 2 in [17]. That result was improved in [13]
by showing that Lyndon words [18] allow only trivial Duval extensions and
the fact that every unbordered, finite factor of a Sturmian word is a Lyndon
word.

The main result in this paper is an improved version of Conjecture 1.

Theorem 2. Let wu be a Duval nontrivial extension of w. Then |u| < |w|−1.

The example mentioned above shows that this bound on the length of
a nontrivial Duval extension is tight. Theorem 2 implies the truth of Duval’s
conjecture, as well as, the following corollary (for any word w).

Corollary 3. If |w| ≥ 3µ(w)− 2, then ∂(w) = µ(w).

This corollary confirms the conjecture by Assous and Pouzet in [1] about
a question asked by Ehrenfeucht and Silberger in [11].

Our main result, Theorem 2, is presented in Section 4, which uses the
notations introduced in Section 2 and preliminary results from Section 3.
We conclude with Section 5.

2 Notations

In this section we introduce the notations of this paper. We refer to [16, 17]
for more basic and general definitions.

We consider a finite alphabet A of letters. Let A∗ denote the monoid
of all finite words over A including the empty word, denoted by ε. Let
w = w(1)w(2) · · ·w(n) where w(i) is a letter, for every 1 ≤ i ≤ n. We denote
the length n of w by |w|. An integer 1 ≤ p ≤ n is a period of w, if w(i) = w(i+p)

for all 1 ≤ i ≤ n− p. The smallest period of w is called the minimum period
(or simply, the period) of w, denoted by ∂(w). A nonempty word u is called
a border of a word w, if w = uv = v′u for some suitable words v and v′. We
call w bordered, if it has a border that is shorter than w, otherwise w is called
unbordered. Note, that every bordered word w has a minimum border u such
that w = uvu, where u is unbordered. Let µ(w) denote the maximum length
of unbordered factors of w. Suppose w = uv, then u is called a prefix of w,
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denoted by u ≤ w, and v is called a suffix of w, denoted by v 4 w. Let
u, v 6= ε. Then we say that u overlaps v from the left or from the right, if
there is a word w such that |w| < |u|+ |v|, and u ≤ w and v 4 w, or v ≤ w

and u 4 w, respectively. We say that u overlaps (intersects) with v, if either
v is a factor of u or u is a factor of v or u overlaps v from the left or right.

Let us consider the following examples. Let A = {a, b} and u, v, w ∈ A∗

such that u = abaa and v = baaba and w = abaaba. Then |w| = 6, and 3, 5,
and 6 are periods of w, and ∂(w) = 3. We have that a is the shortest border
of u and w, whereas ba is the shortest border of v. We have µ(w) = 3. We
also have that u and v overlap since u ≤ w and v 4 w and |w| < |u|+ |v|.

We continue with some more notations. Let w and u be nonempty words
where w is also unbordered. We call wu a Duval extension of w, if every
factor of wu longer than |w| is bordered, that is, µ(wu) = |w|. A Duval
extension wu of w is called trivial, if ∂(wu) = µ(wu) = |w|. A nontrivial
Duval extension wu of w is called minimal, if u is of minimal length, that is,
u = u′a and w = u′bw′ where a, b ∈ A and a 6= b.

Example 4. Let w = abaabbabaababb and u = aaba. Then

w.u = abaabbabaababb.aaba

(for the sake of readability, we use a dot to mark where w ends) is a nontriv-
ial Duval extension of w of length |wu| = 18, where µ(wu) = |w| = 14 and
∂(wu) = 15. However, wu is not a minimal Duval extension, whereas

w.u′ = abaabbabaababb.aa

is minimal, with u′ = aa ≤ u. Note, that wu is not the longest nontrivial
Duval extension of w since

w.v = abaabbabaababb.abaaba

is longer, with v = abaaba and |wv| = 20 and ∂(wv) = 17. One can check
that wv is a nontrivial Duval extension of w of maximum length, and at the
same time wv is also a minimal Duval extension of w.

Let an integer p with 1 ≤ p < |w| be called point in w. Intuitively,
a point p denotes the place between w(p) and w(p+1) in w. A nonempty
word u is called a repetition word at point p if w = xy with |x| = p and there
exist x′ and y′ such that u 4 x′x and u ≤ yy′. For a point p in w, let

∂(w, p) = min
{

|u|
∣

∣ u is a repetition word at p
}
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denote the local period at point p in w. Note, that the repetition word
of length ∂(w, p) at point p is necessarily unbordered and ∂(w, p) ≤ ∂(w).
A factorization w = uv, with u, v 6= ε and |u| = p, is called critical, if
∂(w, p) = ∂(w), and, if this holds, then p is called critical point.

