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Abstract. We present a hybrid approach to program verification: a
higher-order logic, used as a specification language, and a human-driven
proof environment, with a process-algebraic engine to allow the use of
process simulation as an abstraction technique. The domain of appli-
cation is the validation of object code, and our intent is to adapt and
mix existing formalisms to make the verification of representative pro-
grams possible. In this paper, we describe the logic in question and an
underlying semantics given in terms of a process algebra.

1 Introduction

Software validation through formal verification has been a topic of much re-
search over the years, but widespread adoption of developed techniques is still
elusive. One may attribute this to many factors—two of them being the dif-
ficulty in performing the verification and the relevance of the formal proof to
actual trustworthiness of the software product.
Most of the techniques being developed have approached the problem by

incorporating the semantics of the high-level language of the original program,
proving a correspondence with the specification. However, this approach assumes
the correct implementation of an abstract program (the high-level programming
language) on some hardware. One can either rely on that implementation or
show that the translation of high-level code to machine code by the involved
compiler is sound. But, doing that is not trivial. Real compilers do not work
by incorporating so called correctness-preserving transformations, but by invok-
ing many optimising heuristics and practical but informal knowledge. One may
therefore question the relevance of the verification exercise to the correctness of
the actual code that is to be run. This does not invalidate the verification of
high-level programs, as many design errors can still be found and corrected.
We believe that there is scope for verifying the compiled code itself, which

relies only on the correctness of used hardware directly and no program code
transformations. This gives a better assurance about the overall system, which
is after all the object one would like to have confidence in. That approach is
called object code verification.
A specification language has to be fixed. We decided to use logical specifica-

tions, and as such higher-order logic. This decision distinguishes our approach



from others like Pavey and Winsborrow [9], who used a rather informal map-
ping of program code into MALPAS Intermediate Language, in mathematical
rigour and Yu [11], who used the quantifier free, first-order logic of Nqthm, in
expressiveness. Our decision was also influenced by the availability of automated
theorem provers for higher-order logic like HOL [2] and Isabelle/HOL [6, 8].

However, there are difficulties in the verification of programs written in a
low-level language. Such a language is, in a sense, further away from the specifi-
cation language because it has to deal with a more concrete machine, considering
registers, limited memory, and so on. There is a vast shift in granularity between
code and specification. This gap strongly suggests the application of abstraction
techniques on the data as well as control structure of a program.

The concept of simulation [3] and observational equivalence [5] in the frame-
work of process algebra gives us a well-developed tool for abstraction. We use
a variation of a traditional process algebra (Milner’s CCS [5]), which is called
ωCCS. In this setting—HOL and ωCCS—the verification effort would consist of
abstraction steps interspersed with interesting inference steps where correctness
properties are derived. So, one approach that can be used for structuring a ver-
ification task is to separate the inference steps from the abstraction steps, and
support each of them in an optimal manner.

In this paper, we describe a system which allows the use of both inference
in higher-order logic and abstraction in process algebra while still maintaining
consistency. The use of this formalism allows us to structure the verification task
as illustrated in Fig. 1. The left-hand side of the picture (grey arrows) is the way
we assume the software to be developed, i.e., starting from a specification a
program (in some high-level language) has been written, and the object code
was generated from that. Formalising the specification, we obtain an higher-
order formula. From the object code, by means of our tool, another higher-order
formula is constructed; we call this formula the representation of our program.
The usual process of formal verification (solid arrows in Fig. 1) is to try to infer
the validity of the formalised specification assuming the representation.

Our tool provides the instruments to perform such deductions. But it also
provides an abstraction mechanism based on ωCCS (right-hand side of Fig. 1):
translating a program representation into an ωCCS expression, we can refine it,
and we get as a result an abstracted ωCCS expression, we can then translate back
to higher-order logic, and this is another representation of the original program,
not equivalent to the original one, but preserving enough information so to ensure
that, if we are able to deduce the specification from it, then there is (a more
complex) derivation of the same specification from the original representation.

