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Abstract

Weinbaum [Proc. AMS, 109(3):615–619, 1990] showed that for each
letter a in a primitive word w, there exists a conjugate w′ = uv of w
such that both u and v are uniquely positioned in the cyclic word w
such that u begins and ends with a and v neither begins nor ends
with a. We give a generalization of this result using iterative methods.

1 Introduction

Let A be an alphabet and let A∗ be the set of all words over A, where ε
denotes the empty word. A word w ∈ A∗ is called primitive, if it is not
a proper power of another word, i.e., w = xk implies k = 1. A word w′ is
a conjugate of w, if there are words u and v such that w = uv and w′ = vu,
where u or v can be empty. A word f is a (proper) factor of w if w = ufv
(and uv 6= ε). A factor f is uniquely positioned in (the cyclic word) w if
there exists a unique conjugate w′ of w such that w′ = fv.

Weinbaum showed in [2] that for each letter a occurring in a primitive
word w, there exists a conjugate w′ = uv of w such that both u and v
are uniquely positioned in w, and u begins and ends with a and v neither
begins nor ends with a. In this paper, we give a short proof of Weinbaum’s
result and generalize it. In Theorem 4 we consider suitable pairs of factors
of primitive words instead of letters.

In Section 2 we prove the existence of Weinbaum factorizations by em-
ploying Lyndon words w.r.t. specific lexicographic orders. In Section 3 we
consider Weinbaum factorizations without orderings of the alphabets. The
main result of the paper states that a Weinbaum factorization of a word w
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can be found be iterating a given relation W at most log2(n) many times
for n = |w|. In Section 4 we consider the Fibonacci words as an example
of the theory. Finally, in Section 5 the effect of Weinbaum factorizations
on long words is discussed.

We end this section with some more notation. The length of a word
w ∈ A∗ is denoted by |w|. Let w = uv for some, possibly empty, words u
and v. Then u is called a prefix of w, denoted by u ≤p w, and v is called
a suffix of w, denoted by v ≤s w. We say that f occurs in w if f is a factor
of w.

We say that a word f is a cyclic factor of w if f ≤p w′ for some conjugate
w′ of w. Note that f is a cyclic factor of w if and only if |f | ≤ |w| and f is
a factor of w2.

Two words u and v are said to intersect in (the cyclic word) w, if w3

has a factor xyz such that u = xy and v = yz or u = yz and v = xy, where
x, y and z are nonempty words, or if u is a factor of v or v is a factor of
u. A word f is called a marker if f does not intersect nontrivially with
itself in w. We notice that if f is a marker in w with f ≤p w, then w has
a unique factorization of the form w = fw1fw2 . . . fwk for some, possibly
empty, words wi with fwif 6∈ (A∗ \ {ε})f(A∗ \ {ε}).

Omitted proofs from this extended abstract will appear in the full version
of this paper.

2 Weinbaum Factorizations

Let w be a primitive word with a conjugate w′, and let f be a word. Then
w′ = uv is a Weinbaum factorization of w for f if u and v are uniquely
positioned in w, and u ∈ fA∗ ∩ A∗f and v 6∈ fA∗ ∪ A∗f . This coincides
with Weinbaum’s original definition in the case where f is a single letter.
However, we propose a stronger, more symmetric definition of a factorization
for two factors f and g such that w′ = uv is called a Weinbaum factorization
of w for f and g if u and v are uniquely positioned in w, and u ∈ (fA∗ ∩
A∗f) \ (gA∗ ∪ A∗g) and v ∈ (gA∗ ∩ A∗g) \ (fA∗ ∪ A∗f). Note that we may
have the cases where u = f or v = g.

Remark 1. The following holds.

(fA∗ ∩ A∗f) \ (gA∗ ∪ A∗g) 6= ∅ ⇐⇒ g 6≤p f and g 6≤s f .