Example 5. The word
w = ab.aa.b

has the period ∂(w) = 3 and two critical points, 2 and 4, marked by dots. The
shortest repetition words at the critical points are aab and baa, respectively.
Note, that the shortest repetition words at the remaining points 1 and 3 are
ba and a, respectively.

3 Preliminary Results

We state some auxiliary and well-known results about repetitions and borders
in this section which will be used to prove Theorem 2, in Section 4. The proofs
of these auxiliary results are straightforward and not given in this extended
abstract. Results taken from the literature are referenced to.

Lemma 6. Let zf = gzh where f, g 6= ε. Let az ′ be the maximum unbordered
prefix of az. If az does not occur in zf , then agz ′ is unbordered.

Proof. Assume agz′ is bordered, and let y be its shortest border. In par-
ticular, y is unbordered. If |z ′| ≥ |y| then y is a border of az′ which is
a contradiction. If |az′| = |y| or |az| < |y| then az occurs in zf which is
again a contradiction. If |az′| < |y| ≤ |az| then az′ is not maximum since y
is unbordered; a contradiction.

The proof of the following lemma is easy.

Lemma 7. Let w be an unbordered word and u ≤ w and v 4 w. Then uw

and wv are unbordered.

The critical factorization theorem is one of the main results about pe-
riodicity of words. A weak version of it was first conjectured by Schützen-
berger [22] and proved by Césari and Vincent [6]. It was developed into its
current form by Duval [9]. We refer to [12] for a short proof of the CFT.

Theorem 8 (CFT). Every word w, with |w| ≥ 2, has at least one critical
factorization w = uv, with u, v 6= ε and |u| < ∂(w), i.e., ∂(w, |u|) = ∂(w).

We have the following two lemmas about properties of critical factoriza-
tions.
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Lemma 9. Let w = uv be unbordered and |u| be a critical point of w. Then
u and v do not overlap.

Proof. Note, that ∂(w, |u|) = ∂(w) = |w| since w is unbordered. Let |u| ≤ |v|
without restriction of generality. Assume that u and v overlap. If u = u′s and
v = sv′, then ∂(w, |u|) ≤ |s| < |w|. On the other hand, if u = su′ and v = v′s,
then w is bordered with s. Finally, if v = sut then ∂(w, |u|) ≤ |su| < |w|.

The next result follows directly from Lemma 9.

Lemma 10. Let u0u1 be unbordered and |u0| be a critical point of u0u1. Then
for any word x, we have uixui+1, where the indices are modulo 2, is either
unbordered or has a minimum border g such that |g| ≥ |u0|+ |u1|.

The next theorem states a basic fact about minimal Duval extensions.
See [14] for a proof of it.

Theorem 11. Let wu be a minimal Duval extension of w. Then u occurs
in w.

The following Lemmas 12, 13 and 14 and Corollary 3 are given in [10].
Let a0, a1 ∈ A, with a0 6= a1, and t0 ∈ A∗. Let the sequences (ai), (si), (s

′

i),
(s′′i ), and (ti), for i ≥ 1, be defined by

• ai = ai (mod 2), that is, ai = a0 or ai = a1, if i is even or odd, respec-
tively,

• si such that aisi is the shortest border of aiti−1,

• s′i such that ai+1s
′

i is the longest unbordered prefix of ai+1si,

• s′′i such that s′is
′′

i = si,

• ti such that tis
′′

i = ti−1.

For any parameters of the above definition, the following holds.

Lemma 12. For any a0, a1, and t0 there exists an m ≥ 1 such that

|s1| < · · · < |sm| = |tm−1| ≤ · · · ≤ |t0|

and sm = tm−1 and |t0| ≤ |sm|+ |sm−1|.

Lemma 13. Let z ≤ t0 such that a0z and a1z do not occur in t0. Let a0z0

and a1z1 be the longest unbordered prefixes of a0z and a1z, respectively. Then

1. if m = 1 then a0t0 is unbordered,
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2. if m > 1 is odd, then a1sm is unbordered and |t0| ≤ |sm|+ |z0|,

3. if m > 1 is even, then a0sm is unbordered and |t0| ≤ |sm|+ |z1|.