We will illustrate our approach by first introducing ωCCS, our process alge-
bra, and showing how we model abstraction in this system. We then describe
the logic used, which provides the syntax and a proof interface.

Our emphasis is on showing the correctness of the process algebraic formalism
with respect to the logical representation, so we illustrate the correspondence
between these two formalisms.
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Fig. 1. Verification integrating inference and abstraction.

Finally, we sketch a practical embodiment of this system as an extension to
the Isabelle/HOL theorem prover.
A particular assembly language has been fixed to allow the comparison of our

work with others in the field (e.g. [11]). We use the Motorola M68000 architecture
here.

2 An algebra for processes

In this section we give a detailed overview of ωCCS, a variant of the Calcu-
lus of Communicating Systems (CCS). The motivation for this variant is given
by explaining the main difficulty we have in using the standard CCS for our
verification endeavours, namely in the characterisation of divergence.

2.1 Basic notions

The CCS process algebra is an intuitive framework for describing processes. Our
extension is based on message passing CCS [5, pp. 53–56], which models actions
as objects capable of reading a value and co-actions as objects which are able to
send a value.
As in CCS, we assume as given two distinct sets, Actions and Values, which

are used to build processes, following the syntax in Fig. 2.
We refer to literature [3–5] for a detailed explanation of the intuitive and

formal meaning of process constructors. The only syntactical differences we in-
troduced with respect to CCS are:

– renaming involves values as well as actions;
– as in ACP [1], we have a sequential composition operator: P ; ; Q should
be read as “P then Q”, and it is the process which behaves like P until P
terminates, if ever, then it behaves like Q.



〈Process〉 ::= 〈Action〉 . 〈V alue −→ Process〉

| 〈Action〉(〈V alue〉) . 〈Process〉
| τ . 〈Process〉
|

∑
〈Process set〉

| 〈Process〉 | 〈Process〉
| µ 〈Process −→ Process〉
| 〈Process〉 \ 〈Action set〉
| 〈Process〉[〈(Action −→ Action)× (V alue −→ V alue)〉]
| 〈Process〉 ; ; 〈Process〉

Fig. 2. Syntax of ωCCS processes.

In the usual way, a transition relation is defined for ωCCS. The basic rules
are shown in Fig. 3.
Since we are interested in observing only visible actions, because they cor-

responds in our frame to the execution of instructions, we use the so called
observational transition relation:

P
α
=⇒ Q iff α 6= τ ∧ ∃P ′, Q′.P

τ∗

−→ P ′ ∧ P ′ α
−→ Q′ ∧Q′ τ∗

−→ Q .

The properties about these relations, not involving simulations, are the same
as for CCS.
In our implementation, we designed an Isabelle/HOL theory that, repre-

senting processes as a datatype and defining by co-induction [7] the transition
relations, give the possibility to prove all the lemmas and theorems concerning
these basic definitions. We proved most of them.

2.2 Simulation and divergence

As we said in the introduction, our goal is to use ωCCS to abstract over program
representations. Let us suppose that a program is represented by the process P ,
we say that another process Q is an abstraction over P , if it is able to behave
like P .
The process algebraic counterpart of this notion is simulation. Since we focus

our attention to visible actions, a good candidate for modeling our notion of
abstraction seems to be weak simulation [5]:

P 4 Q iff ∀β, P ′.P
β
−→ P ′ → ∃Q′.Q

β
=⇒ Q′ ∧ P ′

4 Q′ .

It is easy to show that 4 is a precongruence [5, 10] with respect to all op-
erators of ωCCS, with the exception of sequence. We will return to this point
later.
Unfortunately, our intuitive notion of behaviour for a program does not corre-

spond to the idea of behaviour embodied into the weak simulation. A behaviour,
for weak simulation, is a sequence of visible actions a process may perform, and



α . (λw.P (w))
α(v)
−→ P (v) α(v) . P

α(v)
−→ P τ . P

τ
−→ P

P
β
−→ Q

∑
({P} ∪ Ξ)

