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Abstract. In this paper, we study the power of internal contextual
grammars with selection languages from subfamilies of the family of reg-
ular languages. If we consider families Fn which are obtained by restric-
tion to n states or nonterminals or productions or symbols to accept
or to generate regular languages, we obtain four infinite hierarchies of
the corresponding families of languages generated by internal contextual
grammars with selection languages in Fn.

1 Introduction

Contextual grammars were introduced by S. Marcus in [4] as a formal model
that might be used in the generation of natural languages. The derivation steps
consist in adding contexts to given well formed sentences, starting from an initial
finite basis. Formally, a context is given by a pair (u, v) of words and the external
adding to a word x gives the word uxv whereas the internal adding gives all words
x1ux2vx3 when x = x1x2x3. Obviously, by linguistic motivation, a context can
only be added if the words x or x2 satisfy some given conditions. Thus, it is
natural to define contextual grammars with selection in a certain family F of
languages, where it is required that x or x2 have to belong to a language of the
family F which is associated with the context. Mostly, the family F is taken from
the families of the Chomsky hierarchy (see [3, 6, 5], and the references therein).

In [1], the study of external contextual grammars with selection in special
regular sets was started. Finite, combinational, definite, nilpotent, regular suffix-
closed, regular commutative languages and languages of the form V ∗ for some
alphabet V were considered. In [2], the research was continued and new results on
the effect of regular commutative, regular circular, definite, regular suffix-closed,
ordered, combinational, nilpotent, and union-free selection languages on the gen-
erative power of external contextual grammars were obtained. Furthermore, fam-
ilies of regular languages which are defined by restrictions on the resources used
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to generate or to accept them were investigated. As measures, the number of
states necessary to accept the regular languages and the number of nontermi-
nals, production rules or symbols needed to generate the regular languages have
been considered. In all these cases, infinite hierarchies were obtained.

In the present paper, we continue this line of research and investigate the
effect of the number of resources (states, nonterminals, production rules, and
symbols) on the generative power of internal contextual grammars. This case
seems more complicated than the case of external contextual grammars, as there
are two important differences between the way a derivation is conducted in
internal grammars and in an external one. First, in the case of internal contextual
grammars, the insertion of a context in a sentential form can be done in more
than one place, so the derivation becomes, in a sense, non-deterministic; in the
case of external grammars, once a context was selected there is at most one way
to insert it: wrapped around the sentential form, when this word was in the
selection language of the context. Second, if a context can be added internally,
then it can be added arbitrarily often (because the subword where the context is
wrapped around does not change) which does not necessarily hold for external
grammars. However, we are able to obtain infinite hierarchies with respect to the
descriptional complexity measures we use, but with different proof techniques.

2 Definitions

Throughout the paper, we assume that the reader is familiar with the basic
concepts of the theory of automata and formal languages. For details, we re-
fer to [6]. Here we only recall some notation and the definition of contextual
grammars with selection which form the central notion of the paper.

Given an alphabet V , we denote by V ∗ and V + the set of all words and the
set of all non-empty words over V , respectively. The empty word is denoted by λ.
For a word w ∈ V ∗ and a letter a ∈ V , by |w| and #a(w) we denote the length
of w and the number of occurrences of a in w, respectively. The cardinality of a
set A is denoted by #(A).

Let G = (N,T, P, S) be a regular grammar (specified by finite sets N and T
of nonterminals and terminals, respectively, a finite set of productions of the
form A→ wB or A→ w with A,B ∈ N and w ∈ T ∗ as well as S ∈ N). Further,
let A = (X,Z, z0, F, δ) be a deterministic finite automaton (specified by sets X
and Z of input symbols and states, respectively, an initial state z0, a set F of
accepting states, and a transition function δ) and L be a regular language. Then
we define

State(A) = #(Z),

Var(G) = #(N), Prod(G) = #(P ), Symb(G) =
∑

A→w∈P
(|w|+ 2),

State(L) = min { State(A) | A is a det. finite automaton accepting L } ,
K(L) = min {K(G) | G is a reg. grammar for L } (K∈{Var ,Prod ,Symb}),
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and, for K ∈ {State,Var ,Prod ,Symb }, we set

REGK
n = { L | L is a regular language with K(L) ≤ n } .