Indeed, if there exists a word that begins with f but does not begin with g,
then g 6≤p f . Similarly, for the suffix. On the other hand, if (fA∗ ∩ A∗f) \
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(gA∗ ∪ A∗g) = ∅ then every word that begins with f also begins with g,
and hence, g ≤p f . The suffix case is symmetric.

It follows from Remark 1 that by our definition of Weinbaum factoriza-
tion for two factors f and g we have that f 6≤p g, f 6≤s g, g 6≤p f , and g 6≤s f
are necessary conditions.

As shown in Theorem 4, every primitive word w admits a Weinbaum
factorization uv not just for a letter a with u ∈ aA∗∩A∗a and v 6∈ aA∗∩A∗a,
but we can require that for suitably chosen factors f and g of w we have
u ∈ fA∗ ∩ A∗f and v ∈ gA∗∩A∗g. Corollary 5 demonstrates that Theorem 4
is indeed a generalization of Weinbaum’s theorem.

Example 2. Consider the word

w = bbaabacbaacbaaaca

over the alphabet A = {a, b, c}. Then w has a Weinbaum factorization for
f = ab and g = ac. Indeed, w has the conjugate, obtained by shifting the
suffix a to the beginning,

w′ = abbaabacbaacbaaac = fbafgbagbaag ,

where both fbaf and gbagbaag are uniquely positioned in w.

Let E be a total order on the alphabet A. Then E can be extended to
a lexicographic order on A∗ by setting u E v if either u ≤p v or xa ≤p u and
xb ≤p v where a 6= b and a E b and x ∈ A∗. A primitive word that is the
minimum among its conjugates w.r.t. E is called the Lyndon word w.r.t. E.
Note that if w is a Lyndon word then it is unbordered: w 6∈ fA∗ ∩ A∗f for
any nonempty word f . Indeed, assume the opposite and let f be of minimum
length such that w ∈ fA∗∩A∗f . Clearly, w = fxf , but then w = fxf E ffx
implies xf E fx, and hence, xff E fxf = w; a contradiction.

Lemma 3. Let w = uv be a Lyndon word w.r.t. a lexicographic order E

such that v is the maximum suffix of w w.r.t. E. Then both u and v are
uniquely positioned in w. Moreover, if v′ is a cyclic factor of w such that
v E v′, then v ≤p v′.

Proof. Assume that v′ is a cyclic factor of w such that v E v′, and let
w2 = xv′y where |x| < |w|. Suppose first that w = xv′y′. Since v is the
maximum suffix and v′y′ E v E v′, necessarily y′ = ε, and thus u = x and
v = v′.

Let then w = xv′1 = v′2y where v′ = v′1v
′
2 with v′2 6= ε so that w2 = xv′y.

Assume that v′1 6= v. If |v′1| > |v| then v E v′ implies v E v′1 contradicting
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the maximality of v. If |v′1| < |v| then v′1 E v E v′1v
′
2 (= v′) implies that

v = v′1v2 for some v2 6= ε with v2 E v′2. Thus v2 6≤p v′2, for otherwise
w ∈ v2A

∗∩A∗v2 would imply that w is not a Lyndon word. But now, v2uv′1
is a conjugate of w and v2uv′1 E v′2y = w contradicts the assumption that w
is a Lyndon word. Consequently, v E v′ implies that v ≤p v′ and v is unique
positioned in w.

Finally, consider the occurrences of the prefix u. Let w2 = xuy where
0 < |x| ≤ |w|. Let w2 = xuv′y′ where |v′| = |v|. We have v E v′ because
uv′ is a conjugate of w and w is a Lyndon word. Now v′ is a cyclic factor of
w, and hence, by the above, v = v′ and v′ is uniquely positioned in w. This
means that w = x and therefore also u is uniquely positioned in w.