β
−→ Q

P
β
−→ Q

P |R
β
−→ Q |R

P
β
−→ Q

R | P
β
−→ R |Q

P
α(v)
−→ P

′
Q

α(v)
−→ Q

′

P |Q
τ
−→ P

′ |Q′

P (µ (λw.P (w)))
β
−→ Q

µ (λw.P (w))
β
−→ Q

P
α(v)
−→ Q α 6∈ ∆

P \∆
α(v)
−→ Q \∆

P
α(v)
−→ Q α 6∈ ∆

P \∆
α(v)
−→ Q \∆

P
τ
−→ Q

P \∆
τ
−→ Q \∆

P
α(v)
−→ Q

P [Φ]
(Φ(α))(Φ(v))
−→ Q[Φ]

P
α(v)
−→ Q

P [Φ]
(Φ(α))(Φ(v))
−→ Q[Φ]

P
τ
−→ Q

P [Φ]
τ
−→ Q[Φ]

P
β
−→ Q

P ; ;R
β
−→ Q ; ;R

Where: v, w are variables ranging over values,
X is a variable ranging over processes,
P , Q, R are processes,
α is any action except τ ,
β is of the form α(v), α(v) or τ ,
∆ is any set of actions,
Ξ is any set of processes.

Moreover, we know that
∑
∅ is the termination process, that

∑
{P} ≡ P , that α(v) ≡

α(v), and that
∑
∅ ; ; P ≡ P . Since in renaming, Φ denotes a pair of functions 〈φ, θ〉,

(Φ(α))(Φ(v)) ≡ (φ(α))(θ(v)) .

Fig. 3. The basic transition relation for ωCCS.



a way to read P 4 Q is that “for every sequence of visible actions P can perform,
the same sequence is a possible behaviour for Q”.
Suppose now that P represent a program which is in an unrecoverable dead-

lock situation: it continues to request a service which is permanently unavailable.
From the observer point of view, there is no visible action, but he is able to recog-
nise that the program is “doing nothing”, but it has not terminated its execution.
Suppose Q ≡

∑
∅, that means Q is the program which reached happily its last

instruction, so it has finished its job with no troubles. Again, from the observer
point of view, Q is unable to perform any visible action, but, this time, the
observer knows that Q has terminated its execution.
But according to the definition of weak simulation, P 4 Q, so we have lost

an essential piece of information regarding the behaviour of P : in general, it
is easy to figure out examples which show that situations like starvation and
deadlocks are not preserved by weak simulation. Obviously, there is no hope to
use weak simulation as an abstraction tool in a formal verification task, since,
most of the time, the verifier must check exactly for the kind of faults which are
not preserved by the 4 relation.
From a formal point of view, we want to preserve divergence:

diverge(P ) iff ∃f.f(0) = P ∧ ∀n.f(n)
τ
−→ f(n+ 1) .

A process is said to be divergent if it is able to produce an infinite trace
which is composed only by τ actions.
Our main abstraction tool, we call it div-simulation is defined as:

P
div

4 Q iff P 4 Q ∧ (diverge(P )→ diverge(Q)) .

The main properties regarding this notion are shown in Fig. 4.
Compared to other results in literature (e.g., [1, 10]), our notion is more

primitive and not so attractive from the mathematical point of view, since div-
simulation is not a precongruence: the rule

P
div

4 Q

P ; ;R
div

4 Q ; ;R

(1)

does not hold; if P ≡
∑
∅, Q ≡ α(v) .

∑
∅, R ≡ γ(v) .

∑
∅, where α and γ

are different actions, it follows that P 4 Q and ¬diverge(P ), so P
div

4 Q, but

P ; ;R
γ(v)
−→

∑
∅ while Q ; ;R 6

γ(v)
−→ X, for any process X, so P ; ;R 64 Q ; ;R.

