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Abstract

A word v = wu is a (nontrivial) Duval extension of the unbordered
word w, if (u is not a prefix of v and) w is an unbordered factor of v
of maximum length. A survey of the state of the art of research on Duval
extensions is given in this paper.

1 Introduction

A survey about the research on the relationship between the length of a word
and its unbordered factors is given in this paper. This line of research was
introduced by Ehrenfeucht and Silberger [3] and Assous and Pouzet [1] in 1979.
It was carried further and culminated in a strong conjecture by Duval [2] in 1982.
Only recently this conjecture was proved in [6].

We will give a historical overview on this line of research, its main results
and conjectures so far, in Section 2. This will lead to the concept of Duval
extensions which are introduced in Section 3. The main result known so far
on Duval extensions, Theorem 8, is presented there. The subsections 3.1, 3.2,
and 3.3 will introduce further research lines on Duval extensions. We conclude
with Section 4.

We shall now introduce the main notations of this paper. We refer the reader
to [7, 8] for more basic and general definitions.

Consider a finite alphabet A of letters. Let A* denote the monoid of all finite
words over A including the empty word, denoted by . Let w € A*. Then we
can express w as a sequence of letters w(yw(g) - - - w(,) where w;) € A is a letter,
for every 1 < i < n. We denote the length n of w by |w|. Note, that |¢| = 0.
A word w is called primitive if it cannot be factored such that w = u* for some
k > 2. Let w = wv for some words v and v. Then vu is called conjugate of w.
Let [w] denote the set of all conjugates of w. Note, that w € [w].

*A preliminary version of the given survey is contained in an essay written for the Bulletin
of the EATCS.



A nonempty word u is called a border of a word w, if w = wv = v'u for
some words v and v’. We call w bordered, if it has a border that is shorter
than w, otherwise w is called unbordered. Note, that every bordered word w
has a minimum border « such that w = uvu, where u is unbordered. Suppose
w = uw, then u is called a prefiz of w, denoted by u < w, and v is called a suffiz
of w, denoted by v < w.

Let <14 be an ordering of A = {aj,as,...,a,}, say a1 <4 az <lgq -+ <A Qp.
Then <14 induces a lexicographic order, also denoted by <14, on A* such that

w<av <= u<v or u=czaeu and v=zbu’ with a <14 b

where a,b € A. We write < for <14, for some alphabet A, if the context is clear.

Let us consider the following examples. Let A = {a, b} and u,v,w € A* such
that © = abaa and v = baaba and w = abaaba. Then uw and v are primitive, but
w is not. Furthermore, [u] = {aaab, aaba, abaa,baaa} is the set of all conjugates
of u. Let a <<b. Then v < w < v. We have that a is the shortest border of u
and w, whereas ba is the shortest border of v. The smallest unbordered factor
of w has length three.

2 The Maximum Length of Unbordered Factors

When the length of unbordered factors of a word is investigated, that is usually
done in terms of the length of the word and its minimum period.

Lets make our terminology more precise. Consider a word w over some
alphabet A. An integer 1 < p < n is a period of w, if w) = w4,y for all
1 < i < n—p. The smallest period of w is called the minimum period (or
simply, the period) of w, denoted by d(w). Let u(w) denote the maximum
length of unbordered factors of w. For example, let w = abaabbaaba, then
O(w) =7 and p(w) = 6.

Clearly, the maximum length of unbordered factors p(w) of w is bound by
the period 9(w) of w. We have

p(w) < 0(w)

since for every factor v of w, with d(w) < |v], the prefix v(1yv(2) - - V(jv|—a(w))
of v is also a suffix of v by the definition of period.

It is a natural question to ask at what length of w is u(w) necessarily maxi-
mal, that is, p(w) = d(w). Of course, the length of w is considered with respect
to either p(w) or O(w).

In 1979 Ehrenfeucht and Silberger [3], as well as, Assous and Pouzet [1]
addressed this question first. Ehrenfeucht and Silberger [3] stated

Theorem 1. If 29(w) < |w| then p(w) = d(w).

They also established that every primitive word w has at least o-many un-
bordered conjugates, where ¢ is the number of different letters occuring in w,
which leads directly to



Theorem 2. If20(w) — o < |w| then p(w) = d(w).

However, this result was stated by Duval [2] only in 1981.

The real challenge, though, turned out to be giving a bound on the length
of w with respect to p(w). It was conjectured in [3] that 2u(w) < |w| implies
p(w) = O(w). However, Assous and Pouzet gave the following counter example
contradicting that conjecture.

Example 3. Let
w = a"ba" " ba"ba"2ba"ba" ' ba™
for which |w| = 7n + 10 and p(w) = 3n+ 6 and O(w) = 4n + 7.

Assous and Pouzet themselves gave the following conjecture.

Conjecture 4. Let f: N — N such that f(pu(w)) < |w| implies p(w) = O(w).
Then
f(p(w)) < 3pu(w) -

In 1982 Duval [2] established the following.
Theorem 5. If 4u(w) — 6 < |w| then p(w) = d(w).

He also stated Conjecture 7 (see next section) about what was later called
Duval extensions that would imply

If 3p(w) < |w| then p(w)=09o(w).

3 Duval Extensions

In the previous section we recalled a question initially raised by Ehrenfeucht
and Silberger [3]. The problem was to estimate a bound on the length of w,
depending on p(w), such that p(w) = d(w). Duval [2] introduced a restricted
version of that problem by assuming that w has an unbordered prefix of length
w(w). Let us first fix some more notations first.

