
Domain-Specific Modelling
for Coordination Engineering

Dipl.-Inform. Stefan Gudenkauf

Dissertation
zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

(Dr.-Ing.)
der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel
eingereicht im Jahr 2012

hc
Schreibmaschinentext
Gudenkauf, Stefan (2012) Domain-Specific Modelling for Coordination Engineering (Doctoral thesis/PhD), Kiel University, Kiel, 318 pp

hc
Rechteck

Kiel Computer Science Series (KCSS) 2012/2 v1.0 dated 2012-10-07

ISSN 2193-6781 (print version)
ISSN 2194-6639 (electronic version)

Electronic version, updates, errata available via https://www.informatik.uni-kiel.de/kcss

Published by the Department of Computer Science, Christian-Albrechts-Universität zu Kiel

Software Engineering Group

Please cite as:

� Stefan Gudenkauf. Domain-Specific Modelling for Coordination Engineering Number 2012/2
in Kiel Computer Science Series. Department of Computer Science, 2012. Dissertation,
Faculty of Engineering, Christian-Albrechts-Universität zu Kiel.

@book{Gudenkauf2012,

author = {Stefan Gudenkauf},

title = {Domain-Specific Modelling for Coordination Engineering},

publisher = {Department of Computer Science, CAU Kiel},

year = {2012},

month = {october},

number = {2012-2},

isbn = {9783848228485},

series = {Kiel Computer Science Series},

note = {Dissertation, Faculty of Engineering,

Christian-Albrechts-Universit\"at zu Kiel}

}

© 2012 by Stefan Gudenkauf

Herstellung und Verlag: Books on Demand GmbH, Norderstedt

ii

About this Series

The Kiel Computer Science Series (KCSS) covers dissertations, habilita-
tion theses, lecture notes, textbooks, surveys, collections, handbooks, etc.
written at the Department of Computer Science at the Christian-Albrechts-
Universität zu Kiel. It was initiated in 2011 to support authors in the
dissemination of their work in electronic and printed form, without restrict-
ing their rights to their work. The series provides a unified appearance and
aims at high-quality typography. The KCSS is an open access series; all
series titles are electronically available free of charge at the department’s
website. In addition, authors are encouraged to make printed copies avail-
able at a reasonable price, typically with a print-on-demand service.
Please visit http://www.informatik.uni-kiel.de/kcss for more information, for

instructions how to publish in the KCSS, and for access to all existing
publications.

iii

1. Gutachter: Prof. Dr. Wilhelm Hasselbring
Christian-Albrechts-Universität
Kiel

2. Gutachter: Prof. Dr. Michael Hanus
Christian-Albrechts-Universität
Kiel

Datum der mündlichen Prüfung: 6. Juli 2012

iv

Preface

Through the advent of multi-core processors in the consumer market, par-
allel systems became a commodity. The semiconductor industry today is
relying on adding cores, introducing hyper-threading, and putting several
processors on the motherboard to increase the performance, since physical
limitations impede further performance gains based on increasing clock
speed. With the spread of multi-core processing units on server and desktop
systems, laptops and meanwhile also tablets and smart phones, parallel
programming moves from a niche for specialists toward mainstream ap-
plication programming. This will affect most application programmers. A
fundamental question is how to exploit these emerging hardware architec-
tures for software applications.

As a great challenge, we need to make the complexity of parallel pro-
gramming controllable for application programmers. Parallel programming
languages intend to offer the programmer features for explicit parallel pro-
gramming, while parallelising compilers try to detect implicit concurrency
in sequential programs for parallel execution. Automatic parallelisation
only works well for very specific domains such as loops in numerical
simulations.

In this thesis, Stefan Gudenkauf proposes a new approach to engineering
parallel programs, which combines model-driven software engineering with
the space-based parallel programming paradigm. This combinations aims at
providing both an easy-to-use and an efficient approach to parallel software
engineering. Based on identified requirements on application-level paral-
lelism, Stefan designed the SCOPE coordination model (Space-Coordinated
Processes) for coarse-grained choreography of parallel processes, while
the fine-grained parallelism within these processes is specified with a
BPMN-based orchestration (Business Process Modeling Notation). This
combination constitutes his new coordination engineering method.

The technical design and the implementation re-uses and integrates

v

Preface

many software components and frameworks from various domains and
sources. The re-use of such powerful components and frameworks relieves
from building the respective functions, but imposes the challenge to check
their fitness for purpose and to integrate diverse architectural styles into a
coherent whole. The tool prototype and experiments designed and realised
in this thesis constitutes a remarkable engineering achievement. Besides
the conceptual and the technical design, this engineering thesis provides an
extensive experimental evaluation based on his PROCOL library (Process
Coordination Library).
If you are interested in parallel application programming, this is a

recommended reading for you.
Wilhelm Hasselbring

Kiel, August 2012

vi

Contents

Preface v

1 Introduction 1

1.1 In the Middle of a Major Transition 1
1.2 Challenges of Concurrent Programming 2
1.3 Approach . 4
1.4 Contribution . 5
1.5 Preliminary Work . 7
1.6 Structure of this Work . 8
1.7 Summary . 10

I Setting and Foundations 13

2 Concurrent Programming for Parallel Systems 15

2.1 Models of Parallel Systems . 16
2.2 The Concurrent Programming Abstraction 18
2.3 Processes and Threads . 21
2.4 Performance Factors . 22

2.4.1 Memory Organisation 23
2.4.2 Programming Languages 25
2.4.3 The Problem Domain 26

2.5 High-Level Concurrent Programming 27
2.6 Summary of Concurrent Programming 33

3 Coordination Models and Languages 35

3.1 Models of Coordination . 37
3.2 Categorisation . 40
3.3 Space-Based Systems . 42

vii

Contents

3.3.1 Overview . 43
3.3.2 History . 44
3.3.3 Use for Concurrent Programming 45
3.3.4 Example . 46

3.4 Business Process Model and Notation 2.0 48
3.4.1 Overview . 49
3.4.2 History . 51
3.4.3 Example . 52

3.5 Summary of Coordination Models and Languages 53

4 Model-Driven Software Development 55

4.1 The MDSD Metamodel . 56
4.2 Model Transformations . 58

4.2.1 Query/View/Transformation (QVT) 61
4.2.2 Xpand and Xtend . 64

4.3 Model-Driven Systems . 65
4.4 Architecture-Centric Model-Driven Software Development . . 67
4.5 Domain-Specific Languages . 72

4.5.1 Components of a DSL 73
4.5.2 Categorisation . 74
4.5.3 DSL Development . 76
4.5.4 DSLs in Practice . 82
4.5.5 Language Workbenches 83
4.5.6 Benefits and Limitations 84

4.6 Summary of Model-Driven Software Engineering 86

II Coordination Engineering with SCOPE 89

5 Coordination Engineering 91

5.1 Artefacts . 93
5.2 Role Model . 96
5.3 Application Processes . 97

5.3.1 Application Engineering 98
5.3.2 Transformation Engineering 101

viii

Contents

5.3.3 Tool Engineering . 103
5.4 Benefits and Limitations . 106
5.5 Related Work . 108

5.5.1 Architecture- and Platform-Centric MDSD 108
5.5.2 Aspect Oriented Modelling 108

6 Space-Coordinated Processes 111

6.1 Requirements . 111
6.2 Combining SBS and BPMN . 112
6.3 Domain Concepts . 115
6.4 BPMN as a Host Language . 121
6.5 BPMN Subset . 122

6.5.1 Spaces . 123
6.5.2 Client Processes and Intra-Process Activities 126
6.5.3 Space Operations . 128
6.5.4 Data Objects and Inter-Process Data Exchange 130
6.5.5 Intra-Process Control Flows 131

6.6 Operational Semantics . 133
6.6.1 Basic Constructs for Client Components 134
6.6.2 Sub-Processes . 134
6.6.3 Loop Characteristics . 136
6.6.4 Spaces . 138
6.6.5 Space Access . 143

6.7 Related Work . 143
6.7.1 DSL for AVOPT, Product Lining, and Interaction . . . 143
6.7.2 Closed Local Parallel Systems 144
6.7.3 Software Architecture Description 145

7 Requirements for a Coordination Engineering Library and Work-

bench 147

7.1 Coordination Library . 147
7.2 Coordination Workbench . 149

ix

Contents

8 Design of a Coordination Engineering Library and Workbench 153

8.1 Coordination Library . 153
8.2 Coordination Workbench . 155

III Evaluation 159

9 Implementation 161

9.1 Coordination Library . 161
9.1.1 Implementation Decisions 161
9.1.2 Project procol-tuplespace 164
9.1.3 Project procol-tuplespace-benchmark 166
9.1.4 Project procol-benchmark-logging 171
9.1.5 Project procol-components 173

9.2 Coordination Workbench . 176
9.2.1 Implementation Decisions 176
9.2.2 Project scope . 179
9.2.3 Project scope.ui . 186
9.2.4 Project scope.generator 190
9.2.5 Project scope.generator.bpmn 196

9.3 Categorisation of the Implementation 199

10 Experiments 201

10.1 Performance Metrics . 201
10.2 Justification of the Coordination Model 202

10.2.1 Experimental Configuration 204
10.2.2 Data Structure Benchmark Results 205
10.2.3 Mandelbrot Set Visualisation Results 215

10.3 Application of Coordination Engineering 219
10.3.1 Experimental Configuration 220
10.3.2 Mandelbrot Set Visualisation 221
10.3.3 Label Positioning . 228

10.4 Threats to Validity . 238

x

Contents

11 Related Work 241

11.1 Concurrent Programming with SBS 241
11.2 Model-Driven Concurrent Software Development 242
11.3 Rigorous Performance Analysis 243
11.4 DSL Development . 244
11.5 Comparison with Workflow Languages 246

IV Conclusion and Outlook 251

12 Conclusion 253

13 Outlook 257

V Appendix 263

A XML Schema Definition for SBS Benchmarks 265

B SCOPE Xtext Syntax Definition 267

C Project Structure of PROCOL Projects developed with SCOPE 273

D SCOPE Model for Mandelbrot Set Visualisation 281

E SCOPE Model for Label Positioning 285

Bibliography 295

xi

Chapter 1

Introduction

The biggest sea change in
software development since the
OO revolution is knocking at the
door, and its name is
Concurrency

Herb Sutter, 2005

In this chapter we motivate the challenges that led to this thesis. We also
present an overview of the overall approach and the resulting contribution.
At the end of the chapter we describe the structure of this work, discuss
preliminary work, and summarise the previous sections.

1.1 In the Middle of a Major Transition

In 2005, Sutter [2005] published his influential article “The Free Lunch Is
Over: A Fundamental Turn Toward Concurrency in Software”. He argued
that concurrency would have a similar fundamental impact on software
development as Object-Orientation (OO) had in the 1990s: Software indus-
try would soon have to react to the beginning transition of the hardware
industry to establish multiple, and simpler cores as the new performance
driver for their future processors. This prospect is grounded by the fact that
physical limitations in the design of single core processors make it impos-
sible to further dissipate the generated heat, to limit power consumption,
and to prevent current leakages [Sutter, 2005]. Today, industry has indeed
turned towards multiple cores per processor as their new performance

1

1. Introduction

drivers. Multi-core processors are a commodity and many-cores are on the
verge of consumer market introduction [Marowka, 2007; AMD, 2011; Intel
Corporation, 2011b,a].
Marowka [2010] describes this transition as a period of revolution, ac-

cording to the observations of Kuhn [1996] on the structure of scientific
revolutions: Marowka denotes the first three decades of the sequential
computing era as the preparadigm phase, when there was no consensus on
the feasibility and practicality of parallel computing.1 As an example, he
notes that the computer pioneers John von Neumann, Presper Eckert, John
Mauchly, and Herman Goldstine claimed that serial operation is preferred
over parallel operation in electronic machines, provided that components
are fast enough [Marowka, 2010, p. 73]. The second phase, normal science,
is identified by Marowka to have started two decades ago, when parallel
machines and programming paradigms were firstly explored. This phase is
characterised by a niche scientific community on High-Performance Com-
puting (HPC), a small number of specialised professional HPC programmers,
and very expensive and maintenance-intensive parallel machines. The third
phase, revolutionary science, started in 2005, when the first affordable multi-
core processors were developed. Low-cost parallel machines entered the
consumer market and the need arose to exploit concurrency in applications
of all kinds and domains.

1.2 Challenges of Concurrent Programming

The shift from sequential to parallel machines marks the beginning of a
revolution that imposes several challenges for the engineering of concurrent
software systems: the need for a generalised abstraction over concurrent
system behaviour, continuity with prevalent technologies, and the dissemi-
nation of patterns and practice.
Performance is the main reason for the transition towards multi- and

many-core processors. Obtaining the utmost performance speed-ups re-
quires extensive expertise to understand the application as well as the

1According to Buyya [2000], the sequential computing era is set from the early 1940s to
circa 2010, and the parallel computing era is set from the 1950s to the 2030s.

2

1.2. Challenges of Concurrent Programming

characteristics of the parallel machine, and extensive effort to find the best
solution to exploit them [Marowka, 2010, p. 79]. Portability, on the other
side, is the primary concern for development cost reduction. It represents
the degree to which applications can be moved between different machines
and environments without yielding different results [Marowka, 2010, p. 78].
Its prerequisite is a generalised abstraction between the application and
the target environments. Unfortunately, the diversity of parallel machines
and programming models makes it harder to find an adequate abstraction
than it is for the less diverse sequential ones. However, there are clear
indications that considering concurrency on higher levels of abstraction
enables software engineers to produce software systems that yield perfor-
mance speed-ups that are more significant than speed-ups gained from
lower abstraction levels [Pankratius et al., 2009; Wegner, 1997].
Current programming languages like Java, C/C++, and C# support

concurrency by lock-based programming based on the threading model as
the predominant model for general-purpose parallel programming. This
model is highly non-deterministic and requires software developers to cut
away unwanted non-determinism by means of synchronisation [Lee, 2006].
Libraries such as OpenMP [Ope, 2011] and Message Passing Interface (MPI)
[MPI, 2009] can be regarded as a loophole, but they often turn out to be
non-portable and platform-specific. As these languages and libraries con-
tinue to be used, concurrent software engineering requires to be integrated
with them. The need for higher-level abstractions requires the program-
ming languages themselves to incorporate these abstractions as first class
language aspects. As long as this is not the case, there is the clear need for
means to enforce the compliance of lock-based program code to higher-level
concurrency models in a standardised way.

After years of sequential programming practice, the majority of software
engineers lack experience in the application of existing parallel software
design knowledge [Ortega-Arjona, 2010, p. xiii]. Patterns and pattern lan-
guages are an acknowledged way of communicating and preserving such
knowledge. Existing pattern languages and pattern-based methods for
concurrent software design must be disseminated effectively to software en-
gineers [Mattson et al., 2004; Ortega-Arjona, 2010] in a way that is accepted
by them.

3

1. Introduction

1.3 Approach

The goal of this thesis is to improve the quality of concurrent software
systems from the software engineer’s viewpoint. To attain this goal, we ad-
dress the above mentioned challenges by finding answers for the following
four questions, see Figure 1.1:

1. What is an adequate high-level abstraction on which concurrency should
be considered by software engineers?

2. How can the compliance of low level concurrency code to a high-level
concurrency abstraction be enforced?

3. How can the acceptance of such an abstraction be fostered?

4. How can such an abstraction be aligned with the existing body of patterns
and practices?

We argue that the first question can be addressed by coordination mod-
elling [Gelernter and Carriero, 1992; Papadopoulos and Arbab, 1998], since
it provides a high-level abstraction over concurrent systems that defines
the interaction of active and independent entities and the coordination
laws that specify how the entities coordinate themselves through the given
coordination media [Ciancarini, 1996]. Based on the identified requirements
for coordination models that address the concurrent software systems engi-
neering challenges, we developed Space-Coordinated Processes (SCOPE)2, a
coordination model that is based on Space-Based Systems (SBS) and distin-
guishes between the choreography of multiple concurrent processes and
the orchestration of fine-grained activities within a single process. To show
the eligibility of the model, we developed the Java process coordination
framework Process Coordination Library (PROCOL)3 and a Domain-Specific
Language (DSL) workbench as concrete embodiments of SCOPE, and per-
formed several experiments to investigate the operational behaviour of the
implementations.

2http://scope-dsl.sourceforge.net
3http://procol.sourceforge.net/

4

1.4. Contribution

We address the second question by applying techniques of Model-Driven
Software Development (MDSD). While a coordination model provides a high-
level abstraction over concurrent systems, MDSD considers such models as
first-class artefacts and makes them amenable to explicit modelling by DSLs.
Model-to-Text (M2T) transformations enforce the compliance of low level
concurrency code to higher-level coordination models.

To address the third question, acceptance, we see it as beneficial to adopt
wide-spread standards for the dissemination of coordination modelling.
For example, although primarily oriented towards the business domain,
the generic nature, the prominence, and the tool support of the widely
adopted Business Process Model and Notation (BPMN) [Axway et al., 2010]
makes it a promising vehicle for rapid dissemination. Language piggy-
backing guarantees the conformity of a coordination model to the BPMN.
Consequently, our SCOPE coordination model conforms to the BPMN and
uses it as a graphical outline on the behavioural architecture of concurrent
software systems. Model-to-Model (M2M) transformations can guarantee
this conformance.
The fourth question can be addressed by providing a method to apply

model-driven coordination modelling in a way that integrates well with
existing patterns and practices. We present Coordination Engineering as
such a method. It integrates a refinement of the coordination design phase
of the Parallel Software Design method of Ortega-Arjona [2010].

1.4 Contribution

The scientific contribution of this work can be summarised as follows:

SCOPE is a conceptual coordination model that introduces the SBS-based
choreography of independent processes, which internally orchestrate
fine-grained workflow activities.

PROCOL is a library-based embodiment of the SCOPE coordination model
as a proof of feasibility and to ease the development of concurrent space-
based programs in Java. It can also be considered as an internal DSL for
SCOPE.

5

1. Introduction

ar
gu

m
en

ta
tiv

e
im

pl
em

en
ta

tiv
e

co
nc

ep
tu

al

op
er

at
io

na
l

Improve (purpose) the quality (issue) of
concurrent software systems (object) from the
software engineers point of view (viewpoint)

How can
acceptance be

fostered?

How can
compliance be

enforced?

How can
patterns and
practices be

reused?

What is an
adequate

concurrency
abstraction?

Wide-spread
standards

Model-driven
software

engineering

Methodical
guidance

Coordination
modelling

BPMN 2.0
language

piggybacking

Transformation
for language
piggybacking

Coordination
engineering

SCOPE
coordination

model

Transformation
for code-to-

model
compliance

Procol
coordination

library

Coordination-
First

SCOPE DSL
workbench

Figure 1.1. Overview of the contents of the thesis.

SCOPE DSL and Workbench is an embodiment of the SCOPE coordination
model in an external textual DSL that conforms to the BPMN, and a work-
bench for the SCOPE DSL that is based on the Xtext language framework.

Coordination Engineering is a method that regards the coordination model
of a concurrent software system as the first development artefact in the
software development process. The method targets concurrent software
development as an architecture-centric Model-Driven System (MDS) that
emphasises the establishment of concurrent software product lines and
families.

6

1.5. Preliminary Work

1.5 Preliminary Work

This section briefly discusses work we conducted preceding to this thesis,
but parts of which are reused or relevant in the following chapters. We
summarise the contents and the related goals. Further information on the
works can be obtained from the corresponding publications.

In the position paper “A Coordination-Based Model-Driven Method
for Parallel Application Development” we discussed the need for higher
abstractions in parallel software development [Gudenkauf, 2010], motivated
by the inappropriateness of the non-deterministic threading model, the lack
of parallel programming experience, and the supposed impact of higher-
level abstractions on application performance. We proposed a model-driven
method that regards the coordination model of parallel programs as the
first development artefact to satisfy this need, and envisioned an adequate
coordination language. The proposed method can be regarded as a primitive
precursor of the Coordination Engineering method, see Chapter 5.

The conference paper “Space-Based Multi-Core Programming in Java”
investigates the use of SBS for multi-core programming in Java [Gudenkauf
and Hasselbring, 2011]. Firstly, we argued about appealing properties
of space-based programming for multi-core machines and presented the
PROCOL programming model that introduces the space-based choreography
of active components, which internally orchestrate fine-grained activities.
This model is based on extensions to the third-party tuple space framework
LighTS [Balzarotti et al., 2007]. Secondly, we evaluated the performance of
several tuple space data structures for PROCOL and compared the perfor-
mance of two equivalent Mandelbrot applications – one implemented with
the standard Java thread model, one with our PROCOL programming model.
Both, the data structures and the Mandelbrot applications, were evaluated
on several machines. The conclusions drawn from these experiments are
that, in principle, scalable tuple space implementations can be provided for
multi-core architectures, and that the performance overhead that the PROCOL
programming model imposes is at least for the considered application a
reasonable trade-off for the ease of programming that the model provides.
The PROCOL programming model represents an internal DSL for the SCOPE
coordination model in the form of a programming library. The results of the

7

1. Introduction

paper are mainly incorporated in Section 8.1, Section 9.1, and Section 10.2
In the paper “Domain-Specific Modelling for Coordination Engineering

with SCOPE” we introduced the Coordination-First approach [Gudenkauf
et al., 2012]. The separation of collaboration from process definition, and the
application of model-driven techniques are essential parts of this approach.
To support the approach, we developed a prototype of the space-based
coordination language SCOPE and an appropriate workbench prototype.
Both, the language and the workbench, conform to the BPMN specification
and are interoperable with BPMN-conformant tools. Additionally, SCOPE
models can be validated on domain-level rather than only on level of the
underlying BPMN, and support iterative software development processes.
The paper can be regarded as an in-progress report of this thesis. Topics
that are not addressed by the paper include the semantic clearness of SCOPE,
a transformational mapping of SCOPE to the PROCOL programming library,
and experiments on the application of the approach by considering practical
application scenarios. The results of the paper are mainly incorporated in
Chapter 6, Section 8.2, and Section 9.2.

1.6 Structure of this Work

This thesis consists of the following four parts:

� Part I contains the foundations and forms the general setting of the thesis.
We introduce definitions of various terms that are fundamental for the
understanding of the following parts.

� Chapter 2 presents an overview of concurrent programming. It intro-
duces general terms and definitions and different models of concur-
rent programming, describes the concurrent programming abstraction,
the difference between processes and threads, different factors that
affect the performance of concurrent programs, and presents different
concurrent programming approaches and techniques.

� Chapter 3 presents coordination modelling as a solution for the design
and implementation of large and complex parallel systems. The

8

1.6. Structure of this Work

chapter introduces coordination models, along with a categorisation,
and presents the SBS model and the BPMN as two interesting examples.

� Chapter 4 introduces Model-Driven Software Development (MDSD).
Firstly, it discusses different types of model transformations. Secondly
it introduces the notion of Model-Driven System (MDS) and discusses
a variant of MDSD that is concerned with the architecture of software
systems. Thirdly, it presents Domain-Specific Languages (DSLs) and
their importance for MDSD.

� Part II represents the conceptual main part of the thesis. It performs a
domain analysis, defines the conceptual SCOPE coordination model, and
defines Coordination Engineering as a promising method for concurrent
software development that emphasises the establishment of software
product lines and families. Furthermore, the requirements and the
component design for a software infrastructure for SCOPE are presented.

� Chapter 5 describes the Coordination Engineering method. We
present an overview of the method, the relevant artefacts, its role
model, method application processes, and the placement of the
method in several contexts.

� Chapter 6 presents the SCOPE coordination model. First, we describe
the requirements that apply to the coordination model. Second, we
describe SCOPE as a combination of SBS and the BPMN specification.
Third, we identify a subset of the BPMN that can express SCOPE models,
and discuss the operational semantics of the subset. Finally, we
conclude the chapter with a placement of the SCOPE coordination
model in several contexts.

� Chapter 7 describes the requirement for a software infrastructure for
SCOPE. We describe the requirements for a SCOPE coordination library
and the requirements for a SCOPE DSL workbench.

� Chapter 8 describes the conceptual design for a SCOPE software in-
frastructure. We describe the design of a coordination programming
library for SCOPE, as well as the design of an appropriate coordination
workbench that considers SCOPE as an external DSL.

9

1. Introduction

� Part III contains the evaluation of the SCOPE coordination model and the
Coordination Engineering method.

� Chapter 9 discusses the implementation of a coordination library for
SCOPE that is named PROCOL, and the SCOPE DSL and a corresponding
coordination workbench. At the end of the chapter, both implementa-
tions are categorised.

� Chapter 10 documents several experiments that we conducted to il-
lustrate the feasibility of our approach. First, we discuss the relevant
performance metrics. Second, we justify the SCOPE coordination model
by experiments we conducted with the PROCOL coordination library.
Third, we illustrate the Coordination Engineering approach by two
experiments using the SCOPE coordination workbench: an experiment
on the visualisation of the Mandelbrot set on the complex plane, and
one on Point-Feature Label Placement (PFLP) in Enterprise Architec-
ture Visualisation (EAV). The chapter is concluded with a discussion
of the threats to validity.

� Chapter 11 describes the state of art in relevant research areas forming
the context of this thesis, and distinguishes the thesis from related
work in these areas.

� Part IV provides an outlook and presents the conclusion.

� Chapter 12 summarises the essential findings and the contribution of
this thesis.

� Chapter 13 presents an outlook on possible future extensions and
refinements.

1.7 Summary

Figure 1.2 summarises the previous sections: Physical limitations in the
design of single core processors forced the hardware industry to establish
multi-core and many-core processors as the new performance drivers. This
imposes three challenges to software engineering: Portability and human

10

1.7. Summary

Forces

Industry Reaction

Concurrent Software
Challenges

Measures

• Heat Dissipation
• Power Consumption
• Leakage Current

• Multi-core
• Many-core

• Higher-level concurrency models
• Continuity with prevalent technologies
• Dissemination of existing patterns and practice

• Piggyback BPMN 2.0 specification
• MDSE transformations for compliance
• SCOPE coordination model and tooling
• Coordination Engineering

Application

• Adopt widely used standards
• Apply technologies from MDSE
• Apply a coordination model
• Embed application in the Parallel Software

Design method

Specialised
professional

HPC
programmers

Professional
programmers

Figure 1.2. The contents of the thesis in the context of the concurrent software
engineering revolution.

perception require providing standardised higher-level concurrency models,
continuity with prevalent technologies that are widely used must be guaran-
teed, and existing patterns and practice of parallel software design must be
disseminated to software engineers of all kinds and domains. As a solution,
we propose to combine coordination models with techniques from MDSD.
We propose to use the BPMN specification as a vehicle for dissemination,
model transformations as a means to enforce compliance, a combination
of BPMN and SBS as a coordination model, and a concrete method that is
embedded in the Parallel Software Design method of Ortega-Arjona [2010]
as application guidance.
In the following, we provide the SCOPE coordination model, the Coor-

dination Engineering method, and the embodiment of SCOPE in a coordi-
nation library and a DSL workbench as a proof of feasibility. The results
are enhanced with proto-benchmarks and experiments on applications for
massive parallelism and PFLP. Beforehand, we discuss the relevant setting
and foundations.

11

Part I

Setting and Foundations

Chapter 2

Concurrent Programming for

Parallel Systems

The challenge in concurrent
programming comes from the
need to synchronize the
execution of different processes
and to enable them to
communicate

Mordechai Ben-Ari, 2006

In contrast to sequential processing, parallel processing offers increased
performance for the solution of many problems. To exploit the potential
performance of a parallel system, one has to formulate the solution of a
problem in a way that regards parts of the problem to be computed inde-
pendently. The development of such solutions is often highly dependent on
the underlying programming environment. In the following, we present an
overview of the concepts of concurrent programming, starting with the ba-
sic definitions for what we consider a (parallel) system and a programming
environment.