In this respect, it becomes evident that even weak simulation is not a precon-
gruence when a sequencing operator is added to the process algebra. This result
is not new, since it is already discussed in [5, Section 9.2], but the solution pro-
posed there, i.e., using a special action which denotes termination, is impractical
in most verification tasks, since it forces the verifier to use different represen-
tations for subsections of code. As an example, if we want to prove correctness
of a loop, the algebraic representation must produce a “termination” action as



P
div

4 Q

τ . P
div

4 τ . Q

P
div

4 Q

α(v) . P
div

4 α(v) . Q

∀w.P (w)
div

4 Q(w)

α . P
div

4 α . Q

P
div

4 Q

∑
Ξ ∪ {P}

div

4

∑
Ξ ∪ {Q}

P
div

4 P
′

Q
div

4 Q
′

P |Q
div

4 P
′ |Q′

P
div

4 Q

P \∆
div

4 Q \∆

P
div

4 Q

P [Φ]
div

4 Q[Φ]

P (µ P )
div

4 Q(µ Q)

µ P
div

4 µ Q

P
div

4 Q

R ; ; P
div

4 R ; ;Q

Fig. 4. Basic properties of div-simulation.

the last step of the loop computation; if this loop is part of a bigger code, we
cannot simply immerse it by using the sequence operator, so we are forced to
use something like the Before operator [5, p. 173]. This is not satisfactory since
we must know in advance where we plan to divide the code for verificational
purposes, and this is not true in real practice.

Anyway, our notion is powerful enough to give us the right instrument to
perform abstraction. In fact a restricted version of (1) holds:

P
div

4 Q Q
div

4 P

P ; ;R
div

4 Q ; ;R

Most of the time, this rule is just what we need for our purposes. We also note
that if P is finitary, i.e., if P always reduces to

∑
∅, then P ; ;Q can be converted

to an equivalent process R, where sequencing is substituted with prefixing and
summations.

Our implementation of ωCCS in Isabelle/HOL provides the notion of diver-
gence, of weak simulation and of div-simulation, along with all lemmas presented
in this section, plus many others. The coding of these notions is completely stan-
dard, using the coinduction package [7], and all proofs are carried on following
the guidelines traced in [5].



2.3 An illustrating example

The main motivation for introducing a process algebra into our verification
methodology is to cope with the interrupt system of a machine, or more gener-
ally, to cope with processes running in parallel. This is necessary when we want
to verify programs for a “real-world” environment.

Let us have a look at interrupts triggered by the program itself, like for
instance operating system calls (see Fig. 5).

Program Operating System

A

syscall 7
B

case interrupt of

1: I1
. . .

7: I7
. . .

esac

return

Fig. 5. Software interrupts

This kind of interaction of a program with its environment does not neces-
sarily need a concurrent model. It could simply be the sequential composition
of the program parts, A and B, with the interrupt routine, I7, which would be
the way one would treat such a system following [11].

Program
def
= A ; ; I7 ; ;B

Nevertheless, we prefer the following variant:

Prog
def
= ((A ; ; syscall(7) . rti . (λState.B)) |OS) \ {syscall, rti}

OS
def
= syscall . λi.Ii ; ; rti(State) . OS

Though it looks more complicated, this new approach allows us to handle exter-
nal interrupts, that is, events that can interrupt the program at any possible time
and change the state of the machine. Such a system could hardly be modeled
with the first approach above.

The whole system, i.e. the program and its run-time environment, would then
look like this:

System
def
= (Prog | (Proc(InitState) | Env)) \ {rd, wr, int, ret, rdint, wrint}



where InitState is the initial state. The process components are defined below.

Prog
def
= rd . (λState.(wr(State′) . P rog))

Proc(State)
def
= rd(State) . P roc(State) + wr . (λState′.P roc(State′))

+ int . Proc′(State)

Proc′(State)
def
= rdint(State) . P roc′(State) + wrint . (λState′.P roc′(State′))

+ ret . Proc(State)

Env
def
= int . Env + rdint . (λState.(wrint(State′) . Env))

+ ret . Env

Every component of the system can now be subject to abstraction as long as
its interaction with the system is not modified. The environment, for instance,
could be altered in a way that the machine state is not changed by an interrupt
routine.