Lemma 14. Let v be an unbordered factor of w of length µ(w). If v occurs
twice in w, then µ(w) = ∂(w).

Corollary 15. Let wu be a Duval extension of w. If w occurs twice in wu,
then wu is a trivial Duval extension.

4 Main Result

The next theorem proves Duval’s conjecture.

Theorem 2. Let wu be a nontrivial Duval extension of w. Then |u| < |w|−1.

Proof. Recall that every factor of wu which is longer than |w| is bordered
since wu is a Duval extension of w. Let z be the longest suffix of w that
occurs twice in zu.

If z = ε then a 4 w and u = bj, where a, b ∈ A and a 6= b and j ≥ 1, but
now |u| < |w| since abj is unbordered. Moreover, w = bkaw′a with k < j,
otherwise wu is a trivial Duval extension, and either aw′abj is bordered, in
this case it follows j ≤ |w′|, or aw′abj is unbordered. In both cases it follows
|u| < |w| − 1.

So, assume z 6= ε. We have z 6= w since wu is otherwise trivial by
Corollary 3. Let a, b ∈ A be such that

w = w′az and u = u′bzr

and z occurs in zr only once, that is, bz matches the rightmost occurrence
of z in u. Note, that bz does not overlap az from the right, by Lemma 7,
and therefore u′ exists, although it might be empty. Naturally, a 6= b by the
maximality of z, and w′ 6= ε, otherwise azu′bz ≤ wu has either no border or
w is bordered (if azu′bz has a border not longer than z) or az occurs in zu

(if azu′bz has a border longer than z); a contradiction in any case.
Let az0 and bz1 denote the longest unbordered prefix of az and bz, re-

spectively. Let a0 = a and a1 = b and t0 = zr and the integer m be defined
as in Lemma 13. We have then a word sm, with its properties defined by
Lemma 13, such that

t0 = smt
′ .

Consider azu′bz0. We have that az and azu′bz0 are both prefixes of a0zu,
and bz0 is a suffix of azu′bz0 and az does not occur in zu′bz0. It follows from
Lemma 6 that azu′bz0 is unbordered, and hence,

|azu′bz0| ≤ |w| . (1)
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w u

a z b zu′ r

z0 z0

sm t′

Case: Suppose that m is even. Then we have 2 ≤ m and asm (= amsm)
is unbordered and |t0| ≤ |sm|+ |z1| by Lemma 13.

Suppose |t0| = |sm| + |z1| and z1 = z. Then |sm−1| = |z| by Lemma 12.
Note, that si ≤ ti−1 ≤ t0 for all 1 ≤ i ≤ m, and hence, it follows that si ≤ z

for all 1 ≤ i < m. In particular, sm−1 = z. We have that bz (= a1sm−1)
is a border of btm−2 (= a1tm−2). But now, bz occurs in t0, and hence, in u,
since ti ≤ t0, for all 0 ≤ i < m, which is a contradiction.

So, assume that |t0| < |sm|+ |z1| or |z1| < |z|. Suppose |sm| ≤ |z0|. Then
|azu′bz0| ≤ |w| and

|u| = |azu| − |z| − 1

= |azu′bz0| − |z0|+ |t0| − |z| − 1

< |azu′bz0| − |z0|+ |sm|+ |z1| − |z| − 1

≤ |w|+ |z1| − |z| − 1

≤ |w| − 1

if |t0| < |sm|+ |z1|, or

|u| = |azu| − |z| − 1

= |azu′bz0| − |z0|+ |t0| − |z| − 1

≤ |azu′bz0| − |z0|+ |sm|+ |z1| − |z| − 1

≤ |w|+ |z1| − |z| − 1

< |w| − 1

if |z1| < |z|. We have |u| < |w| − 1 in both cases.
Let then |sm| > |z0|. We have that asm is unbordered, and since az0 is

the longest unbordered prefix of az, we have az ≤ asm, and hence, |z| ≤ |sm|.
Now, azu′bsm is unbordered otherwise its shortest border is longer than az,
since no prefix of az is a suffix of asm, and az occurs in u; a contradiction. So,
|azu′bsm| ≤ |w| and |u| < |w| − 1, since either |z1| ≤ |z| or |t0| < |sm|+ |z1|.