System A system is a collection of components organised to
accomplish a specific function or set of functions [IEEE Architec-
ture Working Group, 2000].

Parallel system A parallel system is a system, where the em-
phasis is put on accomplishing the specific function or the set

15

2. Concurrent Programming for Parallel Systems

of functions collaboratively and in a coordinated manner, cf.
[Rauber and Rünger, 2007, p. 17].

Platform/programming environment A platform/programming
environment is a system that represents the entirety of hardware
and software, including operating system, programming lan-
guages, compilers, runtime libraries etc., that is available to a pro-
grammer (cf. parallele[s] Rechnersystem [Rauber and Rünger, 2007,
p. 113]).

2.1 Models of Parallel Systems

To use hardware-independent programming methods and principles, sys-
tems are classified and described in models. These models allow to describe
classes of programming environments on a certain level of abstraction, thus
allowing to develop and analyse programs for classes of systems instead of
individual systems. The von-Neumann model, or the Single Instruction Sin-
gle Data (SISD) model, represents the basic abstraction of sequential systems
[Rauber and Rünger, 2007]. Further models for sequential programming are
distinguished only by their degree of abstraction from the von-Neumann
model. In contrast, there are several models for parallel systems. Regarding
their level of abstraction, these models can be differentiated in machine
models, architectural models, computational models, and programming
models [Rauber and Rünger, 2007, pp. 114-117].

A machine model is a model of a programming environment that is close
to the hardware and the operating system, and that typically describes the
registers and data paths of a processing element, or the I/O-Buffers and
their connections of a node in an interconnection network. Typical examples
of languages that base upon machine models are assembler languages.
An architectural model is an abstraction over machine models that de-

scribes the organisation of processing elements and their interconnections,
and the resulting data and control flows. Architectural models can be
further categorised by applying Flynn’s Classification, see [Flynn, 1972;
Rauber and Rünger, 2007]. Typical aspects of interest in architectural mod-
els are the topology of the interconnection network of processing elements,

16

2.1. Models of Parallel Systems

the memory organization (shared or distributed memory), the execution
mode of the processing elements (synchronous or asynchronous), and the
execution mode of instructions (Single Instruction Single Data (SISD), Single
Instruction Multiple Data (SIMD), Multiple Instruction Single Data (MISD),
or Multiple Instruction Multiple Data (MIMD)).
A computational model is an abstraction of an architectural model that

allows to design algorithms for the respective parallel system whose costs,
most prominently the execution time on the system, can be measured.
Therefore, computational models consist of an operational part that de-
scribes the operations that can be executed, and a corresponding analytical
part that specifies the corresponding costs of the operations.1

A programming model is an abstraction of a computational model that
represents a view on a system from the viewpoint of a programmer, where
the view is based upon a certain programming environment. With respect
to different programming environments or the ambiguity of a single pro-
gramming environment, there may be different programming models for a
single system.

We introduce the following definitions to foster a thorough understand-
ing:

Instruction An instruction is a discrete statement. More complex
operations are built up by combining these statements which
are executed either sequentially or directed by control flow
instructions.

Processing Element A Processing Element (PE) is “a hardware
component that executes a stream of instructions” [Mattson
et al., 2004, p. 17].

Unit of Execution A Unit of Execution (UE) is “a generic term
for one of a collection of possibly [parallel] executing entities”
[Mattson et al., 2004, p. 16]. For example, these can be processes
or threads from a technical viewpoint.

1For example, the Random Access Machine (RAM) model is the corresponding computa-
tional model for the von-Neumann model.

17

2. Concurrent Programming for Parallel Systems

Viewpoint A viewpoint is “[a] pattern or template from which
to develop individual views by establishing the purposes and
audience for a view and the techniques for its creation and
analysis” [IEEE Architecture Working Group, 2000].

View A view is “a representation of a whole system from the
perspective of a related set of concerns” [IEEE Architecture
Working Group, 2000]. It describes only those concerns that are
defined by its viewpoint definition.

2.2 The Concurrent Programming Abstraction

According to Ben-Ari [2006], there are three concrete abstractions from
the parallel machine that are used by software engineers: instruction sets,
programming languages, and systems and libraries. The Concurrent Pro-
gramming Abstraction model of Ben-Ari provides a theoretical abstraction
over these that is defined as the interleaved execution of atomic statements
[Ben-Ari, 2006, p. 39]. It allows to model the behaviour of a wide range of
concrete systems, for example, multitasking systems, multiprocessor com-
puters, and distributed systems. A fundamental distinction that is made is
to differentiate concurrency from parallel processing. A concurrent program
is a set of processes that can execute in parallel, whereas the term parallel
describes the actual overlapping of the processes during their execution on
several processors. Concurrency can thus be regarded as the precondition
for parallel processing, or as potential parallelism.

Program (concurrent) A concurrent program is “a finite set of
(sequential) processes.” [Ben-Ari, 2006, p. 8]. It operates “by
executing a sequence of the atomic statements obtained via
arbitrarily interleaving the atomic statements from the processes”
[Ben-Ari, 2006, pp. 8-9].

Process (theoretical) A process consists of “a finite [ordered] set
of atomic statements” [Ben-Ari, 2006, p. 8].

18

2.2. The Concurrent Programming Abstraction

Statement (atomic) An atomic statement is a statement that “is
executed to completion without the possibility of interleaving
statements from another process” [Ben-Ari, 2006, p. 19].

Scenario A scenario, also denoted as computation, is a concrete
“execution sequence that can occur as a result of the interleaving”
within program execution [Ben-Ari, 2006, p. 9].2

Program

Process p

Statement p1

Statement p2

Statement p3

Process q

Statement q1

Statement q2

Statement q3

Figure 2.1. A concurrent program.

The correctness of a concurrent program is defined in terms of safety
and liveness properties of scenarios [Ben-Ari, 2006, p. 21]. A safety property
must always be true. It must be true in every state of every scenario. Contrary,
a liveness property must eventually be true. It requires that in every scenario,
there is some state in which the property is true. For example, consider
a concurrent banking simulation in which two clients update the same
bank account, see Figure 2.2.3 It illustrates the critical section problem [Ben-
Ari, 2006, pp. 45-48]: Occasionally, data must be accessed that is shared
among processes. Let us consider that the following two properties must
be true:

2For example, for Figure 2.1, a possible scenario is p1, q1, q2, q3, p2, p3.
3The program is inspired by an example from Oechsle [2007, pp. 26-29].

19

2. Concurrent Programming for Parallel Systems

1. Always, bookings must not get lost (safety property), meaning that the
statements of the critical section of a process (p3 to p5, and q3 to q5,
respectively) must not be interleaved with statements of another process.

2. If a client updates an account, the account is eventually updated (liveness
property). This means that once a progress enters the critical section, it
eventually finishes executing the statements.

Banking example

global variables: Account[] accounts

p (client1) q (client2)

p1: int accountNr = 1;
p2: float amount = 500.0;
p3: float oldBalance =
 accounts[accountNr].
 getBalance();
p4: float newBalance =
 oldBalance + amount;
p5: accounts[accountNr].
 setBalance(newBalance);

q1: int accountNr = 1;
q2: float amount = -300.0;
q3: float oldBalance =
 accounts[accountNr].
 getBalance();
q4: float newBalance =
 oldBalance + amount;
q5: accounts[accountNr].
 setBalance(newBalance);

Figure 2.2. A simple booking program.

The negation of a safety property is a liveness property, and vice versa.
This can be used to prove correctness since the negation may be easier to
test. For example, when we consider the scenario p1, q1, p2, q2, p3, q3, p4,
p4, p5, q5 we can see that eventually, the booking of process p1 is lost, thus
violating the safety property. The liveness property is not violated since
the account is always updated but interleaving statements can override
the account with an incorrect value. The interleaving can be eliminated by
using synchronisation mechanisms. Typically, they consist of additional
statements that are placed before (preprotocol) and after the critical section
(postprotocol), see Figure 2.3.

20

2.3. Processes and Threads

Synchronised banking example

global variables: Account[] accounts

p (client1) q (client2)

p1: int accountNr = 1;
p2: float amount = 500.0;
p3: preprotocol
p4: float oldBalance =
 accounts[accountNr].
 getBalance();
p5: float newBalance =
 oldBalance + amount;
p6: accounts[accountNr].
 setBalance(newBalance);
p7: postprotocol

q1: int accountNr = 1;
q2: float amount = -300.0;
q3: preprotocol
q4: float oldBalance =
 accounts[accountNr].
 getBalance();
q5: float newBalance =
 oldBalance + amount;
q6: accounts[accountNr].
 setBalance(newBalance);
q7: postprotocol

Figure 2.3. A synchronised booking program.

Synchronisation Synchronisation is the enforcement of ordering
constraints of a set of statements within a program execution
to ensure the correctness of a program, cf. [Mattson et al., 2004,
p. 17] and [Ben-Ari, 2006, p. 46].

2.3 Processes and Threads

From a technical viewpoint, a process can be regarded as a program in
execution which comprises, for example, the program’s data on the run-time
stack or heap, actual register contents, and the program counter [Rauber
and Rünger, 2007]. It runs in its own address space which is managed by
the operating system. Therefore, in the technical sense, a process can be
regarded as a UE consisting of a finite ordered set of atomic statements,
where two processes do not share a common address space.

A thread, on the other side, runs within the address space of a single
process [Ben-Ari, 2006, p. 4]. The thread concept is an extension of the pro-
cess concept by allowing a process to consist of a finite set of a finite ordered

21

2. Concurrent Programming for Parallel Systems

set of atomic statements, where the individual sets of statements share
the address space of the process. Information exchange between threads
is much faster than information exchange between processes via sockets,
but essentially requires much more effort to synchronise data utilisation.
The term thread originates from the widely-implemented pthreads (POSIX
threads) specification [Nichols et al., 1996].

Today, the thread model – also denoted as lock-based programming because
of its use of lock mechanisms for synchronisation – can be regarded as the
predominant model for general-purpose concurrent programming. As
prominently discussed by Lee [2006], it is highly non-deterministic and
requires programmers to cut away unwanted non-determinism instead of
inserting it where it is needed. The reason is the immense number of the
possible interleaving of thread instructions that makes it extremely difficult
to reason about the actual behaviour of a program.

Process (technical) A process is “a collection of resources that
enables the execution of program instructions. The resources
can include virtual memory, I/O descriptors, a runtime stack,
signal handlers, user and group IDs, and access control tokens”
[Mattson et al., 2004, p. 16]. A process is typically regarded as a
heavyweight UE that has an own address space.

Thread “A thread is associated with a [technical] process and
shares the process’s environment.” [Mattson et al., 2004, p. 16].
It is regarded as a lightweight UE that possibly shares its address
space with other threads.

2.4 Performance Factors

The performance of a parallel system is influenced by various factors, such
as the memory organisation of the architectural model, the programming
language, and the problem to be solved. We briefly discuss these topics in
the following.

22

2.4. Performance Factors

2.4.1 Memory Organisation

The memory organisation of parallel systems can be separated in shared
memory and distributed memory architectures. Other types of paral-
lel systems regarding the memory architecture are hybrid systems. In
a Shared Memory Machine (SMM), a single address space is shared by all
processes/UEs. The processes communicate with each other indirectly by
writing and reading shared variables. SMMs can be further classified:

In a Symmetric Multiprocessor (SMP) system, all processors share a com-
mon memory and can access all memory locations in the same time [Mattson
et al., 2004, p. 10]. SMP systems are typically limited by processor/memory
bandwidth, since an increasing number of processors also increases memory
contention. Figure 2.4 illustrates the SMP architecture.

Non-Uniform Memory Access (NUMA) systems share memory that is ad-
dressed uniformly by all processors, but that cannot be accessed uniformly
since some parts of the memory are physically more closely associated with
some processors than others [Mattson et al., 2004, p. 10]. This increases the
available memory bandwith, thus allowing to build systems with more pro-
cessors than SMP systems. The downside is significantly different memory
access times. Figure 2.4 illustrates the NUMA architecture.

Cache-Coherent Non-Uniform Memory Access (ccNUMA) is a further develop-
ment of the NUMA architecture that exploits the locality of references within
memory access. In ccNUMA systems, processors each have a small amount
of non-shared cache memory along with hardware support to guarantee
cache coherence, meaning that for all processors, the value of any variable
is guaranteed to have a consistent value.
According to Ortega-Arjona [2010, p. 14], SMMs have the following ad-

vantages and disadvantages: First, the global address space simplifies con-
current programming since memory can be accessed similarly to sequential
programming. Second, data sharing across processors is in general fast and
uniform. On the other side, the amount of memory and processors is hard
to scale since adding more processors increases the traffic between memory
and processors geometrically. Finally, the programmers are responsible for
proper synchronisation to ensure the correctness of their programs.

In a Distributed Memory Machine (DMM), each processor has its own

23

2. Concurrent Programming for Parallel Systems

CPU

Memory

a) Symmetric multiprocessor
 (SMP) architecture

b) Non-uniform memory access (NUMA) architecture

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU

CPU

Memory

CPU CPU CPU

Memory

CPU CPU

Figure 2.4. The SMP and NUMA shared memory architecture according to [Mattson
et al., 2004].

local memory and there is no shared memory [Ortega-Arjona, 2010, p. 14].
Processors can communicate with other processes by explicit input/output
operations over an interconnection network. Therefore, message passing is
the prevalent communication model. The speed of communication in a
DMM highly depends on the topology and the technology used for processor
interconnection, and programmers must explicitly address communication
and data distribution [Mattson et al., 2004, p. 11]. Figure 2.5 illustrates the
DMM architecture. DMMs can be further classified:

Massively Parallel Processors (MPP) are specialised systems in which
processors and the network infrastructure are tightly coupled [Mattson
et al., 2004, p. 11]. They are extremely scalable since they can support the
use of many thousands of processors in a single system [Mattson et al., 2004,
p. 11], [Adiga et al., 2002].

Clusters are inexpensive parallel systems that are composed of commod-
ity hardware: off-the-shelf computers connected by an off-the-shelf network
infrastructure [Mattson et al., 2004, p. 11]. Beowulf Clusters are a special
category of clusters which have standard personal computers as nodes that
run a Linux operating system.

DMMs have the following advantages and disadvantages, see [Ortega-
Arjona, 2010, p. 15]: First, memory scales with the number of processors.
Second, processors can access their own memory rapidly without inter-

24

2.4. Performance Factors

CPU CPU CPU CPU

CPU

Memory

Interconnection Network

CPU

Memory

CPU

Memory

CPU

Memory

Figure 2.5. The distributed memory architecture according to [Mattson et al., 2004].

ference from other processors. Unfortunately, the communication of data
between processors is in the responsibility of the programmers, and often
very detailed. Additionally, common data structures that are based on
shared memory can not easily be mapped to DMMs.

2.4.2 Programming Languages

Programming languages affect the performance of a parallel system in
various ways, as well as the effort needed to develop a concurrent program
[Ortega-Arjona, 2010, p. 16-22]:

� Language Infrastructure: Variation in the compiler and runtime support
environments can constrain the exploitation of potential parallelism.

� Library Support: The types and the number of libraries that can be
used by/within a concurrent program can have a significant effect on
the performance of the parallel system and the effort to develop the
program.

� Language Features: A programming language can be evaluated by its
capacity to express concurrency, synchronisation, and the control of
non-determinism between processes.

� Concurrency and Sequencing: Otherwise sequential programming
languages require a separate construct to express the concurrent ex-

25

2. Concurrent Programming for Parallel Systems

ecution of statements. Examples are parallel composition (e. g., the
parbegin/parend proposal of Dijkstra in ALOGOL60 [Dijkstra, 1968]),
parallel construction (e. g., the ‖ operator of CSP [Hoare, 1978, 1985]),
interprocess concurrency (e. g., the PAR instruction and channels in
Occam [Pountain, 1987]), and intraprocess concurrency (e. g., threads
in the Java programming language [Lea, 1999; Goetz, 2009]). On the
other side, concurrent programming languages require a separate
construct to express the sequential execution of statements. Typically,
this is achieved with the sequential construction, which is mostly
expressed with the ; symbol between individual sequential instruc-
tions.4

� Synchronisation: There are several mechanisms for synchronisation
of concurrent processes. They can be differentiated by the targeted
memory organisation. For example, synchronisation mechanisms
for languages that target SMMs comprise semaphores [Dijkstra, 1968],
monitors [Hoare, 1974], or keywords to denote blocks of code as
a critical section [Lea, 1999; Goetz, 2009]. Synchronisation mecha-
nisms for languages that target DMMs, for instance, comprise blocking
the processes during inter-process communication, as it is the case
with the send and receive instructions in Communicating Sequential
Processes (CSP) [Hoare, 1978, 1985].

� Non-Determinism: Non-Determinism is a characteristic of concurrent
programs that states that the order of interleaving between the state-
ments performed by a set of concurrent processes is arbitrary. It can be
controlled with boolean expressions that guard the execution of a set of
statements denoted as guarded commands [Ortega-Arjona, 2010, p. 21].
An example of guards is the ALT statement in Occam [Pountain, 1987].

2.4.3 The Problem Domain

The performance of a parallel system is heavily dependent on how a prob-
lem can be expressed as a set of concurrent processes. The reason are

4The Occam language represents an exception since it uses a SEQ construct instead of the
otherwise prevalent semicolon [Pountain, 1987]

26

2.5. High-Level Concurrent Programming

the orthogonal dimensions of coordination to computation of a concurrent
program [Wegner, 1997]. This means that a concurrent program does not
only consist of the correct computation statements of the problem, but
also of the coordination that is employed to organise the statements into
concurrent processes. Coordination modelling (Chapter 3) and Parallel
Software Design (Section 3.1) represent two combinatoric approaches that
encompass different solutions to implement this kind of organisation, for
example, by conceptual patterns [Mattson et al., 2004; Ortega-Arjona, 2010].

2.5 High-Level Concurrent Programming

There are several software engineering techniques for high-level concurrent
programming. They share the goal to find a reasonable compromise be-
tween high performance and portability. Amongst these techniques are the
following:

Auto-tuners are adaptive libraries that use “automatically calibrated
statistical models to select from among several implementations and to
optimize the parameters of each implementation” for a given parallel system
[Marowka, 2010, p. 80]. For instance, the Intel Software Autotuning Tool
(ISAT) supports automatic searching for near-optimal values of program
parameters such as cache-blocking factors in matrix computations, the task
granularity in the Intel Threading Building Blocks (TBB) library, and the
scheduling policy of OpenMP parallel constructs [Luk, 2010; Luk et al., 2011].
Another example is the Perpetuum auto-tuner which tunes applications
cooperatively at run-time [Karcher and Pankratius, 2011]. It represents
the first Operating System (OS)-based auto-tuning approach for system-
wide performance improvement of simultaneously executing multi-threaded
applications in contrast to the prevalent application-wide approaches.

In the context of software engineering, patterns capture successful expe-
riences and techniques from software development by describing recurring
successful solutions to common software problems, cf. [Ortega-Arjona, 2010,
p. 2]. A pattern system is a collection of patterns that is oriented towards a
domain, “together with guidelines for their implementation, combination
and practical use in software development” [Buschmann et al., 1996, p. 361].

27

2. Concurrent Programming for Parallel Systems

Pattern languages for concurrent program development are provided by
Mattson et al. [2004] and Ortega-Arjona [2010].

Parallel Algorithmic Skeletons, are a form of recurring patterns of computa-
tion and communication in concurrent programs that have been formalised
to the extend that they can be expressed as concrete language constructs,
so-called templates [Cole, 1989; Falcou, 2009]. The benefit of skeletons is
threefold: Templates encapsulate all low-level communication implementa-
tion, application programmers only have to know the operational semantics
of the skeletons to implement concurrent programs, and sequential func-
tions can be reused directly since they are decoupled from communication.
There are several skeleton implementations for various programming lan-
guages. Examples comprise the Eskel library that resemble Message Passing
Interface (MPI) primitives in C code [Benoit et al., 2005], the C++ Muen-
ster Skeleton Library (Muesli) for multi-node, multi-core cluster computers
[Ciechanowicz et al., 2009], and the Quaff library by Falcou [2009] to abstract
over MPI code in C++ programs by using the C++ template mechanism.

Prototyping refers to the development of a system model in an early state
of software development to explore the essential features of a system to be
developed through experimentation before it is implemented [Floyd, 1984;
Hasselbring, 2000]. There are many languages and approaches that can
be considered for prototyping of concurrent programs. For example, the
set-oriented prototyping language ProSet-Linda considers ProSet-Linda
models as executable programs to examine parts of the functionality of the
desired system [Hasselbring, 1998]. The language regards parallel system
prototypes as dynamically created concurrent processes that are coordinated
indirectly through virtual shared data spaces.

Complementary approaches to parallel system development can be bun-
dled into Integrated Development Environments (IDEs). For example, PARSE-
DAT provides a graphical design editor environment that uses the PARSE
Process Graph Notation for software design and subsequent transformation
of PARSE models to π-Calculus expressions for analysis and verification
[Liu and Gorton, 1998]. A more recent example is the Eclipse Parallel
Tools Platform (PTP)5 that intends to provide a portable and extensible IDE

5http://www.eclipse.org/ptp/

28

2.5. High-Level Concurrent Programming

for a wide range of parallel architectures and runtime systems. Features
include means for coding and analysis, performance tuning, launching and
monitoring, and debugging.

Model-Driven Software Development (MDSD) emphasises to develop soft-
ware by generating code from formally specified models as the main devel-
opment artefacts [Völter and Stahl, 2006]. In this way, quality and reuse is
increased by allowing to correct mistakes in the model or in the generator
templates once, instead of having to do multiple corrections in source code.
Regarding the development of concurrent programs, there are few examples
for the application of MDSD. Hsiung et al. [2009] present the model-driven
development of multi-core embedded software based on SysML models as
an input that generates C++ source code. The code architecture consists of
an OS, the TBB library [Reinders, 2007], a framework for executing concur-
rent state machines, and the application code. Pllana et al. [2009] propose
an IDE that targets multi-core systems. The IDE is envisioned to combine
model-driven development with software agents and high-level parallel
building blocks to automate time-consuming tasks such as performance
tuning. Unified Modeling Language (UML) extensions are proposed for
graphical program composition.
In his survey on prototyping approaches, Hasselbring [2000] presents

a taxonomy for the surveyed approaches. It is abstract enough to be used
as a foundation for a general taxonomy for high-level concurrent software
engineering approaches, and comprises the following types of approaches:
High-level libraries provide simple interfaces for concurrent program-

ming but often support only unstructured programming when appropriate
use cannot be guaranteed at design time. Recent examples for libraries
that abstract from thread-based programming are the LighTS framework
which provides a minimalistic interface for space-based programming in
Java [Balzarotti et al., 2007], the TBB, a portable C++ library targeted towards
multi-core processor parallelism [Intel Corporation, 2011c], and Microsoft
Task Parallel Library (TPL), a .NET Framework library that intends to in-
crease the productivity of application programmers by taking over low-level
details such as work partitioning, thread scheduling, cancellation, and state
management from the application programmer [Leijen and Hall, 2007].

Data parallelism refers to the execution of simultaneous operations on

29

2. Concurrent Programming for Parallel Systems

data sets instead of multiple concurrent threads of control [Hillis and
Steele, 1986]. Thus, expressing the concurrent execution of many interre-
lated but semantically different operations is not supported. Example for
data parallelism are OpenMP [Ope, 2011], a popular library that supports
loop-level data parallelism, and Ateji(R) PX for Java [Viry, 2010], a language
extension for concurrent programming on multi-core processors, Graphics
Processing Units (GPUs), Grid, and Cloud for Java that supports both data
and task parallelism.

Functional programming considers a program as the evaluation of mathe-
matical functions. Functional programs are implicitly parallel since they are
guaranteed to yield the same result irrespective of the order of computation.
Although strictly functional programs are often considered as impractical
for concurrent programming because of their limited abilities to manage mu-
table state and to support decisions (non-deterministic alternatives), there
are sound concepts for functional concurrent programming, for example,
Composable Software Memory Transactions [Harris et al., 2005]. Examples
for general purpose functional languages comprise Clojure, Erlang, Haskell,
and F# [Halloway, 2009; Armstrong, 2007; Hutton, 2007; Syme, 2010]. A
particular domain-specific example is the R language for statistics [Horton
and Kleinman, 2010].

Logic programming refers to the expression of a program as a set of clauses.
The probably best known example is PROLOG [Clocksin and Mellish, 1994],
which supports concurrency implicitly: Clauses can be evaluated separately,
meaning that only one of the clause must be evaluated successfully (OR-
parallelism, non-deterministic alternative). Additionally, so-called subgoals
of clauses can be evaluated in parallel, meaning that all of them must be
evaluated successfully to evaluate the clause (AND-parallelism).

Functional logic programming is a declarative conservative combination of
functional and logic programming [Hanus, 2007; Antoy and Hanus, 2010].
Programs that fall into this category and do not use functional features are
also logic programs, and functional logic programs that do not use logic
features are functional. The approach can be characterised by the distinction
between the construction of data and defined operations that manipulate
data, by the ability to deal with incomplete knowledge by narrowing, and
by demand-driven operations. Functional logic programming can be re-

30

2.5. High-Level Concurrent Programming

garded as a high-level concurrent programming approach by the notion of
non-deterministic choice. First, don’t care choice refers to the irrelevance of
the order of argument evaluation when two or more sub-expressions must
be evaluated in a function call, meaning that the arguments can be evalu-
ated concurrently. Second, don’t know choice refers to the irrelevance of the
order of alternatives evaluation when two or more independent alternatives
must be computed for a given function call in which narrowing is applied,
meaning that the alternative can also be computed concurrently. As Antoy
and Hanus [2010] notice, the degree of parallelism offered by functional
logic programming is potentially higher than that of corresponding im-
perative programs, but future research is necessary to investigate the true
potential. Recent examples of functional logic programming languages in-
clude CURRY, TOY, and Mercury [Hanus, 2005; Arenas Sánchez et al., 2011;
Henderson et al., 2012; Wang, 2006].

Concurrent Object-Oriented Programming (COOP) combines concurrency
with Object-Orientation (OO) [Agha, 1990]. While concurrency provides an
abstraction over the particular order of execution of statements, OO provides
an abstraction that encapsulates data with means for their manipulation,
usually in the form of methods [Meyer, 2000]. A popular example for COOP
is Erlang, a concurrency-oriented programming language that originates
from telecommunication industry and whose sequential subset is functional
[Armstrong, 2007]. The language’s features for concurrency are based on
the actor model [Agha, 1985, 1990].

Coordination-based approaches separate computation and coordination
[Gelernter and Carriero, 1992]. While coordination denotes the organisation
of independent active entities, computation denotes the activity of the in-
dividual entities [Malone and Crowston, 1994; Wegner, 1996; Omicini and
Papadopoulos, 2001]. As such, Coordination-based programming addresses
the need for high-level abstractions for concurrent programs, usually in the
form of separate coordination languages that are significantly higher than
low-level communication primitives and libraries. The Linda/Tuple Space
coordination language by David Gelernter can be regarded as the origin of
coordination-based approaches [Gelernter, 1985]. It allows communication
partners to be uncoupled from each other by the introduction of a Tuple
Space, a shared virtual associative data structure that manages data in

31

2. Concurrent Programming for Parallel Systems

the form of tuples. Today, most modern coordination approaches such as
the Business Process Model and Notation (BPMN) coordinate fine-grained
components denoted as activities within single composite components de-
noted as workflows [Axway et al., 2010]. Coordination is thereby specified
by control flows that define the order of activities by small pieces of data
regarded as control information.