System′ def
= (Prog | (Proc′′(InitState) | Env′)) \ {rd, wr, int, ret}

Where we have:

Proc′′(State)
def
= rd(State) . P roc′′(State) + wr . (λState′.P roc′′(State′))

+ int . ret . Proc′′(State)

Env′
def
= int . Env′ + ret . Env′

Since

(Proc(InitState) | Env)
div

4 (Proc′′(InitState) | Env′)

and obviously Prog
div

4 Prog, we have System
div

4 System′. It is easy to see that
our (simple) model can engage into starvation of the program, which is the case
when interrupts occur continuously. That is why the following would be a wrong
abstraction.

System′′ def
= (Prog | (Proc′′′(InitState) | Env′′)) \ {rd, wr}

Proc′′′(State)
def
= rd(State) . P roc′′′(State) + wr . (λState′.P roc′′′(State′))

Env′′
def
=

∑
∅

Because that abstraction does not preserve divergence.

(Proc(InitState) | Env)
div

64 (Proc′′′(InitState) | Env′′)

A termination result for Prog in System′′ does not ensure us that Prog actually
terminates in System, too.



3 Program representation in higher-order logic and

ωCCS

The standard syntax used for higher-order logic is used here. However, when
working with Isabelle/HOL the syntax is, of course, more “ASCII like”, but the
translation is straightforward and should pose no problems in understanding (see
also [8]).
Terms are defined in a way that allows arithmetic on integer numbers. We

also define functions to model registers (D0, . . . , D7, A0, . . . A7), the program
counter (PC), and memory (Mem). These functions take a term, representing
time, to a term, representing a value. (Mem also takes a term, representing an
address, as argument.) Flags, i.e., elements of the condition code register, are
represented by predicates (C, N, V, X, Z) taking a term, that represents time,
as argument. See Fig. 6 and Fig. 7.

〈Term〉 ::= 1 | 2 | 3 | . . .
| 〈V ariable〉
| 〈Term〉+ 〈Term〉
| 〈Term〉 − 〈Term〉
| 〈Term〉 × 〈Term〉
| 〈Term〉 ÷ 〈Term〉

| 〈Term〉〈Term〉

| 〈Term〉mod 〈Term〉
| PC(〈Term〉)
| D0(〈Term〉) | D1(〈Term〉) | . . . | D7(〈Term〉)
| A0(〈Term〉) | A1(〈Term〉) | . . . | A7(〈Term〉)
| Mem〈Term〉(〈Term〉)

Fig. 6. Term syntax.

〈Formula〉 ::= true | false
| C(〈Term〉) | N(〈Term〉) | V(〈Term〉) | X(〈Term〉) | Z(〈Term〉)
| 〈Term〉 = 〈Term〉 | 〈Term〉 < 〈Term〉 | 〈Term〉 ≤ 〈Term〉
| ¬〈Formula〉 | 〈Formula〉 ∧ 〈Formula〉 | 〈Formula〉 ∨ 〈Formula〉
| 〈Formula〉 → 〈Formula〉 | 〈Formula〉 ↔ 〈Formula〉
| ∃〈V ariable〉.〈Formula〉 | ∀〈V ariable〉.〈Formula〉

Fig. 7. Formula syntax.

The meaning of the introduced functions is as one would expect and is best
illustrated with an example program.



The instructions of a small program in assembly language, shown in Fig. 8, il-
lustrate the program representation in higher-order logic. Every line in the table
is numbered and shows one assembly instruction followed by its representation
as a logical formula. This representation has already been manipulated: if one
knows the specification, it is straightforward to cut irrelevant references to mem-
ory/registers from the representation. Since this procedure has been automated
in our system and it does not affect the verification validity (but improves per-
formance and readability), we assume this simplification being done implicitly.