Case: Suppose that m is odd. Then bsm (= amsm) is unbordered and
|t0| ≤ |sm|+ |z0|; see Lemma 13. Surely sm 6= ε.

If |sm| < |z|, then |u| < |w| − 1 since

|u| = |azu′bz0| − |bz0|+ |bt0| − |az|

and |azu′bz0| ≤ |w|, by (1), and |t0| ≤ |sm|+ |z0|.
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Assume thus that |sm| ≥ |z|, and hence, also z ≤ sm. Since sm 6= ε, we
have |bsm| ≥ 2, and therefore, by the critical factorization theorem, there
exists a critical point p in bsm such that bsm = v0v1, where |v0| = p.

w u

a z b zu′ r

z0 z0

sm t′

v0 v1

In particular,

bz ≤ v0v1 . (2)

Note, that if sm = z then |z0| < |z| since b 4 z0 and bsm does not end with b
because it is unbordered. We have therefore in all cases

|z0| < |v0v1| − 1 . (3)

Let

u = u′0v0v1u1

be such that v0v1 does not occur in u′0. Note, that v0v1 does not overlap
with itself since it is unbordered, and v0 and v1 do not overlap by Lemma 9.
Consider the prefix wu′0bz of wu which is bordered and has a shortest border
g longer than z, and hence, bz 4 g, otherwise w is bordered since z 4 w.
Moreover, g ≤ w, for otherwise az would occur in u, and hence, bz occurs
in w. Let

w = w0bzw1

such that bz occurs in w0bz only once, that is, we consider the leftmost
occurrence of bz in w. Note, that

|w0bz| ≤ |g| ≤ |u
′

0bz| (4)

where the first inequality comes from the definition of w0 above and the
second inequality from the fact that |u′0bz| < |g| implies that w is bordered.
Let

f = bzw1u
′

0v0v1 .

If f is unbordered, then |f | ≤ |w|, and hence, |u′0v0v1| ≤ |w0|. Now, we have
|u′0| < |w0| which contradicts (4).

Therefore, f is bordered. Let h be its shortest border.
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w u

a z b zu′ r

u′0 b z v0 v1 t
′

w0b z w1 u0 v0 v1 u1

h h

w′

0 v0 v1 b zf

Surely, |bz| < |h| otherwise v0v1 is bordered by (2). So, bz ≤ h. Moreover,
|v0v1| ≤ |h| otherwise bz occurs in sm contradicting our assumption that bzr
marks the rightmost occurrence of bz in u. So, v0v1 4 h, and v0v1 occurs
in w since w0h ≤ w by (4). Let

w0bzv
′ = w0h = w′

0v0v1 .

Note, that v0v1 does not occur in w′

0 otherwise it occurs in u′0 contradict-
ing our assumption on u′0. Moreover, we have h = bzv′ 4 u′0v0v1. Let
u′0v0v1 = u0h. Consider

f0 = wu0bz

which has a shortest border h0.

w u

a z b z ru′0 b z

v0 v1 v0 v1 t
′

w0b z w1 u0 b z u1

h0 h0

f0

Surely, bz 4 h0 otherwise w is bordered with a suffix of z. Moreover,
|w0bz| ≤ |h0| ≤ |u0bz| since bz does not occur in w0 and w is unbordered.
From that and w0h = w′

0v0v1 and u0h = u′0v0v1 follows now |w′

0| ≤ |u
′

0| and

u′0v0v1 = u0bzv
′ and w0 occurs in u0. (5)

Let now
w = w′

0v0v1w
′

i · · · v0v1w
′

2v0v1w
′

1v0v1w2

for some word w2 that does not contain v0v1, and

u = u′0v0v1u
′

j · · · v0v1u
′

2v0v1u
′

1v0v1t
′

such that v0v1 does not occur in w′

k, for all 0 ≤ k ≤ i, or v′`, for all 0 ≤ ` ≤ j.
Note, that these factorizations of w and u are unique, and, moreover, w2 6= ε.
(Indeed, if w2 = ε then v0v1 4 w and az 4 v0v1, and az would occur in u;
a contradiction.)
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We claim that either i = j and w′

k = u′k, for all 1 ≤ k ≤ i or |u| < |w|−1.
Assume k = 1. We show that w′

1 = u′1. Consider

f1 = v1w
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

1v0 .