For the statement of Theorem 4 we introduce the notion of complemen-
tary marker. Let w be a primitive word and f be a factor in w such that there
is a conjugate w′ of w with w′ = u1v1u2v2 · · ·ukvk where ui ∈ fA∗ ∩ A∗f
for all i and f is not a factor of vi for any 1 ≤ i ≤ k. A factor g of w is
a complementary marker for f in w, if

(1) g does not intersect in w with any ui,

(2) f and g do not intersect in w, and

(3) g is not a proper factor of any vi.

Note that if g is a complementary marker of f , then g is also a marker, and
g = vi for at least one index i. For every primitive word w with |w| > 1,
there is a factor f for which a complementary marker exists in w. Indeed,
choose any f ∈ A and ui ∈ f∗. Then g can be chosen to be a word of
maximum length between two occurrences of the letter f .

In the following proof, we let z̄ denote a letter corresponding to a word z.

Theorem 4. Let w be a primitive word and let f be a factor of w such
that a complementary marker g exists for f in w. Then w has a Weinbaum
factorization for f and g.

Proof. Since we consider conjugates of words, and g is a marker, we may
assume that w = gz1gz2 · · · gzk where k ≥ 1 such that zi ∈ fA∗ ∩A∗f and g
is not a factor of any zi. Let B = {ḡ, z̄i | i = 1, 2, . . . , k} be a new alphabet
corresponding to the words g and zi. We may assume that x = ḡz̄1ḡz̄2 · · · ḡz̄k

is a Lyndon word w.r.t. a lexicographic order E on B∗ such that ḡ is the
minimum in B and if zi occurs in zj , then z̄i E z̄j for all 1 ≤ i, j ≤ k.

Let t is the maximum suffix of x w.r.t E, say x = st. Then s =
ḡz̄1 · · · ḡz̄m−1ḡ and t = z̄mḡ · · · z̄k−1ḡz̄k, where z̄m is the maximum element
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w.r.t. E. By Lemma 3, the prefix s is uniquely positioned in x, and hence
also the corresponding prefix v = gz1 · · · gzm−1g of w is uniquely positioned
in w, since the factor g serves as a marker. Also, v ∈ gA∗ ∩ A∗g.

Again by Lemma 3, the word t = z̄mḡ · · · z̄k−1ḡz̄k is uniquely positioned
in x, but now it is not so immediate that the position of u = zmg · · · zk−1gzk

is unique in w. The factor zm corresponding to the maximum z̄m serves as
a marker, and thus there is a cyclic factor u′ in w with u′ = zmg · · · zk−1gzℓ

where zk ≤p zℓ. But then t E z̄mḡ · · · z̄k−1ḡz̄ℓ. By Lemma 3, this implies
z̄k = z̄ℓ, and so u = u′ and x = sz̄mḡ · · · z̄k−1ḡz̄ℓ. This means w = vu and
u is uniquely positioned in w. Finally, we obtain from zm, zk ∈ fA∗ ∩ A∗f
that also u ∈ fA∗ ∩ A∗f .

The following corollary is a slightly generalized version of Weinbaum’s
original theorem.

Corollary 5. Let w be a primitive word and am be a cyclic factor of w for
some m ≥ 1. Then w has a Weinbaum factorization for am.

Proof. Since w is primitive, there is a conjugate w′ = an1v1a
n2v2 · · · ankvk

of w such that ni ≥ m, am does not occur in vi and vi 6∈ aA∗ ∪A∗a. Hence,
there exists a complementary marker g of am in w. The claim follows from
Theorem 4.

3 An Iterative Construction

It was shown in the previous section that Weinbaum factorizations can be
constructed directly by a mapping from A to a new alphabet B and taking
the maximum suffix of a Lyndon word w.r.t. some lexicographic order on
B∗. The choice of the lexicographic order is crucial there. In this section we
consider Weinbaum factorizations from a different point of view. We do not
require orderings of the alphabets here. The main result of this section is
Theorem 11 which shows that a Weinbaum factorization of a word w can be
found be iterating a special relation W (as defined below) at most log2(n)
many times where n = |w|.

