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We shall give an introduction to the problem area concerning the well known
Duval’s conjecture, which was announced to be solved in [12].

1 Introduction

In 1979 Ehrenfeucht and Silberger published an article [9] where the relationship
between the length of a word and the maximum length of its unbordered factors
(segments) was for the first time investigated. Periodicity and borderedness are
two basic properties of words that play a réle in many areas of computer science
such as string searching algorithms [13, 3, 7], data compression [20, 6], and codes
[2], which are classical examples, but also computational biology, e.g., sequence
assembly [17] or superstrings [4], and serial data communications systems [5].
It is well known that these two word properties do not exist independently from
each other. However, no clear relationship has been established so far, despite
substantial recent progress in that area. We chose the title of Ehrenfeucht and
Silberger’s paper for our essay to underline that this paper illustrates the way
this line of research has evolved in the last 24 years.

In Section 2 we give a historical overview on this line of research, its main
results and conjectures so far. This will lead to the concept of Duval extensions
which are introduced in Section 3. We conclude with Section 4.

First, we shall introduce the main notations of this paper. We refer the
reader to [14, 15] for more basic and general definitions.

Consider a finite alphabet A of letters. Let A* denote the monoid of all
finite words over A including the empty word, denoted by €. Let w € A*. Then
we can express w as a sequence of letters w(ywg) -+ w(,) where w; € A is
a letter, for every 1 <i <n. Let 1 < < j < n, then w w1 -+ we;is called
a factor or segment of w. We denote the length n of w by |w|. Note, that |¢| = 0.
A word w is called primitive if it cannot be factored such that w = u* for some
k > 2. Let w = uv for some words u and v. Then vu is called conjugate of w.

A nonempty word u is called a border of a word w, if w = uv = v'u for some
words v and v'. We call w bordered, if it has a border that is shorter than w,
otherwise w is called unbordered. Suppose w = wwv, then u is called a prefiz of
w denoted by u < w.



Let <1 be an ordering of A ={aj,as,...,a,}, say a; <ag <--- < ay,. Then
<1 induces a lexicographic order, also denoted by <1, on A* such that

u<dv < u<v or u=zxau and v = by with a < b

where a,b € A.

Let us consider the following examples. Let A = {a, b} and u, v, w € A* such
that u = abaa and v = baaba and w = abaaba. Then u and v are primitive, but
w is not. Furthermore, {aaab, aaba, abaa,baaa} is the set of all conjugates of
u. Let a <b. Then v < w < v. The largest unbordered factor of w has length
three.

2 Maximum Length of Unbordered Factors

When the length of unbordered factors of a word is investigated, that is usually
done in terms of the length of the word and its minimum period.

Lets make our terminology more precise. Consider a word w of length n over
some alphabet A. An integer 1 < p < n is a period of w, if w(;) = W(;4yp) for all
1 < ¢ < n—p. The smallest period of w is called the minimum period (or simply,
the period) of w, denoted by d(w). Let p(w) denote the maximum length of
unbordered factors of w. For example, let w = abaabbaaba, then J(w) = 7 and
p(w) = 6.

Clearly, the maximum length of unbordered factors u(w) of w is bound by
the period d(w) of w. We have

p(w) < O(w)

since for every factor v of w, with d(w) < |v], the prefix vyv(g) - V(jv]-a(w))
of v is also a suffix of v by the definition of period.

It is a natural question to ask at what length of w is p(w) necessarily maxi-
mal, that is, pu(w) = O(w). Of course, the length of w is considered with respect
to either p(w) or O(w).

In 1979 Ehrenfeucht and Silberger [9], as well as, Assous and Pouzet [1]
addressed this question first. Ehrenfeucht and Silberger [9] stated

Theorem 1. If 20(w) < |w| then p(w) = O(w).

They also established that every primitive word w has at least o-many un-
bordered conjugates, where ¢ is the number of different letters occuring in w,
which leads directly to

Theorem 2. If 20(w) — o < |w| then pu(w) = O(w).

However, this result was stated by Duval [8] only in 1982.

The real challenge, though, turned out to be giving a bound on the length
of w with respect to pu(w). It was conjectured in [9] that 2u(w) < |w| im-
plies u(w) = d(w). However, Assous and Pouzet [1] gave the following counter
example.



Example 3. Let
w = a"ba™ T ba"ba"2ba ba T ha™

for which O(w) = 4n + 7 and p(w) =3n+6 and |w| = Tn+ 10 = 7/3u(w) — 4.
Assous and Pouzet also gave the following conjecture.

Conjecture 4. Let f: N — N such that f(pu(w)) < |w| implies p(w) = O(w).
Then
flp(w)) < 3p(w) .
In 1982 Duval [8] established the following result.
Theorem 5. If 4u(w) — 6 < |w| then p(w) = d(w).

He also stated Conjecture 7 (see Duval’s conjecture in the following section)
about what was later called Duval extensions, a conjecture that implies

If 3p(w) < |w| then p(w)=09(w).

3 Duval Extensions

In the previous section we recalled a question initially raised by Ehrenfeucht
and Silberger [9]. The problem was to estimate a bound on the length of w,
depending on p(w), such that p(w) = d(w). Duval [8] introduced a restricted
version of that problem by assuming that w has an unbordered prefix of length
w(w). Let us fix some more notations first.