If f1 is unbordered, then |u| < |w| − 1 since |f1| ≤ |w| and

|u| = |f1| − |v1w
′

1v0v1w2|+ |v1t
′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and w2 6= ε. Assume then that f1 is
bordered, and let h1 be its shortest border. Clearly, h1 = v1g1v0 for some g1

(possibly g1 = ε) since v0 and v1 do not overlap. We show that h1 ≤ v1w
′

1v0.
Indeed, otherwise either

1. az occurs in u, in case v1w
′

1v0v1w2 ≤ h1, a contradiction to our assump-
tion on az, or

2. v0 and v1 overlap, in case |v0| ≤ |z| and

|v1w
′

1v0v1w2| − |az|+ |v0| < |h1| < |v1w
′

1v0v1w2|

and then v0 occurs in z, contradicting Lemma 9, or

3. |u| < |w|−1, in case v0w3 4 w2 and |az| ≤ |v0w3|, then v0w3u
′v0v1 is un-

bordered and the result follows from |t′| < |v0w3|−1, since |az| 6= |v0w3|
for v0 does not begin with a.

Moreover, h1 4 v1u
′

1v0 since v0v1 does not occur in v1w
′

1v0. So, let

w′

1v0 = g1v0w
′′

1 and v1u
′

1 = u′′1v1g1 . (6)

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′1 v0 v1 t
′

g1 v0 w′′

1 u′′1 v1 g1

h1 h1

f1

Consider,
f2 = v0w

′′

1v1w2u
′

0v0v1u
′

j · · · v0v1u
′

1v0v1 .

If f2 is unbordered, then |u| < |w| − 1 since |f2| ≤ |w| and

|u| = |f2| − |v0w
′′

1v1w2|+ |t
′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and w2 6= ε. Assume then that f2 is
bordered, and let h2 be its shortest border. Since v0 and v1 do not overlap,
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v0v1 4 h2. Also h2 ≤ v0w
′′

1v1 since v0v1 does not occur in w2 (and v0 and
v1 do not overlap) and az does not occur in h2 (and so h2 does not stretch
beyond w). We have v0w

′′

1v1 ≤ h2 since v0v1 does not occur in v0w
′′

1v1 unless
w′′

1 = ε. Hence, we have h2 = v0w
′′

1v1 and

w′

1v0v1 = g1h2 and h2 4 u′1v0v1 . (7)

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′1 v0 v1 t
′

g1 v0 w′′

1 u′′1 v1 g1

v0 w′′

1

h2 h2

f2

Consider,

f3 = v0v1w
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

2v0u
′′

1v1 .

If f3 is unbordered, then |u| < |w| − 1 since |f3| ≤ |w| and

|u| = |f3| − |v0v1w
′

1v0v1w2|+ |g1v0v1t
′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and |g1| ≤ |w
′

1| and w2 6= ε. Assume, f3

is bordered. Then f3 has a shortest border h3 such that v0v1 ≤ h3. We have
h3 = v0u

′′

1v1 by the arguments from the previous paragraph. Moreover,

v0v1u
′

1 = h3g1 and v0v1w
′

1 ≤ h3 . (8)

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′1 v0 v1 t
′

g1 v0 w′′

1 u′′1 v1 g1

v1u′′1
h3 h3

f3

Observe, that (7) and (8) imply that the number of occurrences of v1 and
v0, respectively, is the same in w′

1 and u′1 since v0 and v1 do not overlap.
Now, let

h1 = v1g1v0 = h′′1v1h
′

1v0 = v1h
′

0v0h
′′

0

where v1 and v0 occur only once in v1h
′

1 and h′0v0, respectively.

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′1 v0 v1 t
′

g1 v0 w′′

1 u′′1 v1 g1

h′0 v0 h′′0 h′′1 v1 h′1

11



Now, let
f ′

2 = v0h
′′

0w
′′

1v1w2u
′

0v0v1u
′

j · · · v0v1u
′

1v0v1

and
f ′

3 = v0v1w
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

2v0u
′′

1h
′′

1v1

with respective shortest borders h′2 and h′3 (which are both not empty, if
|u| ≥ |w| − 1; as in the case of f2 and f3) and v0v1 4 h′2 and v0v1 ≤ h′3.