Remark. We note that if we restricted ourselves to rules of the form A → aB
and A→ λ with A,B ∈ N and a ∈ T , then we would have State(L) = Var(L).

We now introduce the central notion of this paper.
Let F be a family of languages. A contextual grammar with selection in F is

a triple
G = (V, { (S1, C1), (S2, C2), . . . , (Sn, Cn) } , B)

where
– V is an alphabet,
– for 1 ≤ i ≤ n, Si is a language over V in F and Ci is a finite set of pairs

(u, v) with u ∈ V ∗, v ∈ V ∗,
– B is a finite subset of V ∗.

The set V is called the basic alphabet; the languages Si and the sets Ci,
1 ≤ i ≤ n, are called the selection languages and the sets of contexts of G,
respectively; the elements of B are called axioms.

We now define the internal derivation for contextual grammars with selection.
Let G = (V, { (S1, C1), (S2, C2), . . . , (Sn, Cn) } , B) be a contextual grammar

with selection. A direct internal derivation step in G is defined as follows: a
word x derives a word y (written as x =⇒ y) if and only if there are words x1,
x2, x3 with x1x2x3 = x and there is an integer i, 1 ≤ i ≤ n, such that x2 ∈ Si

and y = x1ux2vx3 for some pair (u, v) ∈ Ci. Intuitively, we can only wrap a
context (u, v) ∈ Ci around a subword x2 of x if x2 belongs to the corresponding
language Si. We call a word of a selection language useful, if it is a subword of a
word of the generated language – if it is really selected from wrapping a context
around it.

By =⇒∗ we denote the reflexive and transitive closure of =⇒. The internal
language generated by G is defined as

L(G) = { z | x =⇒∗ z for some x ∈ B } .

By L(IC ,F) we denote the family of all internal languages generated by contex-
tual grammars with selection in F . When we speak about contextual grammars
in this paper, we mean contextual grammars with internal derivation (also called
internal contextual grammars).

Example 1. Let n ≥ 1 and V = {a} be a unary alphabet. We set

Bn =
{
ai | 1 ≤ i ≤ n

}
, Un = { an }+ , and Ln = Bn ∪ Un.

The contextual grammar Gn = (V, { (Un, {(λ, an)}) } , Bn) generates the lan-
guage Ln. This can be seen as follows. The context an can be added to a word
w if and only if w contains at least n letters. The only axiom to which a context
can be added is an. From this, we get the unique derivation

an =⇒ a2n =⇒ a3n =⇒ · · · .
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It is easy to see that the set Un is accepted by the automaton

(V, {z0, z1, . . . , zn}, z0, {zn}, δn)

where the graph

start // z0
a // z1

a //

OO
a

· · · a // zn

represents the transition function δn.
Hence, we have Ln ∈ L(IC ,REGState

n+1 ). ♦

3 Selection with Bounded Resources

First we prove that we obtain an infinite hierarchy with respect to the number
of states.

Theorem 2. For any natural number n ≥ 1, we have the proper inclusion

L(IC ,REGState
n ) ⊂ L(IC ,REGState

n+1 ).

Proof. For n ≥ 2, let

Bn =
{
ai | 1 ≤ i ≤ n

}
, Un = { an }+ , and Ln = Bn ∪ Un

be the languages from Example 1, where we have shown the relation

Ln ∈ L(IC ,REGState
n+1 ).

We now prove that Ln /∈ L(IC ,REGState
n ) for n ≥ 2.

Let G = (V, { (S1, C1), (S2, C2), . . . , (Sm, Cm) } , B) be a contextual grammar
with L(G) = Ln and where every selection language is an arbitrary regular
language.

Let k′ = max { |uv| | (u, v) ∈ Ci, 1 ≤ i ≤ m }, k′′ = max { |z| | z ∈ B }, and
k = k′ + k′′. Let us consider the word w = a(k+1)n ∈ Ln. Obviously, w /∈ B
because the length (k + 1)n is greater than k′′. Thus, the word w is obtained
from some word w′ = w′1w

′
2w
′
3 ∈ Ln by adding a context (u, v) ∈ Ci for some

index i with 1 ≤ i ≤ m around the subword w′2 ∈ Si. Then w = w′1uw
′
2vw

′
3. For

the length of the word w′, we obtain

|w′| = |w| − |uv| = (k′ + k′′ + 1)n− |uv| ≥ k′(n− 1) + k′′n+ n > n.