Graph-based approaches rely on graphs to describe the data and control
flows of concurrent programs. Typical examples are Petri nets [Reisig, 2010],
Statecharts [Harel, 1987], and data flow diagrams [DeMarco, 1979]. The
Intel Threading Building Blocks Flow Graph is a library-based variant that
expresses data dependencies as messages passed between nodes. Nodes
represent either custom function objects provided by the application pro-
grammer, or predefined objects to buffer, filter, split/join, broadcast, or order
data as it flows through the graph [Intel Corporation, 2011c; Voss, 2011].

graph-
based

high-level concurrent
software engineering

techniques approaches

auto-
tuning

prototyping

pattern-
languages

model-
driven

skeletons

integrated
development
environment

library

object-
oriented

functional

logic

data-
parallel

coordination-
based

others

functional
logic

Figure 2.6. A taxonomy for high-level concurrent software engineering.

We combine the Hasselbring taxonomy with the list of high-level concur-
rent programming techniques described in this section to obtain a taxonomy

32

2.6. Summary of Concurrent Programming

for high-level concurrent software engineering. We omitted the differentia-
tion between linguistic and graphical approaches since we consider both as
linguistic. Figure 2.6 illustrates the resulting taxonomy.

2.6 Summary of Concurrent Programming

Parallel processing offers an increased performance for the solution of
many problems in contrast to sequential processing. To exploit the potential
performance of a parallel system, one has to formulate the solution of
a problem in a way that regards parts of the problem to be computed
independently.
There are several models for parallel systems. Regarding their level of

abstraction, these models can be differentiated in machine models, architec-
tural models, computational models, and programming models.
Concurrency provides us an abstraction over the behaviour of a wide

range of parallel systems that allows us to ignore the concrete order of
execution of individual program statements.

Synchronisation can be required to ensure the correctness of a concurrent
program.

A Process is a finite ordered set of sequentially executed atomic state-
ments that runs in its own address space. Threads are an extension that
allow a process to consist of more that one set of statements. These can run
in parallel and share the address space of the process.
The performance of a parallel system is influenced by the memory

organisation of the parallel system, the programming language, and the
problem domain.

There are different approaches and techniques for concurrent program-
ming that can be used as a taxonomy for classification.

33

Chapter 3

Coordination Models and

Languages

The concept of coordination is by
no means limited to Computer
Science

George A. Papadopoulos and
Farhad Arbab, 1998

Coordination models and languages provide a high-level abstraction
for the design and implementation of large and complex parallel systems.
They focus on the interaction patterns between the independent active
components of the respective systems while the domain-specific logic of the
individual components is neglected. As such, they can be regarded as tools
for software integration [Ciancarini, 1996]. The overall goal of coordination
modelling is to provide a framework that facilitates the modularity of the
systems to be developed, the reuse of existing components, portability, and
language interoperability [Papadopoulos and Arbab, 1998]. Multilinguality
is supported by either considering component coordination in a separate
super-language above the heterogeneous programming environment of the
parallel system, or by providing an interface between the separate parts of
the programming environment. The heterogeneity of parallel systems is
further supported by providing an abstraction that can integrate different
models of parallel systems.
The separation between computation and coordination was first pre-

sented by Gelernter and Carriero [1992] in the context of parallel and
distributed systems. They described coordination as “the glue that binds

35

3. Coordination Models and Languages

separate activities into an ensemble” while they considered an individual
activity as computation. Since then, coordination has been considered in
various domains, for example, programming languages, concurrent and
distributed systems, artificial intelligence, multi-agent systems, and soft-
ware engineering [Omicini and Papadopoulos, 2001]. These areas each have
their own meaningful names for the activities to be coordinated (e. g., ser-
vices, agents, individuals) and their coordination models (e. g., workflows,
processes).

In their seminal paper “The interdisciplinary study of coordination”,
Crowston et al. [2006] address the multi-disciplinary nature of coordina-
tion and present Coordination Theory (CT) as an approach to unify the
research on coordination as a separate research area. The main claim of
CT is that dependencies and the mechanisms to managing them are general
among domains. An important contribution of CT is a concise definition of
coordination:

Coordination Coordination is “the management of dependen-
cies between activities” [Malone and Crowston, 1994].

Crowston et al. [2006] define dependencies as arising between activities
instead of actors or roles. This simplifies the reassignment of activities
to different actors – itself an activity that is common in process redesign
efforts, as they notice. The definition focuses on the dependencies among
activities instead of their respective outcomes. This has the advantage
that coordination is not reduced to resource management but can address
all kinds of dependencies that constrain how activities can be performed.
Common types of dependencies are access to shared resources, the assign-
ment of activities to actors, producer-consumer relationships, simultaneity
constraints, and the decomposition of activities in sub-activities.
The conceptual distinction between computation and coordination is

shown by Wegner [1997] by discussing their different expressiveness: com-
putation and coordination are two orthogonal dimensions for programming
languages, see Figure 3.1. The figure illustrates that a program can be seen
as a composite of (sequential) computation and coordination, where the
program code that refers to computation is organised by the program code
that refers to coordination. While the former represents the domain-specific

36

3.1. Models of Coordination

Program:
Concept

Coordination:
Concept

Computation:
Concept

part

DecomposedIn DecomposedIn

part
composite

Figure 3.1. The distinction between computation and coordination.

logic of the program, the coordination code is completely problem domain-
agnostic and only refers to the temporal and organisational dependencies
of the individual parts of the computation and in which order they can be
executed.

3.1 Models of Coordination

Concurrent programming languages basically support interactions through
shared variables or message passing [Ciancarini, 1996]. Coordination mod-
els are system abstractions that are significantly higher-level than the shared
variables or message passing paradigm.

Coordination model (conceptual) A coordination model defines
the interaction of active and independent components by defin-
ing the coordination laws that specify how the components
coordinate themselves through the given coordination media
(cf. [Ciancarini, 1996]).

37

3. Coordination Models and Languages

In accordance with Ciancarini [1996] we interpret the definition as
follows:

� Coordination components are the entity types to be coordinated. Depending
on the domain these could be processes, threads, objects, actors, or
users. They typically embody the domain logic of an application. The
components are regarded as active since they show a behaviour such as
producing or modifying passive data structures. They are independent
insofar that they can execute at the same time and do not necessarily
exist at the same location.

� Coordination media are domain-agnostic components that enable the com-
munication among components. This can include the aggregation of
components to form a higher-level component. Examples of coordina-
tion media are concurrent programming constructs such as semaphores,
monitors, and channels, or architectural analogies such as tuple spaces,
blackboards, and pipelines.

� Coordination laws specify how component coordinate themselves through
the given coordination media. They can be represented by a set of
well-defined coordination primitives that are defined on the coordination
media and can be called by the components. Examples are object-oriented
methods that enact synchronous or asynchronous behaviour among
components.

The work of Wegner [1997] suggests that models of coordination have a
significant impact on the engineering of complex systems. This is shown to-
day with coordination-based programming-in-the-large approaches that are
employed in industry and academia, see for example [Scherp et al., 2009].
Most modern coordination models coordinate fine-grained components de-
noted as activities within single composite components denoted as workflows.
Coordination is thereby specified by control flows that define the order of
activities by small pieces of data regarded as control information. This kind
of coordination modelling is called orchestration [Melzer, 2007].
There are several ways to realise a coordination model. According to

Ciancarini, a coordination model can be realised either as a coordination

38

3.1. Models of Coordination

language, or a coordination software architecture. We add libraries and
explicit models:

A library can provide a high-level interface for a coordination model.
They support various styles of programming, but appropriate use often can-
not be guaranteed at design time. We consider them as particularly useful
for coordination model prototyping. Recent examples for libraries that can
be considered as coordination model realisations are the LighTS framework
which provides a minimalistic interface for space-based programming in
Java [Balzarotti et al., 2007], the Intel Threading Building Blocks (TBB), a
portable C++ library targeted towards multi-core processor parallelism
[Intel Corporation, 2011c], and Microsoft Task Parallel Library (TPL), a .NET
Framework library that intends to increase the productivity of application
programmers by taking over low-level details such as work partitioning,
thread scheduling, cancellation, and state management from the application
programmer [Leijen and Hall, 2007].

A software architecture is “[t]he fundamental organization of a system
embodied in its components, their relationships to each other, and to the
environment, and the principles guiding its design and evolution.” [IEEE
Architecture Working Group, 2000]. As such, software architectures can be
regarded as implementations of coordination models from a behavioural
viewpoint. However, they are often implemented using low-level concur-
rent or distributed programming techniques instead of being modelled
on a higher level of abstraction. Examples of coordination software archi-
tecture comprise Parallel Pipes and Filters, Parallel Layers, Communicat-
ing Sequential Elements, Manager-Workers, and Shared Resource [Ortega-
Arjona, 2010].

A coordination language is “the linguistic embodiment of a coordination
model” [Gelernter and Carriero, 1992]. An example is the Linda coor-
dination language developed by Gelernter and Carriero [Gelernter, 1985;
Carriero and Gelernter, 1989] whose invention can be regarded as the
cornerstone of CT in computer science. A recent example is the Business
Process Model and Notation (BPMN), a specification that is targeted to-
wards the coordination of business process in the business domain [Axway
et al., 2010].

39

3. Coordination Models and Languages

Coordination language A coordination language is “the linguis-
tic embodiment of a coordination model” [Gelernter and Car-
riero, 1992].

In the context of Model-Driven Software Development (MDSD), a coordi-
nation model is a platform-independent model of the software architecture
of a system to be developed. The focus of this model lies on the behavioural
viewpoint [IEEE Architecture Working Group, 2000]. It is explicit, mean-
ing that it is an artefact that can be manipulated by computer systems or
users. For example, a coordination model can be realised as an Ecore
model file conforming to the Ecore Metamodel from the Eclipse Modeling
Framework (EMF) [Steinberg et al., 2009].

Coordination model (explicit) A coordination model is an arte-
fact that represents the software architecture of a system to be
developed from a behavioural viewpoint.

3.2 Categorisation

A coordination model can be categorised by the types of components being
coordinated, the types of the coordination media, the mechanisms and se-
mantics of the coordination laws, the realisation of the coordination model,
and its target platforms [Papadopoulos and Arbab, 1998; Wegner, 1996;
Ciancarini, 1996]. More generally, Papadopoulos and Arbab [1998] argue
that coordination models can be categorised according to what is focussed
to be coordinated, the data or the components. Consequently, they classify
coordination models as either mostly data-driven or control-driven. In
the following, we explain the two categories and subsume their implica-
tions. The descriptions are based on the characterisations provided by
Papadopoulos and Arbab [1998] and our own comprehension.

Data-driven coordination models define the state of the computation as
both the values of the data being received or sent and the values of the data
that is handled within the coordinated components. The characteristics are:

� Data coordination is emphasised before component coordination. The

40

3.2. Categorisation

relevant data is mostly considered as products (pre- or postconditions of
component activity).

� Shared Dataspaces are commonly used as the coordination media [Roman
and Cunningham, 1990]. Components are loosely coupled.

� Realisations of data-driven coordination models are usually endogenous:
Coordination is considered as a set of coordination primitives to be
invoked by components within a computational host language/model.
As a consequence, libraries and architectures are an obvious choice for
realisation.

� There is at least one coordinating component that examines and manipu-
lates data, and that coordinates itself and/or other components by the
coordination primitives.

� A clear separation between computational and coordination-related as-
pects is not enforced. Uses of coordination primitives are intermingled
with computational code. It is in the responsibility of the programmer
to provide a clear separation between the coordination-related and the
computational aspects among and within the components of a program
to be developed.

Control-driven coordination models define the state of the computation
by the actual configuration of the interactions between the components.
The actual values of the data being manipulated are of minor interest. The
characteristics are:

� Component coordination is emphasised before data coordination. The
relevant data for component coordination is considered as information
(evaluation of expressions to control component activity).

� Streams or channels are commonly used as the coordination media. The
overall communication paradigm is that of message passing, bound to
point-to-point and limited broadcasting capabilities.

41

3. Coordination Models and Languages

� Computational components are considered as black boxes with clearly
defined interfaces. Except for these interfaces, coordination is almost com-
pletely separated from computation, but components are more closely
coupled to each other than in data-driven coordination.

� Realisations of control-driven coordination models are usually exoge-
nous: Separate languages/models are used to coordinate components
programmed with computational languages.

With the success of Service-Oriented Architectures (SOA) [Melzer, 2007],
a new class of coordination models showed up that gained widespread
adoption in the business domain: Workflow languages are mostly control-
driven and target the coordination of fine-grained closely coupled compo-
nents denoted as activities within single composite components denoted
as workflows or processes. Examples of such languages are the XML Pro-
cess Definition Language (XPDL) and the Web Services Business Process
Execution Language (WS-BPEL) [XPD, 2008; Alves et al., 2007]. Soon, the
need emerged to coordinate the processes itself, and subsequent devel-
opment efforts produced either extensions to existing languages or new
complementary solution, for example, the Web Services Choreography De-
scription Language (WS-CDL) and BPMN [Kavantzas et al.; Axway et al., 2010].
As a consequence, a second dimension for the categorisation of coordina-
tion models is the level of detail (granularity) on which coordination is
considered [Melzer, 2007]:

Choreography-oriented models specify the behaviour of a system as the
coordination of two or more coarse-grained components denoted as work-
flows/processes. They define inter-workflow/process behaviour.

Orchestration-oriented models specify the behaviour of a system as the
coordination of fine-grained activities within a single workflow/process.
They define intra-workflow/process behaviour.

3.3 Space-Based Systems

Space-Based Systems (SBS) are a class of data-driven coordination mod-
els that employ a data-sharing approach based upon the concepts of

42

3.3. Space-Based Systems

Object-Orientation (OO) and generative communication [Freisleben and
Kielmann, 1997; Hasselbring, 1998]. Object-Orientation (OO) provides com-
posable, self-contained components that are protected by their interfaces
[Meyer, 2000]. Generative communication – an idea originally introduced by
the Linda coordination model – allows communicating components to be
uncoupled from each other [Gelernter, 1985]. The overall analogy is that of
a blackboard on which data can be written, or from which data can be read
or removed.

3.3.1 Overview

In SBS, data-sharing is realised via so-called spaces, coordination-specific data
management components that represent the coordination media. Client
components communicate with each other indirectly by publishing data
objects into the spaces and by reading or consuming data objects from
them. Also, components can wait until a data object to be read or consumed
actually has been inserted into the respective space. This means that
operations that read or consume data objects can have either blocking or
non-blocking behaviour. The decision what kind of data object is to be
read or consumed is made by a template specification on the side of the
reading or consuming component. The component sends this template as
a query to a space. Matching that template to data objects is performed
by the space. The data objects are usually realised in the form of tuples,
ordered collections of data items that consist of actual fields (i. e., typed
values). Templates, on the other hand, can consist of actual and formal fields
(i. e., place-holders for typed values).

Spaces employ a matching algorithm to match a template specification
to one or more data objects. These are, in turn, returned to the querying
component. The standard matching algorithm can be described as follows:
A tuple is regarded as matching a given template if (1) the tuple has no fields
at all, or (2) the arities of the tuple and the template are equal and (2a) each
actual field in the tuple has the same type and value as the corresponding
field of the template, given it is also an actual field, or (2b) each actual field
in the tuple has the same type as the corresponding field of the template,
given it is a formal field. The following listing clarifies the algorithm in

43

3. Coordination Models and Languages

pseudocode:1

ALGORITHM matches (Array A, Array F)

IF A.size == 0

RETURN true

Boolean match = A.size == F.size

Integer i = 0

WHILE match && i < A.size

match = match && matches(A[i], F[i])

i++

ENDWHILE

RETURN match

END

ALGORITHM matches (Field a, Field f)

IF a INSTANCEOF FormalField

RETURN a.getType() == f.getType()

ELSE

RETURN a.getType() == f.getType() &&

a.getValue() == f.getValue()

END

3.3.2 History

SBS had their culmination in the late 1990s and the early 2000s in the form
of IBM TSpaces, an SBS for Java,2 and JavaSpaces, a service specification
that provides an exchange mechanism for distributed Java objects [Freeman
et al., 1999]. Especially the latter is of interest, since it attracted much
attention upon its announcement but turned out a niche technology, for
example in financial services and telecommunications. A possible reason is
the fact that JavaSpaces is part of the Java Jini technology, a commercially
unsuccessful framework of co-operating services for distributed systems
[Edwards, 2000]. Sun contributed Jini to the Apache Software Foundation
in 2007. The Jini project is continued under the name Apache River.3

Further advances of SBS can be described in contrast to the original Linda
model. These developments can be related to one of two categories: increase
of the degree of distribution of the coordination media, or increase of the
expressiveness of the coordination laws. A recent example of the first category

1The algorithm was derived from the implementation of the classes Tuple and Field of the
LighTS tuple space framework [Balzarotti et al., 2007].

2http://www.almaden.ibm.com/cs/TSpaces/
3http://river.apache.org/

44

3.3. Space-Based Systems

is GigaSpaces, an in-memory SBS data grid for business applications in the
context of Cloud Computing [Shalom, 2006]. The SBS is based on JavaSpaces.
An example for the latter is TuCSoN, an SBS whose spaces (denoted as
tuple centres) have a programmable behaviour that allows them to support
application-specific coordination laws [Omicini and Zambonelli, 1998, 1999].
Today, there exists a wide range of SBS implementations, for example Fly
Object Space, Blitz JavaSpaces (Pure Java Edition) 2.1, PyLinda, Rinda,
Gruple, LinuxTuples, SemiSpace, and LighTS.4

3.3.3 Use for Concurrent Programming

As discussed by Gudenkauf and Hasselbring [2011], SBS show appealing
features for concurrent programming:

SBS assume explicit indirect coordination amongst components. Instead of
requiring software developers to cut away unwanted non-determinism by
means of fine-grained synchronisation, they introduce non-determinism on
a higher level of abstraction by the space operations.
While residing in spaces, data objects are immutable. To modify a data

object, components must explicitly remove it from the space, modify it,
and reinsert it. Data objects can never encounter conflicts or inconsisten-
cies when multiple components attempt to modify them, thus eliminating
undesirable situations such as lost updates.

SBS ease concurrent programming by abstracting from the location of
components in space and time. Components do not necessarily have to exist
at the same time, and always remain anonymous to each other.

SBS abstract from the computational model and are orthogonal to wide-
spread General-Purpose Programming Languages (GPLs) such as C++, C#,
and Java, since most GPLs are based on the computational model in principle.

4See http://www.flyobjectspace.com/,
http://www.dancres.org/blitz/,
http://code.google.com/p/pylinda/,
http://www.ruby-doc.org/stdlib/libdoc/rinda/rdoc/index.html,
http://gruple.codehaus.org/,
http://linuxtuples.sourceforge.net/,
http://www.semispace.org/semispace/, and
http://lights.sourceforge.net/

45

3. Coordination Models and Languages

We summarise the use of SBS for concurrent programming by the follow-
ing formula:

Shared spaces + Immutability of space-residing
data objects = Manageable concurrency

3.3.4 Example

In this section, we present a small example of an SBS, the LighTS tuple
space framework [Balzarotti et al., 2007]. LighTS is a small extensible open
source Java implementation of an SBS for non-distributed concurrent pro-
grams. Security, data persistence, and remote access/distribution are not
addressed. Its interface can be used as a front-end for third-party tuple
space implementations. Additionally, LighTS provides fuzzy-logic exten-
sions for context-aware systems since conventional matching mechanisms
that are based on exact values are largely insufficient for context-aware
systems [Balzarotti et al., 2007]. LighTS was originally invented as the core
implementation of the LIME SBS middleware [Murphy et al., 2006]. The
following listing illustrates the tuple space interface of LighTS, along with
comments that explain the individual coordination primitives defined on
spaces:

public interface ITupleSpace {

String getName();

void out(ITuple tuple); // publish a tuple

void outg(ITuple[] tuples); // publish a group of tuples

ITuple in(ITuple template); // blocking tuple consumption

ITuple inp(ITuple template); // non-blocking tuple consumption (probe)

ITuple[] ing(ITuple template); // non-blocking atomic consumption of a set of tuples

ITuple rd(ITuple template); // blocking tuple read

ITuple rdp(ITuple template); // non-blocking tuple read

ITuple[] rdg(ITuple template); // non-blocking atomic read of a set of tuples

int count(ITuple template); // number of available matching tuples

}

The following self-explaining example illustrates how a space can be
created and how a tuple can be published by a client.

46

3.3. Space-Based Systems

// create tuple space

ITupleSpace ts= new TupleSpace("Space");

// create a tuple

ITuple tuple= new Tuple()

.add(new Field().setValue("ID")) // actual field

.add(new Field().setValue(newInteger(12345))) // actual field

.add(new Field().setType(Integer.class)); // formal field

// publish the tuple into the tuple space

try{ ts.out(tuple); }

catch(TupleSpaceException e) {e.printStackTrace(); }

Additionally, LighTS supports OO by finding a reasonable compromise
between object encapsulation and the requirement to publish the internals
of a data object stemming from generative communication: The interface
ITuplable allows to flatten objects into tuples with the method toTuple,
while setFromTuple allows to recreate an object from a tuple. This is sup-
ported by the class ObjectTuple, which can remember the type of the object
a tuple was created from.

// writing component

Complex complex= new Complex (-1.0, 1.0);

try{ ts.out(complex.toTuple()); }

catch (TupleSpaceException e) {...}

//reading component

ITuple template = new Tuple()...;

ObjectTuple objTuple= null;

try { objTuple= (ObjectTuple) ts.rd(template); }

catch (TupleSpaceExceptione) {...}

this.complex = (Complex) objTuple.getObject();

// data object definition

public class Complex implements ITuplable, Serializable {

private double a; private double b;

@Override

public ITuple toTuple() {

ObjectTuple objTuple = new ObjectTuple(Complex.class)

objTuple.add(newField().setValue(new Double(a)))

.add(newField().setValue(new Double(b)))

return objTuple;

}

@Override

public void setFromTuple(ITuple tuple) {

this.a = (Double) ((Field) tuple.get(0).getValue();

this.b= (Double) ((Field) tuple.get(1).getValue();

47

3. Coordination Models and Languages

}

...

}

However, LighTS suffers from the limitation of being a library-based
internal domain-specific language for SBS (see Section 4.5.2): coordination
code is compromised with Java language syntax, proper usage cannot be
enforced, and domain-specific validation is not possible. Additionally, the
platform-specific implementation uses serialisation to guarantee deep copy
behaviour for data object hierarchies.

3.4 Business Process Model and Notation 2.0

The Business Process Model and Notation (BPMN) is an example for control-
driven coordination models. Its goal is the provision of a language targeted
towards the coordination of business processes that is understandable by
a wide range of stakeholders, ranging from business analysts that draft
processes, to technical developers that implement the facilities to execute
the processes, and business process monitors that manage the processes
during execution. In its current version (2.0), the specification represents a
full-fledged coordination language, cf. [Axway et al., 2010, p. 22]:

� The BPMN specification comprises a graphical notation as its concrete
syntax and an abstract syntax in the form of a metamodel.

� BPMN provides informal execution semantics that describe the execution
behaviour of the individual elements of the language.5

� It provides an extensibility mechanism for both metamodel extensions
and graphical notation extensions.

� It supports the definition of human participation in business processes.

5In fact, the specification states that it “formalizes the execution semantics for all BPMN
elements” [Axway et al., 2010, p. 22], but only descriptions in natural language are provided:
“The execution semantics are described informally (textually), and this is based on prior
research involving the formalization of execution semantics using mathematical formalisms.”
[Axway et al., 2010, p. 425]. Also, only control flow execution semantics are described [Axway
et al., 2010, pp. 425-444].

48

3.4. Business Process Model and Notation 2.0

BPMN also provides machine readable representations of the specifi-
cations (XML Schema Definition (XSD), XML Metadata Interchange (XMI),
Extensible Stylesheet Language Transformations (XSLT), and Meta Object
Facility (MOF) compatible) that allow the serialisation and transformation of
BPMN models.

3.4.1 Overview

BPMN supports the following viewpoints on coordination in the business
domain, cf. [Axway et al., 2010, p. 23]:

� Processes: Components whose internal activities are orchestrated

� Private non-executable Processes: Processes that are internal to a spe-
cific participant and were modelled for the purpose of documentation

� Private executable Processes: Processes that are internal to a specific
participant and were modelled for the purpose of being executed by
appropriate execution environments

� Public Processes: Processes that represent views on private processes
that show only those activities that are used to communicate with
other processes

� Collaborations: A view on two or more processes that models both pro-
cesses as well as the interactions between the processes as the exchange
of messages.

� Choreographies: A view on the interactions between participants that
models communication as the ordered exchange of messages, thus repre-
senting the communication protocols between the participants

� Conversations: A view on the interactions between participants that mod-
els the ways messages can be sent, thus representing the communication
channels between the participants

The elements of the specification are categorised as follows, see Fig-
ure 3.2. Flow Objects are the main elements that define the behaviour of a

49

3. Coordination Models and Languages

Flow Objects Data Connecting Objects Swimlanes

Artifacts

Event

Activity

Gateway

Data Object

Data Input

Data Output

Data Store

Sequence Flow

Message Flow

Association

Data Association

Group

Text Annotation

Lane

Lane Po
ol

Text

Figure 3.2. Overview of the elements of the BPMN 2.0 specification.

Process: Events are foreseen to occur during the execution of a Process to
affect its execution. They usually have a cause or an impact and require or
allow for a reaction. It is differentiated between start, end and intermediate
events. Examples are Message Intermediate Events to either send or receive a
Message. Activities represent work to be performed within a Process. They
can be either atomic or compound (hierarchically composed). Examples are
Task (an atomic Activity that cannot be broken down to a finer level of detail)
and Sub-Process (a composite Activity whose internal behaviour has been
modelled using Activities, Gateways, Events, and Sequence Flows). Activities
can be decorated with Loop Characteristics to model looping behaviour, or
sequential or parallel instantiation. Gateways represent decisions to be made
or followed to control the execution of a process. Examples are Exclusive

Gateway to create or merge alternative paths within the execution of a
Process, and Parallel Gateway to create or synchronise concurrent execution
paths within a Process.

Data is represented by the following elements: Data Objects are generic
representations of data that can represent states and collections of data. The
lifecycle of a Data Object is bound to the lifecycle of its parent Process or

50

3.4. Business Process Model and Notation 2.0

Sub-Process. Data Inputs and Data Outputs represent data that is explicitly
required as a precondition, or provided as a postcondition for the execution
of Activities or Processes. Data Stores represents an information system to
store data that will persist beyond the lifecycle of a Process. Properties, like
Data Objects, are generic representations of data. However, they are not
visually presented on a Process diagram. Only Processes, Activities, and
Events can contain Properties. The lifecycle of a Property is bound to the
lifecycle of its parent Flow Object.

Flow Objects are connected by so-called Connecting Objects: Sequence Flows
specify the (sequential) order of the execution of Flow Elements in a Process or
a Choreography. Each Sequence Flow has only one source and only one target
element. Message Flows specify the message exchange between two partici-
pants. They represent the message passing-based communication facility
between individual Processes. Associations are mostly used to associate
Artifacts with Flow Objects. Data Associations specify how data is pushed into
or pulled from model elements. They show a copy-behaviour, meaning that
the source of the association is copied to the target instead of transferred.

Swimlanes represent elements for grouping: A Pool is the representation
of a Participant in a Collaboration and can include a Process to be executed by
the Participant. Lanes are sub-partitions of a Process.