In the following, let w be a fixed primitive word. Let f be a proper
factor of w. We define the set G(f) of factors of w such that g ∈ G(f) if
g is a cyclic factor of w that is preceded and followed by f and g does not
intersect with f . More precisely

G(f) = {g | g 6= ε, fgf is a factor of w2 and f occurs only

as a prefix and suffix in fgf} .
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Clearly |fg| ≤ |w| for all g ∈ G(f) by the property required from the
factor f .

Example 6. The set G(f) can be empty even for short factors f . For
instance, consider w = (aab)kaaaba with k ≥ 2, and f = aabaa. Here each
factor fgf has a third occurrence of f .

We define the subset W (f) of the set of factors of w as follows

W (f) = {g ∈ G(f) | g does not occur in any other element of G(f),

and g does not intersect with f in w} .

A word f is a Weinbaum factor of w if W (f) 6= ∅. Note that a Weinbaum
factor is not necessarily a marker (and vice versa).

Example 7. Let w = abababb. Then f = aba is not a marker in w but
W (f) = {bb}. Now, ab is a marker in w but G(ab) = {b} and W (ab) = ∅.

Let us consider some properties of W (f). We say that a word g is
clipped by f in w if for all conjugates w′ of w where g ≤p w′ it follows that
w′ ∈ gfA∗ ∩ A∗f .

Lemma 8. Let f be a Weinbaum factor of w. Then we have:

1. Each g ∈ W (f) is clipped by f in w.

2. If g ∈ W (f) then G(g) 6= ∅.

3. If g ∈ W (f) then W (g) ⊆ fA∗ ∩ A∗f .

4. W 2n(f) ⊆ fA∗ ∩ A∗f for all n ≥ 1.

5. W 2n−1(f) ∩ (fA∗ ∪ A∗f) = ∅ for all n ≥ 1.

Lemma 9. Let f be a Weinbaum factor of w. Then each g ∈ W (f) is
a marker and a Weinbaum factor of w.

Lemma 10. Let f be a marker in w. Then for each g ∈ W (f), either
W (g) = {f} or W (g) ⊆ fA∗f .

For the construction of a Weinbaum factorization we iterate the opera-
tion W on a given factor f of w. We are not interested in the set of the
solutions but only in a single factorization. Let therefore W be an arbi-
trary choice function on the set of Weinbaum factors of w that selects some
element from W (f), that is, W (f) = g for some g ∈ W (f).
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It follows from Lemma 9, and from the fact that there are only finitely
many factors of w, that for every Weinbaum factor f of w exists an n such
that Wn(f) = W k(f) for some k < n. The following theorem elaborates on
this observation and gives our main result about Weinbaum factorizations.

Theorem 11. Let w be a primitive word of length m, and let f be a marker.
There exists an integer n ≤ log2(m)/2 such that W 2i(f) = W 2i−2(f) for all
i ≥ n. Moreover, W 2n(f)W 2n−1(f) is a Weinbaum factorization of w for
f and W (f).

4 An Example Related to Fibonacci Words

The following example provides a sequence of words with a large number of
iterations of W in order to find a Weinbaum factorization. This example
also gives an interesting connection to the Fibonacci words.

Consider the following sequence {fi}i≥0 of words over the binary alpha-
bet {a, b}:

f0 = ε, f1 = a, f2 = b, and fi+1 = fi−1fi−2fi−1 (i ≥ 2) .

We have for example f3 = aa, f4 = bab, f5 = aabaa, and so forth. Let

wn = fnfn−1 .

For example w1 = a, w2 = ba, w3 = aab, w4 = babaa, and so on. We
will show in the following that we need O(log |wn|) many iterations of W to
obtain a Weinbaum factorization of wn for a.