The word w′ belongs to the language Ln and has a length greater than n which
implies w′ ∈ Un. Hence, w′ = ajn for some j with 2 ≤ j ≤ k and uv = a(k+1−j)n.
If Si contains the empty word λ, then also the word auv belongs to the language
Ln (since a ∈ Ln). However, the length |auv| = 1+(k+1− j)n is greater than n
but not a multiple of n which is a contradiction. If Si contains a non-empty
word z that has a length smaller than n, then z belongs to the language Ln and
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also uzv ∈ Ln. But then the length |uzv| = |z|+ (k + 1− j)n is greater than n
but not a multiple of n which is again a contradiction. Hence, the set Si does not
contain a word with a length smaller than n. Let r = min

{
l | al ∈ Si

}
. Then

r ≥ n. We set zi = ar−i for 0 ≤ i ≤ r. Then we have the relations aizi ∈ Si and
ajzi /∈ Si for 0 ≤ j < i ≤ r because aizi = ar and |ajzi| < r for 0 ≤ j < i ≤ r.

Therefore the words λ, a, a2, . . . , ar are pairwise not in the Myhill-Nerode
relation. Thus, the minimal deterministic finite automaton accepting Si has at
least r + 1 ≥ n+ 1 states.

For n = 1, consider the language

L1 = {λ } ∪
{
w | w ∈ {a, b}+, #b(w) = 1

}
.

This language can be generated by the contextual grammar

G1 = ({a, b},
{

({a, b}+, {(λ, a), (a, λ)})
}
, {λ, b}).

Since the language {a, b}+ can be accepted by an automaton with two states,
we have the relation

L1 ∈ L(IC ,REGState
2 ).

For every contextual grammar G = (V, { (S1, C1), (S2, C2), . . . , (Sm, Cm) } , B)
with Si ∈ REGState

1 for 1 ≤ i ≤ m, we have Si = ∅ or Si = V ∗ for 1 ≤ i ≤ m. If
all selection languages are empty, the generated language is the set B of axioms
and hence finite. In order to obtain the infinite language L1, one set Si is equal
to V ∗. Then any context of Ci can be applied to any word of the language L1.
If such a context consists of letters a only, we obtain from the empty word a
word which does not belong to the language L1 (which has only letters a). If
such a context contains a letter b, we obtain from a word with a b another word
with two letters b and hence does not belong to the language L1. Thus, the
language L1 does not belong to the family L(IC ,REGState

1 ). �

We now consider the measure Var .

Theorem 3. For any natural number n ≥ 0, we have the proper inclusion

L(IC ,REGVar
n ) ⊂ L(IC ,REGVar

n+1).

Proof. Let V = { a, b }. For each natural number n ≥ 1, we consider a lan-
guage Ln which consists of words formed by 2n blocks of letters a, ended by the
letter b each, where the block lengths coincide in a crossed agreement manner:

Ln = { ap1bap2b . . . apnbap1bap2b . . . apnb | pi ≥ 1, 1 ≤ i ≤ n } .

A contextual grammar generating the language Ln is

Gn = (V, { (S, { (a, a) }) } , { w | w = abab . . . ab, |w| = 4n })

with
S = ({b}{a}+)n−1{b}{a}.



6 F. Manea, B. Truthe

The selection language S can be generated by the following regular grammar

G = ({N1, N2, . . . , Nn } , V, P,N1)

with the rules

N1 → baN2,

Nk → aNk | baNk+1 for 2 ≤ k ≤ n− 1,

Nn → aNn | ba.

Hence, we obtain Ln ∈ L(IC ,REGVar
n ) for all numbers n ≥ 1.

It remains to show that, for any n ≥ 1, the language Ln cannot be generated
by a contextual grammar where, for generating the selection languages, less
than n nonterminal symbols are sufficient.

