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Abstract

Weinbaum [Proc. AMS, 109(3):615-619, 1990] showed that for each
letter a in a primitive word w, there exists a conjugate w’ = uv of w
such that both u and v are uniquely positioned in the cyclic word w
such that u begins and ends with a and v neither begins nor ends
with a. We give a generalization of this result using iterative methods.

1 Introduction

Let A be an alphabet and let A* be the set of all words over A, where ¢
denotes the empty word. A word w € A* is called primitive, if it is not
a proper power of another word, i.e., w = z¥ implies k = 1. A word w’ is
a conjugate of w, if there are words u and v such that w = uwv and v’ = vu,
where u or v can be empty. A word f is a (proper) factor of w if w = ufv
(and uv # €). A factor f is uniquely positioned in (the cyclic word) w if
there exists a unique conjugate w’ of w such that w’' = fv.

Weinbaum showed in [2] that for each letter a occurring in a primitive
word w, there exists a conjugate w’ = wv of w such that both v and v
are uniquely positioned in w, and u begins and ends with a and v neither
begins nor ends with a. In this paper, we give a short proof of Weinbaum’s
result and generalize it. In Theorem 4 we consider suitable pairs of factors
of primitive words instead of letters.

In Section 2 we prove the existence of Weinbaum factorizations by em-
ploying Lyndon words w.r.t. specific lexicographic orders. In Section 3 we
consider Weinbaum factorizations without orderings of the alphabets. The
main result of the paper states that a Weinbaum factorization of a word w
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can be found be iterating a given relation W at most log,(n) many times
for n = |w|. In Section 4 we consider the Fibonacci words as an example
of the theory. Finally, in Section 5 the effect of Weinbaum factorizations
on long words is discussed.

We end this section with some more notation. The length of a word
w € A* is denoted by |w|. Let w = uwv for some, possibly empty, words u
and v. Then u is called a prefiz of w, denoted by u <, w, and v is called
a suffiz of w, denoted by v <g w. We say that f occurs in w if f is a factor
of w.

We say that a word f is a cyclic factor of w if f <, w’ for some conjugate
w’ of w. Note that f is a cyclic factor of w if and only if |f| < |w| and f is
a factor of w?.

Two words u and v are said to intersect in (the cyclic word) w, if w?
has a factor zyz such that u = xy and v = yz or u = yz and v = xy, where
z,y and z are nonempty words, or if u is a factor of v or v is a factor of
u. A word f is called a marker if f does not intersect nontrivially with
itself in w. We notice that if f is a marker in w with f <, w, then w has
a unique factorization of the form w = fw; fws ... fwy for some, possibly
empty, words w; with fw;f & (A*\ {e})f(A*\ {e}).

Omitted proofs from this extended abstract will appear in the full version
of this paper.

2 Weinbaum Factorizations

Let w be a primitive word with a conjugate w’, and let f be a word. Then
w' = uv is a Weinbaum factorization of w for f if u and v are uniquely
positioned in w, and u € fA*N A*f and v & fA* U A*f. This coincides
with Weinbaum’s original definition in the case where f is a single letter.
However, we propose a stronger, more symmetric definition of a factorization
for two factors f and g such that w’ = wv is called a Weinbaum factorization
of w for f and g if v and v are uniquely positioned in w, and v € (fA* N
A*f)\ (gA* U A*g) and v € (gA* N A*g) \ (fA* U A*f). Note that we may
have the cases where u = f or v =g.

Remark 1. The following holds.

(JA"NA )\ (gA"UAg) #0 <= g%, fand g & f .

Indeed, if there exists a word that begins with f but does not begin with g,
then g £, f. Similarly, for the suffix. On the other hand, if (fA* N A*f) \



(gA* U A*g) = @ then every word that begins with f also begins with g,
and hence, g <, f. The suffix case is symmetric.

It follows from Remark 1 that by our definition of Weinbaum factoriza-
tion for two factors f and g we have that f £, g, f £s 9,9 £p f,and g s f
are necessary conditions.

As shown in Theorem 4, every primitive word w admits a Weinbaum
factorization uv not just for a letter a with u € aA*NA*a and v € aA*NA*a,
but we can require that for suitably chosen factors f and g of w we have
u€e fA*NA*fandv € gA*NA*g. Corollary 5 demonstrates that Theorem 4
is indeed a generalization of Weinbaum’s theorem.