We have h′2 ≤ v0h
′′

0w
′′

1v1 since v0v1 does not occur in w2 and az does not
occur in h′2 (and so h′2 does not stretch beyond w). We have v0h

′′

0w
′′

1v1 ≤ h′2
since v0v1 does not occur in w′

1. Hence, we have h′2 = v0h
′′

0w
′′

1v1 and

w′

1v0v1 = h′0v0h
′′

2w
′′

1v1 = h′0h
′

2 and h′2 4 u′1v0v1 .

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′1 v0 v1 t
′

g1 v0 w′′

1 u′′1 v1 g1

h′0 v0 h′′0

h′0 v0 h′′0
v0 h′′0 w′′

1

h′2 h′2
f ′

2

We have h′3 = v0u
′′

1h
′′

1v1 by the arguments from the previous paragraph.
Moreover,

v0v1u
′

1 = v0u
′′

1h
′′

1v1h
′

1 = h′3h
′

1 and v0v1w
′

1 ≤ h′3 .

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′1 v0 v1 t
′

g1 v0 w′′

1 u′′1 v1 g1

h′′1 v1 h′1
u′′1 h′′1 v1 h′′1 v1 h′1
h′3 h′3

f ′

3

It is now straightforward to see that

w′′

1 = u′′1 = ε

for otherwise v1 and v0 occur more than once in v1h
′

1 and h′0v0, respectively.
From (6) follows now

w′

1 = g1 = u′1 .

Assume 1 < k ≤ min{i, j} and w′

` = u′`, for all 1 ≤ ` < k. Let us denote
both w′

` and u′` by v
′

`, for all 1 ≤ ` < k.

12



We show that w′

k = u′k. Consider

f4 = v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

kv0 .

If f4 is unbordered, then |u| < |w| − 1 since |f4| ≤ |w| and

|u| = |f4| − |v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2|+ |v1v
′

k−1v0v1 · · · v
′

1v0v1t
′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and w2 6= ε. Assume, f4 is bordered.
Then f4 has a shortest border h4 such that |v0v1| ≤ |h4|. Let h4 = v1g4v0.

If |v1w
′

kv0| < |h4| then there exists an ` < k such that

h4 = v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

`+1v0v1v
′′

` v0

where v′′` ≤ v′`. That implies
u′k = v′′`

since v0v1 does neither occur in v′′` nor in u′k. Now, consider

f5 = v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

kv0v1v
′

k−1v0v1 · · · v
′′

` v0 .

If f5 is unbordered, then |u| < |w| − 1 since |f4| < |f5|, see above. Assume,
f5 is bordered. Then f5 has a shortest border h5 such that

|h4| < |h5|

for otherwise h4 is not the shortest border of f4, since either h4 ≤ h5 or
h5 ≤ h4, and the latter implies that h4 is bordered, and hence, not minimal.
But now, we have a `′ < ` such that

h5 = v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

`′+1v0v1v
′′

`′v0

where v′′`′ ≤ v′`′ . We have |f4| < |f5| < |f6| where

f6 = v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

kv0v1v
′

k−1v0v1 · · · v
′′

`′v0 ,

which is either unbordered and |u| < |w|−1 since |f4| < |f5|, or it is bordered
with a shortest border h6, and we have |h4| < |h5| < |h6| and a factor f7,
such that |f4| < |f5| < |f6| < |f7|, and so on, until eventually an unbordered
factor is reached proving that |u| < |w| − 1.

Assume then that h4 ≤ v1w
′

kv0. We also have that h4 4 v1u
′

kv0 since v0v1

does not occur in w′

k. So, let w
′

kv0 = g4v0w
′′

k and v1u
′

k = u′′kv1g4.
Consider,

f8 = v0w
′′

kv1v
′

k−1v0v1 · · · v
′

1v0v1w2u
′

0v0v1u
′

jv0v1 · · · u
′

kv0v1 .
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If f8 is unbordered, then |u| < |w| − 1 since |f8| ≤ |w| and

|u| = |f8| − |v0w
′′

kv1v
′

k−1v0v1 · · · v
′

1v0v1w2|+ |v
′

k−1v0v1 · · · v
′

1v0v1t
′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and w2 6= ε. Assume, f8 is bordered.
Then f8 has a shortest border h8 such that v0v1 4 h8.