Let n ≥ 1 and G′n = (V, { (S1, C1), (S2, C2), . . . , (Sm, Cm) } , B) be a con-
textual grammar with L(G′n) = Ln and where every selection language is an
arbitrary regular language. Since the language Ln is infinite, there are words
that do not belong to the set B of axioms and which are therefore generated by
adding a context. Whenever a context (u, v) ∈ Ci for some i with 1 ≤ i ≤ m can
be wrapped around a subword z of a word z1zz2 ∈ Ln, it can be added infinitely
often because the subword z remains unchanged. Hence, the letter b cannot oc-
cur in any context because otherwise words with an unbounded number of the
letter b could be generated. Thus, every context (u, v) of the system consists of
letters a only and, moreover, u = v = anc for some number nc. Otherwise, a
word would be generated which does not belong to the language Ln. Any useful
word of a selection language of the system belongs to the set

F = {a}∗({b}{a}+)n,

otherwise the application of a context would yield a word which does not belong
to the language Ln. We consider only the useful words of the selection languages.
All these words contain exactly n letters b and at least a letter a after each b.
The maximal word which is between two letters b and consists of letters a only
is called an inner a-block.

There is a selection language Si (1 ≤ i ≤ m) where all inner a-blocks are
unbounded. Suppose that this is not the case. Then in every selection language,
at least one inner a-block is bounded. Let l be the maximal length of bounded
inner a-blocks over all selection languages Si (1 ≤ i ≤ m) and the set B of
axioms. Let k = l + 1. We consider the word w = akbakb . . . akb ∈ Ln. By the
choice of k, the word w is not an axiom. Hence, it is derived from a word w′ ∈ Ln

by wrapping a context (anc , anc) around a subword w′′ = aq1(bak)n−1baq2 where
q1 ≥ 0 and q2 ≥ 1. This word w′′, however, does not belong to any selection
language (because in every word of any selection language, at least one of the
inner a-blocks has a length less than k). This contradiction implies that there is
a selection language Si (1 ≤ i ≤ m) where all inner a-blocks are unbounded.

When generating such a language Si, a second nonterminal must appear
before the second letter b is generated because otherwise the first inner a-block
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would be bounded or the number of letters b would be unbounded and a word
with n+ 1 letters b would be generated (because a derivation of a word w ∈ Si

would exist with the form A =⇒ aqbarA =⇒∗ w ∈ Si and hence, also the
derivation A =⇒∗ aqbar+qbarA =⇒∗ w′ would exist which yields a word w′ with
#b(w

′) = #b(w) + 1). Such a word should not be in the language Si because
otherwise the lengths of two a-blocks not corresponding to each other would be
increased but not the corresponding ones. By induction, one obtains that an
n-th nonterminal must appear before the n-th letter b is generated.

From this follows, that n− 1 nonterminals are not sufficient.
As a result, we have Ln ∈ L(IC ,REGVar

n ) \ L(IC ,REGVar
n−1) for any natural

number n ≥ 1. �

As consequences from the previous theorem, we obtain also infinite hierar-
chies with respect to the number of production rules and the number of sym-
bols. However, to show that the inclusions L(IC ,REGK

n ) ⊆ L(IC ,REGK
n+1)

with K ∈ {Prod ,Symb } are proper for each number n ≥ n0 for some start
number n0, we need further investigations.

We start with the complexity measure Prod . Let us consider a generalization
of the languages Ln for n ≥ 1 used in the proof of the previous theorem.

Let m ≥ 1, Am = { a1, . . . , am }, and V = Am∪{b}. The languages Ln consist
again of words formed by 2n a-blocks ended by the letter b each and where the
block lengths coincide in a crossed agreement manner. However, an a-block now
consists of letters from the set Am instead of the single letter a only.

Formally, we define for n ≥ 1 the languages

L(m)
n = { w1bw2b . . . wnbwn+1bwn+2b . . . w2nb |

wi, wn+i ∈ A+
m, |wi| = |wn+i|, 1 ≤ i ≤ n }.

Example 4. Let us consider the languages L
(m)
n for n = 1, n = 2, and n = 3.

