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Abstract

A word is called unbordered, if it has no proper prefix which is also a suffix
of that word. Let µ(w) denote the length of the longest unbordered factor of
a word w. Let a word where the longest unbordered prefix is equal to µ(w)
be called Duval extension. A Duval extension is called trivial, if its longest
unbordered factor is of the length of the period of that Duval extension.

In 1982 it was shown by Duval that every Duval extension w longer than
3µ(w)−4 is trivial. We improve that bound to 5µ(w)/2−1 in this paper, and
with that, move closer to the bound 2µ(w) conjectured by Duval. Our proof
also contains a natural application of the Critical Factorization Theorem.
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1 Introduction

The periodicity and the borderedness of words are two subjects of basic in-
terest in the study (e.g., Chapter 8 in [10]) and application (e.g., [8]) of com-
binatorics on words. We investigate the relation between periodicity and
borders in this paper. In particular, we improve a result by Duval [4] which
relates the length of the longest unbordered factor of a word to the period
of that word.

Let us consider an arbitrary finite word w of length n. The period of w,
denoted by ∂(w), is the smallest positive integer p such that the ith letter
equals the (i+ p)th letter for all 1 ≤ i ≤ n− p. Let µ(w) denote the length
of the longest unbordered factor of w, where a word v is bordered, if it has
a proper prefix u, which is neither empty nor v itself, such that u is also
a suffix of v. Assume w has an unbordered prefix u of maximum length
µ(w), then w is called Duval extension of u, and w is called trivial Duval
extension if u is of length n.

In 1979 Ehrenfeucht and Silberger initiated a line of research [5, 1, 4]
exploring the relation between the length of the longest unbordered factor
of a word, µ(w), and its period, ∂(w). In 1982 these efforts culminated in
Duval’s result: If n ≥ 4µ(w) − 6 then ∂(w) = µ(w). However, it is believed
that ∂(w) = µ(w) holds for n ≥ 3µ(w) which follows if Duval’s conjecture
[4] holds true.

Conjecture 1 (Duval’s conjecture). If n ≥ 2µ(w) and w is a Duval ex-

tension, then ∂(w) = µ(w).

After that, no progress was recorded, to the best of our knowledge, for
20 years. However, the topic remained popular; see for example Prob-
lem 8.2.13 on page 308 in Chapter 8 of [10]. Only recently the theme was
independently picked up again by Mignosi and Zamboni [11] and us [7]. How-
ever, these papers investigate not Duval’s conjecture but rather its opposite,
that is: Which words admit only trivial Duval extensions? It is shown in [11]
that unbordered Sturmian words allow only trivial Duval extensions, with
other words, if an unbordered Sturmian word of length µ(w) is a prefix of w,
then ∂(w) = µ(w). That result was improved in [7] by showing that Lyndon
words allow only trivial Duval extensions and the fact that every unbordered
Sturmian word is a Lyndon word.

We show in this paper that, if w is a Duval extension and n ≥ 3µ(w)/2
then ∂(w) = µ(w). This is a first improvement of Duval’s result which is given
implicitly in [4], namely that, if w is a Duval extension and n ≥ 3µ(w) − 3
then ∂(w) = µ(w). Our result may lead to an eventual proof of Duval’s
conjecture, which is actually believed to hold even in the slightly stronger
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version where n ≥ 2µ(w) − 1 is required, and an ultimate bound for the
length of words that have ∂(w) 6= µ(w). Note, that the bound n ≥ 2µ(w)−1
is sharp by the following example.

Example 2. Let w = aibajbbajbai with 1 ≤ i < j. Then µ(w) = i+j+3 and

∂(w) = µ(w) + j − i = 2j + 3, and we have |w| = 2µ(w)− 2 = 2(i+ j + 2).

Section 4 presents the proof of our main result, Theorem 13, which uses
the notations from Section 2 and preliminary results from Section 3. We
conclude with Section 5.

2 Notations

In this section we define the notations of this paper. We refer to [9, 10] for
more basic and general definitions.