Artifacts provide additional information about BPMN model elements:
Groups represent an informal mechanism to informally group elements
without any effects on the behaviour of the BPMN model or its elements.
Similarly, Text Annotations add informal information to annotated model
elements without affecting the behaviour of the model or its elements.

3.4.2 History

BPMN was invented by Stephen A. White (IBM) and published in 2004 by the
Business Process Management Initiative (BPMI). In 2005, the BPMI merged
into the Object Management Group (OMG), and the maintenance of the
BPMN specification was continued by the OMG [Freund and Rücker, 2010].
BPMN is since an official OMG standard.
Version 1.0 was accepted in 2006 as an official OMG standard [All-

weyer, 2009]. Versions 1.1 (2008) and 1.2 (2009) were maintenance releases

51

3. Coordination Models and Languages

Di
st

rib
ut

io
n

Sa
le

s Su
pp

lie
r

Fi
na

nc
e

In
st

Authorise
Payment

Credit Card
Authorisation

Process
Order

Pack
Goods

Ship
Goods

Is authorised?
yes

no

Cr
ed

it
Re

qu
es

t Credit Response

Figure 3.3. A BPMN collaboration example diagram illustrating a supplier and a
financial institution collaborating to ship goods.

that mainly targeted issues related to graphical notation elements. The
current version 2.0 was released in January 2011 and represents a major
release. Amongst others it contributes an abstract syntax in the form of a
metamodel and informal execution semantics, thus evolving BPMN from a
mere notation into a full-fledged coordination language.

3.4.3 Example

Figure 3.3 shows a simple BPMN example that illustrates the collaboration
of a supplier and a financial institution to ship goods. Both processes start
concurrently with their respective Start Events (the Events with the thin
border on the left sides). Firstly, the supplier authorises a current payment
by contacting the financial institution. This is modelled as a Message Flow

from the “Authorise Payment” Activity of the supplier to the “Credit Card
Authorisation” Activity of the financial institution. The financial institution
checks the credit card and sends a response that contain information about
the outcome of the authorisation (“Credit Response” Message Flow). After-

52

3.5. Summary of Coordination Models and Languages

wards, the process of the financial institution is terminated as modelled
with an End Event (the Event with the thick border on the right side of the
financial institution’s Pool). If the payment is authorised (Exclusive Gateway),
the supplier processes the order, packs the goods and ships them. Then, the
process of the supplier is also terminated.

3.5 Summary of Coordination Models and Lan-

guages

Coordination models and languages provide a high-level abstraction for the
design and implementation of large complex parallel systems that focusses
on the interaction patterns between the independent components of the
respective systems. They embrace the multilinguality and heterogeneity of
these systems.
Coordination is the management of dependencies between activities,

and as such, interdisciplinary.
Conceptually, coordination models are system abstractions that are

significantly higher-level than the shared variables or message passing
paradigm. They define the interactions of active and independent compo-
nents in terms of the coordination laws, the coordination components, and
the coordination media. Coordination components are the entity types to
be coordinated, coordination media are domain-agnostic components that
enable the communication among components, and coordination laws spec-
ify how component coordinate themselves through the given coordination
media.

A coordination model can be realised as a library, a software architecture,
a separate language, or, in the context of MDSD, as an explicit platform-
independent model artefact that can be manipulated by computer systems
or users.

Coordination models can be categorised in two dimensions: data-driven
or control-driven (coordination focus), and choreography or orchestration-
oriented (granularity). Data-driven coordination models emphasise data
coordination before component coordination and do not enforce a clear sep-
aration between computational and coordination-related aspects. Control-

53

3. Coordination Models and Languages

driven coordination models emphasise component coordination before data
coordination and consider computational components as black boxes with
clearly defined interfaces. Choreography-oriented models specify the be-
haviour of a system as the coordination of two or more coarse-grained
components denoted as workflows/processes (inter-workflow/process be-
haviour). Orchestration-oriented models specify the behaviour of a system
as the coordination of fine-grained activities within a single workflow/pro-
cess (intra-workflow/process behaviour).

SBS are data-driven coordination models that employ a data-sharing
approach. SBS show appealing features for concurrent programming: decou-
pled components, explicit indirect coordination amongst components, im-
mutability of space-residing data objects, and orthogonality to widespread
general purpose programming languages.
The BPMN is a control-driven coordination language targeted towards

the coordination of business processes. It is intended to be understandable
by a wide range of stakeholders, ranging from domain experts to technical
developers.

54

Chapter 4

Model-Driven Software

Development

Abstraction is the key to progress
in software engineering

Eelco Visser, 2008

Model-Driven Software Development (MDSD) emphasises to develop
software by generating code from formally specified models as the main
development artefacts [Völter and Stahl, 2006]. Quality and reuse is in-
creased by allowing to correct mistakes in the model or in the generator
templates once, instead of having to do multiple corrections in source code.
These models are significantly more abstract and domain-oriented than
executable program code, and often cannot be executed. Instead, models
have to be translated into executable code for a specific platform by using
model transformations and model transformation infrastructures. Thereby,
a series of model transformations typically ends with a model-to-code trans-
formation that results in the executable code. Domain-oriented models
improve managing complexity by focussing on long-living domain-specific
aspects, leaving short-living aspects for Platform-Specific Models (PSMs)
or directly for code generation. Domain-Specific Languages (DSLs) allow
domain experts to participate directly in software development. In the fol-
lowing, we present an overview of MDSD concepts, starting with definitions
for the terms model and metamodel.

Model A model is a representation of a system under study,
where the model is (1) itself a system, (2) is simpler than the

55

4. Model-Driven Software Development

Java Language
Specification:

System

Java Language:
Set

Java Code:
System

Program:
Concept

model * sus*

model * sus*

set*

element*

conformantmodel*

metamodel*

ConformsTo

RepresentationOf

RepresentationOf

ElementOf

Figure 4.1. The notion of metamodel by the example of the Java programming
language according to Favre and NGuyen [2005].

system under study, and which (3) can give answers instead of
the system under study that also hold for the system under study
[Stachowiak, 1973; Seidewitz, 2003; Bézivin and Gerbé, 2001].

The idea of a metamodel is to formally represent the commonalities of a
set of models in a system so that it can be checked if a model is an element of
the set. If so, the model is said to be conformant to the metamodel. Figure 4.1
illustrates this relationship: A metamodel is relative [Völter and Stahl, 2006,
p. 57]. The Java language specification plays the role of a metamodel to Java
program code since it represents the Java language.

Metamodel A metamodel is a model of a set of models [Favre
and NGuyen, 2005].

4.1 The MDSD Metamodel

Figure 4.2 shows a metamodel that defines the MDSD domain. It is based on
the work of Favre [2004a,b, 2005]; Favre and NGuyen [2005] on megamodels
which model large-scale software evolution processes. It is fundamentally
based on the concept of Systems linked with a well-defined set of relations
such as Representation Of (μ), Conforms To (χ) and Transformation Instance

(τ). Consequently, in their metamodel of megamodels, the concepts of
models and metamodels are realised as roles that can be played by systems.

56

4.1. The MDSD Metamodel

metamodel*

System

Concept

Set Pair

Transformation Transformation
Instance

ConformsTo

DecomposedIn RepresentationOf

TransformationInstance

ElementOf

IncludedIn

conformantmodel*

composite* sus*

part* model*

source*

target*

element*

set*

superset*

subset*

domain 1 domain 1

* *

Figure 4.2. The MDSD metamodel (megamodel metamodel) based on Favre and
NGuyen [2005].

We consider this conceptual megamodel metamodel as ideally suited to
be used as a model for MDSD itself due to its flexibility. This flexibility
originates from the use of fundamental entities from the system and set
theory, and from the use of only the most basic relations (no aggregation,
no composition). These can be considered as the axioms of MDSD.

� Representation Of (μ): A System can be a model which represents a certain
system under study (sus).

� Element Of (ε): A System can be a single element of a Set.

� Conforms To (χ): A System can be an element of a Set that itself is a system
under study to another system. This other System plays the role of a
metamodel to the original System.

57

4. Model-Driven Software Development

� Decomposed In (δ): A System can be a composite that can be decomposed
in parts.

� Included In (ζ): A Set can be a subset to another Set denoted as superset.

� Transformation Instance (τ): A System that is a model of a system un-
der study can be transformed into the system under study given an
appropriate Transformation Instance.

The last relation, Transformation Instance, is of particular interest in the
practical application of MDSD. We present model transformations and their
transformation instances in more detail in the following section.

4.2 Model Transformations

The goal of MDSD is to create software in part or whole through transforma-
tions [Völter and Stahl, 2006, p. 61]. Therefore, model transformations play
a key role in MDSD. Informally, a model transformation can be thought of
as a computable mapping that translates source models into target models,
cf. [Reussner and Hasselbring, 2009, p. 97]. Czarnecki and Helsen sum-
marise the application of transformations in MDSD as follows [Czarnecki
and Helsen, 2006]:

� Lower level model and program code generation from higher-level mod-
els

� Model synchronisation

� The creation of views of a system based on queries

� Evolutionary activities modelling (e. g., refactoring)

� Reverse engineering of lower level models and program code from higher
level models

Although transformation is a recurring topic in computer science, there
are several characteristics that distinguish model transformations from other
transformation approaches. On the basis of the work of Czarnecki and
Helsen [2006] on model transformations, we subsume them as follows:

58

4.2. Model Transformations

� Object-Orientation (OO): Model transformations adopt an approach
based on OO to represent and manipulate models.

� Traceability: Model transformations consider the traceability among
models as a primary concern. Traceability refers to mechanisms to create
and maintain trace links between source and target model elements that
describe the runtime footprint of a transformation execution. These links
can be used to analyse the impact of model changes to related models,
and for stepwise transformation debugging.

� N-way transformations: Model transformations can be defined for multi-
ple models as sources and targets.

� Multi-directionality: Transformations do not necessarily define a trans-
formation direction for their execution.

More formally, one can distinguish between the notion of transformation
as a function, the representation of a transformation in a transformation
language, and the instance of a transformation at runtime. We provide
definitions for these terms in the following. Figure 4.3 illustrates this
operational context. We recommend the work of Favre and NGuyen [2005]
for further information on this separation.

Transformation (function) A Transformation, also denoted as
transformation function, is a Set of Transformation Instances. The
set of systems that can be transformed by the transformation
function is denoted as the domain of the transformation, and
the set of systems that can be obtained via a Transformation is
denoted as its range [Favre and NGuyen, 2005].

Transformation instance A Transformation Instance is a Pair of
two Systems which represents the application of a Transformation

(function) to a particular input (the source) to produce an output
(the target) [Favre and NGuyen, 2005].

To increase comprehensibility, we additionally introduce the following
definitions:

59

4. Model-Driven Software Development

function:
Transformation

instance:
Transformation

Instance

language_B:
Set

model_B:
System

language_A:
Set

model_A:
System

transformation
Definition:

System

language
Specification_B:

Set

language
Specification_A:

Set

transformation
Language

Specification:
System

concreteSystem:
Concept

domain

Co
nf

or
m

sT
o

RepresentationOf

ElementOf

source

range

target

RepresentationOf

RepresentationOf RepresentationOf RepresentationOf

ConformsTo

Co
nf

or
m

sT
o

ElementOf ElementOf

Figure 4.3. The operational context of a model transformation according to Favre
and NGuyen [2005].

Transformation engine A transformation engine is a system that
can instantiate transformations (functions) by applying them to
the source systems to produce the target systems. The instantia-
tion of a transformation (function) is referred to as transforma-
tion execution.

Transformation language A transformation language is the lin-
guistic embodiment of a model of transformations.

Transformation definition A transformation definition is the
description of a transformation (function) using a transformation
language.

Approaches to model transformation are practically distinguished by
what kind of target models are used. In generally, we differentiate between

60

4.2. Model Transformations

Model-to-Model (M2M) transformations and Model-to-Text (M2T) transfor-
mations. While the former create or manipulate their targets as instances of
explicit metamodels, the latter consider their target simply as text strings
[Czarnecki and Helsen, 2006]. Essentially, M2T transformations are a special
case of M2M transformations given a metamodel for the target program-
ming language is available. The focus on string generation allows to reuse
existing target programming language compiler technology [Czarnecki and
Helsen, 2006; Reussner and Hasselbring, 2009]. Further classification is
extensively discussed by Czarnecki and Helsen [2006].

In the following, we present examples for the two main classes of trans-
formations: The M2M transformation language Query/View/Transformation
(QVT), and the M2T transformation language Xpand.

4.2.1 Query/View/Transformation (QVT)

QVT is a standard that specifies a set of model transformation languages
defined by the Object Management Group (OMG) [QVT, 2011]. As the
name implies, QVT covers the issues of querying models, transforming
models, and providing views on models that conform to the Meta Object
Facility (MOF) metamodel standard [MOF, 2011]. The standard integrates
the Object Constraint Language (OCL) for constraint definition and specifies
the following parts, cf. [QVT, 2011, pp. 9-10]:

Relations is a declarative language that specifies transformations bidirec-
tionally as a set of relations between two models which consist of object
patterns. These patterns are applied model-wise either in checkonly
mode or in enforce mode. While checkonly mode checks consistency
by testing if the relation holds for one model with respect to the other,
enforce mode enforces the consistency between the two models by ma-
nipulating one of them as specified. The language has both a textual
and a graphical notation.

Core is a declarative language equally powerful to the Relations language
but significantly simpler, trading language simplicity for verboseness.
Trace models must be explicitly defined and cannot be derived as in

61

4. Model-Driven Software Development

*
tables

schema

1

package

1

*
elements

Package

name: String

Class

isPersistent: Boolean

Schema

name: String

Table

name: String

Classifier

name: String

SimpleUML

SimpleRDBMS

Figure 4.4. Metamodels for SimpleUML and SimpleRDBMS.

the Relations language. It is used to provide the semantic basis for the
specification of the Relations language.

Operational Mappings is an imperative language for unidirectional trans-
formations that extends the Relation language with side-effect-afflicted
OCL expressions and imperative constructs. These constructs instantiate
declarative object patterns from the Relations language.

Black Box operations allow to integrate external program code in the execu-
tion of a transformation, for example, to reuse existing domain-specific
libraries. However, as their execution is not normally controlled by a
QVT transformation engine, Black Box operations represent a potential
risk for inconsistency.

Representative implementations of the standard are mediniQVT1 for
QVT Relations and SmartQVT2 for QVT Operational Mappings.

The following listing illustrates a transformation written in QVT Relation
to transform Unified Modeling Language (UML) class models into relational
database tables based on the example that is delivered with mediniQVT.
Note that we omitted class attributes and table columns for simplicity. The
simplified self-describing metamodels are shown in Figure 4.4.

transformation uml2rdbms(uml:SimpleUML, rdb:SimpleRDBMS)

1http://projects.ikv.de/qvt/
2http://sourceforge.net/projects/smartqvt/

62

4.2. Model Transformations

{

-- map each package to a schema

top relation Package2Schema {

pname : String;

checkonly domain uml p : SimpleUML::Package {

name = pname

};

enforce domain rdb s : SimpleRDBMS::Schema {

name = pname

};

}

-- map each persistent class to a table

top relation Class2Table

{

cname: String;

checkonly domain uml c:Class {

name = cname,

ownerPackage = p:Package {},

isPersistent = true

};

enforce domain rdb t:Table {

name = cname,

schema = s:Schema {}

};

when {

Package2Schema(p, s);

}

}

}

The QVT Relations code declares a transformation with the two typed
parameters uml and rdb for the involved models. The parameters are typed
over the two metamodels shown in Figure 4.4. The first relation within
the transformation enforces that an rdb schema’s name equals that of the
related uml package. The second relation enforces a table for each persistent
class in the given uml model. The when clause defines a precondition under
which the relation must hold. In this case, a table can only be enforced if
its schema has been enforced from a corresponding package beforehand.
Both relations are denoted as top, meaning that they are always executed
when the transformation is executed. Regarding the application of the
transformation, the user specifies the execution direction manually in the
transformation engine.

63

4. Model-Driven Software Development

4.2.2 Xpand and Xtend

Xpand is a template-based M2T transformation language that generates text
from Eclipse Modeling Framework (EMF) Ecore models [Efftinge et al., 2004-
2010]. Its purpose is effective template development with an easy-to-learn
language and good tool support [Klatt, 2007; Efftinge et al., 2004-2010].
Xpand was originally developed as a part of the openArchitectureWare
MDSD platform and is now available as a sub-project of the Eclipse Modeling
Project [Efftinge et al., 2008; Xte, 2011]. The language features comprise
template polymorphism, import and namespace concepts, nesting, loops,
expressions to apply a template on a collection of elements, decisions,
means for file generation, protected regions that are not overridden in
subsequent text generations, variables, errors, a mechanism to control the
generation of whitespaces, support for aspect-oriented programming, and
comments [Klatt, 2007]. French quotation marks are used to escape template
expressions from text fragments. Text generation is started via a workflow
script that defines the entry point for execution. Additionally, Xpand can
access functions implemented in Xtend, a functional language to extend
metamodel types with additional logic. Xtend also originated from the
openArchitectureWare MDSD platform [Efftinge et al., 2008]. Xpand and
Xtend represent the foundation for the recent development of Xtend2, a
statically-typed template language with a Java-like syntax in the context of
the Xtext language workbench [Xte, 2011].

In the following listing, we illustrate an Xpand template that generates
Java code from models that conform to the SimpleUML metamodel shown
in Figure 4.4. Firstly, the SimpleUML metamodel is imported. Secondly, an
Xtend extension is loaded. It is later used to calculate the fully qualified
name of classes. Thirdly, the first DEFINE directive defines a template for the
Package type that expands another template for each Class in the package.
It represents the entry point for the text generation engine and must be
referenced as such in the execution engines workflow script. The second
DEFINE directive defines the template for a class to be generated. Thereby, a
class is only generated when it is marked as being persistent. The outlet
for text generation is specified via the FILE directive. We use the function
qualifiedName from the imported Xtend extension to calculate the fully

64

4.3. Model-Driven Systems

qualified name of the class, and replace the point characters with the
slash character to generate the corresponding folder structure. The minus
character is used to remove supernumerary whitespaces and line breaks.

<<IMPORT SimpleUML>>

<<EXTENSION template::Extensions>>

<<DEFINE main FOR Package>>

<<EXPAND class FOREACH elements>>

<<ENDDEFINE>>

<<DEFINE class FOR Class>>

<<IF isPersistent == true>>

<<FILE (qualifiedName().replaceAll("\\.","/") + ".java")->>

package <<ownerPackage.name->>;

public class <<name->>

{

public <<name->>(){}

}

<<ENDFILE>>

<<ENDIF>>

<<ENDDEFINE>>

4.3 Model-Driven Systems

Model-driven software projects lead to very complex structures that are
based on models, metamodels and transformations as their cornerstones,
see Figure 4.5. Typically, such structures are inherently difficult to under-
stand and consist of a variety of artefacts, for example, domain-specific
models, technical models that abstract from the underlying programming
environment, model transformations, model transformation engines, and
additional software tools. We denote such structures as Model-Driven Sys-
tem (MDS). An important aspect of MDS is that they consider the tools that
are used in a software project explicitly, since a metamodel may impose
restrictions to the version of a tool to be used.

Model-Driven System (MDS) An MDS is a system whose artefacts
refer to models, metamodels, and transformations, and the tools
that are used in a model-driven software project.

The purpose of an MDS is to handle and maintain the individual artefacts
and their interrelations to automate the generation of the target system as

65

4. Model-Driven Software Development

MD-System

Requirements
Definition

Domain Model

Technical Model

Executable
Program Code

M2M

M2M

M2T

Secondary
MD tools

Primary MD tools

Modelling
Tools

DSLs

Metamodels

Trans-
formations

Legend
Artefact

Transformation

Association

Model-to-Model-
Transformation

Model-to-Text-
Transformation

Interoperability

M
Tr

M2M

M
T

M2T

Text-
Generators

Figure 4.5. An exemplary MDS.

far as possible. Its application provides three advantages: reuse for software
product families, reuse for software product lines, and the separation of
concerns to handle complexity.

Reusing the MDS for the generation of technical artefacts such as program
code and configuration files can decrease the time to market of software
product families. The focus of the MDS is therefore shifted towards domain
aspects such as the domain models.

Software product family A (software) product family is a group
of products that share at least a common generic (software)
architecture. They are scoped primarily based on technical
commonalities (cf. [Withey, 1996, p. 16], [Czarnecki and Eise-
necker, 2005]).

Reusing domain models, on the other hand, can decrease the time to
market of software product lines. The focus of the MD system is therefore
shifted towards technical aspects such as the model transformations.

Software product line “A [software] product line is a group of
products sharing a common, managed set of features that satisfy
the specific needs of a selected market” [Withey, 1996, p. 15]

66

4.4. Architecture-Centric Model-Driven Software Development

and is therefore scoped primarily based on a marketing strategy
(rather than technical commonalities).

The separation of the individual artefacts from each other, for example,
the domain models from the technical transformations, allows to develop
software for domains whose requirements become more and more complex.
Figure 4.6 illustrates a possible metamodel for an MDS family. It is a

refinement of the megamodel metamodel presented in Figure 4.2 and sepa-
rated into a platform-independent and a platform-specific MDS metamodel
partition. The platform-independent partition comprises the concepts Model,
Metamodel, M2M and M2T Transformation Definitions, and Text as first class
entities instead of relations, and introduces the Tool entity as a base class
for tools to be considered in MDS. In the figure, we consider Transformation

Engines, Editors and Repositories as tools.
M2M and M2T Transformation Definitions represent Transformations (func-

tions). We omitted the relation RepresentationOf to the element Transformation

from the megamodel metamodel for visual clarity (see Figure 4.2). We
introduce the relations MappedFrom and MappedTo as a shortcut to indicate
that Transformation Definitions map Models as representations of Sets in the
same manner as Transformations map Sets to one another as their domains

and ranges. Consequently, we name the respective roles domainModel and
rangeModel.

The platform-specific partition contains platform-specific generalisations.
For example, Figure 4.6 illustrates that only Ecore Models are considered,
which conform to the Ecore Metamodel from the EMF [Steinberg et al., 2009].
The metamodel recognises that Ecore Models can reference each other. MDS
that conform to the MDS metamodel support only Xpand Templates and Java

Source Code explicitly.

4.4 Architecture-Centric Model-Driven Software

Development

Schmidt [2006] describes the use of MDSD to tackle the problem of platform
complexity and the inability of General-Purpose Programming Languages

67

4. Model-Driven Software Development

Platform-Specific
MD System Metamodel

Platform-Independent
MD System Metamodel

Conform
sTo

M
odel

M
etam

odel
M

2M
 Transf.

Definition

Tool

Transform
ation

Engine
Editor

Repository

System

(from
 M

egam
odel)

M
2T Transf.

Definition
Text

Ecore M
odel

EM
F Ecore

Xpand
Generator

Ecore Editor

Textual
Repository

ExecutedBy

ExecutedBy

EditedW
ith

StoredIn

dom
ainM

odel
range M

odel
*

1
1

References
Conform

sTo

EditedBy

*
*

1
1

dom
ainM

odel
rangeM

odel

*
*

*
*

*

*

*
*

*
*

*
*

1
*

*
*

1
*

*
*

*
*

*
*

*

StoredIn

StoredIn

*

dom
ainM

odel
rangeM

odel

ExecutedBy

EditedBy

Xpand Editor
EditedBy

*
*

*

*

Xpand
Tem

plates

StoredIn

*
*

M
appedFrom

M

appedTo

Com
plem

ents

*
*

Java Editor
Java Source

Code

Tools
Artefacts

Figure 4.6. An exemplary MDS metamodel.

(GPLs) and libraries to alleviate this complexity.3 Völter and Stahl [2006,
3We consider the term platform as synonymous to programming environment, as defined in

Chapter 2.

68

4.4. Architecture-Centric Model-Driven Software Development

pp. 21-22] conclude that the more a platform is used, the more code relates to
platform usage. This leads to schematic and repetitive chunks of boilerplate
code that is not specific to the application domain. Stahl and Völter refer
to such code as infrastructure code. Architecture-Centric Model-Driven
Software Development (AC-MDSD) is a pragmatic approach that is aimed at
increasing the efficiency, quality, and reusability of/in software development
by generating infrastructure code from the architecture of the software
system [Völter and Stahl, 2006, pp. 21-22].

Software architecture A software architecture is “[t]he funda-
mental organization of a system embodied in its components,
their relationships to each other, and to the environment, and the
principles guiding its design and evolution.” [IEEE Architecture
Working Group, 2000]

To employ AC-MDSD in the software development processes, three aspects
must be considered: generative software architectures, role models, and
reference implementations, cf. [Völter and Stahl, 2006, pp. 21-27].
A generative software architecture is an MDS that comprises a platform-

independent model of the software architecture of a system to be developed,
along with means to generate infrastructure code from the model. For
example, the software architecture model can be modelled using a UML
profile, and the code generator can be a template-based M2T transformation
engine such as Xpand. Since a software architecture abstracts from the
concrete platforms, generative software architectures can be used to develop
entire software product families.

AC-MDSD favours the separation of the software architecture from domain-
specific implementation and requires a tool infrastructure for generative
software architectures. This leads to a natural separation of roles embodied
into a role model:

� MDS architects develop and maintain the generative software architecture.

� Application architects develop the platform-independent model of the
software architecture of the software system to be developed, along with
transformations of these models to the platform.

69

4. Model-Driven Software Development

� Application developers implement the domain-specific application logic.
They are also responsible for integrating the application logic with the
generated infrastructure code.

A reference implementation is an executable example application that is
used as a blueprint for separating platform code from domain-specific
application code. It uses the same platform as the generative software
architecture and realises its concepts in its source code. Also, it represents
a meaningful example from the application domain to be targeted. Its
domain-specific application code can be used as a basis for the definition of
M2T transformations.

AC-MDSD approaches can be identified by the following characteristics
[Völter and Stahl, 2006, pp. 27-28]:

� Software system families: AC-MDSD enables the reuse of generative soft-
ware architectures for the development of architecturally similar applica-
tions.

� Architecture-centric design: AC-MDSD focusses on the architecture of an
application. It abstracts from those aspects of an application that do not
represent domain-specific logic but recurring error-prone platform code.

� Forward engineering: AC-MDSD avoids roundtrip engineering. Changes
in the generated code are not considered to be recognised by the archi-
tecture model.

� M2M for modularisation: The architecture model should be as abstract
as possible without loosing the ability to generate platform code. M2M
transformations and intermediate models can be used to modularize
the overall code generation, but should be concealed from application
developers.

� No final target metamodel: There is no direct target metamodel as a
transformation target for code generation.

� Partial generation: AC-MDSD generates platform code. Domain-specific
application logic must be supplemented in the target programming
language.

70

4.4. Architecture-Centric Model-Driven Software Development

Platform Code:
Java Source Code

Software
Architecture:
Ecore Model

Architecture
Metamodel:
EMF Ecore

ConformsTo

domainModel rangeModel

Application Code
Java Source Code

Complements

Xtext 2.1:
Xpand Generator

Eclipse IDE for
Java Developers
3.7.1: Java Editor

Eclipse Modeling
Tools 3.7.1:
EcoreEditor

Ed
ite

dB
y

EditedBy

Xtext 2.1:
Xpand Editor

StoredBy

ExecutedBy

SA2Java:
Xpand Templates

Subversion:
Textual Repository

Ed
ite

dB
y

StoredBy

StoredBy

Figure 4.7. Example of AC-MDSE illustrated as an MDS.

� Separation of concerns: AC-MDSD separates the software architecture
from domain-specific implementation. Programmers cannot break out of
the boundaries of the generated platform code. The software architecture
can not deteriorate on the program code level.