If |h8| > |v0w
′′

kv1| then the same argument as in the case |v1w
′

kv0| < |h4|
above shows that |u| < |w| − 1. If |h8| < |v0w

′′

kv1| then v0v1 occurs in w′

k;
a contradiction. Hence, we have h8 = v0w

′′

kv1 and

w′

kv0v1 = g1h8 and h8 4 u′kv0v1 . (9)

Consider,

f9 = v0v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2u
′

0v0v1u
′

jv0v1 · · · u
′

k+1v0u
′′

kv1 .

If f9 is unbordered, then |u| < |w| − 1 since |f9| ≤ |w| and

|u| = |f9| − |v0v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2|+ |g4v0v1v
′

k−1v0v1 · · · v
′

1v0v1t
′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and |g4| ≤ |w
′

k| and w2 6= ε. Assume, f9

is bordered. Then f9 has a shortest border h9 such that v0v1 ≤ h9. We have
h9 = v0u

′′

kv1 by the arguments from the previous paragraph. Moreover,

v0v1u
′

k = h9g1 and h9 ≤ v0v1w
′

k . (10)

Observe, that (9) and (10) imply that the number of occurrences of v1

and v0, respectively, is the same in w′

k and u′k since v0 and v1 do not overlap.
Now, let

h4 = v1g4v0 = h′′1v1h
′

1v0 = v1h
′

0v0h
′′

0

where v1 and v0 occur only once in v1h
′

1 and h′0v0, respectively.
Now, let

f ′

8 = v0h
′′

0w
′′

kv1v
′

k−1 · · · v0v1v
′

1v0v1w2.u
′

0v0v1u
′

j · · · v0v1u
′

kv0v1

and

f ′

9 = v0v1w
′

kv0v1v
′

k−1 · · · v0v1v
′

1v0v1w2.u
′

0v0v1u
′

j · · · v0v1u
′

k+1v0u
′′

1h
′′

1v1

with respective shortest borders h′8 and h′9 (which are both not empty, if
|u| ≥ |w| − 1; as in the case of f8 and f9). Analogously to the cases of f8 and
f9, we have

w′

kv0v1 = h′0h
′

8 and v0v1u
′

k = h′9h
′

1 .
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It is now straightforward to see that

h′8 = h′9 = v0v1

and
h4 = v0w

′

kv1 = v0u
′

kv1

and hence, w′

k = u′k. In this case, we denote both w′

k and u′k by v′k.
Now, we have

v̄ = v0v1w
′

ι · · · v0v1w
′

2v0v1w
′

1

= v0v1u
′

ι · · · v0v1u
′

2v0v1u
′

1

where ι = min{i, j}.
If i < j then

|w′

0| < |u
′

0v0v1u
′

j · · · v0v1u
′

i+1| (11)

since |w′

0| ≤ |u
′

0| by (5). Let

f11 = v1w2u
′

0v0v1u
′

j · · · v0v1u
′

i+1v̄v0 .

Then |w| < |f11| by (11), and hence, f11 is bordered. Let h11 = v1g11v0 be
the shortest border of f11. Recall, that w2 6= ε and either az 4 v1w2 or
v1w2 4 az. If |v1w2| < |az| then v1 necessarily occurs in z, and hence, it
overlaps with v0 (since bz ≤ v0v1); a contradiction. So, we have az 4 v1w2.
Surely, |h11| < |v1w2| (and so h11 ≤ v1w2) for otherwise az occurs in u which
contradicts our assumption that z is of maximum length. Let w2 = g11v0w5.
Note, that |v0w5| 6= |az| since az and v0 begin with different letters. We
have |az| < |v0w5| since otherwise v0 occurs in z, and hence, overlaps with
v1 which is a contradiction. Consider,

f12 = v0w5u
′

0v0v1u
′

j · · · v0v1u
′

i+1v̄v0v1 .

If f12 is unbordered, then |u| < |w| − 1 since |f12| ≤ |w| and

|u| = |f12| − |v0w5|+ |t
′|

and |az| < |v0w5| and |t
′| ≤ |z0| ≤ |z| < |bz| < |v0w5|. Assume, f12 is

bordered. Then f12 has a shortest border h12 = g12v0v1 with |az| < |h12|, for
otherwise az occurs in u. Let v0w5 = g12v0v1w6. But, now

w = w′

0v̄v0v1g12v0v1w6

where v0v1w6 4 w2, contradicting our assumption that v0v1 does not occur
in w2.
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If i > j then

w = w′

0v0v1w
′

i · · · v0v1w
′

j+1v̄v0v1w2 and u = u′0v̄v0v1t
′

and |w| ≥ |u|− |t′|+ |v0v1|. We have |u| < |w|−1 since |t′| ≤ |z0| < |v0v1|−1
by (3).