We consider a finite alphabet A of letters. Let A∗ denote the monoid of all
finite words over A including the empty word, denoted by ε. A nonempty
word u is called a border of a word w, if w = uv = v′u for some suitable
words v and v′. We call w bordered if it has a border that is shorter than
w, otherwise w is called unbordered. Note, that every bordered word w has
a minimum border u such that w = uvu, where clearly u is unbordered. Let
w = w(1)w(2) · · ·w(n) where w(i) is a letter, for every 1 ≤ i ≤ n. Then we
denote the length n of w by |w|. An integer 1 ≤ p ≤ n is a period of w, if
w(i) = w(i+p) for all 1 ≤ i ≤ n − p. The smallest period of w is called the
minimum period of w. Let w = uv. Then u is called a prefix of w, denoted by
u ≤ w, and v is called a suffix of w, denoted by v 4 w. Let u, v 6= ε. Then we
say that u overlaps v from the left or from the right, if there is a word w such
that |w| < |uv|, and u ≤ w and v 4 w, or v ≤ w and u 4 w, respectively.
We say that u overlaps v, if either v is a factor of u, or u overlaps v from the
left or right.

Let w be a nonempty word of length n. We call wu a Duval extension

of w, if every factor of wu longer than n is bordered. A Duval extension wu
of w is called trivial, if there exists a positive integer j such that u ≤ wj,
that is, the minimum period of wu is n.

Example 3. Let w = abaabb and u = aaba. Then

wu = abaabbaaba

is a nontrivial Duval extension of w where ∂(wu) = 7 and µ(wu) = |w| = 6.
Actually, wu is the longest possible nontrivial Duval extension of w. The

word

w = aababb
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is not a prefix of any nontrivial Duval extension wu where µ(wu) = |w| = 6.

Let an integer p with 1 ≤ p < |w| be called position or point in w. Intu-
itively, a position p denotes the place between w(p) and w(p+1) in w. A word
u 6= ε is called a repetition word at position p if w = xy with |x| = p and
there exist x′ and y′ such that u 4 x′x and u ≤ yy′. For a point p in w, let

∂(w, p) = min
{

|u|
∣

∣ u is a repetition word at p
}

denote the local period at point p in w. Note, that the repetition word
of length ∂(w, p) at point p is unbordered, and we have ∂(w, p) ≤ ∂(w).
A factorization w = uv, with u, v 6= ε and |u| = p, is called critical if
∂(w, p) = ∂(w), and, if this holds, then p is called critical point.

3 Preliminary Results

We state some auxiliary and well-known results in this section which will be
used to prove our main contribution, Theorem 13, in Section 4.

Lemma 4. Let zf = gzh where f, g 6= ε. Let az ′ be the maximum unbordered

prefix of az. If az does not occur in zf , then agz ′ is unbordered.

Proof. Assume agz′ is bordered, and let y be its shortest border. In par-
ticular, y is unbordered. If |z ′| ≥ |y| then y is a border of az′ which is
a contradiction. If |az′| = |y| or |az| < |y| then az occurs in zf which is
again a contradiction. If |az′| < |y| ≤ |az| then az′ is not maximum since y
is unbordered; a contradiction.

Lemma 5. Let w be an unbordered word and u ≤ w and v 4 w. Then uw
and wv are unbordered.

Proof. Obvious.

The critical factorization theorem (CFT) was discovered by Césari and
Vincent [2] and developed into its current form by Duval [3]. We refer to [6]
for a short proof of the CFT.

Theorem 6 (CFT). Every word w, with |w| ≥ 2, has at least one critical

factorization w = uv, with u, v 6= ε and |u| < ∂(w), i.e., ∂(w, |u|) = ∂(w).

Lemma 7. Let w = uv be unbordered and |u| be a critical position of w.
Then u and v do not overlap.
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Proof. Note, that ∂(w, |u|) = ∂(w) = |w| since w is unbordered. Let |u| ≤ |v|
without restriction of generality. Assume that u and v overlap. If u = u′s
and v = sv′, then ∂(w, |u|) ≤ |s| < |w|. If u = su′ and v = v′s, then w is
bordered with s. If v = sut then ∂(w, |u|) ≤ |su| < |w|.

Lemma 8. Let u0u1 be unbordered and |u0| be a critical position of u0u1.

Then for any word x, we have uixui+1, where the indices are modulo 2, is
either unbordered or has a minimum border g such that |g| ≥ |u0u1|.

Proof. Follows directly from Lemma 7.