1: MOVE ]0, D1 PC(t) = 1 ∧ PC(t+ 1) = 2 ∧D0(t+ 1) = D0(t) ∧D1(t+ 1) = 0
2: MOVE D1, D2 PC(t) = 2 ∧ PC(t+ 1) = 3 ∧D0(t+ 1) = D0(t)

∧D1(t+ 1) = D1(t) ∧D2(t+ 1) = D1(t)
3: MULT D2, D2 PC(t) = 3 ∧ PC(t+ 1) = 4 ∧D0(t+ 1) = D0(t)

∧D1(t+ 1) = D1(t) ∧D2(t+ 1) = D2(t)
2

4: CMP D2, D0 PC(t) = 4 ∧ PC(t+ 1) = 5 ∧ (N(t+ 1)↔ D2(t) ≤ D0(t))
∧D0(t+ 1) = D0(t) ∧D1(t+ 1) = D1(t)

5: BGT 8 PC(t) = 5 ∧ (¬N(t)→ PC(t+ 1) = 6) ∧ (N(t)→ PC(t+ 1) = 8)
∧D0(t+ 1) = D0(t) ∧D1(t+ 1) = D1(t)

6: ADD ]1, D1 PC(t) = 6 ∧ PC(t+ 1) = 7 ∧D0(t+ 1) = D0(t)
∧D1(t+ 1) = 1 + D1(t)

7: BRA 2 PC(t) = 7 ∧ PC(t+ 1) = 2 ∧D0(t+ 1) = D0(t)
∧D1(t+ 1) = D1(t)

8: SUB ]1, D1 PC(t) = 8 ∧ PC(t+ 1) = 9 ∧D0(t+ 1) = D0(t)
∧D1(t+ 1) = D1(t)− 1

Fig. 8. A small assembly program and its logical representation.

Every instruction depends on a parameter t which represents the time flow.
The actual program representation in higher-order logic is

∀t.i1(t) ∨ i2(t) ∨ i3(t) ∨ i4(t) ∨ i5(t) ∨ i6(t) ∨ i7(t) ∨ i8(t)

where ij(t) stands for the representing formula of instruction j instantiated with
t.

This program should calculate the integer square root of a natural number.
It terminates with 9 as last program counter value, the argument of the compu-
tation is given in register D0 and the result stands in register D1. So the program
ought to satisfy the following specification:

∃t.PC(t) = 9 ∧ (D1(t))
2 ≤ D0(t) ∧D0(t) ≤ (D1(t) + 1)

2. (2)

The same program is represented in ωCCS. Due to space limitations that
representation is sketched. Nonetheless, some definitions are necessary. Let

S = {PC, D0, . . . , D7, A0, . . . , A7, Memi, C, N, V, X, Z} 0 ≤ i < 232



be a set of constants that represent the obvious machine parts. Let a state be
of type S → IN. Let a tuple of type S × IN denote the update of some memory
cell/register. Let overwrite be a function that takes a state and a set of tuples to
a new state. For instance, let State(PC) = 1 and State(D0) = 8, then State′ =
overwrite(State, {(PC, 2)}) with now State′(PC) = 2 and State′(D0) = 8.
See Fig. 9 for a representation of the first three assembly lines.

1: MOVE ]0, D1 Instr1
def
= rd . λState.wr(overwrite

(State, {(D1, 0), (C, 0), (N, 0), (V, 0), (Z, 1)})) . Instr2

2: MOVE D1, D2 Instr2
def
= rd . λState.wr(overwrite

(State, {(D2, State(D1)), (C, 0), . . . })) . Instr3

3: MULT D2, D2 Instr3
def
= rd . λState.wr(overwrite

(State, {(D2, State(D2)
2), (C, 0), . . . })) . Instr4

...

Fig. 9. A small assembly program and its ωCCS representation.

The next section illustrates why we took the effort to represent the same
program in two theories.

4 Abstraction

As mentioned in Section 1, verification of object code programs is characterised
by starting with a program full of many details and eliminating the details which
do not affect the properties of interest. By abstraction we mean forgetting about
details and focusing on the essentials.
More precisely, if P is a process that represents a program, we can say that

the process Q is an abstraction of P if:

– except for “irrelevant” details, Q is able to behave like P .
– the intrinsic properties of P are preserved.