Example 2. Consider the word
w = bbaabacbaacbaaaca

over the alphabet A = {a,b,c}. Then w has a Weinbaum factorization for
f = ab and g = ac. Indeed, w has the conjugate, obtained by shifting the
suffix a to the beginning,

w' = abbaabacbaacbaaac = fbafgbagbaag,

where both fbaf and gbagbaag are uniquely positioned in w. O

Let < be a total order on the alphabet A. Then < can be extended to
a lexzicographic order on A* by setting u < v if either u <, v or za <, v and
xb <, v where a # b and a < b and x € A*. A primitive word that is the
minimum among its conjugates w.r.t. < is called the Lyndon word w.r.t. <.
Note that if w is a Lyndon word then it is unbordered: w ¢ fA* N A*f for
any nonempty word f. Indeed, assume the opposite and let f be of minimum
length such that w € fA*NA*f. Clearly, w = faf, but thenw = faf < ffx
implies xf < fz, and hence, zff < fxf = w; a contradiction.

Lemma 3. Let w = uv be a Lyndon word w.r.t. a lexicographic order <
such that v is the mazimum suffiz of w w.r.t. <. Then both u and v are
uniquely positioned in w. Moreover, if v' is a cyclic factor of w such that
v <, then v <, v'.
Proof. Assume that v’ is a cyclic factor of w such that v < ¢/, and let
w? = xv'y where |z| < |w|. Suppose first that w = zv'y’. Since v is the
maximum suffix and vy’ < v < v, necessarily 3’ = ¢, and thus u = x and
v="u.

Let then w = zv] = vhy where v = v]v} with v} # ¢ so that w? = zv'y.
Assume that v} # v. If [v]] > |v| then v < ¢' implies v < v} contradicting



the maximality of v. If [v}| < |v| then v] < v < v{v) (= v') implies that
v = vjvy for some vy # € with vg < vy, Thus vy £, v, for otherwise
w € vg A* N A*vy would imply that w is not a Lyndon word. But now, vouv}
is a conjugate of w and vouv| < vhy = w contradicts the assumption that w
is a Lyndon word. Consequently, v < ¢’ implies that v <, v" and v is unique
positioned in w.

Finally, consider the occurrences of the prefix u. Let w? = zuy where
0 < |z| < |w|. Let w? = zuv'y’ where [v/| = |v|. We have v < v’ because
uv’ is a conjugate of w and w is a Lyndon word. Now v’ is a cyclic factor of
w, and hence, by the above, v = v' and v’ is uniquely positioned in w. This
means that w = x and therefore also u is uniquely positioned in w. O

For the statement of Theorem 4 we introduce the notion of complemen-
tary marker. Let w be a primitive word and f be a factor in w such that there
is a conjugate w’ of w with w' = ujviugvs - - - upv, where u; € fA* N A*f
for all 4 and f is not a factor of v; for any 1 < i < k. A factor g of w is
a complementary marker for f in w, if

(1) g does not intersect in w with any wu;,
(2) f and g do not intersect in w, and
(3) g is not a proper factor of any v;.

Note that if g is a complementary marker of f, then g is also a marker, and
g = v; for at least one index i. For every primitive word w with |w| > 1,
there is a factor f for which a complementary marker exists in w. Indeed,
choose any f € A and u; € f*. Then g can be chosen to be a word of
maximum length between two occurrences of the letter f.

In the following proof, we let zZ denote a letter corresponding to a word z.

Theorem 4. Let w be a primitive word and let f be a factor of w such
that a complementary marker g exists for f in w. Then w has a Weinbaum
factorization for f and g.

Proof. Since we consider conjugates of words, and ¢ is a marker, we may
assume that w = gz19zo - - - gz where k > 1 such that z; € fA*NA*f and ¢
is not a factor of any z;. Let B={g,z; | i =1,2,...,k} be a new alphabet
corresponding to the words g and z;. We may assume that x = gz1922 - - - g2
is a Lyndon word w.r.t. a lexicographic order < on B* such that g is the
minimum in B and if z; occurs in z;, then z; < z; for all 1 <4,5 < k.

Let t is the maximum suffix of z w.r.t <, say x = st. Then s =
gZ1- - GZm—1g and t = Z,g - - - 2192, where Z,, is the maximum element



w.r.t. <. By Lemma 3, the prefix s is uniquely positioned in z, and hence
also the corresponding prefix v = gz1 - - - gz;m—19 of w is uniquely positioned
in w, since the factor g serves as a marker. Also, v € gA* N A*g.