Figure 4.7 shows a simple MDS that conforms to the MDS metamodel
shown in Figure 4.6. The MDS represents a generative software architecture
and illustrates AC-MDSD. The main model is the Software Architecture of a
software system to be developed. Its Architecture Metamodel is used as a
domainModel for a software architecture-to-Java (SA2JAVA) transformation
that generates Java Platform Code. Since this code is completely generated,
it is not stored in the Subversion repository nor edited. However, it is
complemented with domain-specific Application Code that is stored by the
Subversion repository and provided by the programmers. The scenario
assumes that the Architecture Metamodel is given and must not be edited
during the software development process. The Software Architecture model
is assumed to be edited by application architects with the Eclipse Modeling

Tools 3.7.1 Ecore editor, and SA2JAVA Xpand Templates are developed by using
the Xtext 2.1 Xpand editor. Application Code is provided by the programmers
using the Eclipse IDE for Java Developers 3.7.1.

71

4. Model-Driven Software Development

4.5 Domain-Specific Languages

DSLs play an important role in software engineering. They improve pro-
ductivity by abstracting from the details of the underlying programming
environments. While this can also be achieved with conventional mecha-
nisms such as frameworks and libraries, DSLs often put abstractions of the
solution space (i. e., the domain of computing technologies) in the centre of
attention. Frameworks and libraries, on the other side, often only provide
abstractions of the problem space (i. e., the respective application domain)
[Schmidt, 2006; Visser, 2008].

There are numerous approaches in which DSLs are employed, including
generative programming, software factories, domain-specific modelling,
intentional software, language-oriented programming, and MDSD [Czarnecki
and Eisenecker, 2005; Greenfield et al., 2004; Kelly and Tolvanen, 2008;
Simonyi et al., 2006; Ward, 1994; Dmitriev, 2004; Völter and Stahl, 2006].
In the context of MDSD, the potential of domain-specific language has
broadened. Firstly, DSLs are no longer focused on programming. Instead,
they also consider comprehensive domain models for domain experts.
Secondly, for the first time in computer science there are mature model-
driven frameworks to specify and generate the infrastructure of a DSL given
its language definition [Xte, 2011; Dmitriev, 2004]. As a result of this
development, DSLs can now be regarded as a standard tool in the repertoire
of software development [Visser, 2007].

Domain-specific language (DSL) A DSL is a “high-level software
implementation language that supports concepts [...] that are
related to a particular application domain.” [Visser, 2008]

In accordance with Visser [2008] we interpret the definition as follows:
A DSL is a language, meaning it has a formally defined syntax and semantics.
It is high-level in so far that it abstracts from the low level details of the pro-
gramming environment. The notion of what is the respective programming
environment is relative. Software implementation means that it contributes
artefacts to the software development or maintenance process. Its concepts
are related to a particular application domain since it dismisses generality
for expressiveness in the domain in question.

72

4.5. Domain-Specific Languages

DSL

Abstract
Syntax

Concrete
Syntax

Syntax
Mapping Semantics Semantics

Mapping

DecomposedIn DecomposedIn

DecomposedIn

range
Model

domain
Model

domain
Model

range
Model

Figure 4.8. Overview of the parts of a DSL as a megamodel.

4.5.1 Components of a DSL

Figure 4.8 presents an overview of the term DSL in terms of MDSD. As
shown, a DSL consists of the following parts [Völter and Stahl, 2006]:

� The abstract syntax defines the structure of a DSL and specifies the creation
of conformant instances. The term abstract syntax is synonymous to
metamodel.

� A concrete syntax of a DSL, or simply, its notation, provides a realisation of
the abstract syntax. It describes the correct rendering of models that are
created using the DSL and can be textual, graphical, or hybrid. A DSL can
have more than one notation.

� The semantics of a DSL specifies its behaviour, or simply, the meaning of
the metamodel of the language.

Between these main parts, a DSL can make use of the following mappings
[Rivera et al., 2009]:

� The mapping of the semantics of a DSL with its abstract syntax is useful
to reason about DSL models and to transform DSL models to semantic
models for further analysis.4 The definition of the semantic mapping
represents a transformation, since it regards the language’s semantics as
its range, and the abstract syntax as its domain.

4In contrast to Rivera et al. [2009], we do not consider the semantic mapping as the definition
of the semantics of a language itself but as a separate, desirable transformation that relates the
semantics and the abstract syntax.

73

4. Model-Driven Software Development

problem space-
oriented internal piggybacked external

graphical

textual

hybrid
solution space-
oriented

design

re
pr

es
en

ta
tio

n

Figure 4.9. DSL categorisation.

� The mapping of a concrete syntax of a DSL with its abstract syntax is
necessary to render DSL models. The definition of the semantic mapping
represents a transformation, since it regards the language’s concrete
syntax as its range, and the abstract syntax as its domain.

4.5.2 Categorisation

The most important characteristics of a DSL are related to the questions
of how the language represents itself to the user, how it is designed, and
towards what kind of domain it is oriented. We discuss these three top-
ics – representation, design, and orientation – in the following. Figure 4.9
presents an overview over the dimensions.

Firstly, the representation of the language can be distinguished as whether
the languages notation is purely textual, purely graphical, or hybrid. Al-
though there is no difference in expressiveness, graphical and textual nota-
tions have distinctive properties:

� A textual notation (serialisation) supports collaborative work naturally
since modelling activities can be distributed across files and across blocks
of text within separate files. Textual notations benefit from a broad tool
support and the extensive experience of software engineers with textual
programming languages. A typical shortcoming of textual notations is

74

4.5. Domain-Specific Languages

the need for references to represent relations between individual blocks
of text because of their serial structure.

� A graphical notation (rendering) can express multi-dimensionality by
nature [Kleppe, 2008]. As a downside, collaborative modelling is often
not supported by the language in terms of composability, and by tools in
terms of versioning and storage. Also, layout can easily take more effort
than modelling.

� A hybrid notation uses both textual and graphical elements. A common
pattern is an overall graphical graph-based notation whose nodes and
edges are annotated textually.

Secondly, DSLs can be distinguished by whether they are invented or
developed on basis of a host language. A more detailed view on the design
of a DSL is presented by Mernik et al. [2005].

� An external DSL is realised as an independent language from the program-
ming environment it works with [Fowler, 2010]. They typically have a
custom abstract syntax, but the re-use of existing languages as concrete
syntaxes is not unusual, for example, by the use of the Extensible Markup
Language (XML) as a notation.

� An internal DSL is realised by exploiting an existing host language and its
corresponding language infrastructure. It produces valid code in terms
of the host language but only uses a subset of the language’s features
[Fowler, 2010].

� A piggybacked DSL is realised by extending a host language with domain-
specific elements. The challenge is to integrate these extensions with the
host language (e. g., with a native extension mechanism) without produc-
ing proprietary dialects. A recent example of piggybacking is the Xbase
language, an extensible DSL for expressions that supports static typing,
type inference, closures, and operator overloading.5 The language is im-
plemented with the Xtext language workbench (see Section 4.5.5) on top

5http://www.eclipse.org/Xtext/#xbase

75

4. Model-Driven Software Development

of the Java programming language platform, and can itself be embedded
in DSLs developed with Xtext.

Finally, a DSL can be categorised by its orientation. This is a relative
notion to the targeted domain.

� We consider a DSL as solution space-oriented when the DSL abstracts of the
solution space, meaning that it provides language constructs over recur-
ring idioms of the respective computing technologies and programming
environments to be used, cf. [Schmidt, 2006].

� We consider a DSL as problem space-oriented when it abstracts of the prob-
lem space (the application domain) to be challenged, cf. [Schmidt, 2006].
This can be, for example, business processes, enterprise architectures, or
telecommunications.

4.5.3 DSL Development

The provision of adequate DSLs plays an important role in the development
of an MDS. If there are no adequate modelling languages abstract enough
for a specific task or targeted domain, new ones can be developed. To do
so, some general requirements must be considered:

1. DSL development requires knowledge of the application domain, knowl-
edge of programming language development, and knowledge of MDS
design.

2. The outcome of DSL development depends on the involved stakeholders,
their collaboration, and the degree of sustainability provided by the tool
infrastructure, maintenance processes, and standard utilisation [Mernik
et al., 2005].

3. DSL development is not a sequential process [Mernik et al., 2005]. De-
cisions that are made in a certain phase of development can require
revisions of earlier phases retroactively. These revisions can cascade over
several phases of the whole development process, and over several layers
of abstraction.

76

4.5. Domain-Specific Languages

There are two fundamental approaches to DSL development frequently
encountered in practice, DSL-by-Examples and DSL-by-Domain-Engineering.
If the intention is to abstract from a certain platform, a DSL can be

developed by detecting patterns in the program code of one or more appli-
cations that are programmed against the platform. To do so, program code
fragments are examined if one can differentiate between variable configu-
ration parameters and redundant platform code. The latter is then used
as a basis for M2T transformation templates, in which the configuration
parameters must be inserted to generate code. The individual variabilities
of the configuration parameters then form the basis for the DSL. Typically,
the effort needed to model the configuration parameters with the resulting
DSL is much lesser than implementing them in the identified program code
patterns directly [Visser, 2007]. However, the applicability of the DSL is
likely restricted to the technical platform, so that the conceptual portability
across the boundaries of the platform is not guaranteed. Since the approach
depends on the examination of concrete code fragments, it can be denoted
as DSL-by-Examples. It is quite possible to apply the approach to the devel-
opment of DSLs from model fragments, but less likely seen in practice than
the development from code fragments.

If the intention is to primarily represent an application domain that may
subsequently be mapped to one or more technical platforms, a DSL can
be developed by decomposing the domain in question. To do so, various
approaches can be used, for example, Domain Analysis and Reuse Envi-
ronment (DARE), Domain Specific Software Architectures (DSSA), Family-
oriented Abstractions, Specification and Translation (FAST), Feature-oriented
Domain-Analysis (FODA), Megamodellierung, Ontology-based Domain En-
gineering (ODE), or Organization Domain Modeling (ODM) [Frakes et al., 1998;
Taylor et al., 1995; Weiss and Lay, 1999; Kang et al., 1990; Favre, 2004b; Favre
and NGuyen, 2005; Falbo et al., 2002; Simos and Anthony, 1998]. Regardless
of the approach to be chosen, sufficient formality and formal semantics is
emphasised to use domain models as a communication medium for domain
experts on the one side, and as as means for domain-specific validation on
the other. M2M and M2T transformations can usually be applied in subse-
quent processes to generate models of lower abstraction levels or platform
code from the domain models developed with the DSL. Since in this case,

77

4. Model-Driven Software Development

When? How to develop a DSL?

► Notation (V2T, API)
► AVOPT
► Task automation
► Product line
► Data structure

representation
► Data structure

traversal
► System

configuration
► Interaction

specification
► GUI construction

► Informal
► Formal
► Extract from code

► Language
exploitation
(piggyback,
specialization,
extension)

► Language invention
► Informal description
► Formal specification

► Interpreter
► Compiler/ application

generator
► Preprocessor
► Embedding
► Compiler/ interpreter

extension
► COTS application
► Hybrid

Decision Analysis Design Implementation

Figure 4.10. Patterns of DSL development according to Mernik et al. [2005]. The
patterns are assigned to the development phases in which they can be applied.

DSL development starts with the decomposition of the application domain
to be modelled, the approach can be denoted as DSL-by-Domain-Engineering.
Mernik et al. [2005] address the questions of when and how a DSL

should be developed with a collection of design patterns. According to the
presented categorisation of the patterns, the overall development process of
a DSL consists of the phases decision, analysis, design and implementation.
These phases can be used as a skeleton to construct a concrete method for
DSL development.
In the following, we present the different phases and patterns of DSL

development. The overview is compiled from Mernik et al. [2005], and
extended by additional references as stated. Figure 4.10 shows an overview
of the phases and patterns.

When to develop a DSL?

DSL development starts with the decision if a DSL should be developed at all.
For example, it can be more effective to develop an internal DSL in the form
of a program library instead of an external DSL when the domain in question
is immature or when there is only few knowledge about the domain. The
focus can then be placed on concept exploration and prototyping, instead of

78

4.5. Domain-Specific Languages

domain-specific validation and productivity. Patterns that can be identified
to justify DSL development comprise the following:

� Notation: The DSL supports a domain with a new or existing concrete
syntax. Notable sub-patterns are the provision of a textual notation for
an otherwise graphical language (e. g., to support collaborative work and
composition of large programs), and the conversion of an Application
Programming Interface (API) to a full-fledged language whose correct
use can be validated.

� Analysis, Verification, Optimization, Parallelization, and Transforma-
tion (AVOPT): Domain-specific analysis, verification, optimisation, paral-
lelisation, and transformation of domain models are facilitated.

� Task automation: Repetitive and redundant activities are eliminated.

� Product line: Members of a software product line are specified.

� Data structure representation: Common data structures are defined.

� Data structure traversal: Repetitive and complicated data structure traver-
sals are specified.

� System configuration: System configuration is simplified.

� Interaction specification: The interactions of independent entities are
formalised.

� Graphical User Interface (GUI) construction: User interface construction
is simplified.

How to develop a DSL?

After the decision phase, the problem domain is identified and knowl-
edge of the problem domain is gathered to develop a thorough domain
understanding. To do so, various sources of knowledge are examined, for
example, technical documents, existing source code, expert interviews, and
surveys. These activities form the analysis phase.

79

4. Model-Driven Software Development

� Informal: The problem domain is analysed informally.

� Formal: A method is used for domain analysis that produces a domain
model consisting of a domain definition, a domain terminology, a descrip-
tion of individual domain concepts, and feature models that describe
the commonalities and variabilities of domain concepts along with their
interdependencies. Examples for formal analysis methods are DARE,
DSSA, FAST, FODA, Megamodellierung, ODE, or ODM [Frakes et al., 1998;
Taylor et al., 1995; Weiss and Lay, 1999; Kang et al., 1990; Favre, 2004b;
Favre and NGuyen, 2005; Falbo et al., 2002; Simos and Anthony, 1998].

� Extract from code: Domain knowledge is gathered by examining legacy
code manually, by software tool-based inspection, or both.

The following design phase can be regarded by the question of whether
the DSL to be developed is related to already existing languages or not,
and the question if the language description is accomplished formally or
informally.

� Language exploitation: The DSL to be developed uses an existing GPL or
DSL. The existing language can be restricted (specialisation), extended,
or parts of it are used as a foundation for domain-specific features
(piggyback).

� Language invention: A new DSL is developed from scratch without using
an existing language and the corresponding language infrastructure.

� Informal description: The DSL in question is described informally, typi-
cally using natural language and DSL examples for illustration.

� Formal description: The DSL in question is described formally using exist-
ing formalisms for both syntax and semantics definition. Slonneger and
Kurtz [1995] present a broad spectrum of semantics definition techniques.

The last phase is the implementation of the DSL. There are several
patterns that can be applied for DSL implementation.

80

4.5. Domain-Specific Languages

� Interpreter: DSL constructs are interpreted. The pattern is recommended
for DSLs with dynamic behaviour and when execution speed is not
relevant. The pattern is simpler to implement than compilation, can be
easily extended, and facilitates control over the execution environment.

� Compiler/application generator: DSL constructs are translated into the
constructs of a target language and corresponding library calls. The
pattern enables the static analysis of DSL models.

� Preprocessor: DSL constructs are translated to constructs in a target lan-
guage by a preprocessor. Static analysis is not performed at the domain
level. Possible errors in generated code can only be detected in the
target language or at run-time [Deursen et al., 2000]. An important sub-
pattern is the expansion of macros (specifications that are independent
of the target language whose syntactical correctness is not guaranteed at
design-time).

� Embedding: DSL constructs are embedded in a host language by defining
domain-specific concepts such as data structures with the features offered
by the host language. The language infrastructure of the host language
can be reused as is, but the expressiveness of the DSL is limited to the host
language, and possibly compromised to a certain degree with respect to
the targeted problem domain [Deursen et al., 2000]. The most common
form of embedding is application libraries.

� Compiler/interpreter extension: A compiler or interpreter of the tar-
get language is extended with domain-specific optimisations or code
generation facilities.

� Commercial Off-The-Shelf (COTS) application: Existing tools or notations
are applied to the domain in question.

In addition to the implementation patterns, Mernik et al. provide
guidelines when to choose a certain pattern for the implementation of a DSL,
see Figure 4.11. The figure takes reference to the described patterns and is
otherwise self-explaining. Mernik et al. provide a detailed discussion of the
patterns to be chosen.

81

4. Model-Driven Software Development

Is AVOPT required?
Must a domain-

specific Notation be
strictly obeyed?

Will user community
be large (support,

error reporting etc.)?

Is Language
Exploitation applied

for DSL design?

Interpreter,
Compiler/application
generator,
Preprocessor,
Compiler/interpreter
extension

Interpreter,
Compiler/application
generator

Embedding

Legend

Question

Recommendation

Decision Path

yes yes yes yes

no no no no

Is the extension sub-
pattern applied?

Interpreter,
Compiler/application
generator,
Preprocessor,
Compiler/interpreter
extension
Embedding

yes

Interpreter,
Compiler/application
generator,
Preprocessor

no

Figure 4.11. DSL implementation gudelines according to Mernik et al. [2005]. The
figure illustrates when to choose which pattern for DSL implementation. Referenced
patterns are shown in italics.

4.5.4 DSLs in Practice

Several surveys on the use and development of DSLs identify them as an
established practice in software engineering, including [Mernik et al., 2005;
Spinellis, 2001; Deursen et al., 2000]. Examples comprise the following:
FORTRAN is a programming language for scientific computing devel-

oped by Backus [1958] in the late 1950s. It was originally created as an
abstraction of low-level machine code that resembles the mathematical no-
tation. The example of FORTRAN illustrates the relativity of the high-level
abstraction characteristic of DSLs.

Structured Query Language (SQL) is a DSL for queries over the relational
database model [Chamberlin and Boyce, 1974; Codd, 1970]. Its use in
general purpose programming language libraries often take the form of
string literals, illustrating the shortcoming of libraries to provide means for
syntactical and domain-specific validation.
dot (for graph drawing) and make (for incremental software building)

are examples of DSLs used in UNIX environments [Bentley, 1986].
XML is a popular DSL for the textual serialisation of structured data

82

4.5. Domain-Specific Languages

[Bray et al., 2008]. It is commonly used for implementation- and platform-
independent data exchange between computer systems and can be regarded
as a least common denominator in human-computer information exchange.
Scala, LISP, and Ruby are examples for GPLs that provide sufficient

semantic and syntactic flexibility to construct internal DSLs. Scala integrates
functional and object-oriented features in a single GPL. As Ghosh [2011]
summarises, the language provides several facilities that renders it an
excellent basis for internal DSL development: type inferencing, an extensible
object system, modularity, lexically scoped open classes, implicit parameters,
and structural types. LISP allows a kind of bottom-up program development
that favours the modification of the language towards the problem domain,
for example by developing more abstract operators, that can be regarded as
an internal DSL [Graham, 1993]. Ruby has also a strong orientation towards
internal DSLs. For example, the popular Ruby framework Rails can be
regarded as a collection of DSLs [Fowler, 2010, p. 28].
Business Process Model and Notation (BPMN) is a DSL for specifying

business processes [Axway et al., 2010]. It can be regarded as a de facto-
standard in the business domain to describe the behaviour of socio-technical
systems on different levels of granularity. The specification defines a formal
metamodel and a graphical notation, but lacks a formal semantics.

4.5.5 Language Workbenches

A recent trend is that of language workbenches. A language workbench is
a programming environment to develop DSLs, together with tools for using
them efficiently [Fowler, 2010, p. 22]. These tools can include mechanisms
for compilation/ interpretation/code generation, model transformation,
validation, error handling, and syntax highlighting, for example. In the
context of MDSD, they can be regarded as mature model-driven frameworks
to specify and generate the infrastructure of an MDS given a set of DSL
language definitions. Language workbenches can be used for two goals:
Firstly, they can be used for the effective development of external DSLs with
practical tool integration. Since this tool infrastructure is generated as far
as possible, they are especially suited for the rapid prototyping of DSLs.
Secondly, in the context of MD systems they can be used to develop and

83

4. Model-Driven Software Development

maintain the tool infrastructure of an MD system. Each of the DSLs used
in an MDS represents the definition of a viewpoint for the MDS, cf. [IEEE
Architecture Working Group, 2000].

The Xtext language framework is a popular example of language work-
benches. It is a mature parser-based language workbench for textual DSLs
realised as a sub project in the Eclipse Modeling Project [Xte, 2011]. The
overall approach is based on the definition of the abstract and concrete syn-
tax of a DSL as a whole in a language similar to the Extended Backus-Naur
Form (EBNF), and subsequent automatic generation of the DSL infrastruc-
ture, including an EMF Ecore model and stubs for validation, scoping, DSL
tooling, and M2T transformation. Xtext’s main benefits are the integration
in the Eclipse ecosystem and the thorough use of text files as a serialisation
mechanism for all kinds of artefacts. The first aspect, Eclipse ecosystem
integration, enables to use complementary technologies (e. g., M2M trans-
formations) and is crucial for setting up a consistent MDS tool chain. The
second, thorough use of text files, is of major practical importance since text
files can be collaboratively edited (file-wide and block-wise), stored with
mature version management systems such as Subversion (SVN),6 and easily
exchanged between tools.

4.5.6 Benefits and Limitations

Domain-specific languages have several benefits and drawbacks. These
must be carefully considered in addition to the decision patterns described
by Mernik et al. [2005]. The following lists of benefits and limitations
summarises the work of Deursen et al. [2000] and Fowler [2010]. Firstly, we
subsume the benefits of DSLs:

� Knowledge preservation: DSLs embody domain knowledge and are to a
large extent self-documenting. If properly serialised, they can be easily
stored and put under version control.

� Reuse: Domain models created with DSLs can be reused to establish
software product lines.

6http://subversion.tigris.org/

84

4.5. Domain-Specific Languages

� Portability: Platform-independent DSLs can be mapped to various target
platforms and programming environments.

� Abstraction: DSLs allow solutions to be expressed in terms of the problem
domain instead of technical frameworks.

� Participation: Domain experts can understand, validate, manipulate,
and create domain models using DSLs. When DSLs are aimed at a non-
technical problem domain, even non-programmers can participate in
domain modelling.

� Validation: DSLs enable to validate solutions on the domain-level instead
of the implementation level.

Secondly, the drawbacks of DSLs are additional (up-front) costs, a poten-
tial loss of efficiency, and ghettoisation.

� Costs: There are various costs related with DSLs that must be considered.
For example, DSLs must be designed, implemented, and maintained sepa-
rately in addition to the software system(s) to be developed. Beforehand,
the knowledge to do so must be acquired. Also, learning and teaching
DSL usage requires additional effort.

� Potential loss of efficiency: Hand-crafted code can be optimised locally
while DSLs favour general implementation patterns and code generation.
A possible solution can be provided by fine-tuning the code generation,
and by combining code generation with domain-specific auto-tuners.

� Ghettoisation: An overly strong commitment to a DSL that is developed
and used only in-house makes it difficult to benefit from advances in
related standards and best practices. It can also mislead to reimplement
existing frameworks and libraries for the sake of conformance with in-
house tooling. This ghettoisation can be regarded as a variant of the
ominous not-invented-here anti-pattern.7

7We understand the not-invented-here anti-pattern as the disbelief that in-house implementa-
tion is always a more adequate solution than using existing comparable software components.

85

4. Model-Driven Software Development

4.6 Summary of Model-Driven Software Engineer-

ing

MDSD emphasises to develop software by generating code from formally
specified models as the main development artefacts.
A model is a representation of a system under study, where the model

is itself a system, simpler than the system under study, and which can give
answers instead of the system under study that also hold for the system
under study.

A metamodel is a model of a set of conformant models.
Model transformations are computable mappings that translate source

models into target models. In practice, it is distinguished by what kind
of target models are used. M2M transformations create or manipulate
their targets as instances of explicit metamodels, and M2T transformations
consider their target simply as strings. M2T transformations are a special
case of M2M transformations if a metamodel for the target programming
language is available.

MDSs are systems whose artefacts refer to models, metamodels, and
transformations, and the tools that are used in model-driven software
projects. Their purpose is to handle and maintain the individual artefacts
and the artefacts’ interrelations to automate the generation of the target
systems as far as possible. MDSs are a key factor to set up software product
families and product lines.

AC-MDSD is a pragmatic approach that is aimed at increasing the effi-
ciency, quality, and reusability of/in software development by generating
infrastructure code from the architecture model of the software system.

DSLs are high-level software implementation languages that support the
concepts of particular problem domains. They improve productivity by
abstracting from the details of the underlying programming environments.

A DSL consists of an abstract syntax, a concrete syntax, and a description
of the semantics of the language. The abstract syntax (metamodel) defines
the structure of a DSL and specifies the creation of conformant instances. The
concrete syntax (notation) provides a realisation of the abstract syntax that
describes the correct rendering of conformant models. The semantics of a

86

4.6. Summary of Model-Driven Software Engineering

DSL specifies its behaviour/the meaning of the metamodel of the language.
A DSL can be categorised by the realisation of its notation (textual,

graphical, or hybrid), the utilisation of a host language (external, internal,
piggybacked), and by its domain orientation (solution space-oriented or
problem space-oriented).

The development of a DSL can be addressed by considering the phase
model of Mernik et al. [2005]. It consists of the phases decision, analysis,
design and implementation and comprises several design patterns to be
employed within these phases. The phase model can be used as a skeleton
to construct a concrete method for DSL development.

A language workbench is a programming environment to develop DSLs,
together with tools for using them efficiently. In the context of MDSD,
it can be regarded as a mature model-driven framework to specify and
generate the infrastructure of an MDS given a set of DSL language definitions.
Language workbenches can be used for the rapid prototyping of DSLs as
well as to develop and maintain the tool infrastructure of an MDS. Each of
the DSLs used in anMDS represents a viewpoint on the MDS.
The benefits of DSLs are the preservation of knowledge, the reuse of

domain models, the portability of platform-independent models, abstrac-
tion (expressiveness in terms of the problem domain), and the increased
participation of domain experts. The drawbacks of DSLs are design, imple-
mentation, maintenance, and learning costs, the potential loss of efficiency,
and ghettoisation (i. e., an overly strong in-house commitment to one or
more DSLs).