The “irrelevant” details mentioned above have to do with the precise opera-
tion of the machine, while an example of an intrinsic property we may want to
preserve is the divergence character.

4.1 Abstraction in ωCCS

Recalling from Section 2.2, if P
div

4 Q holds, we know that every behaviour
satisfying P must satisfy Q and Q cannot be non-divergent if P is divergent.
Let us suppose that P is a process which encodes a program, and let us try

to understand what Q is.



Every behaviour of the process P represents, in a formal sense, a computation
of the program represented by P . Since Q simulates P , Q is able to perform every
computation P may perform. But div-simulation preserves divergence so Q can
be divergent even if P is not, and Q must be divergent whenever P is. With
this interpretation, the strict nature of programs we chose to model is preserved
and Q is a fair model for the program encoded in P , but Q is, in principle,
more general since it can exhibit more behaviours than P . So Q, by our intuitive
definition of abstraction, is an abstract version of P .
This kind of view can be considered a structural abstraction, something that,

enlarging the set of possible behaviours, simplifies the structure of the program.
It is possible to gain data abstraction: if P is a process representing a pro-

gram, and P
div

4 P [Φ] for a proper Φ, we can use the renaming function to hide,
in a fair way, useless variables and parts of the state. Again, having a simulation
between P and P [Φ], we have an abstraction by our intuitive definition.
There are other ways to generate abstractions: essentially, given P , if we

have an operation Γ depending on a set ∆ of parameters, then Γ∆(P ) is an

abstraction over P if P
div

4 Γ∆(P ). Of course, the interesting part is to discover
appropriate Γ s in such a way as to generate useful abstractions for P . We have
no definite answers in this direction, but it is promising to know that not only

is Q an abstraction for P if P
div

4 Q, but there are no abstractions for P which
do not div-simulate P itself. In other words, our framework is rich enough to
model every abstraction (in the sense introduced above), but it is not trivial to
discriminate useful from useless ones.
From the practical point of view, it is difficult to use div-simulation to perform

abstractions. The simplest example we have proved correct with our tool is
illustrated in Section 2.3.
As explained in that example, the main reason why we are interested in

div-simulation, is to abstract over the whole system, especially for dealing with
situations where external interrupts, non predictable faults or asynchronous I/O
are involved.
The way to perform abstraction is clear from the example: from the concrete

representation P we produce, by means of some reasoning, usually in an heuristic
way, an abstract representation Q. Our implementation of ωCCS aids the proof

that Q is an abstraction with respect to P , that means, P
div

4 Q. When the
proof is “simple” the ωCCS theory is able to prove that goal by using Isabelle’s
simplifier, while, in more complex cases, the user has to drive to prover in order
to establish the truth of the statement.

4.2 Abstraction in higher-order logic

Our abstraction paradigm could be modeled completely using div-simulation,
but this is impractical for two reasons:

– some kinds of abstractions are simple, and used very often;



– the most natural way to conceive some abstractions is quite different from a
process algebraic simulation.

For these reasons we enrich our framework in higher-order logic with tools
in order to perform common abstractions directly in the logical level (opposing
to use the ωCCS representation).

The first tool we provide takes the higher-order logic representation of an
object code program along with the specification we want to prove and simplifies
the representation itself by removing references to memory and registers which
do not appear in the specification. The algorithm to do this simplification uses
information about the flow of control of the program to choose what to remove
and what to preserve.

In Fig. 8 is shown the result of this simplification with respect to the specifi-
cation (2). Just as an example, the complete representation of instruction 7 will
look like:

