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Abstract

The Accepting Networks of Evolutionary Processors (ANEPs for short) are
bio-inspired computational models which were introduced and thoroughly
studied in the last decade. In this paper we propose a method of using
ANEPs as deciding devices. More precisely, we define a new halting condi-
tion for this model, which seems more coherent with the rest of the theory
than the previous such definitions, and show that all the computability re-
lated results reported so far remain valid in the new framework. Further, we
are able to show a direct and efficient simulation of an arbitrary ANEP by
an ANEP having a complete underlying graph; as a consequence of this re-
sult, we conclude that the efficiency of deciding a language by ANEPs is not
influenced by the network’s topology. Finally, focusing on the computational
complexity of ANEP-based computations, we obtain a surprising characteri-
zation of PNPIog] a5 the class of languages that can be decided in polynomial
time by such networks.
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1. Introduction

The Accepting Networks of Evolutionary Processors (ANEPs, for short)
are a bio-inspired computational model, introduced in [16], and having its
roots in [9, 3, 4]. An ANEP consists in a graph having in each node a pro-
cessor, which is able to perform very simple operations on words: insertion
of a symbol, deletion of a symbol, and substitution of a symbol with another
one. These operations are similar to the point mutations in a DNA sequence
(insertion, deletion or substitution of nucleotides), thus, the processors are
called evolutionary processor. Furthermore, each node contains data, which
are organized in the form of multisets of words, each word appearing in an
arbitrarily large number of copies, and all copies are processed in parallel
such that all the possible events that can take place do actually take place.
Following the biological motivation, each node may be viewed as a cell con-
taining genetic information, encoded in DNA sequences which may evolve by
local evolutionary events, i.e., point mutations. Moreover, each node is spe-
cialized in just one of these evolutionary operations. The nodes of a network
are connected by edges, which can be seen as communication channels that
allow the nodes to exchange data between them.

The computation of an ANEP is conducted as follows. Initially, only
one special node, the input node, contains a certain word, the input word.
Further, the computation consists in applying alternative evolutionary and
communication steps on the words contained by the nodes. More precisely,
in an evolutionary step, the words found in each node are rewritten according
to the rules of that node. Rewriting a word in a node means that exactly one
symbol of that word is changed (deleted, in the case of nodes specialized in
deletion, or substituted with another symbol, in the case of nodes specialized
in substitution) according to a rule of the node, or exactly one symbol is in-
serted in that word (in the case of nodes specialized in insertion); if there are
more possibilities to rewrite a word, we obtain from the initial word a set of
new words, containing all the possible words into which it can be rewritten.
Moreover, if a rule cannot be applied to a word of a node, a copy of that
word will remain in the node ( although, it may be rewritten according to
other rules of the same node, to obtain some new strings). In conclusion, the
words obtained in an evolutionary step are exactly those derived by applying
one rule to one of the words found before this step in the node, in exactly one
of the possible places where that rule can be applied to that word; if there
exists a rule and the node contains a word such that the rule cannot be ap-



plied to the word, we also preserve a copy of that word. In a communication
step, the words of a node, obtained in the previous evolutionary step, are
communicated to the other nodes, as permitted by some filtering condition
associated with both the sending and the receiving node. Such filters are
simply checking for the presence or the absence of a set of symbols in the
communicated words. Going more into details, in such a step, a node tries
to send a copy of each word it contains to its neighbours. A word leaves the
node if it contains a set of permitting output symbols (specific to the sending
node) and it does not contain any symbol of a set of forbidden output sym-
bols (also, specific to the sending node). Then, the word enters the node to
which it was sent if it contains a set of permitting input symbols (specific to
the receiving node) and it does not contain any symbol of a set of forbidden
input symbols (also, specific to the receiving node). After such a step, a node
will contain the strings that were not able to be communicated to any of its
neighbours and the strings that were communicated by its neighbours and
were allowed to enter it. All the other strings are lost (in the environment).
The classical definition assumes that a computation halts and accepts, when
a word enters a special node of the network, the output node, or halts and
rejects when the words contained in each node do not change in consecutive
evolutionary or communication steps. In this paper we redefine the notions
of halting computation, accepting computation, and rejecting computation.
Starting from the idea that one should first define precisely which are the
finite computations in a model, we propose a new halting condition for such
a computation, that seems more coherent with the rest of the definition of
the model. Namely, a computation halts (and is called halting or finite) as
soon as at least one word enters the output node. Then, we split the halt-
ing computations into two categories: accepting computations and rejecting
computations. The input word is accepted if the computation of the ANEP
on this word is finite, and at least one word that is found in the output node
at the end of the computation (we know that there is at least one word in
that node, as the computation is halting) contains a distinguished symbol;
otherwise, if the computation is finite, it is called a rejecting computation.
All the other computations are infinite. The motivations behind this new
halting, accepting and rejecting conditions are discussed in Section 3.

A series of works devoted to accepting networks of evolutionary proces-
sors appeared in the last decade (see [15] for a survey on this topic) and
the results obtained concerned mostly the computational power, computa-
tional and descriptional complexity aspects, existence of universal networks,



efficiency of these models viewed as problem solvers, and the relationships
between different variants of such networks (e.g., simulations between them,
comparison between their efficiency as problems solvers, etc.).

In this paper we see how part of these results change when the new halting
condition is used. While the computational power of the ANEPs remains the
same, the time complexity results are not preserved. To this end, we obtain
a surprising characterization of PNPIogl a5 the class of languages that can
be decided in polynomial time by ANEPs. We also show that an arbitrary
ANEP can be simulated efficiently by an ANEP with complete underlying
graph. This answers an open question from [2] and shows that one cannot
expect to decide a language faster using ANEPs with special topology, than
in the case when complete ANEPs are used.

2. Basic definitions

We start by summarizing the notions used throughout the paper; for all
unexplained notions the reader is referred to [18]. An alphabet is a finite
and non-empty set of symbols. The cardinality of a finite set A is written
card(A). Any sequence of symbols from an alphabet V' is called word over V.
The set of all words over V' is denoted by V* and the empty word is denoted
by A. The length of a word x is denoted by |z| while alph(x) denotes the
minimal alphabet W such that x € W*. For a word x € W*, " denotes the
reversal of the word.

In the following, we introduce a series of rewriting operations, called
evolutionary operations as they may be viewed as linguistic formulations of
local gene mutations. We say that a rule a — b, with a,b € V U {A} is
a substitution rule if both a and b are not A; it is a deletion rule if a # A
and b = \; it is an insertion rule if a = X and b # . The sets of all
substitution, deletion, and insertion rules over an alphabet V' are denoted by
Suby, Dely, and Insy, respectively.

Given a rule o as above and a word w € V*, we define the following
actions of o on w:

o If o =a — be Suby, then

vy Aubv | Ju,v € V* (w = uav)},
o"(w) = { {w | w contains no a},

e I[f 0 =a— )\ € Dely, then



v Aw | Fu,v e VF (w = uav)},
o ={ Gl we 0y

oo wlw=ua}, . f {v]w=av},
"W)‘{{www*a}, "<w>‘{{w}w¢av*},

o Ifo =X — aé€ Insy, then
o*(w) = {uav | Ju,v € V* (w = uv)}, o"(w) = {wa}, o'(w) = {aw}.

We say that a € {x,1,r} defines the way of applying a deletion or insertion
rule to a word, namely at any position (o = %), in the left (a« = [), or in
the right (o« = r) end of the word, respectively. For a rule o, an action
a € {x I r}, and a language L C V* we define the a-action of o on L by
(L) = Upyer o*(w). Given a finite set of rules M, we define the a-action
of M on the word w and the language L by:

M*(w) = U,ep0®(w) and M*(L) = e, M*(w), respectively.

For two disjoint subsets P and F' of an alphabet V' and a word w over V,
we define the predicates:

o (w; P,F)= P C alph(w) A FNalph(w) =0

oW (w; P,F)= (P=0Valph(w)NP#0) A Fnalph(w)=0.

The construction of these predicates is based on random-context condi-
tions defined by the two sets P (permitting contexts/symbols) and F (for-
bidding contexts/symbols). Informally, the first condition requires that all
permitting symbols are present in w and no forbidding symbol is present in
w, while the second one is a weaker variant of the first, requiring that at
least one permitting symbol (whenever the set of such symbols is not empty)
appears in w and no forbidding symbol is present in w. Note that whenever
one of the sets P or F' is empty, we assume that it is undefined, so its effect
on the final result of the predicates is null.