The following Lemmas 9, 10 and 11 and Corollary 12 are given in [4]. Let
a0, a1 ∈ A, with a0 6= a1, and t0 ∈ A∗. Let the sequences (ai), (si), (s

′

i), (s
′′

i ),
and (ti), for i ≥ 1, be defined by

• ai = ai (mod 2), that is, ai = a0 or ai = a1 if i is even or odd, respectively;

• si such that aisi is the shortest border of aiti−1;

• s′i such that ai+1s
′

i is the longest unbordered prefix of ai+1si;

• s′′i such that s′is
′′

i = si;

• ti such that tis
′′

i = ti−1.

For any parameters of the above definition, we have the following.

Lemma 9. For any a0, a1, and t0 there exists an m ≥ 0 such that

|s1| < |s2| < · · · < |sm| = |tm−1| ≤ · · · ≤ |t1| ≤ |t0|

and sm = tm−1.

Lemma 10. Let z ≤ t0 such that a0z and a1z do not occur in t0. Let a0z0

and a1z1 be the longest unbordered prefixes of a0z and a1z, respectively. Then

1. if m = 1 then a0t0 is unbordered;

2. if m > 1 is odd, then a1sm is unbordered and |t0| ≤ |sm|+ |z0|;

3. if m > 1 is even, then a0sm is unbordered and |t0| ≤ |sm|+ |z1|.

Lemma 11. Let v be an unbordered factor of w of length µ(w). If v occurs

twice in w, then µ(w) = ∂(w).

Corollary 12. Let wu be a Duval extension of w. If w occurs twice in wu,
then wu is a trivial Duval extension.
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4 An Improved Bound for Duval Extensions

We present the main result of this paper. Note that the proof of Theorem 13
rests to a great extend on the application of the CFT by applying Lemma 8.

Theorem 13. Let wu be a nontrivial Duval extension of w. Then

|u| ≤
3

2
|w| − 1 .

Proof. Recall that every factor of wu which is longer than |w| is bordered
since wu is a Duval extension.

Let z be the longest suffix of w that occurs twice in zu. If z = ε then
a 4 w and u = bj, where a, b ∈ A and a 6= b and j ≥ 1, but now |u| < |w|
since abj is unbordered. So, z 6= ε. We have that z 6= w since wu is otherwise
trivial by Corollary 12. Let a, b ∈ A such that

w = w′az and u = u′bzr

and z occurs in zr only once, that is, bz matches the rightmost occurrence
of z in u. Note, that bz does not overlap az from the right, and therefore u′

exists, by Lemma 5. Naturally, a 6= b by the maximality of z, and w′ 6= ε,
otherwise azu′bz ≤ wu has either no border or w is bordered or az occurs in
zu; a contradiction in any case. Let a0 = a and a1 = b and t0 = zr, and let
z0 and z1 and the sequences (ai), (si), (s

′

i), (s
′′

i ), (ti), and the integer m be
defined as in Lemma 10. Let

t0 = smt
′ .

Consider azu′bz0. We have that az and azu′bz0 are both prefixes of a0zu,
and bz0 is a suffix of azu′bz0 and az does not occur in zu′bz0. From Lemma 4
it follows that azu′bz0 is unbordered, and hence,

|azu′bz0| ≤ |w| (1)

w u
a z b zu′ r

z0 z0

sm t′

Case: Suppose that m is even. Then asm (= amsm) is unbordered and
|t0| ≤ |sm|+ |z1| by Lemma 10. From (1) it follows that |z1| ≤ |z| ≤ |w| − 2.
If |sm| ≤ |z0|, then |azu| ≤ |w|+ |z1|, and hence, |u| ≤ |w|, since we have

|azu| = |azu′bz0| − |z0|+ |t0| ≤ |azu
′bz0| − |z0|+ |sm|+ |z1| .
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Suppose then that |sm| > |z0|. We have that asm is unbordered, and since
az0 is the longest unbordered prefix of az, we have az ≤ asm, and hence,
|z| ≤ |sm|. Now, the word azu′asm is unbordered or otherwise its shortest
border is longer than az, since no prefix of az is a suffix of asm, and az occurs
in u; a contradiction. So, |azu′asm| ≤ |w| and |u| < |w|, since |z1| ≤ |z|.