Assume i = j. Then

w = w′

0v̄v0v1w2 and u = u′0v̄v0v1t
′ .

Consider

f ′ = v1w2u
′

0v̄v0 .

If f ′ is bordered, then it has a shortest border h′ = v1g
′v0.

w u

a z b z r

u′0 v̄ v0 v1 t
′v0 v1 w2

g′ v0 v1 g
′

h′ h′

f ′

Recall, that w2 6= ε and either az 4 v1w2 or v1w2 4 az. If |v1w2| < |az| then
v1 occurs in z, and hence, overlaps with v0 since bz ≤ v0v1; a contradiction.
So, we have az 4 v1w2. Surely, |h′| < |v1w2| for otherwise az occurs in u

which contradicts our assumption. Let w2 = g′v0w4. Note, that |v0w4| 6= |az|
since az and v0 begin with different letters. We have |az| < |v0w4| since
otherwise v0 occurs in z, and hence, overlaps with v1 which is a contradiction.
Consider now,

f ′′ = v0w4u
′

0v̄v0v1 .

If f ′′ is unbordered, then it easily follows that |u| < |w| − 1 since we have
|t′| < |az| < |v0w4|.

w u

a z b z r

u′0 v̄ v0 v1 t
′v0 v1 g

′ v0 w4

h′′ h′′

f ′′g′′ v0 v1 g′′ v0 v1

If f ′′ is bordered, then it has a shortest border h′′ = g′′v0v1 with |az| < |h′′|,
for otherwise az occurs in u. Let v0w4 = g′′v0v1w5. But, now

w = w′

0v̄v0v1g
′g′′v0v1w5
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which contradicts our assumption that w = w′

0v̄v0v1w2 and v0v1 does not
occur in w2.

If f ′ is unbordered, then |f ′| ≤ |w|, and hence, |w′

0| ≥ |u
′

0|. But, we also
have |w′

0| ≤ |u
′

0|; see (5). That implies |w′

0| = |u
′

0|. Moreover, the factors w0

and bzv′ have both nonoverlaping occurrences in u′0v0v1 by (5). Therefore,
w′

0 = u′0. Now,

w = xaw7 and u = xbt′′

where w′

0v̄v0v1 ≤ x and a, b ∈ A and a 6= b and w7 4 w2 and t′′ 4 t′.
We have that xb occurs in w by Theorem 11. Since xb is not a prefix of w
and v0v1 does not overlap with itself, we have |xb| + |v0v1| ≤ |w|. From
|t′| ≤ |z0| < |v0v1| − 1 we get |u| < |w| − 1 and the claim follows.

Note, that the bound |u| < |w| − 1 on the length of a nontrivial Duval
extension wu of w is tight, as the example given in the introduction shows.
Theorem 2 also implies a new bound on the length of any word w such that
∂(w) = µ(w) must hold.

Corollary 3. If |w| ≥ 3µ(w)− 2 then ∂(w) = µ(w).

5 Conclusions

In this paper we have given a confirmative answer to a long standing con-
jecture [10] by proving that a Duval extension wu of w longer than 2|w| − 2
is trivial. This bound is thight and also gives a new bound on the relation
between the length of an arbitrary word w and its longest unbordered fac-
tors µ(w), namely that |w| ≥ 3µ(w)− 2 implies ∂(w) = µ(w) as conjectured
(more weakly) in [1]. We believe that the precise bound can be achieved with
methods similar to those presented in this paper.
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Discrete Math., 25(1):1–5, 1979.

[2] J. Berstel and D. Perrin. Theory of codes, volume 117 of Pure and
Applied Mathematics. Academic Press Inc., Orlando, FL, 1985.

[3] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762–772, October 1977.

17



[4] D. Breslauer, T. Jiang, and Z. Jiang. Rotations of periodic strings and
short superstrings. J. Algorithms, 24(2), 1997.

[5] P. Bylanski and D. G. W. Ingram. Digital transmission systems. IEE,
1980.

[6] Y. Césari and M. Vincent. Une caractérisation des mots périodiques. C.
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