For every language L C V* and § € {(s), (w)}, we define:

S(L,P.F) = {w € L| ¢*(w; P, F)}.
An evolutionary processor over V' is a tuple (M, PI, F'I, PO, FO), where:

e )M is a set of substitution, or deletion, or insertion rules over the alphabet
V', the set of rules of the processor. Formally (M C Suby ) or (M C Dely )
or (M C Insy). Note that a processor is “specialized” in one type of
operations only.

e PI . FI CV are the input permitting, respectively forbidding, filters of
the processor, while PO, FO C V are the output permitting, respectively



forbidding, filters of the processor. Informally, the permitting input (out-
put) filters are the set of symbols that should be present in a word, when
it enters (respectively, leaves) the processor, while the forbidding filters
are the set of symbols that should not be present in a word in order to
enter (respectively, leave) the processor. Note, once more, that whenever
one of the sets PI, PO, FI, FO is empty, we say that it was left unde-
fined, and, by the previous definitions, this set does not interfere with the
filtering process.

We denote the set of evolutionary processors over V' by E Py .

Next we define the central notion of our paper, the Accepting Networks
of Evolutionary Processors (ANEPs for short). Our definition is slightly dif-
ferent from the one that was used in literature so far (see, for instance, [15]),
by the introduction and usage of a special accepting symbol pu.

The main reason for giving a different definition is that we are interested
in using such networks as deciding devices (thus, devices that halt on ev-
ery input), not only as accepting devices. To this end, our opinion is that
the halting conditions assumed in the previous definitions of ANEPs were
somehow artificial, and quite unrelated to all the other concepts defined for
these devices. We will motivate more our definition later, and the rest of the
paper will be focused on analysing the computational properties of the newly
defined variant of ANEPs.

An accepting hybrid network of evolutionary processors (ANEP for short)
is a 9-tuple I' = (V. U, u, G, N, o, B, x1, x0), where:

e VV and U are the input and network alphabets, respectively, V' C U; the
symbol p € U\ V is a distinguished symbol, called accepting symbol.

e G = (Xg, Eg) is a directed graph, with the set of nodes X and the set
of edges Eg C X X X¢g. The graph G is called the underlying graph of
the network, and card(X¢) is the size of T.

e N : Xg — EPy is a mapping which associates with each node r € Xg
the evolutionary processor N (z) = (M,, PI,, FI,, PO,, FO,).

e a: Xg — {x,1}; a(r) defines the action of the rules of node z when
applied to the words existing in that node.

e 0: Xg — {(s),(w)} defines the type of the input and output filters of
a node. More precisely, for every node x € X the following filters are

defined:



input filter: p,(-) = @*@(-; PI,, FI,),
output filter: 7,(-) = @ (-; PO,, FO,).

That is, p.(w) (respectively, 7,(w)) indicates whether or not the word w
can pass the input (respectively, output) filter of x.

e r;and zp € X are the input node, and, respectively, the output node of
the network T'.

An ANEP is said to be complete if the underlying graph G has the edges
Eq¢ ={(z,y) | v # y and z,y € X} or, in other words, it is a complete
undirected graph.

A configuration of an ANEP T'is a mapping C' : X — 2V, associating a
set of words with every node of the graph. A configuration may be understood
as the sets of words which are present in any node at a given moment; it can
change either by an evolutionary step or by a communication step.

When changing by an evolutionary step each component C(x) of the con-
figuration C'is changed in accordance to the set of evolutionary rules M, of
node z, and a(x), the way these rules should be applied. Formally, the con-
figuration C” is obtained in one evolutionary step from the configuration C,
written as C' = (", if and only if

C'(x) = M@ (C(x)), for all z € Xg.

When changing by a communication step, each node-processor x € Xg
sends one copy of each word it contains, and is able to pass its output filter,
to all the node-processors connected to x, and receives all the words sent by
all the other node processor connected with z, provided that they can pass its
input filter. Formally, the configuration C” is obtained in one communication
step from configuration C', written as C'+ (", if and only we have the equality

C'(x) = (Cx) - mC@)Uu | pe(r(Cy))), forall z € X.

yeVa,(y,x)eEg

Note that the words which leave a node are eliminated from that node; if
such a word cannot pass the input filter of any node, it is lost.
The computation of I" on the input word w € V* is a (potential infinite)

sequence of configurations Cy’, C{’, Cy’,.... The initial configuration C’ is

defined by C¥(z;) = {w} and C¥(x) = 0 for all x € X¢, © # ;. Further,
5 = Oy and C5; | = O3, for all i > 0.
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The acceptance symbol p is important when defining the accepting and
rejecting computations of an ANEP.

To begin with, we define what a halting computation of the ANEP means.
A computation CY',C{", CY¥, ... is said to be a halting computation (or a finite
computation) if there exists ¢ > 0 such that C}*(zo) # 0 and C}*(zo) = 0 for
all £ <t. We say that I' halts on the input word w in ¢ computational steps.

We distinguish two situations, in the case of such a halting computation:

i. There exists u € C}’(zo), such that u contains the symbol p. In this case,
the computation is an accepting computation, and I' accepts w.

ii. Any word u € C}’(zo) does not contain the symbol p. In this case, the
computation is a rejecting computation, and I" rejects w.

The language accepted by T"is L,(I") = {w € V* | the computation of I
on w is an accepting one}.

We say that an ANEP T decides the language L C V*, and write L(I") = L
if and only if L,(I') = L and I halts on all input words.

Let I' be an ANEP deciding the language L. The time complexity of
the finite computation Cy’, C7’, CY, ...CY of I' on w € L is denoted
by Timer(w) and equals m. The time complexity of I' is the function
Timer(n) = max{Timer(z) | |x| = n}. We say that I" works in polynomial
time, if there exists a polynomial function f such that f(n) > Timer(n).

For a function f : N — N we define Timesngp(f(n)) = {L | there
exists the ANEP I', such that L(T') = L, Timer(n) < f(n), for all n € IN}.
Moreover, we write PTimeypp = ,~, Timesngp(n).

One can define in a similar manner space and length complexity classes
(see the definitions given in the survey [15]).

3. The new halting condition and computability results

The single difference between the form of the initial definition of ANEPs
([16]) and form of ours is the presence and usage of the symbol p. The way a
computation of an ANEP is conducted remains basically the same, but the
halting, accepting, and rejecting conditions are essentially different.

But let us first recall the definition of a halting ANEP-computation from
the literature (see the seminal work [16], the survey [15], and the references
therein). A computation halts and accepts if there exists a configuration in



which the set of words existing in the output node is non-empty. A computa-
tion halts and rejects if there exist two identical configurations obtained either
in consecutive evolutionary steps or in consecutive communication steps. The
language accepted by the ANEP T"is L,(I') = {w € V* | the computation
of T on w accepts}. Also, it was said that an ANEP T decides the language
L CV*iff L,(I') = L and L halts on every input.

The main reason that made us consider a new definition is that we
strongly believe that one should first define the notion of halting computa-
tion, and only then highlight the difference between accepting and rejecting
computations. Other reasons that let to the switch to a new definition are
related mainly to the previous definition of the rejecting computations.

First, checking whether the rejecting condition was fulfilled did not seem
coherent with the other verifications that were performed in an ANEP. For
instance, the filters check the existence or absence of several symbols in the
communicated words; the application of a rule by a processor consists (in
the more complicated cases of substitution and deletion rules) in looking for
the occurrences of a symbol in the words of that node (if it contains any),
and replacing an arbitrary such occurrence with a symbol or with A. On the
other hand, verifying whether the rejecting condition was fulfilled was a very
different process: one checked whether the configurations of all the nodes, in
two consecutive steps of the same kind, were equal.

Also, the processes executed by an ANEP are localized: filters are associ-
ated with nodes, rules are associated with nodes, and the accepting condition
concerned only one node, the output node. In the case of a rejecting com-
putation the definition took us to a global level: we looked at all the words
present at a given moment in the network. The condition seemed an artificial
formalization of the case when the network enters in an infinite loop, and the
computation should halt. However, only infinite loops in which the configu-
rations are repeated in consecutive steps were detected. Although avoiding
infinite loops seems to us a good-practice in programming (regardless of the
computational model), ruling out the occurrence of such a situation by defi-
nition does not seem justified to us.

Nevertheless, verifying the equality between two configurations required
to memorize, at any moment, all the words from the last two configurations.
Thus, an additional memory-device was needed, and this was not (explicitly)
part of an ANEP. This affected the self-containment of the definition.

The new halting and deciding conditions seem to overcome these prob-
lems. The computation halts as soon as a word enters in a special node.
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Although it seems to be also a condition of a different nature from the ones
that are checked in an ANEP, one may note that, in fact, it is natural to
think that before each processing step a processor checks whether it contains
some words, and then it looks for the places where the rules can be applied.
Further, the decision of a computation is taken according to a test in which
we check for the existence of a symbol in the words of a node; this seems
coherent with the rest of the definition of a ANEP. Moreover, we do not need
any auxiliary devices (as it was the memory we needed in the former case).
Finally, but of great importance, as we have already mentioned, it seems
natural to us to distinguish between the conditions that should be fulfilled
by a computation in order to halt and the conditions that should be fulfilled
by a halting computation in order to be accepting or rejecting. Indeed, we
can only talk about accepting or rejecting an input word as long as our de-
vice has a finite computation on that word; therefore, we first see whether
the computation halted, by checking the emptiness of the configuration of a
special node, and, then, we look at the strings contained in that node and
take the right decision.