Case: Suppose that m is odd. Then bsm (= amsm) is unbordered and
|t0| ≤ |sm| + |z0| (see Lemma 10). If sm = ε. Then |t0| ≤ |z0| and t0 = z0,
since z0 ≤ t0, and hence, |azu| ≤ |w|, by (1). So, assume sm 6= ε. If
|sm| < |z|, then |u| < |w| since

|u| = |azu′bz0| − |bz0|+ |bt0| − |az|

and
|azu′bz0| ≤ |w| and |t0| ≤ |sm|+ |z0| .

So, assume |sm| ≥ |z|. Since |bsm| ≥ 2 there exists a critical point p in bsm

such that bsm = v0v1, where |v0| = p, by the CFT.
Consider wu′bz which is bordered and must have a shortest border longer

than z, otherwise w is bordered since we have z 4 w. So, bz occurs in w.
Note, that |az0| ≤ ∂(az) and that bz occurs left from az in w. If az and bz
do not overlap in w then |az0| ≤ |az| ≤ |w|/2. Also, if bz overlaps az from
the left, then |az0| ≤ ∂(az) ≤ |w|/2. It follows that

if |u| < |w|+ |z0| then |u| < 3|w|/2 . (2)

Let
w = w0bzw1

where bz occurs only once in w0bz, that is, we consider the leftmost occur-
rence of bz in w. Consider the factor

f = bzw1u
′bsm . (3)

w u
a z b zu′ r

z0 z0

w0b z w1 sm t′

v0 v1

gg
fw′

0 v0 v1

If f is unbordered then |f | ≤ |w|, and hence, |u| ≤ |w|− 2. Assume f is bor-
dered, and let g be its shortest border. If g ≤ bz then bsm is bordered which
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is a contradiction. If |bz| < |g| < |sm| then bz occurs in zr; a contradiction
as well. Hence, |bsm| ≤ |g|. Note, that also |g| < |bzw1| since az does not
occur in u. So, we have

w = w′

0bsmw2 = w′

0v0v1w2

where w0 ≤ w′

0 and w2 6= ε. Consider

f0 = v1w2u
′v0 .

w u
a z b zu′ rb z

w′

0 v0 v1 w2 v0 v1 t′

v1 v1g′ v0 v0g′

g0 g0

f0

If f0 is unbordered, then |f0| = |v1w2u
′v0| ≤ |w| and

|u| = |v1w2u
′v0| − |v0|+ |bt0| − |v1w2| ≤ |w|+ |z0| − |w2|

since |bt0| ≤ |bsm| + |z0| = |v0v1| + |z0|, and we have |u| < 3|w|/2 by (2).
Assume that f0 is bordered. Then its shortest border g0 is longer than |v0v1|
by Lemma 8. Let

g0 = v1g
′v0 .

Subcase: Assume that |g0| ≤ |v1w2|, and let w2 = g′v0w
′

2. Consider

f1 = v0w
′

2u
′v0v1 .

If f1 is unbordered, then |f1| ≤ |w| and |u| < |f1| + |t′|. We have
|u| < |w|+ |z0|, and hence, |u| < 3|w|/2 by (2).

w u
a z b zu′ r

w′

0 v0 v1 w2 x v0 v1 v0v0 x v1 t′

w′

2g′ v0
w′

2

g1 g1

f1

Assume now that g1 is the shortest border of f1. We have |g1| ≥ |v0v1|
by Lemma 8, and therefore v0v1 4 g1. If g1 ≤ v0w

′

2 then v0v1 has two
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nonoverlapping occurrences in w and is therefore at most half as long as w.
We have then

|u| ≤ |azu′bz0| − |az| − |bz0|+ |v0v1|+ |t
′|

and from |azu′bz0| ≤ |w| and |v0v1| ≤ |w|/2 and |t′| ≤ |z0| and (2) it follows
that |u| ≤ 3|w|/2− 3. So, assume v0w

′

2 ≤ g1. We have |az| > |v0w
′

2| since az
does not occur in u. Certainly, v0v1 occurs in u′. Indeed, it does not overlap
with az from the right by Lemma 5 since bz ≤ v0v1. Let

xv0v1 ≤ u′ .

Consider

f ′ = bzw1xv0v1 .