87

Part II

Coordination Engineering

with SCOPE

Chapter 5

Coordination Engineering

Coordination design considers a parallel program as a coordinated system.
Its goal is to produce the specification of the system as a whole consisting
of coordinated components [Ortega-Arjona, 2010, pp. 315-327]. In the
context of Model-Driven Software Development (MDSD), a coordination
model is an artefact that represents the software architecture of a program
to be developed from a behavioural viewpoint. As such, coordination
models can be regarded as a special kind of the specification of a system.
Combined with model-driven techniques they do not only serve the purpose
of documentation but also that of realisation: models can be analysed,
validated, communicated, used as a source for code generation, and possibly
even be executed.
Coordination Engineering is an approach that combines coordination

design with model-driven software development. Its goal is to consider the
coordination model of a parallel program as the first and most important
artefact in the development process and to use model-driven techniques
to enforce the coordination model in program code. The target domain of
Coordination Engineering is therefore parallel software system engineering.
Figure 5.1 presents the metamodel of Coordination Engineering. As

illustrated, it is a specialisation of the Model-Driven System (MDS) meta-
model from Section 4.3. The central artefact of Coordination Engineering is
the development of a Coordination Model of the Program to be developed. This
is done by so-called Application Engineers using an appropriate Coordination
Workbench. The Coordination Model conforms to a Coordination Metamodel that
is part of the Coordination Workbench, as a part of a coordination DSL (not
shown). The Coordination Workbench is maintained by so-called Toolsmiths.
Valid Coordination Models can then be transformed into Coordination Code for

91

5. Coordination Engineering

Model
(from MDsystem)

Metamodel
(from MDsystem)

Tool
(from MDsystem)

M2T Transf. Def.
(from MDsystem)

Text
(from MDsystem)

Text
(from MDsystem)

Concept
(from Megamodel)

Tool
(from MDsystem)

Coordination
Metamodel

Coordination
Workbench

Parallel Platform
Transformation

Program Parallel Platform

Coordination
Model

Complements
* *

Complements
* *

Domain Code Coordination
Code

Complements * *

ConformsTo * * DecomposedIn * *

EditedWith *

*

ExecutedBy *

Complements * * DecomposedIn

*

*

*

*

1

1

*

*

MappedFrom

DecomposedIn

MappedTo

creates

creates

creates

maintains

maintains

Application
Engineer

Transformation
Engineer

Domain
Engineer

Toolsmith

Platform
Provider

uses
uses

EditedWith

* *

Figure 5.1. The Coordination Engineering metamodel as a specialisation of the MD
system metamodel from Section 4.3.

a specific Parallel Platform. The necessary Parallel Platform Transformations are
provided by so-called Transformation Engineers. They use the Coordination

Workbench to both edit and execute the transformations. The generated
Coordination Code represents the concurrency infrastructure of the Program,
and does not necessarily comprise only program language code but can also
include accompanying coordination-related artefacts such as run scripts
and configuration files, if desired. Ideally, the generated Coordination Code is
executable, but does not perform any domain-specific calculations. These
are provided in the form of Domain Code that complements the Coordination
Code and is conceptually regarded as sequential. Domain Code is provided by
Domain Engineers. Note that the figure does not show the tools that are used
to provide Domain Code, since the emphasis of Coordination Engineering

92

5.1. Artefacts

is on the Coordination Model and not on programming. Finally, the result-
ing Program can be executed by the Parallel Platform that is maintained by
so-called Platform Providers.

Coordination Engineering shows the following characteristics:

1. Like coordination design, Coordination Engineering emphasises a top-
down problem decomposition and is applicable to different problem
domains and target platforms.

2. The artefacts of Coordination Engineering form a special kind of MDS.
This MDS has to be maintained as a separate system in its own right,
apart from the parallel program to be developed.

3. Established roles in the software development process – software ar-
chitect and programmer – are revised and extended to support a clear
separation of activities that relate to the establishment of coordination
from those that establish domain-specific computation.

In the following, we discuss the artefacts and tools that are considered
in Coordination Engineering, the role model, the individual stages of Coor-
dination Engineering, the placement of Coordination Engineering, and its
benefits and limitations.

5.1 Artefacts

Coordination Engineering considers the following artefacts:

� Coordination model

� Coordination metamodel

� Coordination workbench

� Parallel platform transformations

� Coordination code

� Domain code

93

5. Coordination Engineering

� Program

� Parallel platform

The coordination model is a platform-independent representation of the
program that considers only how the individual components of the pro-
gram are coordinated.1 The focus of the coordination model lies on the
behavioural viewpoint on the software architecture of the program. The
coordination model is explicit, meaning that it is an artefact that can be
edited with the coordination workbench.

The coordination metamodel is the representation of the set of coordination
models. It allows to check if a coordination model is valid, meaning that
the coordination model conforms to the metamodel. The coordination meta-
model is also an explicit artefact that can be manipulated by appropriate
modelling environments. Since it represents a high-level abstraction over
concurrent program code, it introduces non-determinism when it is needed,
instead of cutting it away when it is not needed.
The coordination workbench is an Integrated Development Environment

(IDE) for coordination models and parallel program transformations. Its
goal is to foster the establishment of product families or product lines
for parallel programs, rather than individual program development. The
focus on product families or lines depends on the kind of artefact reuse:
Reusing coordination models results in product lines, and reusing parallel
program transformations results in product families. As a consequence,
its lifecycle is longer than an individual program to be developed. The
coordination workbench is the constitutive artefact of the Coordination
Engineering MDS. It is a separate system in its own right that must itself
be maintained. Also, its evolution can cascade over all other artefacts of
Coordination Engineering, raising questions of co-evolution between the
different artefacts of the MDS (e. g., between the coordination metamodel
and transformations).
Figure 5.2 shows the components of a coordination workbench. It es-

sentially consists of a coordination-specific Domain-Specific Language (DSL)

1For the sake of clarity, Figure 5.1 does not show the Representation Of relations that exist
between Coordination Model, Domain Code, Coordination Code, and the Program. The Representation
Of relation is explained in the paragraphs of this section.

94

5.1. Artefacts

Coordination
Workbench

Coordination
DSL

Coordination
Metamodel

Coordination
DSL Editor

Transformation
Editor

Transformation
Engine

DecomposedIn DecomposedIn DecomposedIn DecomposedIn

DecomposedIn

EditedWith

*

*

*

*

* * *

*

* *

Figure 5.2. The coordination workbench metamodel.

based on the coordination metamodel to foster the definition of coordination
models, a complementing editor for the DSL that provides coordination-
specific mechanisms for validation and error handling, an editor for parallel
program transformations, and a transformation engine to execute these
transformations. Additional components of the coordination workbench are
means for further analysis of coordination models, model simulators, and
Model-to-Model (M2M) transformation support to facilitate interoperability.

Parallel platform transformations specify how coordination models are
transformed into coordination code. They are edited with a transformation
editor and executed by a transformation engine as parts of a coordination
workbench. Typically, parallel platform transformations are Model-to-Text
(M2T) transformations that specify how a coordination model is transformed
into coordination code. Parallel platform transformations are the main
means to enforce the coordination model in program code.

Coordination code uses the programming platform’s specific concurrency
constructs to express coordination. Since it is fully generated by the coordi-
nation workbench it is guaranteed that it is represented by the respective
coordination model. Domain-specific computation is only declared so that
the implementation of domain-specific logic must be complemented by
appropriate domain code.

Domain code complements coordination code with domain-specific logic.
From a conceptual point of view, it is considered as sequential, although
domain engineers may use concurrency constructs within it. Domain

95

5. Coordination Engineering

code is not further decomposed into coordination and computation. The
responsibility for it lies exclusively in the hands of the domain engineer –
guaranteeing its correctness and conformance to the interfaces provided by
the coordination code. Both coordination code and domain code form the
program.

The parallel platform executes the resulting program. It is synonymous
to the term programming environment since it represents the entirety of
hardware and software, including operating system, programming lan-
guages, compilers, runtime libraries etc., that is available to the roles in
Coordination Engineering.

5.2 Role Model

There are several roles involved in Coordination Engineering. These are:

� Application Engineer

� Transformation Engineer

� Domain Engineer

� Toolsmith

� Platform Provider

The application engineer designs the coordination models and considers
architectural coordination patterns to be applied. He is also responsible
for specifying the target platform. The role focusses on the behavioural
aspects of the software system. Therefore, an application engineer can be
regarded as a software architect that gained experience in coordination
modelling. The role is tightly related to the transformation developer
since transformations may have to be adapted for reuse or developed from
scratch.
The transformation engineer provides M2T transformations as a concrete

embodiment of coordination. These transformations map coordination
models that conform to the metamodel of a coordination DSL to the parallel

96

5.3. Application Processes

platform. The role is tightly related to the application engineer such that
the application engineer specifies the target platform and technologies
to be used for coordination implementation. Transformation engineers
are experts in concurrent programming on the respective target platform
technologies who gained experience in model transformation development.

The domain engineer develops sequential code as a concrete embodiment
of application-specific computation. The role is concerned with designing
and implementing application-specific functionality that is required by the
generated coordination code in order to represent a complete software
product. Domain engineers are programmers that gained experience in
implementing thread-safe sequential code.

The toolsmith provides and maintains the coordination workbench. The
role is responsible for the development and maintenance of the individual
components and artefacts of the coordination workbench (e. g., DSL meta-
models, mechanisms for validation and error handling, interoperability
mechanisms), as well as for the amalgamation of these components and
artefacts into a consistent whole. As a consequence, the toolsmith’s interest
is in the co-evolution of the components and artefacts of the coordina-
tion workbench. Toolsmiths are MDSD experts that gained experience in
coordination modelling.

The platform provider provides and maintains the parallel platform. The
role is responsible for the entirety of hardware and software that is available
to the other roles, including operating system, programming languages,
compilers, runtime libraries etc. Platform providers can be regarded as
administrators from the other roles’ point of view.

Note that other roles that are not directly associated with Coordination
Engineering are not considered. For example, we omitted roles that are con-
cerned with complementary issues such as continuous build management
and test infrastructure management.

5.3 Application Processes

The application of Coordination Engineering can be considered as a set
of processes executed by the different roles. The roles of interest are the

97

5. Coordination Engineering

application engineer, the transformation engineer, and the toolsmith. The
domain engineer and the platform provider are left out since their activities
are more related to programming in general, or platform maintenance/ad-
ministration respectively, than specific to Coordination Engineering. In the
following, we present processes for the relevant roles. The processes should
not be misunderstood as waterfall processes, as they only illustrate the ideal
and most relevant dependencies between the individual activities.

5.3.1 Application Engineering

From the viewpoint of the application engineer, the application process
consists of the development of a coordination model in an early stage of
the overall software development process (coordination first). The approach
is a variant of the coordination design stage in the Parallel Software Design
method described by Ortega-Arjona [2010, pp. 299-357], and can be viewed
as a coordination-specific elaboration of the “Formal Modeling/Design”
activity within the Application Development Thread of the generic MDSD
Process Building Blocks [Völter and Stahl, 2006, p. 261].

Figure 5.3. The application engineer’s process for Coordination Engineering.

Figure 5.3 shows an overview of the different activities of the process
using a top-level Business Process Model and Notation (BPMN) diagram.
First, the problem analysis establishes an understanding of the prob-

lem – usually in the form of the data to operate on and the general (often
mathematical) algorithm to use the data. The outcome of the problem anal-
ysis is the Specification of the Problem, which ideally consists of an overview
of the development project in form of an executive summary, a problem state-
ment that describes the problem in user terms and lists the requirements,

98

5.3. Application Processes

a description of the data to operate on and the algorithm to be applied,
information about the platform/programming environment, as it can strongly
affect the performance of a concurrent program, and finally, quantified per-
formance and cost requirements to be expected from the concurrent program
to be developed [Ortega-Arjona, 2010, p. 309].
Second, one or more architectural patterns are selected for the coordi-

nation model. An architectural pattern encapsulates “design experience
of coordination in parallel software design” [Ortega-Arjona, 2010, p. 316].
To execute the activity, the following selection process can be used.2 Con-
crete architectural pattern systems are presented by Ortega-Arjona [2010,
pp. 27-93], and Mattson et al. [2004, pp. 57-120].

1. Determine the category of parallelism based on the Specification of the
Problem from the problem analysis activity. Archetypical categories
comprise task parallelism, data parallelism, and activity parallelism
[Ortega-Arjona, 2006].

� Task parallelism focusses the decomposition of the algorithm into dis-
joint tasks that are executed simultaneously. Conceptually, all tasks
start simultaneously, but the task activity can depend on the availabil-
ity of required data. Data decomposition is secondary.

� Data parallelism focusses the decomposition of the data into smaller
parts, ideally of equal size. Algorithm decomposition is secondary
and typically concerned with associating a set of operations to the
individual data chunks. Conceptually, operations start simultaneously
at the same time, but their activity is suspended when a certain piece
of data cannot be processed until another activity makes the piece
available.

� Activity parallelism focusses the decomposition of the data and the
algorithm into tasks that are not committed to certain chunks of data
and can therefore operate in any order. Conceptually, tasks start

2The process is a variant of the architectural pattern selection process described by Ortega-
Arjona [2010, pp. 321-322]. It omits the analysis and specification of the problem as the first
process activity since it essentially is a summary of the problem analysis stage of the parallel
software design method

99

5. Coordination Engineering

simultaneously, each taking an arbitrary chunk of data, operate on it,
and produce a result until all data has been processed. The operation
on a chunk of data can require coordination among tasks.

2. Determine the category of processing. Categories comprise homogeneous
processing and heterogeneous processing [Ortega-Arjona, 2010, pp. 320-
321].

� Homogeneous processing refers to multiple instances of components
with the same behaviour. Homogeneous systems are typically com-
posed of a large number of simple, identical components that commu-
nicate through data exchange operations.

� Heterogeneous processing refers to different components with defined
relations. Heterogeneous systems are typically composed of a small
number of different components that communicate via function calls.

3. Identify appropriate architecture pattern candidates by comparing the
description of the patterns with the results of step one and two.

4. Select an architectural pattern from the candidates for application. The
classification of architectural patterns provided by Ortega-Arjona [2010,
p. 321] can support the decision, see Table 5.1.

Third, the coordination model of the program is defined in terms of
sufficiently detailed software components: Collaboration declares the pro-
cess components that collaborate in the program to be developed. Then,
process definition defines the processes that implement the behaviour of each
participating component. Finally, data decomposition defines the data objects
considered in the program.
Subsequently, analysis determines the performance and cost require-

ments from the problem specification and decides whether the coordination
model serves its purpose or whether previous activities must be re-iterated.
Ideally, this activity is guided by runtime analysis, which is possible when
the coordination code generated from the coordination model is complete
enough to be executed. For example, wait statements that were generated

100

5.3. Application Processes

Table 5.1. Architectural pattern classification according to Ortega-Arjona [2010,
p. 321].

Architectural Parallelism Processing
pattern task data activity homogeneous heterogeneous

Parallel Pipes and
Filters

X X

Parallel Layers X X

Commun. Seq. El-
ements

X X

Manager-
Workers

X X

Shared Resource X X

from cost estimates in the coordination model can serve as place-holders
for domain code and can be used for early bottleneck analysis.

We omitted documentation as a separate phase since we consider it as
a cross-cutting activity that builds up across all phases in the process.
Section 10.3 illustrates the application process from the viewpoint of the
application engineer at the example of Mandelbrot set visualisation and
Point-Feature Label Placement (PFLP).

5.3.2 Transformation Engineering

From the viewpoint of the transformation engineer, the application process
consists of the development of M2T transformations. The process is a variant
of the DSL-by-Examples approach that focuses on the parallel platform trans-
formations (see Section 4.5.3), and can be viewed as a coordination-specific
elaboration of the “Transformations” partition of the Domain Architecture
Development Thread of the generic MDSD Process Building Blocks [Völter
and Stahl, 2006, p. 255].

101

5. Coordination Engineering

Figure 5.4. The transformation engineer’s process for Coordination Engineering.

Figure 5.4 shows an overview of the different activities of the process
using a top-level BPMN diagram.

Prototyping refers to provide one or more prototype applications based
on the considered parallel platform. The intention is to gain experience
in the platform and its concurrency features. The concrete application
functionality of the prototype(s) is irrelevant. The outcome of the activ-
ity, concurrent prototype application(s), can be used as an input for the
subsequent activity.

Reference application development provides an application that represents
a relevant example for implementation on the parallel platform. Thereby,
the reference application serves two purposes. First, it demonstrates how
coordination code and domain code blend together to form a complete,
executable program. Second, it provides the code basis from which the
parallel platform transformations are derived. While the concrete applica-
tion functionality is of minor interest, particular emphasis should lie on a
sufficient coverage of the parallel platform’s concurrency features. Thereby,
the transformation engineer has to put considerable effort in adhering to
the coordination model of the reference application. It must be strictly
followed to provide a clear separation of domain code from coordination
code. Incremental refinement and restructuring is likely to become nec-
essary, especially, when the reference application is based on a previous
prototype or on existing legacy code. This highlights the incremental nature
of the overall process. However, the use of more fine-grained coordination
mechanisms such as parallel design patterns and programming idioms are
completely in the responsibility of the transformation engineer.
The analysis activity provides an overview of the relevant coordination

code fragments in the program code. To do so, the program code of the

102

5.3. Application Processes

reference application is examined for repeating code patterns that represent
fragments of the (implicit) coordination model of the application. While the
configuration parameters of the code patterns represent a possible input for
the domain analysis performed by the toolsmith, the code patterns itself
represent the basis for platform transformation development.

Finally, in the platform transformation development activity, the transfor-
mation engineer produces the transformation to the parallel platform. This
is usually an M2T transformation in the form of a set of templates. These
describe which artefacts are generated from models that conform to the
coordination metamodel. Therefore, the activity relies on the availability of
an explicit coordination metamodel provided by the toolsmith. To produce
the templates from the previously identified coordination code fragments,
the transformation engineer replaces smaller code fragments that were
identified as configuration parameters by expressions of the template lan-
guage that refer to the coordination metamodel. Additional partitioning
of templates can become necessary to untangle intricate dependencies, for
example, type reference resolution with recursive invocations.

5.3.3 Tool Engineering

From the viewpoint of the toolsmith, the application process consists of
the development of the coordination workbench. The process is a variant
of the DSL-by-Domain-Engineering approach that focuses on coordination
modelling (see Section 4.5.3). It can be viewed as a coordination-specific
elaboration of the “Domain” partition of the Domain Architecture Devel-
opment Thread of the generic MDSD Process Building Blocks [Völter and
Stahl, 2006, p. 255].

103

5. Coordination Engineering

Figure 5.5. The toolsmith’s process for Coordination Engineering.

Figure 5.5 shows an overview of the different activities of the process
using a top-level BPMN diagram. We describe the process as a set of activities
aligned to the “how to develop” phases of the phase model of Mernik et al.
[2005] for DSL development. The reason is that the coordination workbench
is essentially an embodiment of a DSL for coordination modelling, along
with complementary tooling for transformation support. Consequently, the
individual phases (analysis, design, and implementation) encourage the
use of appropriate DSL development patterns as discussed by Mernik et al.
[2005]
The domain analysis delivers an overview of the concepts of the con-

sidered domain. The outcome of the domain analysis is a conceptual
coordination model that comprises the following artefacts: A definition of
the domain, an informal description of the domain concepts, the definition
of the operational semantics of the concepts, and a domain terminology in
the form of a vocabulary, an ontology, or a domain metamodel. For Coordi-
nation Engineering with Space-Coordinated Processes (SCOPE), the domain
analysis is described in Chapter 6 and in this chapter. The metamodel of
Coordination Engineering is presented at the beginning of this chapter, see
Figure 5.1.

Next, the requirements specification specifies the coordination workbench
requirements that were implicitly exposed in the domain analysis. For
Coordination Engineering with SCOPE, we describe the requirements that
must be met by a coordination workbench for SCOPE in Section 7.2.

In the subsequent component design activity, the individual components
of the coordination workbench, along with their interdependencies, are de-
scribed. For the SCOPE coordination workbench, we describe the component

104

5.3. Application Processes

design in Section 8.2.
The first activity of the implementation phase is the implementation

decision activity. It documents the decisions that were made to implement
the component design. This includes to document how the individual
requirements are addressed and which tools and third-party components
are used to reduce implementation costs. Differences to the component
design must be discussed and justified. The implementation decisions for
the SCOPE coordination workbench are presented in Section 9.2.
The next activity is the syntax definition. It consists of a definition of an

abstract and at least one concrete syntax (metamodel and notation) of the
coordination DSL.
First, the abstract syntax definition activity defines the abstract syn-

tax/metamodel of the coordination DSL embodied in the coordination work-
bench. This metamodel is the formal representation of the commonalities of
all coordination models that conform to the coordination DSL. It allows to
check if a given model is a valid element of the DSL or not. There are several
languages and technologies that can be used to define the metamodel of the
coordination DSL. Examples are the Object Management Group (OMG) stan-
dards Meta Object Facility (MOF) and Unified Modeling Language (UML), the
Eclipse Modeling Framework (EMF) with its Ecore metamodel, Extensible
Markup Language (XML) and XML Schema Definition (XSD), the Eclipse
Xtext Language Development Framework, and the JetBrains Meta Program-
ming System (MPS).3 An additional part of the abstract syntax/metamodel
is the definition of constraints that restrict the use of syntax elements. They
can be defined with the Object Constraint Language (OCL) or the Check
language of the Eclipse Xtext Language Development Framework, for exam-
ple. For the SCOPE coordination workbench, we describe the abstract syntax
specification in Section 9.2.
Second, the concrete syntax definition specifies the concrete syntax/no-

tation of the coordination DSL. It defines the textual and/or graphical
appearance of the DSL. Thereby, it is possible to define several concrete
syntaxes for a single abstract syntax. This allows to address different

3See http://www.omg.org/mof/, http://www.uml.org/,
http://www.eclipse.org/modeling/emf/, http://www.eclipse.org/Xtext/, and
http://www.jetbrains.com/mps/

105

5. Coordination Engineering

stakeholders on the coordination architecture of a parallel program with
different notations. Also, it is possible to define a concrete syntax of a DSL
together with its abstract syntax, for example, with the Extended Backus-
Naur Form (EBNF) or an EBNF-like definition language for the purpose of
rapid prototyping. For the SCOPE coordination workbench, we describe the
concrete syntax specification in Section 9.2.

Workbench development denotes the development of the coordination
workbench. It comprises the implementation of an editor for the coordi-
nation DSL, including mechanisms for validation, and the implementation
or integration of complementary components, most prominently, transfor-
mation engines and editors. For the SCOPE coordination workbench, we
describe the workbench development in Section 9.2.

Operational semantics mapping definition specifies a transformation be-
tween the abstract syntax of the coordination DSL and the abstract syntax
of the formalism that was used to define the operational semantics of the
conceptual coordination model. This can be realised in the form of an
M2M transformation, requiring the metamodels of both, the coordination
DSL and the semantics formalism, to be available. The activity enables the
static analysis of concrete coordination architectures constructed with the
coordination DSL. For the SCOPE coordination workbench, we describe the
operational semantics specification in Section 9.2.
Additionally, interoperability transformations definition specifies transfor-

mations between the coordination DSL and third-party tools with which
the coordination workbench must interoperate. These can be M2M transfor-
mations, in the case that the target tools provides an appropriate model
interface, or M2T transformations, when interoperability is defined over file
exchange interfaces.

5.4 Benefits and Limitations

The benefits of Coordination Engineering are as follows:

� Knowledge capture: Models provide a basis for communication between
application engineers, transformation engineers, domain engineers, and
other stakeholders.

106

5.4. Benefits and Limitations

� Reuse and portability: Reference models and transformations can be
reused, providing a basis for software system families [Withey, 1996].
Different target platform transformation sets can also be applied to the
same coordination model, forming a basis for software system lines.

� Quality: Model bugs, as well as the respective responsibilities, are sep-
arated from implementation bugs – the former having to be corrected
only once in the transformation descriptions instead of multiple times in
the source code.

� Information hiding: Transformations encapsulate platform-specific co-
ordination implementation, thus relieving application engineers and
domain engineers.

� Development time reduction: Reusing models and transformations can
save development time.

However, each approach comes with additional costs and limitations:

� Learning costs: Each role can be regarded as a role in the conventional
software development process that gained additional skills to participate
in Coordination Engineering, see Section 5.2. Additionally, the genera-
tion of behavioural code is not well explored in practice in contrast to
structural code generation [Reussner and Hasselbring, 2009]. Although
the availability of an explicit coordination metamodel such as SCOPE
eases the task of expressing coordination, transformation engineers will
supposedly find it challenging to express coordination code as a set of
transformation templates. We address this problem in Section 9.2 by
presenting a strategy to organise the structure of coordination templates.

� Setup and maintenance costs: Coordination Engineering establishes
a complex MDS. This represents a system in its own right that must
be set up and maintained during/across parallel system development
projects. As an analogy, the MDS can be regarded as a separate project
infrastructure similar to test and continuous build infrastructures.

� Co-Evolution: In MDSD, issues of co-evolution can arise easily, for ex-
ample when the metamodel of the coordination language evolves and

107

5. Coordination Engineering

conforming models as well as transformations must be adapted to guar-
antee compliance [Kruse, 2011; Herrmannsdoerfer et al., 2011, 2009;
Eysholdt et al., 2009]. While MDSs represent a promising step towards
managing co-evolution, research on the issue is still underdeveloped
and there is a lack of tools to support co-evolution by managing MDSs
explicitly.

5.5 Related Work

Coordination Engineering can be described as a model-driven approach that
can be architecture- and platform centric, depending on which artefacts are
reused. When coordination and computation are regarded as cross-cutting
concerns, the approach can also be considered as a form of aspect-oriented
modelling.

5.5.1 Architecture- and Platform-Centric MDSD

Coordination Engineering can be regarded as Architecture-Centric Model-
Driven Software Development (AC-MDSD), see Section 4.4. It favours the
separation of the software architecture from a behavioural viewpoint from
the domain-specific implementation of coordinated components. It also
requires the coordination workbench as a tool infrastructure for coordina-
tion code generation, is primarily oriented towards forward engineering,
and provides an elaborate role model. However, it differentiates itself from
AC-MDSD since it is not restricted to establish software system families, which
map different architecture models onto the same technical platform by
reusing the platform transformation. Instead, it can also be used to estab-
lish software system lines, which map the same architecture onto different
platforms by reusing the architecture model.

5.5.2 Aspect Oriented Modelling

Aspect orientation regards the modularisation of Cross-Cutting Concerns
(CCCs) in software systems [Völter, 2005]. CCCs are concerns that can not

108

5.5. Related Work

normally be associated with a single module or component in the respective
systems because of the limited capabilities of the underlying program-
ming languages and platforms. While aspect orientation in general aims
at the modularisation and localisation of such CCCs, Aspect-Oriented Pro-
gramming (AOP) specifically aims at introducing programming language
constructs to handle CCC modularisation.
Although there are many commonalities between AOP and MDSD, we

regard our approach clearly as an MDSD approach (cf. [Völter, 2005]). The
reasons are two-fold:

� Abstraction level: A fundamental concept of MDSD is to express a problem
solution on a higher level of abstraction that is more closely aligned with
the problem domain. To do so, MDSD employs domain-specific languages.
AOP, on the contrary, is bound to the level of abstraction of the system
for which it handles CCCs.

� Pre-runtime: MDSD transformations are typically executed before the
runtime of the system to be developed. Therefore, MDSD approaches can
generate non-programming language artefacts such as configuration files,
build scripts and documentation. On the contrary, AOP is dynamic in
nature and contributes behaviour to specific points during the runtime of
a system, but can not affect any artefacts that are relevant before runtime.

However, as Favre [2004a] notices, separation of concerns is an intrin-
sic property of model engineering (i. e., “the disciplined and rationalized
production of models”) that naturally leads to aspect-oriented modelling.
Since Coordination Engineering eases parallel program development by the
separation of concerns as the underlying principle, it can also be denoted
as a form of Aspect-Oriented Modeling (AOM).

109

Chapter 6

Space-Coordinated Processes

This chapter introduces the Space-Coordinated Processes (SCOPE) coordi-
nation model. We discuss the requirements that apply to SCOPE, describe
SCOPE as a beneficial combination of Space-Based Systems (SBS) with the
Business Process Model and Notation (BPMN) specification for coordination
engineering, and present the associated domain concepts. We also discuss
the use of BPMN as a host language for SBS, identify a BPMN subset that
represents the SCOPE coordination model, and define the operational seman-
tics of the subset. The chapter concludes with a placement of the SCOPE
coordination model in several contexts.

6.1 Requirements

The challenges of concurrent programming – a generalised abstraction over
concurrent system behaviour, continuity with prevalent technologies, and
the dissemination of patterns and practice – impose several requirements to
any possible solution. These requirements are presented in the following.
Also, they are subsumed in table form at the end of the section.