It only remains to be settled in which measure the results already reported
for ANEPs ([15]) still hold, with respect to the new definition.

Accepted languages. All the ANEP constructions proposed in the
literature (for instance, in [13, 10, 1]), where one was interested only in
accepting a language by complete ANEPs, can be still be used. However, we
must modify such an ANEP in order to work properly in the new setting: the
former output node becomes an insertion node where the symbol y is inserted
in the words that were accepted inside, and then we add a new output node,
in which all the words containing p are allowed to enter; the network can
still be complete, by adding p to the forbidding input filters of all the nodes,
except for the new output node. Thus, one can construct, for a recursively
enumerable language, an ANEP accepting it, w.r.t. the new definition.

Decided languages. In [13] one shows that the class of languages de-
cided by an ANEP, with respect to the classical halting condition, is the class
of recursive languages. The proof was based on simulating, in parallel, all
the possible computations of a nondeterministic Turing machine; the words
communicated in the network were encodings of the Turing machine config-
urations. As we have already mentioned, these proofs can be used, as long
as we are not interested in deciding the language, but only in accepting it.
However, any recursive language can be decided by a deterministic Turing
machine that for each input either enters a single final state and accepts, or
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enters a single blocking state and rejects. The ANEP simulating a Turing
machine, presented in [13], can be easily modified to decide a recursive lan-
guage L: we simulate the deterministic Turing machine deciding L and allow
in the former output node all the words that contain the final state or the
blocking state; if a word containing the final state enters the output node,
then the network accepts, otherwise, it rejects. In conclusion, the languages
decided by ANEPs, w.r.t. the new definition, are the recursive languages.

Computational Complexity. The results regarding polynomial space
complexity or polynomial deterministic time complexity reported in [13] can
be also proved by simulating deterministic Turing machines by ANEPs and
vice versa. Therefore, they remain valid when the new acceptance/rejection
conditions are used. However, the results that were based on time-efficient
simulations of nondeterministic machines are not preserved, as we will see in
Section 5.

4. Complete ANEPs

It is worth mentioning that most of the computability and computational
complexity results reported so far in literature deal with complete ANEPs
or with ANEPs with a restricted topology (see, e.g., [16, 13, 14, 5], or the
survey [15]). More precisely, there are many results stating that particular
types of networks are accepting all the recursively enumerable languages or
perform a series of tasks efficiently (e.g.solving NP-complete problems, or
simulating efficiently different types of universal devices).

A natural question arises: in which measure is the topology of the net-
works important, with respect to the computational power or the efficiency
of the computations? Such a result would be interesting if we consider that
sometimes it is easier to construct an ANEP with a particular topology, solv-
ing a given problem efficiently, than to construct a complete one (thus, it is
simpler to solve a problem by a non-uniform approach than by an uniform
one). For instance, in [13, 10, 1] several involved technical tricks were used in
order to show all the results for complete ANEPs, while in [2] it was left as
an open problem to see if the reported results still hold for complete ANEPs.

A first answer is immediate, but unsatisfactory. Complete ANEPs can
simulate (with respect to the former halting conditions) nondeterministic
Turing machines, and nondeterministic Turing machines can simulate ANEPs
of any kind (see [13]). So one can construct a complete ANEP simulating an

11



arbitrary ANEP via the simulation by Turing machines. However, such a sim-
ulation is not time-efficient since the Turing machine simulates a computation
of t steps of the ANEP on an input word of length n in time O(max (%, tn));
this approach is also complicated due to the construction of the intermediate
Turing machine. Also, such an approach could lead to a complete ANEP that
solve quite inefficiently a given problem, compared to the best ANEP-based
solution for that problem (see, for instance, Example 1).

In the following we propose a new and precise answer to the above ques-
tion: we can accept (respectively, decide) with a complete ANEP any lan-
guage accepted (respectively, decided) by an ANEP with an arbitrary un-
derlying graph, within the same computing time. Following the explanations
from the previous section, the new halting and deciding conditions are not
relevant in the case when we are interested only in accepting languages: it
makes no difference whether we use the former conditions or we use these new
conditions, we still obtain that given an arbitrary ANEP one can construct
a complete ANEP accepting, as efficiently as the arbitrary ANEP, the same
language. In fact, these new conditions come into play in the case when we
are interested in deciding languages. Basically, the proof of our result consists
in simulating an ANEP by a complete ANEP. Two consecutive steps of the
initial ANEP are simulated in exactly 54 consecutive steps of the complete
ANEP. In the classical setting, the initial ANEP rejected when the config-
urations obtained in two consecutive steps of the same kind were identical;
but, in our simulation, these configurations do not occur in the complete
ANEP in consecutive evolutionary or communication steps so, if the former
deciding conditions would be used, the new network would not reject, but
enter in an infinite cycle. Thus, such a simulation would not preserve the
halting property of a computation. However, when the new conditions are
used the halting property is preserved canonically.

The proof of the announced results is based on the following two Lemmas.

Lemma 1. Given an ANEPT = (V, U, u, G, N, a, 8, In, Out), one can
construct an ANEP T" = (V, U, u, G', N', o, ', In', Out’) such that T"
accepts (decides) the same language as I' accepts (respectively, decides), each
node of I has at most one rule and In' has no rules. Moreover, two consec-
utive steps of I' (an evolutionary and a communication step) are simulated
in exactly 6 consecutive steps (3 evolutionary and 3 communication steps)

of I'.

Proof. We will show how we can construct for each node = of the network

12



[' a subnetwork s(x) contained in I''; whose processors simulate the compu-
tation of the processor N'(x). We denote by set(s(x)) the nodes of the sub-
network s(x), and distinguish two nodes of this subnetwork, namely i(s(x))
and o(s(x)), that make possible the communication with the subnetworks
constructed for the other nodes (these two nodes can be seen as the input
node, and, respectively, the output node of the subnetwork, while all the
other nodes can be seen as internal nodes). We also denote by edge(s(x))
the set of edges of the subnetwork (that is, the edges connecting the nodes
of the subnetwork between them).

Let us assume that the node x verifies N(x) = (M, PI, FI, PO, FO),
M ={ry,...,r,}, and a(z) = (s). Then we have:

o set(s(x)) = {wo, zp, x1, 22} U{z, | @ € PO} U{xf,... 20}, i(s(x)) = o,
o(s(z)) = xa.

o cdge(s(z)) = {(xa,2(), (x},24) | a € PO,i € {1,...,n}} U {(xg, ),
(‘rg’xl)7 (:E;,IQ), (l‘l?xé))? (.I’é),l':) | 1€ {17 s ’n}}

o N'(zo) = (0, PI,FI,0,0), o/ (z1) = (s), B'(x1) = *.
o N'(z1) = (0,FO,0,U,0), (1) = (w), 8'(x1) = *.
e Fora € PO wehave: N'(z,) = (0, W, {a},U,0), o/ (z,) = (w), 8'(z4) = *.

e For i € {1,...,n} we have: N'(z7) = ({r;},U,0,U,0), o (zF) = (w),
#(af) =+

hd N/(Zﬁé)) = (®7 Uv Q)a Uv(D)? O/(xé)) = (w)a 6/(I6) = *.
hd N’(l’z) = ((Z)vav FO7Q)7®>? O/(x2> = (3)7 ﬁ,<$2> = *.

To see that the subnetwork s(x) defined above simulates the behaviour of
the node z, let us assume that w is a word that was sent towards the node x
in a communication step of I', and the same word was also sent towards the
node xq in I”. It is immediate that the word w can enter (that is, fulfils the
conditions requested by the input filter of) node x if and only if it can enter
node zy. In node z, a rule r; is applied to the word w; this is simulated in s(x)
in the following steps: the word w goes from node z( to node z}, where the
rule r; is applied to it. Back in I', the word can exit the node z, if it can pass
the filters PO and F'O, or remain in the node and be further processed. In I'’
the word can go to node w9, if it verifies the filters PO and FO, and leave the

13



subnetwork in the next communication step; if it does not verify these filters,
it goes to node z; (if it has a forbidden symbol in it) or to a node z, (if it
does not contain the symbol a € PO), and from these nodes is sent to xj, and
then it is resent to the nodes 27, for j € {1,...,n}, to be further processed.
From these explanations, it follows that the subnetwork s(x) behaves exactly
like the node x. Moreover, one processing step and one communication step
of I" are simulated in I'” by 3 processing and 3 communication steps.