Let w and u be nonempty words where w is also unbordered. We call wu
a Duwval extension of w, if every factor of wu longer than |w| is bordered, that
is, p(wu) = |w|. A Duval extension wu is called trivial, if d(wu) = p(wu).
A nontrivial Duval extension wu of w is called minimal, if u is of minimal
length, that is, u = v'a and w = v'bw’ where a,b € A and a # b.

Example 6. Let w = abaabbabaababb and u = aaba. Then
w.u = abaabbabaababb.aaba

(for the sake of readability, we use a dot to mark where w ends) is a non-
trivial Duval extension of w of length |wu| = 18, where p(wu) = |w| = 14 and
O(wu) = 15. However, wu is not a minimal Duval extension, whereas

w.u' = abaabbabaababb.aa

is minimal, with v’ = aa < u. Note, that wu is not the longest nontrivial Duval
extension of w since

w.v = abaabbabaababb.abaaba

is longer, with v = abaaba and |wv| = 20 and d(wv) = 17. One can check that
wv s a nontrivial Duval extension of w of mazimum length, and at the same
time wv is also a minimal Duval extension of w.



In 1982 Duval [8] stated the following conjecture.

Conjecture 7 (Duval). Let wu be a nontrivial Duval extension of w. Then
Juf < [w].

It follows directly from this conjecture that for any word w, we have that
3u(w) < |w| implies p(w) = O(w). This conjecture remained popular through-
out the years, see for example Chapter 8 in [15]. However, recently the authors of
this essay established [12] the following result which implies Duval’s conjecture.

Theorem 8. Let wu be a nontrivial Duval extension of w. Then |u| < |w| — 1.
We have the following corollary.
Corollary 9. If 3u(w) — 2 < |w| then p(w) = d(w).

This corollary gives the best bound on the general case so far. However,
this result does not give a final answer to the question about the relation be-
tween |w| and p(w). Since the best example known to us is Example 3 in
the previous section which shows that there is an arbitrary long word w such
that |w| = 7/3u(w) — 4 and p(w) < I(w). In general the precise bound is still
unknown.

Nevertheless, the bound of Theorem 8 is tight as the following example
shows.

Example 10. Let w = a’ba™7bb and v = a’T7ba’ where i,7 > 1. It is easy to
check that S S
w.u = a'ba" I bb.a" T ba’

is a nontrivial Duval extension of w of length |w| — 2.

Further knowledge about structural properties of Duval extension such as
the following conjecture would certainly help to estimate the precise bound in
the general case. Let us call a nontrivial Duval extension wu of w mazimal if
|u| = [w| —2.

Conjecture 11. Let w = w'ab® for some k > 1. If wu is a mazimal Duval
extension of w, then b* does not occur in w'.

A further property of Duval extensions was established in [11]. Recall, that
a minimal Duval extension of a word w is the smallest prefix of a nontrivial Duval
extension of w such that the prefix itself is a nontrivial Duval extension of w.
The following theorem gives another property of nontrivial Duval extensions.

Theorem 12. Let wu be a minimal Duval extension of w. Then u is a factor
of w.

Duval extensions have also become a subject of interest on their own. In
particular the set of words having no nontrivial Duval extension has been in-
vestigated in [10] and [18]. The first attempt to characterize the set of words



that have no nontrivial Duval extension was done investigating well-known sets
of words like unbordered finite factors of Sturmian words and Lyndon words.

Infinite words of minimal subword complexity are called Sturmian words,
cf. [19, 15]. Minimal subword complexity means that a Sturmian word contains
exactly n+ 1 different factors of length n for every n > 1. Let us consider finite
factors of Sturmian words in the following, and lets simply call them Sturmian
words. Mignosi and Zamboni showed the following uniqueness result for Duval
extensions in [18].

Theorem 13. Unbordered Sturmian words have no nontrivial Duval extension.

This result was improved by the authors of this paper in [10] to Lyndon
words. Let a primitive word w be called Lyndon word if it is minimal among
its conjugates, that is, if w < v for every conjugate v of w and some arbitrary
order < on A, cf. [16, 15]. Note, that Lyndon words are unbordered.

Theorem 14. Lyndon words have no nontrivial Duval extension.
The following theorem [11] shows that Theorem 14 implies Theorem 13.
Theorem 15. FEvery unbordered Sturmian word is a Lyndon word.

The converse of Theorem 15 is certainly not true. Indeed, consider the word
aabbab which is a Lyndon word but not a Sturmian word since it contains four
factors of length two. A precise characterization of the set of words that have
no nontrivial Duval extension is still unknown.

4 Conclusions

We have recalled the problem of estimating the relationship between the length
of a word and the maximum length of its unbordered factors. The final answer is
still unknown. However, quite some progress has been made since the problem
was raised in 1979. In particular the special case of Duval extensions raised
attention and led to new results. For example, the long standing conjecture
by Duval was just recently solved. However, open problems remain about the
structure of Duval extensions and words that have no nontrivial Duval extension.
Further research on those questions are likely to lead to a final answer to the
general case.
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