Then

L
(m)
1 =

{
w1bw2b | {w1, w2} ⊂ A+

m, |w1| = |w2|
}
,

L
(m)
2 =

{
w1bw2bw3bw4b | {w1, w2, w3, w4} ⊂ A+

m, |w1| = |w3|, |w2| = |w4|
}
,

L
(m)
3 =

{
w1bw2bw3bw4bw5bw6b | {wi, w3+i} ⊂ A+

m, |wi| = |w3+i|, 1 ≤ i ≤ 3
}
.

The following contextual grammar generates the language L
(m)
1 :

G
(m)
1 = (V,S, B)

with
B = { xbyb | {x, y} ⊆ Am } and S = { (Sx, C) | x ∈ Am }

where
Sx = { bx } and C = { (x, y) | {x, y} ⊆ Am } .

For generating such a selection language Sx, only one rule is necessary. Hence,

L
(m)
1 ∈ L(IC ,REGProd

1 ) for each number m ≥ 1.
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For generating the language L
(m)
2 by a contextual grammar, we first increase

the lengths of the first and third a-blocks and then the lengths of the remaining
blocks.

The language L
(m)
2 is generated by the contextual grammar

G
(m)
2 = (V,S, B)

with

B = { x1bx2bx3bx4b | xi ∈ Am, 1 ≤ i ≤ 4 } ,
S = { (Si,j , C) | 1 ≤ i, j ≤ m }

where

Si,j = { baiwbaj | w ∈ A∗m } ,
C = { (x, y) | {x, y} ⊆ Am } .

Each selection language Si,j can be generated by m + 2 rules (N1 → baiN2,

N2 → xN2 for any x ∈ Am and N2 → baj). Hence, L
(m)
2 ∈ L(IC ,REGProd

m+2) for
each number m ≥ 1.

A contextual grammar for the language L
(m)
3 for an arbitrary number m ≥ 1

is
G

(m)
3 = (V,S, B)

with

B = { x1bx2bx3bx4bx5bx6b | xi ∈ Am, 1 ≤ i ≤ 6 } ,
S = { (Si,j,k, C) | 1 ≤ i, j, k ≤ m }

where

Si,j,k = { baiw1bajw2bak | {w1, w2} ⊂ A∗m } ,
C = { (x, y) | {x, y} ⊆ Am } .

The following picture shows where contexts can be added:

Ap1
m {b} Ap2

m {b} Ap3
m {b} Ap1

m {b} Ap2
m {b} Ap3

m {b}

A grammar generating a selection language Si,j,k with 1 ≤ i, j, k ≤ m is
Gi,j,k = ({N1, N2, N3}, V, P,N1) with the rules

N1 → baiN2,

N2 → xN2 | bajN3,

N3 → xN3 | bak

for x ∈ Am. Hence, L
(m)
3 ∈ L(IC ,REGProd

2(m+1)+1) for each number m ≥ 1. ♦
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If the number of rules of a regular grammar is equal to zero, the language
generated is empty. Hence, the class L(IC ,REGProd

0 ) contains only finite lan-

guages. Since L
(m)
1 ∈ L(IC ,REGProd

1 ) (as shown in the previous example) and

L
(m)
1 /∈ L(IC ,REGProd

0 ) (because the language is infinite), we have the first
proper inclusion.

Corollary 5. The proper inclusion

L(IC ,REGProd
0 ) ⊂ L(IC ,REGProd

1 )

holds.

Let us now have a closer look at the relation between the L
(m)
n languages and

the Prod -hierarchy.
For n = 3, we have found in the Example 4 that (m+ 1)(n− 1) + 1 rules is

an upper bound for generating the selection languages. This bound also holds
for n = 1 and n = 2, as one can see from the example.

We now investigate the languages L
(m)
n for n ≥ 4 and prove the tightness of

the bound for n ≥ 1.

Lemma 6. Let m ≥ 1, n ≥ 1, and

L(m)
n = { w1bw2b . . . wnbwn+1bwn+2b . . . w2nb |

wi, wn+i ∈ A+
m, |wi| = |wn+i|, 1 ≤ i ≤ n }.

Then
L(m)
n = L(IC ,REGProd

(m+1)(n−1)+1) \ L(IC ,REGProd
(m+1)(n−1))

holds.