Let w and u be nonempty words where w is also unbordered. We call wu
a Duwal extension of w, if every factor of wu longer than |w| is bordered, that
is, pw(wu) = Jw|. A Duval extension wu is called trivial, if d(wu) = p(wu).
A nontrivial Duval extension wu of w is called minimal, if u is of minimal
length, that is, v = v’a and w = v'bw’ where a,b € A and a # b.

Example 6. Let w = abaabbabaababb and u = aaba. Then
w.u = abaabbabaababb.aaba

(for the sake of readability, we use a dot to mark where w ends) is a non-
trivial Duval extension of w of length |wu| = 18, where p(wu) = |w| = 14 and
O(wu) = 15. However, wu is not a minimal Duval extension, whereas

w.u' = abaabbabaababb.aa



s minimal, with v’ = aa < u. Note, that wu is not the longest nontrivial Duval
extension of w since

w.v = abaabbabaababb.abaaba

is longer, with v = abaaba and |wv| = 20 and O(wv) = 17. One can check that
wv s a nontrivial Duval extension of w of maximum length, and at the same
time wv is also a minimal Duval extension of w.

In 1982 Duval [2] stated the following conjecture.
Conjecture 7. Let wu be a nontrivial Duval extension of w. Then |u] < |w|.

It follows directly from this conjecture that for any word w, we have that
3u(w) < |w| implies p(w) = d(w). Duval’s conjecture has remained popular
throughout the years, see for example Chapter 8 in [8]. Ounly recently, an im-
proved version of this conjecture was proved by the authors of this paper; see [6].

Theorem 8. Let wu be a nontrivial Duval extension of w. Then |u| < |w| — 1.
This bound is tight as can be seen from the following example.
Example 9. Let w = a™ba™™bb and u = ™ ™ba™ with n,m > 1. Then
w.au = a"ba"T"bb.a™ " ba™
is a nontrivial Duval extension of w and |u| = |w| — 2.
We get the following corollary from Theorem 8.
Corollary 10. If 3u(w) — 2 < |w| then p(w) = d(w) .

This is the best bound in the general case known to us so far. However,
Duval extensions have also become a subject of interest on their own. We will
investigate them more closely in the next three subsections.

3.1 Words without Nontrivial Duval Extensions

The set of words having no nontrivial Duval extension has been investigated
in [4] and [10]. We recall these results here.

Infinite words of minimal subword complexity are called Sturmian words,
cf. [11, 8]. Minimal subword complexity means that a Sturmian word contains
exactly n+ 1 different factors of length n for every n > 1. Let us consider finite
factors of Sturmian words in the following, and lets simply call them Sturmian
words. Mignosi and Zamboni showed the following uniqueness result for Duval
extensions in [10].

Theorem 11. Unbordered Sturmian words have no nontrivial Duval extension.

This result was improved by the authors of this paper in [4] to Lyndon
words. Let a primitive word w be called Lyndon word if it is minimal among
its conjugates, that is, if w < v for every v € [w] and some arbitrary order <
on A, cf. [9, 8]. Note, that Lyndon words are unbordered.



Theorem 12. Lyndon words have no nontrivial Duval extension.

Theorem 14 states that unbordered Sturmian words are indeed Lyndon
words. The following lemma will be used to prove that result.

Let 7: A* — B* be a morphism, and <14 and <ig be orders on A and B,
respectively, such that

a; <aaz = 7(a1) <p 7(az) (1)
for every aj,as € A, and 7(a) is a Lyndon word w.r.t. <ig for every a € A.
Lemma 13. If w € A* is a Lyndon word, then 7(w) is a Lyndon word.
The following theorem shows that Theorem 12 implies Theorem 11.
Theorem 14. FEvery unbordered Sturmian word is a Lyndon word.

Proofs of Lemma 13 and Theorem 14 can be found in [5]. The converse of
Theorem 14 is certainly not true. Indeed, consider the word aabbab which is a
Lyndon word but not a Sturmian word since it contains four factors of length
two.

Another property of Duval extensions will be introduced next.

3.2 Minimal Duval Extensions

The minimal Duval extension of a word w is the smallest prefix of a nontrivial
Duval extension of w such that the prefix itself is a nontrivial Duval extension
of w. The following theorem gives a rather surprising property of nontrivial
Duval extensions. Its proof can be found in [5].

Theorem 15. Let wu be a minimal Duval extension of w. Then u is a factor
of w.

Consider the following example.

Example 16. Let w = abaabbabaababb as in Example 6. Then
w.u = abaabbabaababb.aaba

and
w.v = abaabbabaababb.abaaba

are both minimal Duval extensions of w, and u and v both occur in w.

3.3 Maximum Duval Extensions

The investigation of maximum Duval extensions has been motivated by the
hope to estimate a precise bound on the relation between the length of a word
w.r.t. the maximum length of its unbordered factors and its period. As we have
seen with Corollary 10, there is the following upper bound: If 3u(w) — 2 < |w|



then p(w) = d(w). However, Example 3 is the best one known, showing that
p(w) < O(w) and 7/3u(w) — 4 = |w.

We have the following conjecture about the structure of maximum Duval
extensions.

Conjecture 17. Let w = w'ab® for some k > 1. If wu is a nontrivial Duval
extension of w of length 2|w| — 2, then b* does not occur in w'.

It has been shown in [4] that this conjecture would also imply Theorem 8.

4 Conclusions

We have recalled the problem of estimating the relationship between the length
of a word and the maximum length of its unbordered factors. The final answer is
still unknown. However, quite some progress has been made since the problem
was raised in 1979. In particular the special case of Duval extensions raised
attention and led to new results. For example, the long standing conjecture
by Duval was just recently solved. However, open problems remain about the
structure of Duval extensions and words that have no nontrivial Duval extension.
Further research on those questions are likely to lead to a final answer to the
general case.
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