The case of the nodes with weak filters is easier. Let us assume that
the node x verifies N(x) = (M, PI,FI,PO,FO), M = {ry,...,r,}, and
a(x) = (w). Then we have:

o set(s(x)) = {xo, z1, 2, 22} U{a], ... 2l }, i(s(x)) = xo, o(s(z)) = xa.

hd edge(s(m)) = {(l‘o,x;), (xg,xl), (xzrwr?)a (1‘6,1’:), (xzraxll> ’ 1<i< n}U
U{(Il,x6>,(1}/1,$6)}.

o N'(xo) = (0, PI,FI,U,0D), o/ (x0) = (w), B (x0) = *.
hd Nl(xl) = (vaOa@v U, ®)7 O/(xl) = (w>7 ﬁ/(l‘l) = *.
hd N/(xll) = (&WPO, U, Q))v a/<xa> - (w)v 6/<xa> = *

e For i € {1,...,n} we have: N'(z}) = ({r;},U,0,U,0), o (2F) = (w),
B(a]) = =

o N(zp) = (0,U,0,U,0), o (z5) = (w), B'(x5) = *.
o N'(x2) = (0, PO, FO,U,D), o/(z2) = (w), 5 (x3) = *.

The simulation of the computation of node x by the subnetwork s(z) goes
similarly to the above. The only difference is that in the case of weak filters,
a word cannot exit, and remains blocked, in the node x only in the case
when it contains a forbidden symbol (in the simulation, the word goes to
x1) or in the case it does not contain any of the permitting symbols (in this
case, during the simulation, the word goes to z/). As in the former case, one
processing step and one communication step of I' are simulated in IV by 3
processing and 3 communication steps.

If a node z has no rules, our intuition is that it should be kept in the exact
same form in the new network. However, in order to be sure that the ANEP
IV we construct simulates correctly I', we must be sure that each step of the
initial network is simulated in the same number of steps by the new one. For
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this, we must be sure that an evolutionary step of the initial network, in which
no rule are applied, and the consequent communication step are simulated
in 3 processing (in which no rule will be applied) and 3 communication steps
of the new network. Therefore, in the case of a(x) = (s), we set:

o set(s(x)) = {xo, x1, 22}, i(s(x)) = zo, o(s(x)) = xa.
e edge(s(z)) = {(xo, x1), (x1,22) }.

o N'(zg) = (0,PI,FI,U,0), ' (x) = (s), f'(x0) = *.
o N(zy) = (0, PO, FO,U,D), o' (x1) = (s), f'(x1) = *.
o N'(z9) = (0,U,0,U,0), o/(x2) = (w), f'(z2) = *.

The case of weak filters can be treated in the same manner: we just have to
change the permitting output filters of zy and x;, and make them equal to
U, and set a(zg) = a(xy) = (s).

To finish the construction of the network I'" we set:

o (' = (X¢, Egr), where the set of nodes is X¢r = |, x,, set(s(z)) and the
set of edges is

Eq ={(o(s(2)),i(s(y))) | y € V& with (z,y) € Eg} U U edge(s(x)).

zeXa

e The input node of the network, denoted In/, is i(s(x;)). The output node
of the network, denoted Out’, is i(s(zo)).

From the remarks made when we explained our simulations it is clear
that the network I accepts (decides) exactly the same language as I'. UJ

Lemma 2. Given an ANEPT = (V, U, u, G, N, a, 8, In, Out), such
that all the processors I' have at most one rule and In has no rules, one
can construct a complete ANEPT" = (V, U, u, G';, N, o/, ', Inj, Out')
such that T accepts (decides) the same language as I' accepts (respectively,
decides). Moreover, two consecutive steps of I' (an evolutionary and a com-
munication step) are simulated in exactly 18 consecutive steps (9 evolutionary
and 9 communication steps) of T".
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Proof. Let Uy = {#., #., #2, #°, #., | b€ U,z,y € Xg, (z,y) € Eg}.

The complete network I simulates the computation of I' using the fol-
lowing strategy. We construct for each node z of I a subnetwork s(x) of I
whose processors simulate the computation of the processor N'(z); we denote
by set(s(z)) the nodes of the subnetwork s(z). The underlying graph of I”
is complete and has the nodes |J,cx, . set(s(z)). All the words processed in
the new network have a special symbol from U;. The symbols of U; that
encode one processor of the initial network indicate the nodes whose actions
must be simulated at that point, thus which of the subnetworks should act
on the word. The symbols that encode two nodes indicate a possible way
to communicate the word containing it between the subnetworks of I'V. The
symbol #7, is inserted in the input word at the beginning of the compu-
tation, so we should start by simulating the input node of I". Further, the
way the computation is conducted, described below, and the way symbols
of U; are inserted, deleted or modified, in the processed words enable us to
simulate, in parallel, all the possible derivations of the input word in I', and
ensure that the subnetworks act independently (that is, that they can ac-
tually interact only after they simulate completely one evolutionary step of
the corresponding nodes of I'; in order to simulate the communication step
of the original network).

The alphabet of IV is defined as

U=UU{t, b |becUYU{#D|1<i< 8}UU;.

In the following, we define the rest of the network.

We will split our discussion in many cases, according to the type of the
node (with no rules, insertion, substitution, deletion), the way the operations
are applied (left, right, arbitrary) and the type of the filters. We stress out
from the beginning that one processing step and the subsequent communi-
cation step of the network I' will be simulated in exactly 9 processing steps
and the corresponding communication steps in I'; this is because in the most
intricate case, namely the case of deletion nodes, our network actually needs
this many steps to simulate correctly one step of I'.

Assume that the node z verifies N'(x) = (0, PI, FI, PO, FO). Then we
have:

e set(s(x)) = {xo, 21},
hd N<x0) = ({#az — #;;}; P[> FIU (Ul \ {#x}>v {#;}7 (D)v O/(xo) = Oz(:L’)
o N(z1) = ({#, = #W,#0 = #, | (x,y) € Eg} U{#Y — #0+1 |
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1< i< 6},U,0, PO, FOU{#,}U{#Y |1 <i<T}), (1) = afz).

In s(z) we only change the symbol #, into a new symbol #,, indicating that
the word can now go towards the nodes of the subnetwork s(y), and cannot
enter the nodes of any other subnetwork. The only trick is that we must do
this change in nine steps, instead of a single rewriting step. The rest of the
word is left unchanged, as it was also the case in the node x of the initial
network, where the whole word stayed unchanged.

In the case of the input node In of I', the only difference is that we add
a new node In(, which is an insertion node, where #/, is inserted. The
input node of the network is Inj. This node does not allow any word to
enter, and allows all the words to exit, so it only acts at the beginning of
the computation. The subnetwork associated with the output node Out has
only the node Outy, which is the output node of the new network.

For the node z, with N'(x) = {\ — a}, PI,FI, PO, FO), a(z) = (s)
and S(z) = [, we have:

o set(s(x)) = {xo, 21, 20, 23}
(o) = ({A = #.}, PLFIV(UN\{#.}), U",0), &/ (o) = (s), B'(z0) =
({#m = AL A#L #a b Un \ {3, #.31,U7,0), o/ (21) = (s) and

(1

)
B (1)
2)

(2) = ({A = a3 A{#.}, U \ {#,}, (PO U{a'}) \ {a}, FOU{V' [ b €
FOY), o (23) = (s), f'(w2) = L.

o N(z5) = ({d' = afU{#, = #0, #O — #O #O - 30O 0 - 5O,
#<)>—>7@Eyl)(2/(y))€l@c} AL U (#3 (# | (@) € Ea), {, #2)).

The subnetwork associated with a right insertion node, with strong filters, is
very similar, the only different things being that f'(zg) = [ and '(x2) = r.
Also, the subnetwork associated with an arbitrary insertion node, with strong
filters, is similar, this time the different things being that 5'(zg) = f'(x2) = *.

In the following we explain how the subnetwork works in the case of left
insertion nodes (as the other cases are treated analogously). Let us assume
that w is a word that was sent towards the node x in a communication step of
I', and the word w;#,ws, with wyws = w, was communicated by some node
in the network I'". If the word w can pass the input filters of x then w,#,w-
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can also enter xy (and no other node, in fact); the reversal holds as well.
In the node x of I' we obtain from w the word aw, which leaves the node
if and only if it verifies the conditions imposed by the output filters; note
that if the word does not leave the node after one processing step, then
it will never leave, since any new insertion would not make it contain any
new symbol (because, as we have assumed, we have at most one rule per
node). In the network I'" the word is processed as follows. In the node x it
becomes wy #,we#, and is sent out. As we will see after the whole network
is defined, it can only enter the node x; (because all the other nodes block
the words containing both #, and #.); here it becomes wjwy#, = w.,.
Further, it is communicated in the network and can only enter the node s,
where it becomes a’'w#,,. It is not hard to see that this word can leave the
node x5 if and only if aw can leave the node x, of I'; as in the case of the
initial network I', if the word does not leave the node after one processing
step, then it will never do so. Therefore, if the word fulfils the conditions of
the output filters and leaves the node it can only go to node x3 where we
obtain, in 6 processing steps, all the words aw#,, for a node y such that
(z,y) € Eq. Each word aw#, leaves the node and can go to the nodes of the
subnetworks associated with the node y. Clearly, s(z) simulates correctly
one processing step done by x, and the consequent communication step, in 9
processing and communication steps.