Again by Lemma 3, the word ¢t = Z,,g - - - Zr_1gZk is uniquely positioned
in , but now it is not so immediate that the position of u = 2,9 - - 2192k
is unique in w. The factor z,, corresponding to the maximum Zz,, serves as
a marker, and thus there is a cyclic factor v/ in w with v’ = 2,9+ 2p_192¢
where 2, <, 2. But then t < %,,g---Z,-19%. By Lemma 3, this implies
Zr = Zp, and so u = v/ and * = 8%, - - ZL—1GZ. This means w = vu and
u is uniquely positioned in w. Finally, we obtain from z,,,z; € fA* N A*f
that also u € fA*NA*f. O

The following corollary is a slightly generalized version of Weinbaum’s
original theorem.

Corollary 5. Let w be a primitive word and a™ be a cyclic factor of w for
some m > 1. Then w has a Weinbaum factorization for a™.

Proof. Since w is primitive, there is a conjugate w’ = a™via"2vy - - - a™k vy,
of w such that n; > m, a™ does not occur in v; and v; € aA* U A*a. Hence,
there exists a complementary marker g of ' in w. The claim follows from
Theorem 4. O

3 An Iterative Construction

It was shown in the previous section that Weinbaum factorizations can be
constructed directly by a mapping from A to a new alphabet B and taking
the maximum suffix of a Lyndon word w.r.t. some lexicographic order on
B*. The choice of the lexicographic order is crucial there. In this section we
consider Weinbaum factorizations from a different point of view. We do not
require orderings of the alphabets here. The main result of this section is
Theorem 11 which shows that a Weinbaum factorization of a word w can be
found be iterating a special relation W (as defined below) at most logs(n)
many times where n = |w].

In the following, let w be a fixed primitive word. Let f be a proper
factor of w. We define the set G(f) of factors of w such that g € G(f) if
g is a cyclic factor of w that is preceded and followed by f and g does not
intersect with f. More precisely

G(f)={g|g+#e, fgfisa factor of w? and f occurs only
as a prefix and suffix in fgf}.



Clearly |fg] < |w| for all ¢ € G(f) by the property required from the
factor f.

Example 6. The set G(f) can be empty even for short factors f. For
instance, consider w = (aab)*aaaba with k > 2, and f = aabaa. Here each
factor fgf has a third occurrence of f. O

We define the subset W (f) of the set of factors of w as follows

W(f)={g9 € G(f) | g does not occur in any other element of G(f),

and g does not intersect with f in w}.

A word f is a Weinbaum factor of w if W(f) # @. Note that a Weinbaum
factor is not necessarily a marker (and vice versa).

Example 7. Let w = abababb. Then f = aba is not a marker in w but
W(f) = {bb}. Now, ab is a marker in w but G(ab) = {b} and W (ab) = @.

Let us consider some properties of W(f). We say that a word g is
clipped by f in w if for all conjugates w’ of w where g <, w’ it follows that
w e gfA* N A*f.

Lemma 8. Let f be a Weinbaum factor of w. Then we have:

~

. Each g € W(§) is clipped by f in w.

2. If g € W(f) then G(g) # 2.

3. If g€ W(f) then W(g) C fA* N A*f.

4. W(f) C fA* N A*F for alln > 1.

5. W2=L(f) N (FA*UA*f) =@ for alln > 1.

Lemma 9. Let f be a Weinbaum factor of w. Then each g € W(f) is
a marker and a Weinbaum factor of w.

Lemma 10. Let f be a marker in w. Then for each g € W(f), either
Wig) ={f} or W(g) C fFA"f.

For the construction of a Weinbaum factorization we iterate the opera-
tion W on a given factor f of w. We are not interested in the set of the
solutions but only in a single factorization. Let therefore W be an arbi-
trary choice function on the set of Weinbaum factors of w that selects some
element from W (f), that is, W (f) = g for some g € W (f).



It follows from Lemma 9, and from the fact that there are only finitely
many factors of w, that for every Weinbaum factor f of w exists an n such
that W™ (f) = WF(f) for some k < n. The following theorem elaborates on
this observation and gives our main result about Weinbaum factorizations.

Theorem 11. Let w be a primitive word of length m, and let f be a marker.
There exists an integer n < logy(m)/2 such that W2'(f) = W2 72(f) for all
i > n. Moreover, W?"(f)W?"~L(f) is a Weinbaum factorization of w for
f and W(f).