Proof. A contextual grammar for the language L
(m)
n for arbitrary numbersm ≥ 1

and n ≥ 1 is
G(m)

n = (V,S, B)

with

B = { x1bx2b . . . x2nb | xi ∈ Am, 1 ≤ i ≤ 2n } ,
S = { (Si1,i2,...,in , C) | 1 ≤ ij ≤ m, 1 ≤ j ≤ n }

where

Si1,i2,...,in =
{
bai1w1bai2w2 . . . bain−1

wn−1bain | wi ∈ A∗m, 1 ≤ i ≤ n1
}
,

C = { (x, y) | {x, y} ⊆ Am } .

A grammar generating a selection language Si1,i2,...,in with 1 ≤ ij ≤ m for
1 ≤ j ≤ n is Gi1,i2,...,in = ({N1, N2, . . . , Nn}, V, P,N1) with the rules

N1 → bai1N2,

Nk → xNk | baikNk+1 for 2 ≤ k ≤ n− 1,

Nn → xNn | bain
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for x ∈ Am. Hence, L
(m)
n ∈ L(IC ,REGProd

(m+1)(n−1)+1) for each number m ≥ 1
and n ≥ 2 and, together with the considerations in the beginning, also for n ≥ 1.

We now show that, for any m ≥ 1 and n ≥ 1, the language L
(m)
n cannot

be generated by a contextual grammar where, for generating every selection
language, at most (m+ 1)(n− 1) nonterminal symbols are sufficient.

Let n ≥ 1, m ≥ 1, and H
(m)
n = (V, { (S1, C1), (S2, C2), . . . , (Sm, Cm) } , B)

be a contextual grammar with L(H
(m)
n ) = L

(m)
n and where every selection lan-

guage is an arbitrary regular language. Since the language L
(m)
n is infinite, there

are words that do not belong to the set B of axioms and which are therefore
generated by adding a context. Whenever a context (u, v) ∈ Ci for some i with

1 ≤ i ≤ m can be wrapped around a subword z of a word z1zz2 ∈ L
(m)
n , it

can be added infinitely often because the subword z remains unchanged. Hence,
the letter b cannot occur in any context because otherwise words with an un-
bounded number of the letter b could be generated. Thus, every context (u, v)
of the system consists of letters from the alphabet Am only and, moreover,
|u| = |v|. Otherwise, a word would be generated which does not belong to the

language L
(m)
n . Any useful word of a selection language of the system belongs to

the set

F = A∗m({b}A+
m)n,

otherwise the application of a context would yield a word which does not be-

long to the language L
(m)
n . We consider only the useful words of the selection

languages. All these words contain exactly n letters b and at least a letter of
the set Am after each b. The maximal word which is between two letters b and
consists of letters from the set Am only is called an inner a-block.

There is a selection language Si (1 ≤ i ≤ m) where in every inner a-block the
number of occurrences of each letter of the alphabet Am is unbounded. Suppose
that this is not the case. Then for every selection language, there is a letter
aj ∈ Am such that at least one inner a-block contains a bounded number of
the letter aj . Let l be the maximal number of each letter in an inner a-block
(if the number of occurrences of this letter is bounded in this block) over all
selection languages Si (1 ≤ i ≤ m) and the set B of axioms. Let k = l + 1 and
wa = ak1a

k
2 . . . a

k
m. We consider the word w = wabwab . . . wab ∈ Ln. By the choice

of k, the word w is not an axiom. Hence, it is derived from a word w′ ∈ Ln by
wrapping a context (u, v) ∈ A+

m × A+
m around a subword w′′ = ua(bwa)n−1bva

where ua is a suffix of the word wa and va is a prefix of the word wa. This
word w′′, however, does not belong to any selection language (because in every
word of any language, at least one of the inner a-blocks contains less than k
occurrences of a certain letter of Am). This contradiction implies that there is
a selection language Si (1 ≤ i ≤ m) where in every inner a-block the number of
occurrences of each letter of the alphabet Am is unbounded.