The case of insertion nodes with weak filters is very similar. We just have
to redefine the filters of nodes ¢ and x5 to be weak, and to set the permitting
output filter of xy to be equal to U’.

Now we move on to substitution nodes. In this case we only have two
cases, according to the way filters are used, since substitutions are always
applied in the * mode (i.e., to an arbitrary position). For the node x, with
N(z) = {a = b}, PI,FI,PO,FO), a € FO, a(z) = (s) and 3(z) = x, we
have:

hd Set(S(.I)) = {x07 T1,22,T3,Ty4,Ts, 3:6}-

b ./\/(CL’()) = ({#z — #;}’PL F]U(Ul\{#ﬁv})?U/’@)v O/(ZL‘O) = (8)7 ﬁ/(l‘o) =

b N(Il) = ({CL - b/}v {a}7 U \ {#;}7 U, Q))v a/<l’1) = (S)7 B/(xl) = *.

. glf((:vz)) = W = Ak i e U (0 {#:1),U,0), o'(22) = (s),
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( )(m 2( g{#; = # 1AV U ) {a), FOU{C [ c € FOY), o (23) =

o N(zy) = ({0 = b, #2 — #, #O - $& 4@ 5 46 4O (),
#W — 23 VY, Un\{#2, {a} FOU{Y, O}) "(24) = (w), B'(z4) = *.

o N(xs) = ({b' — b | b G UYO{#, — #@ #7 — #O #O 5 4@ @)
A A y|y€Vawith(l‘y)€EG}{b'#”}FOU
{¢ | c € FO}U (U \ {#,, #1), U/ {#9D | 1 < i <4AFU{#LV,#,}),
o (x5) = (w), f'(w5) = *.

o N(xg) = {#uy = #y | v € Xa}, PO, Uy \ {#4y | y € Vi with (z,y) €
Ec}, U {#ey | (,y) € Eg}), o/ (x6) = (s), B'(x6) = *.

If a ¢ FO then we simply delete the nodes z3 and xy.

The simulation implemented by the subnetwork is, in this case, more
involved. Let us assume that w is a word that was sent towards the node z
in a communication step of I', and the word w;#,w,, with wyws = w, was
communicated in the network I'". If the word w can pass the input filters of =
then w; #,w, can also enter zy (and no other node); the reversal holds as well.
In the node x we obtain from w a word w’ by substituting several symbols a
with symbols b (actually, we either substitute exactly one occurrence of an
a, if a ¢ FO, all of them, if a« € FO, or none, if w contains no a) and w’
leaves the node if it fulfils the output conditions. In the network I the word
is processed as follows. In zg it becomes w;#, wy and is sent out. It can only
enter x1, if it contains at least one a, or x,, otherwise. In the first case it
becomes w) #,wh, by substituting exactly one symbol a with a symbol ¥'. In
the second case, the word becomes w;#7ws (only the symbol encoding the
current node is changed, and the rest of the word remains the same because
it contains no a). In the both cases, the obtained words enter node x5 where
we obtain, in 5 processing steps, all the words ws#, w4, for a node y such
that we have (z,y) € Fg and wsw, = w’, where w' was obtained from w by
substituting at most one symbol a with a symbol b. Such words can only be
communicated to node zg, if they fulfil the conditions of the output filters
of . In x¢ they are transformed into words that have the form ws#,ws,
and can go to the nodes of the subnetwork associated with the node y of the
network I'. There is one more thing to be analysed: the words that leave x5
and contain a, in the case when a € FO. These words can go to node 3,
where they become w|#2w), and, further, can only enter node x, (but only
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if they do not contain any more forbidden output symbols of the node z or
their primed copies). In this node, ¥’ becomes b and #S becomes #/,, after 6
processing steps are performed, and the obtained words are sent back to
node 9, where another processing step of the original node x is simulated.
It is not hard to see, from these explanations, that the action of the node x
in I was correctly simulated by the subnetwork s(z) in I'/; more precisely one
processing and one communication step of I' are simulated in 9 processing
and 9 communication steps of I".

The case of substitution nodes with weak filters can be treated in a similar
fashion. We simply have to redefine the filters of xy and xg in the previous
network as being weak, and to set their permitting output filters to be equal
to U’. As in the former case, if w is a word that was sent towards the
node z in a communication step of I' and the word wi#,w,, with wiwy = w,
was communicated by some node in the network I we obtain in the latter
network all the words ws#,w,, such that (z,y) € Eg and wsw, = w’ where v’
was obtained in node z from w and was allowed to leave that node. In
this manner, the action of the node x in I' was simulated soundly by the
subnetwork s(x) in I'; once more, one processing and one communication
step of I' are simulated in 9 processing and 9 communication steps of I".

Finally, we present the simulation of the deletion nodes. As in the case
of insertions, we can have left, right or arbitrary deletion rules, and strong
or weak filters. However, all the cases are based on the same general idea.
Therefore, we present and discuss in details only one case: the case of left
deletion nodes, with strong filters. For right and arbitrary insertions we will
describe only the differences from this construction.

Let us assume that the node = has N (z) = ({a — A}, PI, FI, PO, FO),
a(z) = (s) and S(z) = [. First, we will assume that a € FO. In this case,
we have:

o set(s(z)) = {wo, 71, T2, ¥3, T4, T5, 76} U {13, 2° | b € U}.

b (IO) = <{)‘ - #?p}v PIv FIU(UI\{#m})v Ul? Q))? O‘/(IO) = (5)7 5/(%) =r.
b -glf((xl)) j <{#CE - )‘}7 {#;7 #x}a (Ul\{#xv #;})U{a/}7 Ul? (D)’ a,(xl) = (3)7

o N(xzz) = ({o =0 | be Ub{#,}, U\{#,},{V' [ b € U}, 0), o/ (22) = (w),
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o Nlws) = ({#, = #2 [ b e VIV | b e VEU\{#.1.U {#.}),
o (23) = (w), B'(ws) = *.

e For all b € U we have: N(zp) = ({b/ — A\ {#°},{d | ce U\ {b}}U
{"| ceULU {d|ceU}), d(xp) = (w), 5(xp) = 1.

e Forallb € U\{a} we have: N'(2°) = ({\ = V'}, {#°},{c | c € U}, U",0),
o) = (w), F(%) = I

b N(Ia> = ({#g — #g}v {#2}7{6, | cE U}v U/7@)7 O/(xa> = (w)7 Bl(xa> =

o N(wg) = ({#; = #, # — #O, #® — 0O 30 - 0, 4O -
#o 3, {ad, {0710 € U U (U \{#3), {#,},0), o/ (24) = (w), B'(z4) = *.

o N(zs) = ({#; = #D #Y = oy #5 = #oy V' 2 b | be U, (a,y) €
Eg}, {#;3 U{b" [ b€ UL, FOU{Y" | be FOYU UL\ {#;}), U {#V} U
{#:H UV #: [ b e UY), o'(x5) = (w), B'(w5) = =

° N<I6) = <{#w,y — #y | y € XG}JPO7{#Z>#% ;7#2 | b € Uay €
XG}7®7{#CC7ZJ | (ZL’,y) € EG})v a/(xfi) = (8)7 /B,(xﬁ) = *

Let us assume that w is a word that was sent towards the node z in
a communication step of I' and the word wy#,wy, with wiw, = w, was
communicated by some node in the network I". If the word w can pass
the input filters of x then w;#,ws can also enter xy, and vice versa. In
the node x of I' we obtain from w a word w’ by deleting all the symbols a
from the left end of the word, and this word leaves the node if it verifies the
output conditions. In the network IV the word is processed as follows. In the
node xg it becomes w;#,wo#. and is sent out. It can only enter the node
where it becomes w#! . Now it can only go to node x5. Here it is transformed
into wib'wh#, for all b € U and w}, w) € U* such that wibwl = w. Now these
words enter node x5 and the network obtains from them the words w/b'w)#¢
with ¢ € U. From these only the words wib/w)#?. are further processed.
More precisely, the node x, permits these words to enter and transforms
them into w)#? if and only if w) = X. Next, the obtained words can only go
to node 2. If b # a it means that we simulated a deletion that should not
have happened, so we remake the word into "w)#?%; otherwise, the deletion
was correct and we get in x® the word w)#. In the first case, the words can
enter node x5 (if they do not contain any of the forbidden output symbols
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of node x) where they are transformed into w'#, ,, with (z,y) € E¢, in two
processing steps and sent out; finally, they can enter only node x4 but if and
only if w’ verifies the permitting output filters of the original node x, and
here the words are transformed into w'#, and are sent to the other nodes
of the network (and can only enter the nodes of the subnetwork constructed
for the node y). In the second case, the word wh# can either enter x5, and
be processed as above, or, if it still contains symbols a, which are forbidden
output symbols for z, it goes to node x4. In this node they are transformed
into wh#! (in 5 steps), go back to node x5, and the whole process described
above is repeated. It is not hard to see now that the action of the node x
in I" was correctly simulated by the subnetwork s(z) in IV. More precisely,
one processing and one communication step of I' are simulated, again, in
exactly 9 processing and 9 communication steps of I".