Programming languages mostly support concurrency by the highly
non-deterministic and error-prone thread- or lock-based programming
model [Lee, 2006], requiring an extensive use of synchronisation to pre-
vent unwanted non-determinism. The solution must therefore provide a
generalised abstraction over concurrent system behaviour that abstracts
from lock-based programming, leading to the requirement of concurrency
abstraction (requirement CM00).

With the focus on system behaviour, the concurrency abstraction require-
ment clearly identifies each solution as a kind of coordination model. In

111

6. Space-Coordinated Processes

general, such models are defined as the interaction of active components,
whereas the interaction is subject to certain coordination laws that specify
how components coordinate themselves through the given coordination
media [Ciancarini, 1996]. This leads to the requirement that any solution
must express coordination explicitly (requirement CM01).

The next requirement is that of the separation of concerns (requirement
CM02): Inter-component activity and intra-component activity have to be
separated in order to distinguish between the concerns of coordination and
computation, cf. [Kielmann, 1996].
Stemming from the separation of concerns, the coordination model

must be orthogonal to existing General-Purpose Programming Languages
(GPLs) (requirement CM03). In particular, the coordination model must not
force the considered programming languages to modify their functionality,
cf. [Gelernter and Carriero, 1992; Freisleben and Kielmann, 1997].

Portability (requirement CM04) is the primary concern for development
cost reduction and represents the degree to which applications can be moved
between different machines and environments without yielding different
results [Marowka, 2010, p. 78]. It must be possible to implement the
coordination model on top of various types of parallel systems [Freisleben
and Kielmann, 1997]. Overall generality in the sense of a general purpose
coordination model is desirable [Gelernter and Carriero, 1992].

Finally, the coordination model must provide means for modularisation
as a basic principle to support collaborative work and to reduce complexity
by separating model elements from each other. This requires hierarchical
abstractions that allow the composition of model elements (requirement
CM05). Table 6.1 summarises these requirements.

6.2 Combining SBS and BPMN

Space-Based Systems (SBS) represent an abstraction of complex system
behaviour that emphasises choreography for coordination. They focus on
the coordination media (spaces) and the laws (operations) that are used
to let client components communicate with the spaces. The coordination
components are underspecified and an issue of realisation. SBS require a

112

6.2. Combining SBS and BPMN

Table 6.1. Domain requirements.

CM00 Concurrency abstraction

The solution must provide a generalised abstraction over concurrent
system behaviour that abstracts from lock-based programming. It must
not require to prevent unwanted non-determinism by means of synchro-
nisation.

CM01 Coordination explicity

Concurrency must be expressed explicitly as the interaction of active
components that coordinate themselves according to some coordination
laws through the given coordination media.

CM02 Separation of inter-component and intra-component activity

Inter-component activity and intra-component activity must be sepa-
rated.

CM03 Orthogonality

The coordination model must be orthogonal to existing GPLs.

CM04 Portability

It must be possible to implement the coordination model on top of
various types of parallel systems [Freisleben and Kielmann, 1997]. Over-
all generality in the sense of a general purpose coordination model is
desirable [Gelernter and Carriero, 1992].

CM05 Composition

The coordination model must provide means for hierarchical abstractions
that allow the composition of model elements.

113

6. Space-Coordinated Processes

“host” language that defines the components. Typically, this host language
is a general-purpose (sequential) computation language like C, C++, or Java
in order to provide a complete concurrent programming language.
The Business Process Model and Notation (BPMN), on the other hand,

emphasises both orchestration and choreography. It focuses on all three di-
mensions of a coordination model, the coordination components (Processes
and Activities), the coordination laws (Sequence Flows and Message Flows),
and the coordination media (Properties and Data Objects for intra-process
coordination, Messages and Message Flows as channels for inter-process coor-
dination). This means that it represents a complete coordination language
in its own right. Several viewpoints on coordination exist, especially for
high-level views on choreography. However, these are based on message
passing, a low-level communication mechanism that tightly couples the
coordination components and produces very detailed choreographies (thus
motivating the high-level viewpoint on process choreographies).

To provide a complete high-level coordination model, we suggest SBS and
BPMN to be combined. We denote this combination as Space-Coordinated
Processes (SCOPE). This combination has fundamental advantages:

First, space-based choreography shows several desirable features that ease
concurrency management. It abstracts from lock-based programming by
introducing a shared virtual associative data structure called space that
decouples concurrent components and guarantees the immutability of the
data objects it manages (requirement CM00). The components indirectly
communicate with each other by using a set of well-defined special opera-
tions to exchange data over these spaces (requirement CM01). Also, spaces
are a natural mechanism to represent the context on which components can
operate, and can evolve separately from the considered components (re-
quirement CM02). Space-based choreography is orthogonal to widespread
general purpose programming languages (requirement CM03), and can
be implemented on top of various types of parallel systems (requirement
CM04).
Second, control-driven orchestration clearly separates fine-grained activ-

ities of domain-specific computation from the space-based coordination
primitives to publish, read, or consume data from spaces (requirement
CM02). This resolves the drawback of SBS as a data-driven coordination

114

6.3. Domain Concepts

model regarding inter-component coordination: The arbitrary intermixture
of coordination primitives and domain-specific computational code makes
is hard to realise data-driven coordination models as separate languages.
In contrast, control-driven coordination models are commonly realised as
separate Domain-Specific Languages (DSLs). An existing control-driven
coordination language can be used as a “host” language to separate the
data-driven choreography primitives and declarations of domain-specific
computation without the need of a computation language. The resulting
model remains a complete coordination model in its own right. In addition,
control-driven orchestration typically provides some mechanisms for activ-
ity composition, thus supporting the modularity of the resulting model and
making it amenable to collaborative work (requirement CM05).
Third, the overall model is significantly higher-level than the concur-

rency mechanisms of general-purpose (sequential) programming languages
(requirement CM00). It is no longer in the responsibility of the programmer
to provide a clear separation between the coordination-related and the
computational aspects among and within the components of a program.
Instead, the combined model provides a viewpoint on the architecture of a
concurrent program that is even understandable by non-programmers. It
also provides an abstraction that is higher-level than the message passing
inter-component coordination mechanism of BPMN. As such, it can be re-
garded as a representation of the problem space (the representation of the
problem) instead of the solution space (the representation of the solution to
the problem).

6.3 Domain Concepts

We define our domain as Coordination Engineering, see Chapter 5. Also, we
regard concurrent programming as the primary domain from which we
abstract. We further focus on the behavioural view on software architecture,
regarding the behaviour of a software system as processes that represent
active components. Within a process, application engineers are encouraged
to decompose their problems in terms of sub-processes, activities to encap-
sulate (declare) domain logic or space access operations, and the control

115

6. Space-Coordinated Processes

Image Provider

Create Image

+

Image Space

Un-
rendered
Images

Presenter

Re
nd

er
er

- |||

Render
Image

Rendered
Images

consume Publish

Print Image

+

Figure 6.1. Domain concepts illustrated by the example of Mandelbrot set visualisa-
tion.

flows between them. Data flows and passive data objects are used to realise
inter-process coordination. Processes only communicate with each other
indirectly over spaces. The two kinds of concurrency that are considered
are:

� Concurrent execution of different components

� Concurrent execution of multiple instances of the same component

Table 6.2 presents an overview of these concepts. They form a small
and manageable set categorised in terms of the components to be coordi-
nated, the media used for coordination, and the primitives that specify how
component coordinate themselves through the given coordination media.

For the SCOPE coordination model, we adopt the space operations of the
LighTS tuple space framework [Balzarotti et al., 2007], a small extensible
open source Java implementation of an SBS for closed, non-distributed
concurrent programs (as discussed in Section 6.7). Table 6.3, Table 6.4, and
Table 6.5 describe the space operations used in SCOPE.

116

6.3. Domain Concepts

Table 6.2. Domain concepts.

Coordination Components

Process An active entity that executes activities and sub-
processes in a predefined order, whereas the num-
ber of processes does not have to equal the number
of actual processing units (processors) and is de-
termined by the problem decomposition.

Sub-Process A process that is a partition of a superordinate
process.

Activity An atomic active component of computation that
can be executed sequentially or in parallel with
other activities and sub-processes.

Domain Activity An activity that represents (declares) domain-
specific logic.

Space Activity An activity that can publish data objects to spaces,
or read or consume data objects from spaces.

Coordination Media

Data Object The representation of data that can be published,
read, and consumed by space activities.

Space An associative data structure that manages data
objects. It can be accessed by processes through
the use of space activities.

Coordination Laws

Control Flows The explicit specification of the order of execution
of activities and sub-processes including decisions
and loops.

Space Operations The primitives performed by space activities to
publish data objects to spaces, or read or consume
data objects from spaces.

117

6. Space-Coordinated Processes

Table 6.3. Publishing space operations; min denotes the minimal number of data
objects sent to a space; max the maximum number of data objects for an operation.

Operat. Data Obj. Behaviour
min max

out 1 1 Inserts a single data object into the space; guarantees
the availability of the data object in the space after
successful execution (synchronous)

outg 1 n Inserts n data objects into the space; guarantees the
availability of all data objects in the space after success-
ful execution (synchronous); guarantees no data objects
to be available before successful execution (atomic)

Figure 6.1 provides an overview of the domain concepts by the example
of a parallel program that visualises the Mandelbrot set. It serves as an
illustration of the concepts and does not cover the exact semantics of the
individual concepts. The components of the program are Image Provider,
Renderer, and Presenter. All three execute concurrently and have access
to a single space, the Image Space. The order of execution is determined
by the availability of data objects in the space. Firstly, the Image Provider

publishes a set of unrendered slices (data objects) of the overall image. The
orchestration of activities within the Image Provider is encapsulated with a
sub-process (not shown in the diagram). The unrendered image slices are
consumed by the Renderer. To do so, it starts a multiple-instance sub-process
whose instances each consume a single unrendered image slice with a space
activity, render it with a domain activity, and then publish the rendered
image slice to the space with a space activity. Note that we assume that
there are as many concurrent sub-process instances as there are image slices.
The Presenter reads the rendered image slices, combines them to a single
image, and prints the resulting image to a file. The orchestration of activities
within the Presenter is encapsulated with a sub-process.

118

6.3. Domain Concepts

Table 6.4. Consuming space operations; min denotes the minimal number of data
objects retrieved from a space; max the maximum number of data objects for an
operation.

Operat. Data Obj. Behaviour
min max

in 1 1 Withdraws one data object from the space for the given
query; if no matching data object is found, the com-
ponent performing the operation is suspended until
a matching object becomes available (synchronous); if
multiple matches are found, only one data object is
returned, as determined by the concrete implementa-
tiona

inp 0 1 Withdraws one data object from the space for the given
query; if no matching data object is found, the compo-
nent performing the operation is not suspended (asyn-
chronous); if multiple matches are found, only one
data object is returned, as determined by the concrete
implementation

ing 0 n Withdraws all data objects from the space for the given
query; if no matching data object is found, the compo-
nent performing the operation is not suspended (asyn-
chronous); if multiple matches are found, all matching
data objects are returned as a single unit (atomic)b

aIn contrast to the LighTS tuple space framework, we do not stipulate how the space selects
the data object to be returned from the matching candidates (e. g., picking the first one, as
the LighTS framework does, or selecting one non-deterministically). Instead, we consider
matching deliberately as a matter of implementation to enable the interoperability with a wide
variety of space implementations.

bThe ing operation can be considered as a symmetric sibling to the rdg primitive, which
solves the Linda multiple rd problem [Rowstron, 1996]. It must be distinguished from the collect
primitive described by Butcher et al. [1994], since the latter dismisses atomicity for increased
performance and competition amongst space clients.

119

6. Space-Coordinated Processes

Table 6.5. Reading space operations; min denotes the minimal number of data
objects retrieved from a space; max the maximum number of data objects for an
operation.

Operat. Data Obj. Behaviour
min max

rd 1 1 Reads one data object from the space for the given
query; if no matching data object is found, the com-
ponent performing the operation is suspended until
a matching object becomes available (synchronous); if
multiple matches are found, only one data object is
returned, as determined by the concrete implementa-
tiona

rdp 0 1 Reads one data object from the space for the given
query; if no matching data object is found, the compo-
nent performing the operation is not suspended (asyn-
chronous); if multiple matches are found, only one
data object is returned, as determined by the concrete
implementation

rdg 0 n Reads all data objects from the space for the given
query; if no matching data object is found, the compo-
nent performing the operation is not suspended (asyn-
chronous); if multiple matches are found, all matching
data objects are returned as a single unit (atomic)b

aIn contrast to the LighTS tuple space framework, we do not stipulate how the space selects
the data object to be returned from the matching candidates (e. g., picking the first one, as
the LighTS framework does, or selecting one non-deterministically). Instead, we consider
matching deliberately as a matter of implementation to enable the interoperability with a wide
variety of space implementations.

bAs Freisleben and Kielmann [1997] notice, the atomicity of the operation solves the Linda
multiple rd problem [Rowstron, 1996], and potentially contributes to the performance of the
operation by aggregating data objects to be returned into a single return message.

120

6.4. BPMN as a Host Language

6.4 BPMN as a Host Language

The BPMN is a widely accepted modelling language for the definition of
business processes. It emphasises graphical models over textual seriali-
sations as its abstract syntax. In its current version (2.0), it represents a
fully fledged coordination language. Due to its similarity, the language is
often compared to Unified Modeling Language (UML) Activity Diagrams
[White, 2004]. Although primarily targeting the business domain, it can be
viewed as a generic language for the description of processes. We chose
BPMN as a host language for SCOPE for the following reasons:

� BPMN is well-known by a variety of roles in IT industry, even non-
technical roles. It is also widely supported by tools. As such, it provides
a promising vehicle for the rapid dissemination and acceptance of SCOPE.

� It provides a comprehensive graphical outline view on behavioural
architecture models, even across non-technical stakeholders.

� The BPMN specification already provides an operational semantics. Using
BPMN as a host language allows to aggregate the semantics of SCOPE
models from the operational semantics of the realising BPMN models.

BPMN also offers some challenges that must be overcome:

� Semantic correctness: The BPMN metamodel defines over 150 elements.
These elements and their relations must not be used in a way that
contradicts their semantics.

� Semantic clearness: BPMN defines its execution semantics in terms of
token flow. Although it is denoted that “[t]he purpose of this execution
semantics is to describe a clear and precise understanding of the opera-
tion of the elements.” It is only defined informally [Axway et al., 2010,
p. 425]. Additionally, it does not consider data or message flows. A more
formal specification of SCOPE that conforms to the BPMN specification is
desirable.

� Lack of validation: BPMN tools can only validate BPMN models, not SCOPE
models. It is up to the modeller to provide valid coordination-specific
SCOPE models when using BPMN tools for modelling.

121

6. Space-Coordinated Processes

� Lack of extensibility: SBS-specific aspects can make it necessary to extend
the BPMN. The specification provides an explicit extension mechanism
[Axway et al., 2010, pp. 57-61], but it is limited in several ways: custom
graphical notation elements mapped to extensions are not guaranteed to
be handled uniformly in tool chains, and the extensions themselves are
not guaranteed to carry over in BPMN tool chains by definition [Axway
et al., 2010, p. 57].

Regarding semantic correctness, industry practice recommends to iden-
tify and use only a meaningful subset of BPMN elements to cope with the
complexity of the specification [Suarez et al., 2011]. Semantic clearness can
be assured by providing a mapping of the informal execution semantics
to a formal model that also considers the data and message flows. The
lack of validation can be circumvented by providing a SCOPE modelling
environment that supports the BPMN subset directly. Finally, the lack of
extensibility can be addressed by a separate domain-specific language for
SCOPE that can be directly mapped to BPMN.
In the remainder of this chapter, we address semantic correctness and

semantic clearness by identifying a subset of the BPMN specification to
represent SCOPE models, and by providing a semi-formal mapping of this
subset to Petri Nets to clarify their behaviour.

6.5 BPMN Subset

In this section we identify a subset of the BPMN that can represent SBS and,
more specifically, SCOPE models. We discuss the alternatives and select
only elements that do not break the semantic correctness of both BPMN and
SBS. If needed, we use the BPMN extension mechanism to introduce custom
BPMN elements or graphical markers [Axway et al., 2010, pp. 44,57-61]. In
particular, we address how to express the following elements:

� Spaces

� Client processes

� Intra-process activities

122

6.5. BPMN Subset
 S

pa
ce

 �
Domain Task
�

out|outg

in|inp|ing|
rd|rdp|rdg
+

MI
Parallel

|||

Structured
Loop �

Start Event

End Event

Sequence Flow

Message Flow

Exclusive Split
Message
• Data objects for out or outg
• Query templates for in, inp, ing,

and rd, rdp, rdg

Exclusive Join

Parallel Sub-
Process
+ Cl

ie
nt

x

x
Text
Annotation

Call Activity

+
Sequential

Sub-Process
+

Figure 6.2. BPMN 2.0 subset for SCOPE.

� Space operations

� Data objects

� Intra-process control flows

Figure 6.2 presents an overview of the BPMN subset. In the following,
we give a rationale for the elements we selected for the subset.

6.5.1 Spaces

In SBS, the operational semantics of a space is determined by its implemen-
tation. Spaces are considered as black-box components in SCOPE models.
We identify BPMN Participants and Pools as the most appealing elements to
model spaces although they represent a restriction of the composition of
spaces. The space Pools are indicated by a black-box marker in its upper left
corner to indicate their black-box execution semantics (see Figure 6.2). The
rationale for the selection is discussed in the following.

SCOPE assumes the lifecycle of spaces to be bound to the lifecycle of the
overall program. Therefore, BPMN Data Stores cannot be used to represent
spaces since they persist beyond the lifecycle of any BPMN Process [Axway

123

6. Space-Coordinated Processes

et al., 2010, p. 208]. They would also complicate data object modelling since
they are Item Aware Elements that require the sourceRef and the targetRef of
their Data Associations to be also Item Aware Elements [Axway et al., 2010,
p. 223]. A BPMN Activity that interacts with Data Stores would therefore
require to define appropriate properties (Data Input Associations and Data

Output Associations) [Axway et al., 2010, pp. 151-152].
Spaces can be represented as BPMN Participants. They represent concrete

entities or roles that interact with each other and can execute individual
Processes [Axway et al., 2010, p. 114]. The use of Participants for spaces has
several benefits:

� There is no constraint if Participants are local or distributed. The BPMN
subset would therefore abstract over the distribution of SBS. The def-
inition of space location would be in the responsibility of subsequent
mapping, modelling, or transformation stages.

� Participants do not necessarily have to define their processRef property
[Axway et al., 2010, p. 116]. Also, they can be represented graphically by
(black-box) Pools that may be defined without a Process [Axway et al., 2010,
p. 114]. As a consequence, the behaviour of space Participants does not
have to be modelled explicitly in BPMN diagrams.

� Data objects can be represented as Messages that are exchanged be-
tween client processes and spaces. This enables to consider the message
exchange protocol between clients and spaces as BPMN Choreographies

[Axway et al., 2010, pp. 345-366].

Another possibility would be to use BPMN Lanes to represent spaces.
Lanes are sub-partitions of a Process that are often used within Pools [Axway
et al., 2010, p. 305]. The outer Pool then would represent either the top-
level space or the overall application. Although Lanes support hierarchical
composition by nesting (requirement CM05) [Axway et al., 2010, p. 306],
and would provide more compact diagrams than using Participants and Pools

for spaces, they should not be used. Firstly, Lanes are intended as white-box
elements that are “used to organize and categorize Activities within a Pool”
[Axway et al., 2010, p. 306]. If the outer Pool would represent the top-level

124

6.5. BPMN Subset

space, they would require the outer Pool to be also white-box, forcing it
and all inner spaces to reveal parts of their implementation. Secondly, they
prevent to examine the interaction between client components and (inner)
spaces on a higher level of abstraction as Choreographies. They would also
require data objects to be represented as Data Inputs or Data Outputs since
activities do not use Messages to communicate with each other within a
single Process.

When spaces are modelled as Participants and Pools, there are two subse-
quent questions that are of particular interest:

1. Should we use multiple-instance Participant spaces to reduce the footprint
of large BPMN models with many spaces?

2. Should we use Participant Associations to facilitate collaborative modelling?

Regarding the first question, the answer is “no”. The BPMN specifica-
tion states that “ParticipantMultiplicity is used to define the multiplicity
of a Participant. For example, a manufacturer can request a quote from
multiple suppliers in a Collaboration.” [Axway et al., 2010, p. 117]. Par-

ticipants can only have at most one Participant Multiplicity. To determine
the current number of Participants in a concrete model, the standard intro-
duces the concept of Participant Multiplicity Instance attributes that are not
included in the BPMN metamodel: “numParticipants: integer [0..1] The
current number of the multiplicity of the Participant for this Choreography
or Collaboration Instance.” [Axway et al., 2010, p. 118]. This means that the
individual instances of a multiple-instance Participant remain anonymous
since Participants can only be distinguished by their name and id attributes
[Axway et al., 2010, p. 115]. Furthermore, it is also unclear how the actual
message exchange pattern between two multiple-instances Participants is
intended (many-to-many message exchange). Therefore, we refrain from
using multiple-instances Participant spaces.1

1In [Gringel et al., 2012], we identified a related problem concerning the multiplicity of
Participants, namely the inability of the BPMN to distinguish between the principle attendance
of a Participant in a Collaboration, and the concrete participation of a certain number of instances
of a Participant in a Choreography Task (a message exchange activity). We address this problem in
[Gringel et al., 2012] by the introduction of a Participation as an indirection between Collaboration

and Participant, instead of relying on Participant Multiplicity Instance attributes.

125

6. Space-Coordinated Processes

Regarding the second question, the answer is again “no”. The BPMN
specification states that “[t]here are situations where the Participants in
different diagrams can be defined differently because they were developed
independently, but represent the same thing.” [Axway et al., 2010, pp. 118-
119]. The Participant Association element can be used to associate different
Participants with each other to denote them as the same Participant. The BPMN
specification defines four application scenarios for the Participant Association
where mapping can become necessary [Axway et al., 2010, pp. 118-119]:

1. A Collaboration references a Choreography for inclusion.

2. A Call Conversation references a Collaboration or Global Conversation.

3. A Call Choreography references a Choreography or Global Choreography Task.

4. A Call Activity within a Process has a definitional Collaboration and refer-
ences another Process that also has a definitional Collaboration.

Cases two and three are not relevant since we do not use the BPMN
elements Global Conversation, Global Choreography Task, and Call Conversation.
Cases one (Choreographies to focus on the data exchange protocol) and
four (Call Choreographies as a way of composition) are relevant, but can
be circumvented by strictly using unique names for spaces. For the BPMN
subset, we refrain from using Participant Associations.
Finally, using Participants to represent spaces imposes that client pro-

cesses must also be modelled as Participants. The consequences are examined
in the following.

6.5.2 Client Processes and Intra-Process Activities

As a consequence of modelling spaces as Participants, client components are
also modelled as Participants. Regarding the further decomposition of client
components in terms of BPMN elements, we consider to model the following
aspects:

� Components that embody domain-specific logic are modelled as Domain

Tasks.

126

6.5. BPMN Subset

� The parallel instantiation of the same component is modelled with Multi

Instance Loop Characteristics.

� The parallel execution of different components is modelled with (Parallel)
Sub-Processes.

� Component composition is modelled with Call Activities.

� Component structurisation is modelled with (Sequential) Sub-Processes.

A natural candidate for the representation of domain-specific logic is the
BPMN (Abstract) Task element: It represents an atomic activity that cannot be
broken down to a finer level of detail [Axway et al., 2010, p. 156]. Tasks are
general (and extensible) enough to represent any kind of domain-specific
logic [p. 158, BPMN]. The semantics of the element resembles its black-box
nature: “Upon activation, the Abstract Task completes. This is a conceptual
model only; an Abstract Task is never actually executed by an IT system.”
[Axway et al., 2010, p. 430]. To conform to the standard, we introduce the
Domain Task as a concrete Task type that represents atomic domain-specific
logic. We advice to indicate the Domain Task by an asterisk marker in its
upper left corner.
The parallel execution of different components can be modelled with

BPMN Sub-Processes: “Expanded Sub-Processes can be used as a mechanism
for showing a group of parallel Activities in a less-cluttered, more compact
way. [...]” [Axway et al., 2010, p. 174]. The use of expanded Sub-Processes

as so-called “parallel boxes” does not require a Start Event or an End Event

associated to the parallel Activities within the Sub-Process, thus reducing the
footprint of BPMN models and diagrams [Axway et al., 2010, p. 174].
The BPMN multi-instance Activity fits nicely to model the parallel in-

stantiation of the same component: “The multi-instance (MI) Activity is a
type of Activity that acts as a wrapper for an Activity which has multiple
instances spawned in parallel or sequentially” [Axway et al., 2010, p. 432].
It is defined as a conventional Activity whose behaviour is determined by
the attributes of its Multi Instance Loop Characteristics [Axway et al., 2010,
pp. 191-194]: First, isSequential specifies whether instances are instantiated
sequentially (true) or in parallel (false). Second, the number of instances is

127

6. Space-Coordinated Processes

defined by the attribute loopCardinality or by the cardinality of a collection
data item of the Data Input of the Activity.

Component composition can be modelled as Call Activities. Sub-Processes
can not be used for composition since the contained elements are exclusive
to the parent Process. This means that Sub-Processes represent means for
structuring, but not for composition since reuse is not supported. In fact,
the reusable Sub-Process element of the previous BPMN 1.2 specification
corresponds to the Call Activity of BPMN 2.0 [Axway et al., 2010, p. 176].

However, we retain Sub-Processes as a means for structurisation and use
meaningful subclasses of the generic Sub-Process. We already decided to
use a dedicated Sub-Process for the parallel execution of different Activities.
We also introduce a dedicated Sub-Process for the execution of a sequence of
activities within a Process. This enables to model loops not only over single
activities but also over complete sequences of activities. To distinguish the
two uses, we refer to them as Parallel Sub-Process and Sequential Sub-Process.

A Call Activity is a task that can call a pre-defined (global) Process. It “acts
as a wrapper” for the invocation of the Process [Axway et al., 2010, p. 183].
Several Call Activities can call the same pre-defined Process, identifying the
element clearly as a means for composition. Graphically, a Call Activity can
both be displayed as a collapsed element (similar to a collapsed Sub-Process,
but with a thick line), or expanded (showing its contents similar to an
expanded Sub-Process, but with a thick line). Regarding the SCOPE BPMN
subset, using Call Activities for composition also distinguishes composition
nicely from parallel execution with Sub-Processes.

6.5.3 Space Operations

Regarding the operations needed to access spaces, we model the following
aspects:

� Publishing a data object to a space is modelled as a Send Task.

� Receiving a data object from a space is modelled as a predefined BPMN
Sub-Process idiom that contains a Send Task to model assembling and
sending a query template to the space, and a subsequent Receive Task to
model receiving a response message from the space.

128

6.5. BPMN Subset

Publishing a data object to a space can be modelled using a Send Task

[Axway et al., 2010, pp. 159-161]. A Send Task is designed to send a Message

to an external Participant. This relates to the non-blocking space coordination
primitives out (publish a data object) and outg (publish a group of objects).
An alternative would be to use Intermediate Events [Axway et al., 2010,
pp. 249-260]. We refrain from these because they only denote the event
of receiving or sending a message, not the construction of the message
itself. Send Tasks, on the other hand, can also symbolise that messages
are constructed in a standardised way before sending occurs. A Send Task

must be named either out or outg, depending on which space coordination
primitive is used.

Receiving data objects from a space requires assembling and sending a
query template to the space before matching data objects can be received.
Also, it must be possible to differentiate between the blocking space coor-
dination primitives in and rd, and their non-blocking siblings inp, ing, rdp,
and rdg. Therefore, the conventional Receive Task cannot be used: “Once
the Message has been received, the [Receive] Task is completed” [Axway
et al., 2010, p. 161].