When generating such a language Si, a second nonterminal must appear
before the second letter b is generated because otherwise the first inner a-block
would be bounded or the number of letters b would be unbounded and a word
with n + 1 letters b would be generated. Such a word should not be in the
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language Si because otherwise the lengths of two a-blocks not corresponding to
each other would be increased but not the corresponding ones. By induction,
one obtains that an n-th nonterminal must appear before the n-th letter b is
generated. Since, in every inner a-block, the number of each letter from Am is
unbounded and the appearance is in arbitrary order, one needs a ‘loop’ for every
letter of the set Am. Hence, for each inner a-block, one needs a rule for generating
every letter of Am and the letter b. Since, we have to remember in which block
we are, we need those m+1 rules for every inner a-block. Furthermore, we need a
rule for the first nonterminal symbol. Thus, (n−1)(m+1)+1 rules are necessary
for at least one selection language. From this follows, that (n− 1)(m+ 1) rules
are not sufficient.

Hence, (m+1)(n−1)+1 rules are sufficient for generating every selection lan-
guage and necessary for at least one selection language in a contextual grammar

generating the language L
(m)
n . �

From the previous result, we obtain the strictness of the following inclusions.

Lemma 7. Let m ≥ 1. For n ≥ 1, the proper inclusion

L(IC ,REGProd
(m+1)(n−1)) ⊂ L(IC ,REGProd

(m+1)(n−1)+1)

holds.

Let us now consider the inclusion

L(IC ,REGProd
k−1 ) ⊆ L(IC ,REGProd

k )

for some number k ≥ 1.
For k = 1, we know from Corollary 5 that the inclusion is proper.
For k ≥ 3, we obtain the strictness of the inclusion from Lemma 7 when we

set n = 2 and m = k − 2.
We now prove that the inclusion is also proper for k = 2.

Lemma 8. Let V = { a, b, c, d, e } and

L =
{
wabcd

nem | m ≥ 0, n ≥ 0, wab ∈ { a, b }∗ ,#a(wab) = n,#b(wab) = m
}
.

Then L ∈ L(IC ,REGProd
2 ) but L /∈ L(IC ,REGProd

1 ).

Proof. The contextual grammar

G = (V, ({ce}, { (b, e) }), ({b}∗{c}, { (a, d) }), { c, bce })

generates the language L as can be seen as follows.
Let m ≥ 0, n ≥ 0, and wab ∈ { a, b }∗ with #a(wab) = n and #b(wab) = m.

Then there exist numbers m1,m2, . . .mn+1 with mi ≥ 0 for 1 ≤ i ≤ n + 1 and
m1 +m2 + · · ·+mn+1 = m such that wab = bm1abm2a . . . bmnabmn+1 . How is the
word w = wabcd

nem ∈ L generated? If n = m = 0, then w = c ∈ B. If n = 0 and
m = 1, then w = bce ∈ B. Otherwise, the word w is derived from the axiom bce
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by first wrapping the letters b and e around the subword ce until the word bmcem

is obtained and then wrapping the letters a and d around the subwords bm−m1c,
bm−m1−m2c, and so on until bmn+1c. This yields the derivation

bce =⇒∗ bmcem =⇒ bm1abm−m1cdem

=⇒ bm1abm2abm−m1−m2cd2em

=⇒∗ bm1abm2abm−m1−m2a . . . bmnabmn+1cdnem = w.

Hence, every word of the language L is generated by the contextual grammar G.
On the other hand, from a word of the language L, only words of the lan-

guage L are obtained. Let w = wabcd
nem ∈ L. If n = 0, then w = bmcem. From

the word w, the word bm+1cem+1 can be obtained in one derivation step as well
as any word bm1abm2cdem with m1 ≥ 0, m2 ≥ 2, and m1 + m2 = m. These
words belong to the language L, too; other words cannot be derived in one step.
If n > 0, then the number of the letters b and e cannot be increased further.
Hence, only words w′abab

kcdn+1em with k ≥ 0 and w′abb
k = wab can be derived

in one step. All these words also belong to the language L.
Thus, we obtain L = L(G). The selection language {ce} can be generated by

a grammar with only one rule. The selection language {b}∗{c} can be generated
by a grammar with exactly two rules (S → bS and S → c).

Hence, L ∈ L(IC ,REGProd
2 ).

We now show that the language L cannot be generated by a contextual
grammar where every selection language is generated by a grammar with one
rule only.