In the case when a ¢ FO we simply remove the node 4 from the above
construction, and the simulation goes on just the same. To adapt the con-
struction to the case of right deletion nodes, we should switch the working
mode of nodes z, x; and z%; that is, if one of these nodes was a node where
left (right) operations were applied, it must become a node where right (re-
spectively, left) operations are applied. In the case of arbitrary deletion
nodes, we simply redefine all the node such that they apply the rules arbi-
trary. Finally, when the node x has weak filters, we set the filters of x; and x4
to be weak and redefine their permitting output filters as being equal to U’,
such that all the words that do not contain any forbidden output symbols
are allowed to leave these nodes.

The output node of the network is the node Outy from the subnet-
work s(Out), associated with the node Out.

From the way the subnetworks s(x), with * € X, work we see that the
following statements are equivalent:

i. In I': w is a word that entered the node x, was transformed by this
node into w’ in one step, and w’ was communicated to node y (when
w' cannot exit x we assume that y = z);

ii. InT": the word wy#,w,, with wyws = w, entered the node xq, from the
subnetwork s(x), it was transformed, by the nodes of s(x), into w}#,w},
with wjw) = w', in exactly 9 evolutionary and 9 communication steps,
and was communicated to the nodes of the network.

Note, also, that I accepts a word w if and only if a word w#ouiws,
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with wiwy € U, can be derived from it; but such a word can be derived only
in a number of steps divisible by 9. According to the above, the computation
of I" on w ends (and accepts) in ¢ steps if and only if the computation of I
on w ends (and, respectively, accepts) in 9¢ steps. Therefore, L(I") = L(IV).

O

We can now derive the main result of this section.

Theorem 3. Given an ANEP T = (V,U,u,G,N,a, 3, In,Out), one can
construct a complete ANEP T = (V,U', u, G', N, &, B, In’, Out’) such that
the network T accepts (decides) the same language as T accepts (respec-
tively, decides). Moreover, two consecutive steps of I' (an evolutionary and
a communication step) are simulated in exactly 54 consecutive steps (27 evo-
lutionary and 27 communication steps) of I'.

Proof.  First, the given ANEP I' = (V, U, u, G, N, a, 8, z1, x0), 18
transformed into an ANEP IV = (V, U, u, G', N/, o, ', 2y, x}y) such that T”
accepts (decides) the same language as I" accepts (respectively, decides), each
node of [ has at most one rule and x; has no rules. Moreover, two consecutive
steps of I' (an evolutionary and a communication step) are simulated in
exactly in exactly 3 evolutionary steps and 3 communication steps of I".
Second, by Lemma 2, we are able to transform the network I' into a
complete ANEP I'" = (V, U", u, G", N", ", p", /|, x{;) such that I accepts
(decides) the same language as I' accepts (respectively, decides). Moreover,
two consecutive steps of ' (an evolutionary and a communication step) are
simulated in exactly 9 evolutionary steps and 9 communication steps ofl”.
This shows that the statement of Theorem 3 hold. 0J

It is worth mentioning that the problem of simulating an arbitrary NEP
by a complete NEP was approached also in the case of generating networks of
evolutionary processors [6]. Note, though, that the things were quite different
in that setting: the filters in generating networks were regular sets, and this
allowed us to control easier the communication; no weak/strong filtering
conditions existed; each node contains a set of axioms, at the beginning of
the computation. The most important differences are that: the rules were
applied in a different fashion (i.e., if at least one rule can be applied to
a word w, we obtain all the words that are derived from the word w by
applying exactly one of the possible rules at exactly one feasible position in
the word w) and in the case of generating networks we don’t need to worry
about halting computations, acceptance or rejection (and synchronizing the
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different derivations of a word, in order to obtain the same outcome). All
these differences lead to much less complicated constructions in that case.

Let us now consider the afore mentioned construction of a complete ANEP
simulating an arbitrary ANEP via an intermediary Turing machine. We also
propose a 2-steps construction, but the only computational model we use is
the ANEP model. Also, the both steps rely on the same idea: we replace the
nodes of the initial network with a group of nodes that simulate its job; this
makes the construction simpler to apply, and easier to follow. Moreover, the
complete network simulates in linear time the arbitrary network.

The result in Theorem 3 has a series of immediate consequences. First,
it provides a canonical topology for ANEPs, allowing us to specify all the
results and definitions in an uniform manner, without taking into account
the particular topology of the network; in this respect, we may see this
result as Normal-Form-result for ANEPs. Second, the transformation from
an arbitrary network into a complete one is algorithmic, and can be applied
automatically. Further, the number of nodes in the complete networks is
greater only by a constant factor than the number of nodes of the simulated
one. Finally, our simulation preserves the computational properties of the
initial ANEP, thus, complete networks can be used to prove lower bounds
for the time needed to solve a given problem: the most time-efficient ANEP-
based solution of a problem can be implemented on a complete ANEP.

The proof of Lemma 2 is an example on how one can design an ANEP by
putting together multiple subnetworks; this approach seems close to that of
procedural programming. Theorem 3 shows that designing a greater ANEP
from smaller subnetworks is an approach that can be used without being
afraid that such a solution is no longer uniform (i.e., the network has very
specific properties, and cannot be transformed efficiently to a general net-
work, such as a complete one). Moreover, if an ANEP constructed from
subnetworks works efficiently, so will do the complete variant of that ANEP.

5. Computational Complexity

We begin this section by recalling the definition of one-tape nondeter-
ministic Turing machines. Such a machine is a construct M = (Q, V, U, 6,
qo, B, F'), where @ is a finite set of states, V is the input alphabet, U is
the tape alphabet, V' C U, g is the initial state, B € U \ V is the “blank”
symbol, F' C @ is the set of final states, and ¢ is the transition mapping,
§:(Q\F)x U — 2@xUMBNX{RLE T this paper, we assume without loss
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of generality that any Turing machine we consider has a semi-infinite tape
(bounded to the left) and makes no stationary move. An instantaneous de-
scription (ID for short) of a Turing machine is a word that encodes the state
of the machine, the content of its tape (that is, the finite string of non-blank
symbols that exists on the tape), and the position of the tape-head, at a given
moment of the computation. An ID is said to be initial if the tape contains
a string from V*, the tape-head is positioned on the first symbol of the tape,
and the state is ¢g; an ID is said to be final if the state encoded in it is the
accepting or the rejecting state of the machine. A computation of a Turing
machine on an input word consists of a sequence of IDs, starting with an
initial ID, encoding the input word, such that each ID of the sequence can be
transformed into the next one by executing a transition of the machine (i.e.,
rewriting the content of the tape and changing the state and the position of
the tape-head according to the transition defined by the current state and
the symbol scanned by the tape-head). A computation is said to be finite
when it consists of a finite sequence of IDs that ends with a final ID; a com-
putation is said to be accepting (respectively, rejecting), if and only if it is a
finite computation and the final ID encodes the accepting state (respectively,
rejecting state). Clearly, a nondeterministic machine may have more than
one computation on an input string. All the possible computations of a non-
deterministic machine on an input word can be described as a (potentially
infinite) tree of IDs: each ID is transformed into its sons by simulating the
possible moves of the machine; this tree is called computation-tree.

An input word is accepted by a nondeterministic Turing machine if and
only if there exists an accepting computation of the machine on that word.
The language accepted by the Turing machine is a set of all accepted words.
We say a Turing machine M decides a language L if it accepts L and moreover
halts on every input.

The length of a finite computation of a machine M on a given word w is
the number of IDs that occur in that computation. The shortest computations
of M on w are those computations of M on w whose length is minimal among
all such computations. If M has no finite computation on w, the set of the
shortest computations of M on w is empty; however, in this paper we discuss
only about nondeterminitic polynomial machines, thus, machines that have
only finite computations on every input. For such a machine, the shortest
computations of M on w may be seen as the shortest paths from the root to
the leaves in the tree of the computations of M on w.

The reader is referred to [7, 8, 17] for the classical definitions regarding
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Turing machines, and the time and space complexity classes defined for them.
However, here we focus on a different way of using nondeterministic Turing
machines; that work in polynomial time, defined in [11].