If f ′ is unbordered than we have two nonoverlapping occurrences of v0v1 in
a factor that is at most as long as |w| and |u| < 3|w|/2− 2.

w u

a z b t0u′

w′

0 g′ v0v0 v1
w′

2x v0 v1 u′′ v0 x
w′

2w0b z w1

f ′

Suppose, f ′ is bordered, then its shortest border is longer than v0v1 since
otherwise g is not the shortest border of f ; see (3). In fact, the shortest border
of f ′ is g since otherwise we have again two nonoverlapping occurrences
of v0v1 in a factor that is at most as long as |w| and |u| < 3|w|/2 − 2.
Moreover, |azx| > |gv0v1| otherwise az occurs in u (in the border of f).
Actually, |x| ≥ |gv0v1| since bz ≤ g and bz does not overlap w from the right
by Lemma 5. Let now x′bz ≤ xbz where bz occurs only once in x′bz. Then
the shortest border of wx′bz is at least as long as |w0bz| and at most as long
as |x′bz|. So, |w′

0| ≤ |x|. We have

w = w′

0v0v1g
′v0w

′

2 (4)

and

u = xv0v1u
′′v0w

′

2xbt0 . (5)

Moreover, v1g
′ 4 xv0v1u

′′v0w
′

2x by the border g0 of f0. Note, that

|g′| ≤ |u′′v0w
′

2x| (6)
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otherwise |g′| ≥ |v0v1u
′′v0w

′

2x| since v0 and v1 do not overlap by Lemma 7,
but then v0v1 has two nonoverlapping occurrences in w and |v0v1| ≤ |w|/2−2,
where the constant 2 comes from the fact that v0 has at least four nonover-
lapping occurrences in w, and |u| ≤ 3|w|/2− 3. Now,

|azxv0v1u
′′v0w

′

2xbz0| ≤ |w|

by (1) and (5), and
|azxu′′xbz0| ≤ |w

′

0g
′|

by (4) and |w′

0| ≤ |x|, and

|azbz0| ≤ |v0w
′

2|

by (6), and
|az| < |v0w

′

2|

and hence, az occurs in u; a contradiction.
Subcase: Assume that |g0| > |v1w2|. Then |v1w2| < |az| otherwise az

occurs in u; a contradiction. If |v0| < |bz|.

w u
b z b zu′ r

a z
w′

0 v0 v1 w2

v0 v1 t′

v1 v0g′

g0 g0

f0

Then bz overlaps with az, and we have

|v0v1w2| ≤ |bz|+ ∂(az)− 1

where ∂(az) ≤ |w|/2, and

|u| = |azu′bz0| − |bz0|+ |bt0| − |az|

and
|u| ≤ |w| − |bz0|+ |v0v1|+ |z0| − |az|

since |azu′bz0| ≤ |w| and |bt0| ≤ |v0v1|+ |z0|, and

|u| ≤ |w| − 1 + |bz|+
1

2
|w| − |az|

and hence, |u| ≤ 3|w|/2− 1. Assume now, bz ≤ v0.
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w u
a z b zu′ rb z

w′

0 v0 v1w2x v0 v1w2x v0 v1 t
′

g′ b z g′

g0 g0u′′

f0

We have |g′| ≥ |w2| otherwise bz overlaps az from the right, contradicting
Lemma 5. Let g′ = w2x. We have u′ = xv0u

′′v1g
′ where u′′ 6= ε since

otherwise az occurs in u for az 4 v0v1w2. We have wxbz ≤ wu since bz ≤ v0.
Consider the shortest border x0 of wxbz. Now, |x0| > |z| otherwise w is
bordered. We have that w0bz occurs in xbz since we have chosen w0 such
that it precedes the leftmost occurrence of bz. We have

w = w0v0v1w2 (7)

and

u = xv0u
′′v1w2xbt0 . (8)

Now,

|azxv0u
′′v1g

′bz0| ≤ |w|

by (1) and (8), and

|azxu′′g′bz0| ≤ |w0w2|

by (7), which is a contradiction since |w0| ≤ |x| and |w2| ≤ |g
′|.

5 Conclusions

We have lowered the bound of nontrivial Duval extentions from 3µ(w) − 4
in [4] to 5µ(w)/2−1 which brings us closer to the improved Duval’s conjecture
of 2µ(w)− 2. It should be noted that our result rests to a great part on the
CFT, which is a new application in this context, and might help in finding
a new approach to eventually solving the slightly improved version of Duval’s
conjecture by estimating a sharp bound for the length of words which contain
no unbordered factor of the length of of their period or longer.
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