4 An Example Related to Fibonacci Words

The following example provides a sequence of words with a large number of
iterations of W in order to find a Weinbaum factorization. This example
also gives an interesting connection to the Fibonacci words.

Consider the following sequence {f;}i>o of words over the binary alpha-
bet {a,b}:

fo=¢e, fi=a, fo=0b and fiy1= ficificafic1 (02>2).

We have for example f3 = aa, f1 = bab, f5 = aabaa, and so forth. Let

Wy = fnfn1-

For example wy, = a, we = ba, wy = aab, wy = babaa, and so on. We
will show in the following that we need O(log |wy|) many iterations of W to
obtain a Weinbaum factorization of w,, for a.

Let {Fi}izl where

Fo=1, F=1 and Fu=FK+F. (i>1)

denote the Fibonacci numbers. We have |w,| = F,. We also observe that
{fi}i>o is similar to the set {h;};>1 of Fibonacci words defined by

hl = b, hg = a, and hi+1 = hihi—l (Z > 2)

where we have fo; = bh3; and fa;—1 = ahj,_;, for all « > 1, where z*® denotes
r without its last letter.
Let us start with some observations about { f;}i>o.

Lemma 12. The following holds for alln > 2 and i < n.

1. fn—2fn—3 o 'fO Sp fn ’



2. fi <p fn &= i=mn (mod 2),

3. | ful = | fn—2fn-1| and fr # frn2fa-1.

The next lemma shows that every f; in w,, with ¢ + 1 < n is a marker.
Lemma 13. f; does not intersect itself in f, for all n > 1.

The next two lemmas show that G(f;) = {fi—1, fix1} for all i +1 < n.
Lemma 14. f; does not occur in fiy1.

Lemma 15. If f;qf; occurs in f, such that f; is not a factor of g, then we
have g € {e, fi-1, fi+1}-

Consider now w,, for some fixed n. Proposition 16 follows straightfor-
wardly from Lemma 15.

Proposition 16. W(f;) = {fit1}, for all1 <i <n, and W(f,) = {fa-1}-

Accordingly W is defined by W(f;) = fir1 and W(f,) = fa_1, and
hence, w, = W (a)W" 2(a). We have

(4]

where ¢ = (1 4 /5)/2 is the golden ratio and [z] denotes the nearest in-
teger of x. Hence, we need O(log|w,|) many steps to reach a Weinbaum
factorization of w, for a.

5 Weinbaum Factorizations for Long Factors

In this section we investigate some cases for which a factor f a word w does
or does not admit a Weinbaum factorization.

Proposition 17. Let f € A*, a € A and |A| > 2. Let m be the mazimum
exponent such that a™ occurs in f. Then w = fa™ admits a Weinbaum
factorization for f if and only if f € aA* U A*a and n > m

The following proposition is well-known to follow from the Fine-Wilf
Theorem; see for example [1].

Proposition 18. Let f € A* be a nonempty word. Then there is at most
one letter a in A such that fa is not primitive.



Weinbaum’s theorem states that every primitive word w admits a Wein-
baum factorization for all letters a that occur in w. Moreover, we have seen
in Corollary 5 that this is true even for all a™, with m > 0, that occur in
w. However, the next observation follows straightforwardly from Proposi-
tions 17 and 18 and shows that this is the best we can expect.

Observation 19. Let f € A* be a nonempty word where the letters aq, . .., ay
occur for k > 2. Then at least k—1 of the words fa; are primitive, but none
of them admits a Weinbaum factorization for f.

By definition, Weinbaum factorizations for given words f and g can exist
only if (fA*NA*f)\ (gA* U A*g) # () and (gA* N A*g) \ (fA* U A*f) # 0.
In the following we call a pair (f, g) satisfying these conditions a Weinbaum
candidate for short. For all Weinbaum candidates there exist Weinbaum
factorizations. In fact this is not a rare event at all, they exist in all long
enough random words. This is the gist of the next proposition.

Proposition 20. Let k,m > 1 be constants. Denote by Pr(n,k,m) the
probability that a word w of length n (under the uniform distribution) is
primitive and that it admits for all Weinbaum candidates (f,g) with |fg| <
m at least k different Weinbaum factorizations for f and g. Then Pr(n, k,m)
converges exponentially fast to 1 if n tends to infinity.
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