Definition 1. Let M be a nondeterministic polynomial Turing machine and
let w be a word over the input alphabet of M. The word w is accepted by M
with respect to the shortest computations if one of the shortest computations
of M on w is accepting; w is rejected by M w.r.t. the shortest computations if
all the shortest computations of M on w are rejecting. We denote by Lg.(M)
the language decided by M w.r.t. the shortest computations and by PTimes.
the class of all the languages decided in this manner.

It is not hard to see that the class of languages decided w.r.t. shortest
computations by nondeterministic polynomial Turing machines with a single
tape equals PTimeg.. In [11] the following result is shown:

Theorem 4. PTime,. = PNPllog] 2

Further, one can show that a language is decided by ANEPs as efficiently
as nondeterministic Turing machines deciding w.r.t. shortest computations,
and vice versa.

Theorem 5.

i. For every ANEP T', deciding a language L and working in polynomial
time P(n), there exists a nondeterministic polynomial single-tape Turing ma-
chine M, deciding L w.r.t. shortest computations; M can be constructed such
that it makes at most P%(n) steps in a halting computation on a word of
length n.

ii. For every nondeterministic polynomaial single-tape Turing machine M,
deciding a language L w.r.t. shortest computations, there exists a complete
ANEP T, deciding the same language L. Moreover, I' can be constructed
such that Timer(n) € O(P(n)), provided that M makes at most P(n) steps
in a halting computation on a word of length n. 0

Proof.  First we show that i. holds. The idea is quite simple. Since I’
works in polynomial time it follows that any computation of this ANEP on

2PpNPlog] i the class of problems solvable by a deterministic polynomial machine, that

can make O(logn) queries to an NP oracle on an input word of length n.
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a word of length n has at most P(n) steps. A nondeterministic Turing ma-
chine chooses nondeterministically a computation and simulates it, exactly
like in the proofs from [13]. The only restriction is that the machine first
computes n+ P(n) and, then, starts simulating, one by one, the evolutionary
steps and communication steps of T', until at most n + P(n) computational
steps are performed. A computation halts when the word obtained can be
accepted in the output node of I', and it accepts when the word contains
the special accepting symbol, and rejects, otherwise. In this way, the short-
est computation of the Turing machine on an input word w simulates the
shortest possible derivation of I' starting from that word and ending with a
word accepted in the output node. The computation of the machine accepts
(rejects), w.r.t. shortest computations, if and only if the computation of the
ANEP accepts (rejects). Clearly, M makes at most nP(n) + P?(n) steps in
a halting computation. This concludes the proof of i..

Now we move on to show ii.. We start by constructing an incomplete
network IV that simulates M. Then we just have to apply Theorem 3 and
we obtain the desired result.

We assume, without losing generality, that M has exactly one accepting
state gqe. and a blocking state (i.e., a state in which it enters and rejects) g,..
We assume that there are no transitions that can occur in these states.

The main idea is to construct IV from several subnetworks. The working
alphabet of I is denoted by Up.

First we have two nodes z; and x5 that work as follows.

® N<m1) = <{)‘ - B},@,@, U7®)’ CY(ZL‘l) = (w>7 B(xl) =T.
o N(z2) = ({A = @}, U.0,UU{q},0), a(zs) = (w), Bz2) =1
e We have the edge (z1,x2)

Then we have a node Zenrer, Which acts as a central node of the network,
as it basically controls the way the computation is conducted.

o N(eenter) = ({q = [0, 0,7, b, X1, dace = Gueer & — @+ | 0,4 € Q, a,b € U,
X € {R7L}7 and (q/7b7X) € 5(q>a)}7 UuU Q7®> UF’a Q)> O‘(xcentﬁ”) = (w)v
6(xcente7') =T

e We have the edge (72, Teenter)-

We also have an output node:
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hd N(xOUt) = (@a {%1007‘]7‘},@, @,@), Ol(l'out) = (w)

e We have the edge (Zcenters Tout)-

For a transition (¢’,b, L) € 6(q, B), let t denote the tuple (¢, B, ¢, b, L).
We have a subnetwork I'j. This subnetwork has the following nodes and
edges:

N(z1) = ({B — L} {B},QuU(Q\{lg, B.¢,b, L)}, {L},0), a(a}) = (w).

o N(z3) = ({L = A} {L}0,Ur.0), a(zs) = (w), B(as) = L.

o N(a%) = ({A = B}, Ur, {1}, Ur,0), afaf) = (w), B(a) = L.

o N(z}) = ({A = b}, Ur, 0, Ur, 0), () = (w), B(af) = 1.

e Nty =({c— | ceU},Upr,0,{c | ceU},0), a(zt) = (w).

o N(agy) = ({A = 1, {¢},0,0r,0), a(ar,) = (w), Blag,) =1, for c €
U\{B}.

o N(ag) = ({¢ = A ceUL{d | ceU},0,Ur,0), alxg) = (w), Blzg) =

® N@‘%) = ({[q,B,q’,b, L] — q/}vUF’a {cl | cE U}7Q7®)7 a(xt) = (w>

e We have the edges (z},z!,,), for i € {1,2,3,4,6}, and {(z}, %), («, §) |
¢ € U\{B}}. Furthermore, we have the edges (xcmter, xt) and (2%, Zeenter)

For a transition (¢',b, R) € 0(q, B), let t denote the tuple (¢, B, ¢, b, R).
We have a subnetwork I'j. This subnetwork has the following nodes and
edges:

(1) = ({B = L} {B},QU(Q\{lg, B, ¢, b, L)}, {L},0), a(a}) = (w).
o N(z5) = ({L = AL {L}0,Ur,0), a(z}) = (w), Bay) = L.
o N(a%) = ({A = B}, Ur {1}, Ur,0), afaf) = (w), B(a) = L.
o N(z}) = ({A = b}, Ur, 0, Ur, 0), () = (w), Blaf) = 7.
o N(xg) ({lg,a,q¢',b, L] — L1, Ly — Lo, Ly — 13,13 — ¢}, U, {c |
Uy, Q. {Li|ie{1,2,3}}), alz;) = (w).
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e We have the edges (zf,2%,,), for i € {1,2,3,4}. Also, we have the edges
(xcentem .fCi) and (l‘i, xcenter)

For a transition (¢',b,L) € 6(q,a), with a # B, let ¢t denote the tuple
(¢,a,q',b,L). We have a subnetwork I';. This subnetwork has the following
nodes and edges:

o N(a1) = ({a = L}, {a},QU(Q'\{lg, B,¢',b, L)}, {1}, 0), a(z}) = (w).

o N(a3) = ({L = AL AL} 0,Ur,0), a(ay) = (w), B(ay) = 1.

o N(zg) = {A = b}, Ur, {L}, Ur, 0), afag) = (w), Blag) = 1.
D={c=ceUlUp,0.{c | ceU},0), alxz) = (w).

(7)) = ({A = 1 {0, U0, 0), a(ez,) = (w), Blac,) =1, for c €

Ig) = ({C/ — A | cE U}v{cl | ce U}ﬂvaFU@)v O‘(xg) - (w>7 ﬁ(xg) =

e We have the edges (z},z!,,), for i € {1,2,3,4,5}, and {(z}, 2!), («, 2}) |
c € U\{B}}. Furthermore, we have the edges (mcmter, xt) and (2§, Teenter)

For a transition (¢’,b, R) € d(q,a), with a # B, let ¢t denote the tuple
(¢,a,q,b, R). We have a subnetwork I"j. This subnetwork has the following
nodes and edges:

N(at) = (fa = L}.{a},QU(Q"\{lg, B, ¢, b, L))}, {1}, 0), a(a}) = (w).
N(x5) = ({L = A} {1}, 0,00, 0), a(ah) = (w), B(a3) = 1.

N (%) = ({A = 0}, U, {1}, Ur, 0), a(a) = (w), Baf) =r.

N(z) = ({lg,a,¢,b, L] — Ly, Ly ¢} U{L; — L1 | 1 <i<3}, Up,

{C | S U}7 Q, {—Lz | (S {1727374}})7 O‘<xfl) = (w)

e We have the edges (!, 2! ,), for i € {1,2,3}. Furthermore, we have the
edges (xcentemxtl) and (xgaxcenter)
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The way the network I works is quite simple: the nodes z; and 9
transform the input word w into wBqy, and sends this word to Z.enter. Then,
we can assume that the node Z e contains a word w’Bquw”, meaning that
the machine M is in state ¢ and the tape-head points to the first symbol of
w'B (assumption that holds after the first step). This node chooses which
transition of M should be simulated next. Let us assume that the machine
chooses to simulate a move given by the transition (¢, b, L) € §(q, B). In this
case, the word becomes w'B|q, B,q',b, Ljw” and is sent to the subnetwork
I'}. Here, in the nodes z} and 2z, we check if B is the leftmost symbol, and
it is deleted; if B was not the leftmost symbol, the word is blocked, and this
derivation stops. Then, in the nodes 2z, and 2z another B is inserted (the
machine-tape contains an infinite number of Bs, but we always keep just
the first one in our words, and, in this case, this B was deleted), and the
symbol b that replaced the deleted B is inserted at the leftmost end of the
word. Now we should simulate the movement of the head, that is we should
move one symbol from the rightmost end to the leftmost end. And this is
done in the nodes z%, 2 and zf. The word first becomes bB|q, B, ¢, aL]zc'y,
where zcy = w”, and, then, cbB|q, B, ,b, Llxzc'y. Now ¢ is deleted if and
only if it is the rightmost symbol, and we obtain the word ¢bB|q, B, ', b, L]z;
otherwise, the word is lost. Finally, in z% the word becomes cbBq'x, and it
is sent back to Z.enter, Wwhere a new move of the machine will be simulated.