Let {Fi}i≥1 where

F0 = 1, F1 = 1, and Fi+1 = Fi + Fi−1 (i ≥ 1)

denote the Fibonacci numbers. We have |wn| = Fn. We also observe that
{fi}i≥0 is similar to the set {hi}i≥1 of Fibonacci words defined by

h1 = b, h2 = a, and hi+1 = hihi−1 (i ≥ 2)

where we have f2i = bh•
2i and f2i−1 = ah•

2i−1, for all i ≥ 1, where x• denotes
x without its last letter.

Let us start with some observations about {fi}i≥0.

Lemma 12. The following holds for all n ≥ 2 and i ≤ n.

1. fn−2fn−3 · · · f0 ≤p fn ,
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2. fi ≤p fn ⇐⇒ i ≡ n (mod 2) ,

3. |fn| = |fn−2fn−1| and fn 6= fn−2fn−1 .

The next lemma shows that every fi in wn with i + 1 < n is a marker.

Lemma 13. fi does not intersect itself in fn for all n > i.

The next two lemmas show that G(fi) = {fi−1, fi+1} for all i + 1 < n.

Lemma 14. fi does not occur in fi+1.

Lemma 15. If figfi occurs in fn such that fi is not a factor of g, then we
have g ∈ {ε, fi−1, fi+1}.

Consider now wn for some fixed n. Proposition 16 follows straightfor-
wardly from Lemma 15.

Proposition 16. W (fi) = {fi+1}, for all 1 ≤ i < n, and W (fn) = {fn−1}.

Accordingly W is defined by W (fi) = fi+1 and W (fn) = fn−1, and
hence, wn = Wn−1(a)Wn−2(a). We have

|wn| =

[

φn

√
5

]

where φ = (1 +
√

5)/2 is the golden ratio and [x] denotes the nearest in-
teger of x. Hence, we need O(log |wn|) many steps to reach a Weinbaum
factorization of wn for a.

5 Weinbaum Factorizations for Long Factors

In this section we investigate some cases for which a factor f a word w does
or does not admit a Weinbaum factorization.

Proposition 17. Let f ∈ A∗, a ∈ A and |A| ≥ 2. Let m be the maximum
exponent such that am occurs in f . Then w = fan admits a Weinbaum
factorization for f if and only if f 6∈ aA∗ ∪ A∗a and n > m

The following proposition is well-known to follow from the Fine-Wilf
Theorem; see for example [1].

Proposition 18. Let f ∈ A∗ be a nonempty word. Then there is at most
one letter a in A such that fa is not primitive.
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Weinbaum’s theorem states that every primitive word w admits a Wein-
baum factorization for all letters a that occur in w. Moreover, we have seen
in Corollary 5 that this is true even for all am, with m ≥ 0, that occur in
w. However, the next observation follows straightforwardly from Proposi-
tions 17 and 18 and shows that this is the best we can expect.

Observation 19. Let f ∈ A∗ be a nonempty word where the letters a1, . . . , ak

occur for k ≥ 2. Then at least k−1 of the words fai are primitive, but none
of them admits a Weinbaum factorization for f .

By definition, Weinbaum factorizations for given words f and g can exist
only if (fA∗ ∩ A∗f) \ (gA∗ ∪ A∗g) 6= ∅ and (gA∗ ∩ A∗g) \ (fA∗ ∪ A∗f) 6= ∅.
In the following we call a pair (f, g) satisfying these conditions a Weinbaum
candidate for short. For all Weinbaum candidates there exist Weinbaum
factorizations. In fact this is not a rare event at all, they exist in all long
enough random words. This is the gist of the next proposition.

Proposition 20. Let k, m ≥ 1 be constants. Denote by Pr(n, k, m) the
probability that a word w of length n (under the uniform distribution) is
primitive and that it admits for all Weinbaum candidates (f, g) with |fg| ≤
m at least k different Weinbaum factorizations for f and g. Then Pr(n, k, m)
converges exponentially fast to 1 if n tends to infinity.
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