Suppose, L ∈ L(IC ,REGProd
1 ). Then there is a contextual grammar

G′ = (V, { (S1, C1), (S2, C2), . . . , (Sp, Cp) } , B′)

with L(G′) = L and every language Si is a singleton set for 1 ≤ i ≤ p. Let k
be the length of the longest word in the union of these sets and B′ as well as
among the contexts:

k1 = max { |w| | w ∈ B′ } ,

k2 = max

p⋃
i=1

{ |w| | w ∈ Si } ,

k3 = max

p⋃
i=1

{ |w| | (u,w) ∈ Ci or (w, u) ∈ Ci } ,

k = max { k1, k2, k3 } .

Let us consider the word w = a2kb2kcd2ke2k ∈ L. Due to its length, it is not
an axiom of the set B′. Hence, it is derived from another word of the language L.
The number of letters a and d as well as b and e must be increased by the same
number in each derivation step. For any context (u, v), we know that v ∈ {d}+
or v ∈ {e}+, otherwise also a word which does not belong to the language L
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could be generated. Let (u, v) be a context that was added to a word to obtain
the word w. If v ∈ {d}+, then the word u contains an occurrence of the letter a
and the subword where the context is wrapped around contains at least k + 1
letters. If v ∈ {e}+, then the word u contains an occurrence of the letter b and
the subword also contains k + 1 letters. However, no such word exists in any
selection language. Because of this contradiction, the assumption is not true.
This yields that L /∈ L(IC ,REGProd

1 ). �

Together, we obtain the following result.

Theorem 9. The relation

L(IC ,REGProd
n ) ⊂ L(IC ,REGProd

n+1 )

holds for every natural number n ≥ 0.

We now consider the complexity measure Symb. Both the language families
L(IC ,REGSymb

0 ) and L(IC ,REGSymb
1 ) are equal to the class of finite languages

(every selection language is the empty set; the language generated coincides

with the set of axioms). The class L(IC ,REGSymb
2 ) contains infinite languages;

for instance, the language L = {a}∗ is generated by the contextual grammar
G = ({ a } , { ({λ}, {(λ, a)}) } , {λ }). This yields the proper inclusion

L(IC ,REGSymb
1 ) ⊂ L(IC ,REGSymb

2 ).

Also the further inclusions are proper.

Lemma 10. We have L(EC,REGSymb
n ) ⊂ L(EC,REGSymb

n+1 ) for n ≥ 2.

Proof. Let n ≥ 2, Vn = { a, b, c1, c2, . . . , cn−1 }, and

Ln = { amc1c2 . . . cn−1bm | m ≥ 0 } .

This language is generated by the contextual grammar

Gn = (Vn, { ({c1c2 . . . cn−1}, {(a, b)}) } , { c1c2 . . . cn−1 }).

Hence, Ln ∈ L(IC ,REGSymb
n+1 ). Let G′n be a contextual grammar generating

the language Ln. Every applicable context is of the form (ak, bk) (with another
context, a word would be generated which does not belong to the language).
When such a context is inserted, the word that selects it contains the word
c1c2 . . . cn−1. Hence, any selection language contains a word which contains n−1
different letters. Thus, at least n+ 1 symbols are necessary for generating each
selection language. Hence, Ln /∈ L(IC ,REGSymb

n ). �

Together, we obtain the following result.

Theorem 11. We have the relations

L(IC ,REGSymb
0 ) = L(IC ,REGSymb

1 ) = FIN

and
L(IC ,REGSymb

n ) ⊂ L(IC ,REGSymb
n+1 )

for every natural number n ≥ 1.
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4 Conclusions and Further Work

The main contribution of our paper consists in exhibiting a series of languages
that highlight the difference between the power of internal contextual grammars
that have the selection languages from different families of subregular languages.
Here we only considered families defined by imposing restriction on the number
of states, nonterminals, productions, or symbols needed to accept or generate
them. It seems a natural continuation to consider in this context other families
of subregular languages, defined by restrictions of combinatorial nature, like the
ones considered in [1, 2] for external contextual grammars.

Also, it may be interesting to show that there are languages over a constant
alphabet that separate the classes on consecutive levels of every hierarchy we
defined. While such a result was obtained in the case of the State-hierarchy, by
Theorem 2, as well as in the case of the Var -hierarchy, by Theorem 3, showing
the existence of such languages remains an open problem in the other two cases.
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