The other types of moves are simulated in a very similar manner by
the respective subnetworks (actually, the case described above was the most
involved one). Note that each move is simulated in exactly 9 evolutionary and
9 communication steps by the ANEP: 1 evolutionary and 1 communication
step for choosing which move is simulated, and, then, 8 evolutionary and
8 communication steps for actually simulating the chosen move. In some
of the cases, we needed to do some extra dummy-moves, just to be able to
synchronize all the possible derivations.

The node x.enter can also leave the word unchanged, in the case when it
contains ¢ue. or ¢.. Such words go to x,,;. The special accepting symbol of
the network is queec.

It is not hard to see that a halting computation of M, with ¢ steps, is
simulated by I" in 6 + 18¢ consecutive steps (evolutionary and communica-
tion), and it ends with a word in the node x,,. Also, the only words that
can enter in the output node of IV have the form w’'Bq.w", with ¢ € {ace, 1},
provided that the configuration w”g.w’B can be reached by M. Also, such a
word enters in that node only after 6 + 18k steps, with £ € IN. So the words

30



that will be accepted the first in the node z,,; are exactly those encoding the
final configurations reached in the shortest computations of M.

Therefore, the words that are accepted (respectively, rejected) by I' are
exactly those that are accepted (respectively, rejected) by M, w.r.t. shortest
computations. O

It is worth noting that this proof is different from other similar proofs.
like those from [16, 13], as here every move of the Turing machine is simulated
in exactly 9 evolutionary and 9 communication steps by the ANEP; in the
previous proofs different moves of the machine were simulated in different
number of ANEP-steps.

As a consequence of Theorem 5 we obtain the following Theorem.

Theorem 6. PTimeygp = PNPlogl, m

This result seems interesting to us as we are not aware of any other charac-
terization of the class PNPIogl by computational complexity classes defined
for bio-inspired computing models. Note, once more, that all the problems
in PNPlog] can be solved by networks with the same topology, so, in a way,
the solution to a problem is not based on the topology of the network but
on the algorithm implemented by that network.

Finally, we show that, in fact, one can design complete ANEPs working
faster than nondeterministic Turing machines. This shows that solving a
problem by nondeterministic Turing machines and then simulate such ma-
chines by NEPs does not lead to an optimal ANEP-based solution to that
problem. Also, this shows that the mechanism implemented by ANEPs does
more than replacing the nondeterminism by massive parallelism.

Example 1. Let L = {a"b | n € IN,n > 1}. It is not hard to see that
any nondeterministic Turing machine, deciding L in the classical way, or
w.r.t. shortest computations, or using oracles, and with an arbitrary number
of tapes, makes at least a linear number of moves before it stops on an input
word. However, L can be accepted in constant time by a complete ANEP.

o We construct an ANEP T' with an underlying graph with 6 nodes x1,
Lo, X3, T4, Ts, and Lout, and edges <x17x2>7 (x17$4)7 (3327:63); <$2,x5>7
(x37'rout>7 <x4ux5>7 <x57xout)'

o This ANEP works as follows: in the node x1 (which is also the input
node) a symbol b from the input word is replaced with an X, and all the
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words obtained exist the node. They can go to xo, where they enter only
if they have an X (so only words that initially contained at least a symbol
b can be further processed in this node); all the other words go to x4. In
xo the rightmost symbol of any words deleted if and only if it is an X.
Further, the words can go to x3, if they have no X and still have an a,
or to x5, otherunse. Clearly, at least a word enters x3 if and only if the
input word had the form a"b, with n € IN,n > 1. In this node a special
symbol  is inserted in the words. The nodes x4 and x5 do not process the
words in any way. All the words obtained in x3 and x5 go to Tou, and the
mput word is accepted if and only if one of the words in . contains .

e From the explanations above it follows clearly that I' accepts L, and any
word 1s decided in at most 3 evolutionary steps and communication steps.

e By Theorem 3 we obtain that there exists a complete network I accepting
L in constant time.

6. Yet Another Model and Conclusions

During the writing of this paper we considered several variants of defi-
nitions for the decision of a language by ANEPs. The variant presented so
far seemed to us quite motivated and lead to simpler proofs. However, there
is an equally motivated variant that we would like to present, informally, in
the following.

The idea behind this new definition is the same as in the previous case:
we first define a halting condition and then we define a method to take the
decision, once the computation halted. In this case, instead of having a
special symbol, a network will contain an additional distinguished node x 4.
The computation of such a network on an input word works exactly as in
the case discussed before. A computation halts as soon as a word enters the
node zo; once the computation halts, the input word is accepted if the node
x4 contains at least a word and rejected otherwise.

The main difference between this definition and the one previously dis-
cussed is that in this case the halting condition and the method of deciding
the input are of similar nature: we simply check whether the configuration of
a node is empty or not. However, this model is a little more complicated and
is farther away from the initial definition of the NEPs [16], as now we have
more than one node that is involved in the termination of a computation.
This model seems also harder to use; in fact, we were able to show results
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similar to the ones discussed previously in this paper only by simulations
that basically rely on the idea of introducing in the processed words, at a
given point of the computation, a symbol that signals the acceptance of the
input word (thus, has the same meaning as u from the previous definition)
and then halting somehow the computation.

It is not hard to see that this new model simulates efficiently the model
introduced in Section 2. Indeed, assume that we are given an ANEP that
decides a language according to the method previously discussed and has an
output node zp; we add to this network two new nodes =y, and 2/, and the
edges (zo,rp) and (xp, ;). The node x}, allows any string to enter and is
used to signal the halting of the computation as soon as a string enters in
it, while 2’y allows in only the strings that have the symbol p and is used
in order to take the correct decision on the input word (that is, to accept
the input string when it is not empty in the moment when the computation
stops).

To show that the new model can be simulated efficiently by the model
introduced in Section 2 we make, once more, use of the Turing machines
deciding w.r.t. shortest computations. Indeed, let I' be an ANEP and zo be
its node that is used to halt the computations and x 4 its node that it is used
to take the decision, as described above. We construct a Turing machine M
that simulates, step by step, two derivations of I' starting with the same word.
The machine halts as soon as one of these derivations reaches a word that can
enter xp and accepts if the other derivations produced (in the same number
of steps) a word that can enter x4, rejecting otherwise. Let us see which is
the language decided with respect to the shortest computations by M. The
shortest computations of M are exactly those in which one of the shortest
derivations of I' from the input word, ending with a word that can enter in
T, is simulated; the halting computations of I' have exactly as many steps as
such a derivation. Also, I' accepts if and only if besides the shortest derivation
that produces the word accepted in z there is another derivation of the input
word that produces, in the same number of steps, a word accepted in 4.
Thus, a word is accepted by I' if there exist two derivations with minimum
number of steps that produce from the input word a word accepted in zo
and, respectively, a word accepted in z4; but this is equivalent to the fact
that M accepts the input word (as one of its shortest computations will
consist in simulating exactly these two computations). Similarly, a word is
rejected by I' if there are no two derivations with minimum number of steps
that produce from the input word a word accepted in xp and, respectively,
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a word accepted in x4; once more, this is equivalent to the fact that all the
shortest computations of M are rejecting. In conclusion, M decides exactly
the same language as I', and the shortest computations of M on an input
word have as many steps as [' does in its computation on that word. By
Theorem 5 we get that the new model of deciding NEPs can be simulated
efficiently by the model introduced in Section 2.

These last results, as well as the results presented before them in this pa-
per, make us think that nondeterministic machines deciding with respect to
shortest computation may become useful when defining complexity measures
for other bio-inspired computational models, as well. It seems appealing to
us to study how the computation of other such models can be expressed
in terms of shortest computations of classical machines, and in what mea-
sure the complexity classes defined with respect to shortest computations
have corresponding complexity classes defined for bio-inspired models. This
new approach of bio-inspired computational models could provide a deeper
understanding of their real computational capacities and could lead to a sim-
plification of their definitions, in such a manner that the natural restrictions
are kept and the artificial ones are discarded (as it was the case of deciding
networks of evolutionary processors).
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