PC(t) = 7 ∧ PC(t+ 1) = 2 ∧D0(t+ 1) = D0(t) ∧D1(t+ 1) = D1(t)
∧D2(t+ 1) = D2(t) ∧D3(t+ 1) = D3(t) ∧D4(t+ 1) = D4(t)
∧D5(t+ 1) = D5(t) ∧D6(t+ 1) = D6(t) ∧D7(t+ 1) = D7(t)
∧A0(t+ 1) = A0(t) ∧A1(t+ 1) = A1(t) ∧A2(t+ 1) = A2(t)
∧A3(t+ 1) = A3(t) ∧A4(t+ 1) = A4(t) ∧A5(t+ 1) = A5(t)
∧A6(t+ 1) = A6(t) ∧A7(t+ 1) = A7(t) ∧ (∀x.Memx(t+ 1) = Memx(t))
∧ (N(t+ 1) = N(t)) ∧ (Z(t+ 1) = Z(t)) ∧ (V(t+ 1) = V(t))
∧ (C(t+ 1) = C(t)) ∧ (X(t+ 1) = X(t)) ,

while the simplified version is

PC(t) = 7 ∧ PC(t+ 1) = 2 ∧D0(t+ 1) = D0(t) ∧D1(t+ 1) = D1(t) .

Even if this kind of abstraction is sound with respect to div-simulation, we
think it is more natural and efficient to provide it as an independent tool; of
course, the same simplification is operated over the ωCCS representation.

Another important kind of abstraction which is described more naturally in
higher-order logic than in ωCCS is the mapping between abstract data types
and their concrete representations.

In this case we use a datatype declaration of Isabelle [7] with an explicit
instance for the representation function.

datatype string = null | char of (byte,string )

rep(null)(t) = 0
rep(char(x, s))(t) = n→ Memn(t) = x ∧ n 6= 0

∧ (s = null ∨ (s 6= null ∧ rep(s)(t) = n+ 1))

Fig. 10. Abstraction over data type: C strings.



Informally, it means that we define explicitly what is the map from the ab-
stract data type to its concrete representation which is the one manipulated by
the object code. As an example, Fig. 10 shows how a string (in the standard C
representation) is coded following these guidelines. In this way we can describe
by means of the data type operations what is performed by the program.

Of course, our main abstraction mechanism is div-simulation and, since the
ωCCS theory is coded into higher-order logic, it is immediately available when
it is necessary to perform abstraction steps which are beyond the capabilities of
our other tools.

There is a simple map from ωCCS processes to logical formulas which enable
us to translate the abstracted process into an abstract logical representation for
the program. This map is essentially a formulation of semantics for ωCCS into
higher-order logic and its definition is standard [5].

5 Summary and further work

A verification formalism based on two different frameworks — a higher-order
logic and a process algebra — has been discussed in this paper. We have shown
that a very general form of abstraction (simulation) can be coded into a logic
using a process algebra. Since abstraction is a crucial issue in applying formal
methods in practice, this method is a significant step towards a feasible object
code verification of representative programs.

When emphasising the practical motivation of this paper, we have also in-
troduced ωCCS as process algebra which is a slightly modified version of CCS.
Our modifications allow a better application of this concept without sacrificing
too many characteristics of CCS.

The results in this paper are direct spin-offs of an ongoing project concerned
with the development and use of a system that applies formal methods to “real
world” program verification. We use higher-order logic as specification language
and proof environment, interfacing to the user, and ωCCS as machinery behind,
to handle and modify the object of interest (in our case, programs in assembly
language). So, two powerful techniques are applied to particular parts of the
verification process. The fusion of these two frameworks is the key part of a
successful application and has now been presented by this paper.

Moreover, the results of this work have actually been implemented and used.
The ωCCS formalism has been coded within the Isabelle/HOL prover. Isabelle
allows us to specify new object logics within the prover and immediately use
these logics to drive new proofs. We have therefore been able to prove the
correspondence between HOL and the lemmas regarding ωCCS, in particular
div-simulation, within the prover. This gives us a useful framework to apply
abstraction for practical purposes.

We are now in the process of using this proof infra-structure to aid in the
verification of object code programs of significant size. The example suite we use
is the GNU C Library compiled for the Motorola 68000 architecture.



This paper presents a general idea of “implementing” abstraction into a
higher-order logic. We feel that we have developed an interesting verification
methodology, which is practical and which builds on results of more than one
theoretical framework. Our result encourages the application of this approach to
other logics, as well.
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