As a solution, we use a predefined BPMN Sub-Process idiom that contains
a Send Task to model assembling and sending the query template to the
space, and a subsequent Receive Task to model receiving a response message
from the space (see Figure 6.3). Blocking space coordination primitives
are distinguished from their non-blocking siblings only by the name of
the Sub-Process and the content of the response message from the space:
Non-blocking operations simply can contain messages with no data objects
enclosed, or null data objects, respectively. The predefined Sub-Process

must be named either in, inp, ing, rd, rdp, or rdg, depending on which
space coordination primitive it should represent. We advise to indicate the
predefined Sub-Process by two markers in its upper left corner: the black
Message marker of a Send Task and the white Message marker of a Receive

Task.
Another solution would be to extend the list of Task types with a custom

Query Task. This is in accordance with the BPMN standard since “[t]he list
of Task types MAY be extended along with any corresponding indicators.”
[Axway et al., 2010, p. 158]. We refrain from this since it conceals the

129

6. Space-Coordinated Processes

Receive for
in

in

+

 Space

Send for
in

�

Query
template

Response
data object

Figure 6.3. BPMN space query idiom.

message exchange pattern that is necessary to represent space coordination
primitives that consume or read data objects.

Note that we refrain from using BPMN Standard Loop Characteristics to
model space coordination primitives that handle a group of data objects
(outg and ing). This enables to distinguish between looping space coordina-
tion primitives and space coordination primitives that atomically publish a
group of data objects. For example, a looping in primitive can guarantee
that all parts of a compound data object are available to a Process.2 As a
consequence, Messages can represent (contain) a collection of data objects.

6.5.4 Data Objects and Inter-Process Data Exchange

We represent inter-process data exchange as Message Flows as a consequence
of modelling spaces as Pools, data objects as Messages. The rationale for this
selection is as follows:
Much of the benefits of the SCOPE model rely on the fact that in SBS,

the lifecycle of data objects is not necessarily bound to the lifecycle of the
processes that produced them. This means that data objects and query
templates cannot be represented as BPMN Data Objects since the lifecycle

2The use of looping for the other space primitives is questionable from a semantic viewpoint:
A looping rd or rdp could possibly return always the same data object for a given query (see
[Rowstron, 1996]), and looping non-blocking primitives represent multiple tries without
checking the result of an individual trial.

130

6.5. BPMN Subset

of the latter is bound to the lifecycle of their parent Process or Sub-Process
[Axway et al., 2010, p. 207].

In accordance with the previous selections, Messages are a natural choice
to represent SBS data objects [Axway et al., 2010, p. 93]. The data object to
be sent or received does not have to be modelled explicitly since the Item
Definition is an optional part of the Message [Axway et al., 2010, p. 95]. Also,
Messages can be used in a BPMN Choreography [Axway et al., 2010, p. 93]. A
single Message Flow illustrates the flow of a Message between two Participants

by connecting two separate Pools [Axway et al., 2010, p. 120]. Message Flows

can not connect two elements that are located within the same Pool.
The BPMN standard differentiates between initiating and non-initiating

Messages. Since we cannot guess the responses from space Participants, we
consider only initiating Messages in SCOPE:

� Messages that represent query templates for the in, inp, ing, rd, rdp, and
rdg coordination primitives

� Messages that represent data objects for the out and outg space coordina-
tion primitives

6.5.5 Intra-Process Control Flows

Process instantiation and termination We use the BPMN Start Event to
model the instantiation of a client process [Axway et al., 2010, p. 238].
Analogously, we use the BPMN End Event to model the termination of a client
process.

The BPMN standard employs the notion of process levels to discuss the
use of events: “A Process MAY have more than one Process level (i. e., it
can include Expanded Sub-Processes [. . .])” [Axway et al., 2010, p. 238].
We restrict Processes to only allow one single Start Event and one single End
Event within a single process level [Axway et al., 2010, p. 426]. Additionally,
we consider the Start Event and End Event as optional in Sub-Processes to
support the “parallel box” concept.

Control flows Control flows are represented in BPMN in terms of Sequence
Flows [Axway et al., 2010, p. 97]. In the BPMN subset, we use Sequence Flows

131

6. Space-Coordinated Processes

to model the flow of control between Start Events and End Events, Activities
and Gateways. To enforce block-structured control flows as far as possible
we adhere to the following conventions in Sequence Flows:

� Do not use arbitrary control flow loops.

� Do not use Gateways to control concurrency. Instead use Sub-Processes
and Loop Activities.

Structured loops Structured loops in the control flow of a Process are
modelled with the conventional Standard Loop Characteristics element [Axway
et al., 2010, p. 432]. Its behaviour is determined by its attributes. As long
as the loopCondition evaluates to true, the inner Activity is executed again.
Thereby, testBefore determines if the loopCondition is evaluated before (true)
or after (false) the Activity is executed. loopMaximum determines the maximum
number of executions, including unbounded, if the attribute is not set. We
differentiate between the following kinds of loops:

� Pre-testing iterating loop (for): testBefore is true and loopMaximum is
evaluated to determine if the inner Activity shall be executed or not.

� Pre-testing conditional loop (while): testBefore is true and loopCondition is
evaluated to determine if the inner Activity shall be executed or not.

� Post-testing conditional loop (do-while): testBefore is false and loopCon-

dition is evaluated to determine if the inner Activity shall be executed or
not.

Structured parallel control flows We differentiate between two kinds of
parallel control flows:

� Parallel execution of different activities is modelled as a BPMN Sub-Processes.

� Parallel instantiation of the same activity is modelled as a BPMN multi-
instance Activity.

132

6.6. Operational Semantics

Although the Parallel Gateway would be a natural choice to model parallel
control flows, we refrain from using it in order to confine to block structured
modelling. Else, it would be necessary to require each diverging Parallel

Gateway to be merged by a subsequent converging Parallel Gateway, and
to restrict a diverging Parallel Gateway to have only one single incoming
Sequence Flow, and a converging Parallel Gateway to only have one single
outgoing Sequence Flow.

Data-based decisions Exclusive Gateways are used to model data-based
decisions. The reason is that their semantics are uncomplicated [Axway
et al., 2010, p. 435]. We require each Exclusive Gateway to have its default Se-
quence Flow specified to prevent an exception is thrown when all conditions
of the gateway evaluate to false.
We refrain from using Inclusive Gateways since they require that a back-

wards search for tokens in the upstream Sequence Flows is executed [Chris-
tiansen et al., 2010]. We also refrain from using Event-based Gateways since
the subset currently does not consider Events except for Start Events and
End Events. Finally, we do not use the Complex Gateway since it shares the
complicated upstream search behaviour of the Inclusive Gateway and imposes
the possibility of race conditions [Axway et al., 2010, p. 437].

Annotations We introduce Text Annotations in order to support unstruc-
tured information within SCOPE BPMN models [Axway et al., 2010, p. 71].

6.6 Operational Semantics

In this section, we establish a semi-formal mapping of the SCOPE BPMN
subset to Petri net modules [Reisig, 2010]. This serves the purpose of
further refining the operational semantics of SCOPE and providing a basis
for the statical analysis of models that conform to the SCOPE coordination
model. The mapping is based on the work of Dijkman et al. [2007] on the
formal semantics of BPMN process models and adapted to conform to the
SCOPE BPMN subset. Further formalisation of the operational semantics are
left for future work.

133

6. Space-Coordinated Processes

Although the BPMN 2.0 specification already discusses its operational
semantics, a more rigorous semantics definition for SCOPE is desirable. The
reason is that the BPMN does not satisfy its claim to provide a precise
understanding of the behaviour of its elements [Axway et al., 2010, p. 425]:
The execution semantics of BPMN is specified only informally and does not
take Message Flows into consideration [Axway et al., 2010, pp. 238,425].
Petri nets are chosen as the target formalism because their execution

semantics is exact (mathematically defined) and there is a wide range of
static analysis techniques. Additionally, the use of Petri nets is an obvious
choice since the BPMN 2.0 specification discusses its operational semantics
in terms of token flow [Axway et al., 2010, p. 238].

6.6.1 Basic Constructs for Client Components

Figure 6.4 presents the mapping of SCOPE Tasks, Events and Gateways to Petri
net modules. A Start Event or End Event is mapped to a transition with an
input place and an output place. A Domain Task is mapped to a similar
module. The forking and merging Exclusive Gateways are mapped to Petri
net modules that represent the routing behaviour of the gateways using a
set of two transitions that follow a single space (fork) or precede a single
space (join), respectively. The Call Activity is mapped to a module that uses
two transitions to represent entering and returning from the referenced
Process of the Activity. The Petri net module of the referenced Activity then
needs to be copied into the Petri net module of the Call Activity to complete
the construct. In general, Sequence Flows are mapped to places.

6.6.2 Sub-Processes

In SCOPE, we use Sub-Processes in three different scenarios: as a container
to enable structured looping over a sequence of activities, as a container
for parallel execution (parallel box), and as an idiom for space access.
The corresponding Petri net modules for Sub-Processes are presented in
Figure 6.5 and Figure 6.6.

The Petri net module for the Sequential Sub-Process is almost identical to
the Petri net module for the Call Activity: It uses two transitions to represent

134

6.6. Operational Semantics

Figure 6.4. BPMN SCOPE subset to Petri net mapping for basic elements; the
individual SCOPE BPMN model fragments are displayed on the left hand side and
the corresponding Petri net modules to the right; dashed Petri net module elements
represent interface connection points for Petri net composition.

entering and returning from the module contained in the Sub-Process. How-
ever, as it does not reference a (reusable) Activity but represents a partition
of the Process, the Petri net modules corresponding to the partition must be
inserted (instead of copied) into the module to complete the construct.

Figure 6.5. BPMN SCOPE subset to Petri net mapping for the Sequential Sub-Process;
the SCOPE BPMN model fragment is displayed on the left hand side and the
corresponding Petri net module on the right; dashed Petri net module elements
represent interface connection points for Petri net composition.

The Parallel Sub-Process can be described as a combination of the Petri net
module of the Sequential Sub-Process with Petri net constructs for parallel
fork and join. The latter are modelled with a single transition that precedes
a set of places (tfork in case of the fork), and a set of places places that

135

6. Space-Coordinated Processes

precede a single transition (tjoin in case of the join).
The Sub-Process idiom for space access is discussed in Section 6.6.5.

Figure 6.6. BPMN SCOPE subset to Petri net mapping for the Parallel Sub-Process;
the SCOPE BPMN model fragment is displayed on the left hand side and the
corresponding Petri net module on the right; dashed Petri net module elements
represent interface connection points for Petri net composition.

6.6.3 Loop Characteristics

Loop behaviour must be considered in more detail, depending on the
actual Loop Characteristics of a BPMN Activity. First, we discuss Standard

Loop Characteristics and second, the Multi Instance Loop Characteristics. The
corresponding Petri net modules are presented in Figure 6.7
When the Standard Loop Characteristics is pre-test conditional (a “while”-

loop), the loopCondition must be checked before a loop iteration can be
executed. This is modelled with the place Pcheck and the two subsequent
transitions tcheck_true and tcheck_false. If the loopCondition evaluates to
true, the transition tcheck_true fires and initiates the construct to invoke the
Activity A. After A has executed, the transition trepeat fires and produces a
token to Pcheck, meaning that an iteration has executed and the condition
must again be evaluated. If the loopCondition evaluates to false (tcheck_false
fires), no (further) iteration can execute and the flow of control continues
with subsequent Petri net modules.

The pre-test iteration loop behaviour (a “for”-loop) can be regarded as a
special case of pre-test conditional loop behaviour: loopCondition evaluates to
true when the loopCounter has reached (equals) loopMaximum. Else, it evalu-
ates to false (the value of loopCounter is lesser than the value of loopMaximum).

136

6.6. Operational Semantics

Conceptually, the firing of trepeat also means that the value of loopCounter
is increased to represent a successful execution of A.

When the loop behaviour is post-test conditional (a “do while”-loop), the
loopCondition must be checked after a loop iteration has executed. This
means that always, at least one iteration executes. This is modelled again
with the transitions tcheck_true and tcheck_false, but this time, the two
transitions are located after the invocation of Activity A. After A is executed,
the transition tcheck_true fires only when loopCondition evaluates to true. It
produces a token to Ps, meaning that another iteration can execute. When
loopCondition evaluates to false, tcheck_false fires and the flow of control
continues with subsequent Petri net modules.

Figure 6.7. BPMN SCOPE subset to Petri net mapping for loop behaviour; the
SCOPE BPMN model fragment is displayed on the left hand side and the corre-
sponding Petri net module to the right; dashed Petri net module elements represent
interface connection points for Petri net composition.

As Dijkman et al. [2007] notice, parallel Multi Instance Loop Characteristics

represents a “for-each” programming construct (isSequential is false). We
consider the case that the number of instances n is known a priori at design
time.3 In this case, the Petri net module for Parallel Sub-Process (Figure 6.6)

3As Dijkman et al. [2007] notice, a priori knowledge at runtime would require high-level net
constructs such as arc expressions in Coloured Petri nets, which is beyond the scope of this

137

6. Space-Coordinated Processes

can be reused. The only difference is that the transitions A1 to An represent
instances of the actual Activity A to be executed.

6.6.4 Spaces

Figure 6.8 shows the mapping of a space to a Petri net module. It represents
a conceptual abstraction over the behaviour of a space that preserves its
black-box behaviour regarding the actual matching algorithm. The module
is necessary to construct complete Petri nets.

In principle, messages and data objects are mapped to tokens. The places
marked with dashed lines represent interfaces for the space primitives.
They are annotated with groups that identify the corresponding space
primitive. Each of these places consider tokens on them as messages to be
send or received. Beside these interface places, the individual parts of the
module decompose incoming messages into individual data object tokens,
and produce outgoing messages from data object tokens. Throughout the
module, we use n-weighted edges to represent a number of data objects.
This enables to consider each data object as a single token.4

At the core of the module, the place Pstore models the data object store
maintained by the space. In addition, the place Pnull models a special null
data object that can be returned to indicate that no match was found for
a given query. For the sake of clearness, Figure 6.8 breaks the module
down into separate parts for each space primitive. These module parts are
connected with each other by sharing the two places Pstore and Pnull. Within
each part, we provide places that represent the access interface for client

thesis.
4Avoiding this kind of a priory-knowledge would require to consider a single token as a set

of data objects. We refrain from this alternative since it would complicate the semantics of the
module: The production of a token that represents the result for a given query would require
to split and reassemble these sets. Consider, for example, a space that manages the set A and
B, where A consists of the data objects a and b, and B consists of the data objects c and d. As
well, consider a space operation ing that leads to a matching that identifies the data objects
b and c as matches. A Petri net construct that models the consumption of these data objects
from a data store place would then require to consume the two sets A and B, extract b and c
from them, produce a new set Result containing b and c, and produce sets for the remaining
data objects a and d to be returned to the data store place – for example, as A� and B�, or as a
single set Remain.

138

6.6. Operational Semantics

components (the places with the dashed lines and the corresponding space
primitives annotated), and two transitions that represent the interfaces for a
synchronisation policy that can be employed. In the following, we discuss
the Petri net module for the space component. After that, we discuss the
role of the synchronisation policy.
The publishing space primitives out and outg are modelled with the

two transitions taquire_write_<out/outg> and trelease_write_<out/outg>. These
transitions also represent an interface for a possible synchronisation policy
(therefore the dashed lines). The first transition conceptually can acquire
a lock, while the second releases it to indicate the successful publication
of one (or more) data object(s) to Pstore. The place Ptemp_<out/outg> is an
intermediate place to connect the two transitions. In the case of the outg
primitive, the atomic publication of multiple data objects is modelled with
n-weighted edges.
Similarly, the consuming primitives in, inp and ing also use two transi-

tions (taquire_write_<in/inp/ing> and trelease_write_<in/inp/ing>) as an interface
for a synchronisation policy. The transition taquire_write_<in/inp/ing> fires
when the space received a query for one or more data objects. It produces
a token that represents a query to the place P<in/inp/ing>_query. The place
models a query store that is used as a precondition to let the transition that
models the matching strategy fire (tmatch_withdraw for in, tmatch_withdraw_-

probing for inp, and tmatch_multi_withdraw_probing for ing). These matching
transitions, in turn, consume the query token from P<in/inp/ing>_query, and
one (or more) data object token(s) from Pstore in order to provide the neces-
sary data object(s) to be returned. Finally, firing of trelease_write_<in/inp/ing>
represents the return message from the space to a client component.

The actual abstraction from the matching algorithm is located in the tran-
sitions tmatch_withdraw, tmatch_withdraw_probing, and tmatch_multi_withdraw_-

probing. When the transitions tmatch_withdraw and tmatch_withdraw_probing

fire, they each consume a single matching data object token from Pstore.
In the case of the ing primitive, tmatch_multi_withdraw_probing consumes a
number of matching data object tokens from Pstore.

In case of the non-blocking space access operations inp and ing, the space
must be able to inform client components when there was no matching data
object available. This is modelled with the transition tmatch_<inp/ing>_null. It

139

6. Space-Coordinated Processes

fires when no matching data object could be found in Pstore, thus consuming
the query token from P<inp/ing>_query. In the case of the inp primitive,
tmatch_inp_null simply generates a token to Pinp_result that represents a null
object to be returned by trelease_write_inp.
For ing, it is necessary to model the preparation of the return message

explicitly. The reason is that we must distinguish between weighted and
non-weighted edges: A successful match produces n matching data objects
to Ping_result, and a mismatch produces a single token. As a solution, we
introduce the place Ping_result_msg that represents a temporary store for the
return message, and the transition tprepare_msg_ing that produces the result
message from the matching data objects to Ping_result_msg. Thus, a token
produced to Ping_result_msg represents a message that either contains a set
of data objects, or a single null data object.
The read primitives (rd, rdp, and rdg) are modelled similarly to the

consuming primitives. The only difference is that the matching transitions
tmatch_copy, tmatch_copy_probing, and tmatch_multi_copy_probing do not only
remove a token from Pstore but also generate one back to Pstore in order
to model a copy behaviour. The interface transitions are taquire_read_-

<rd/rdp/rdg> and trelease_read_<rd/rdp/rdg>.
As mentioned before, the Petri net mapping shown in Figure 6.8 provides

interface transitions for each space primitive that allow to formulate a
synchronisation policy for space access. The transitions can be identified
by their dashed lines. Figure 6.9 presents two examples of synchronisation
policies. Both have in common that tokens that are initially placed on
Pready_read represent read locks, and tokens that are initially placed on
Pready_write represent write locks. The transitions tacquire_read, trelease_read,
tacquire_write, and trelease_write represent placeholders that illustrate two
aspects: First, they show how the interface transitions of the space module
(Figure 6.8) can access the places Pready_read, Pbusy_read, Pready_write, and
Pbusy_write. Second, they show how the places Pbusy_read and Pbusy_write

inhibit the firing of the transitions (modelled with inhibitor edges that
prevent a transition from being fired).

The module on the left side of Figure 6.9 represents a simple locking
policy that does not profit from the distinction of read and write locks.
The module on the right side represents a read-write lock that shows the

140

6.6. Operational Semantics

Figure 6.8. BPMN SCOPE subset to Petri net mapping for spaces; the SCOPE BPMN
model fragment is displayed top and the corresponding Petri net module at the
bottom; dashed Petri net module elements represent interface connection points
for Petri net composition; the places Pstore and Pnull connect (are shared by) the
individual module parts. 141

6. Space-Coordinated Processes

following characteristics:

Any number of reading space accesses can acquire and hold a read lock.

No read lock can be acquired when a write lock is held.

No write lock can be acquired when a read lock is held.

Only one writing space access can acquire and hold a write lock at a
time.

When such a policy is formulated as a Petri net module, it can be
regarded as a contract for the operation of a concrete space implementation.
For example, the first policy in Figure 6.9 could be implemented in Java with
the synchonized keyword, while the second policy could be implemented
in Java using java.util.concurrent.locks.ReentrantReadWriteLock.5

Figure 6.9. Exemplary Petri net modules for space access synchronisation policies;
the left module illustrates a conventional locking policy while the right module il-
lustrates a multiple read locking policy; dashed Petri net module elements represent
interface connection points for Petri net composition.

5http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/ReadWriteLock.html
states that “[a] ReadWriteLock maintains a pair of associated locks, one for read-only oper-
ations and one for writing. The read lock may be held simultaneously by multiple reader
threads, so long as there are no writers. The write lock is exclusive.”

142

6.7. Related Work

6.6.5 Space Access

The mapping of space access operations to Petri net modules is presented
in Figure 6.10 by the example of the space primitives out and in. As the
interaction between spaces and client components is expressed in terms
of message exchange, BPMN Message Flows have to be modelled in terms of
token flow. We use places to model Message Flows.
First, publishing a data object to a space (BPMN Send Task) requires to

provide a data object token for the place that is required by the space’s
tacquire_write_out transition to fire. This is realised with the transition tsend_-

out on the side of the client. For the out primitive, it produces one data
object token to the place P(x1,out), and for outg, it produces one or more
data object tokens to the place P(x1,outg) (using a weighted edge).
Second, we demonstrate the idiom at the example of the in operation.

The Petri net modules for the BPMN idioms to consume or read data objects
require to consider the interface places of the space Petri net module
(Figure 6.8): P(x2,in_rec) expects a query, and P(x2,in_send) provides the
space’s return message. The transition tsend_in produces a query token for
the place P(x2,in_rec). In contrast, the client’s trec_in transition can only fire
when the space returned a response message, represented by a data object
token produced by trelease_write_in to the place P(x2,in_send). In the case of
a inp, rdp, ing, or rdg primitive, the token can also represent a null value, as
discussed above.

6.7 Related Work

6.7.1 DSL for AVOPT, Product Lining, and Interaction

The development of the SCOPE coordination model can be justified in terms
of DSL development patterns as discussed by Mernik et al. [2005]. The main
purpose of SCOPE is to provide a domain-specific language for Analysis,
Verification, Optimization, Parallelization, and Transformation (AVOPT). To
increase the accessibility of coordination architectures among stakeholders,
SCOPE was defined as a subset of the BPMN, providing a well-known notation
for coordination specification. In the context of Model-Driven Systems

143

6. Space-Coordinated Processes

Figure 6.10. BPMN SCOPE subset to Petri net mapping for space access; the
individual SCOPE BPMN model fragments are displayed on the left hand side and
the corresponding Petri net modules to the right; dashed Petri net module elements
represent interface connection points for Petri net composition.

(MDSs) (see Chapter 5) SCOPE can be regarded as a means for product lining
and product family establishment, depending on which artefacts are reused
(the coordination architecture models or the platform transformation sets).
Finally, since SCOPE is clearly focused on coordination, it specifies the
interaction of the individual components of a software architecture.

6.7.2 Closed Local Parallel Systems

There are several variations of the space operations in SBS. Kielmann [1996]
presents a set of operations that comprise both the operations from the orig-
inal Linda SBS for closed local systems (Linda-set), as well as the minimal set
of operations for open and distributed systems. Open systems are systems
in which new components (often denoted as agents) may dynamically join

144

6.7. Related Work

and leave [Agha, 1985; Kielmann, 1996], adding the requirement of dynamics
to coordination models. Distributed systems are systems that have to cope
with the remoteness of their components and the absence of an overall
compile time [Kielmann, 1996], adding the requirement of decentralisation.
The resulting operation set can be regarded as an archetypical SBS operation
set (Kielmann-set).

For the SCOPE coordination model, we adopt the space operations of the
LighTS tuple space framework [Balzarotti et al., 2007], a small extensible
open source Java implementation of an SBS for closed, non-distributed
concurrent programs. Its orientation towards closed local systems can be
explained by two prerequisites:

� There exist a single compile-time for the whole concurrent program.

� All components the concurrent program consists of are identified, mod-
elled, and implemented before the runtime of the application.

We leave an extension of SCOPE’s coordination primitives, for example,
for open and distributed systems and to increase the performance and
competition amongst space clients by a collect primitive [Butcher et al., 1994],
as future work.

6.7.3 Software Architecture Description

Software architecture can be defined as “the structure of the components of
a program/system, their interrelationships, and principles and guidelines
governing their design and evolution over time” [Garlan and Perry, 1995;
IEEE Architecture Working Group, 2000]. It can be specified by Architectural
Description Languages (ADLs) – formal languages that deal with the specifi-
cation of a system’s global structure by defining its basic elements denoted
as components, and the interactions between them in form of interfaces as
connectors. Thereby, ADLs can both describe single architectures denoted
as configurations, or whole families of architectures denoted as architectural
styles. Coordination, on the other hand, can be defined as “the management
of dependencies between activities” [Malone and Crowston, 1994]. This

145

6. Space-Coordinated Processes

is achieved by using coordination languages, whereas a coordination lan-
guage is “the linguistic embodiment of a coordination model” [Gelernter
and Carriero, 1992].

Although ADLs and coordination languages have evolved separately and
with different goals, they share common abstractions. This is especially the
case when the architectures of complex parallel and distributed systems
are considered. ADLs have at least the potential to coordinate interactions
between the components of a software architecture and can therefore be
considered as coordination languages or dynamic ADLs, and a certain co-
ordination model can be described either as an architectural style or as
the foundation of an ADL [Quintero et al., 2001]. Conversely, coordination
languages can describe the structures of programs (i. e., their architectures)
that change over time, and can therefore be considered as dynamic ADLs.
Although we emphasise coordination before architectural description, thus
denoting SCOPE as the foundation for a coordination language, we regard
the two terms dynamic ADL and coordination language as interchangeable.
We recommend the work of Medvidovic and Taylor [1997]; Papadopoulos
and Arbab [1998] as a starting point for a further study of existing ADLs
and coordination languages for the interested reader. In their work on dy-
namic coordination architecture through the use of reflection, Quintero et al.
[2001] provide an overview of the interrelationship between Coordination
Theory (CT) and software architecture, and provide PiLar as an example
that is both considered as a dynamic ADL and a coordination language.

146

Chapter 7

Requirements for a Coordination

Engineering Library and

Workbench

This chapter presents the requirements for a coordination library and a
coordination workbench for Space-Coordinated Processes (SCOPE). In the
following, we distinguish between the conceptual SCOPE coordination model
(see Chapter 6), the SCOPE metamodel (an abstract syntax that realises the
SCOPE coordination model as the foundation of a domain-specific language),
and SCOPE models (models that are conformant to the SCOPE metamodel).

7.1 Coordination Library

The purpose of the coordination library is to provide an experimental
environment for the justification of the SCOPE coordination model, and to
provide a prototype platform from the viewpoint of the platform provider
to support parallel systems designed with SCOPE.

Several requirements can be derived from these goals, see Table 7.1.
In the following, we describe the requirements, separated into functional
requirements (LF, describe what the system should do) and non-functional
requirements (LNF, describe how the system should be).

147

7. Requirements for a Coordination Engineering Library and Workbench

Table 7.1. Coordination library requirements.

LF-00 Performance Measurement

The library must provide mechanisms to measure the performance of parallel
programs that were developed using it. It should be possible to measure the
overall time behaviour of parallel programs, as well as the time behaviour of
the individual processes of the program. When the implementation is based on
a managed run-time environment, measures must be taken to reduce the effects
of bytecode interpretation and Just-In-Time (JIT) compilation [Goetz, 2009].

LF-01 Performance Analysis

The library must provide mechanisms to analyse the measured performance of
parallel programs that were developed using it. In particular, it must be possible
to compute the 95% confidence interval for a series of measurements because
of the importance of confidence intervals for statistically rigorous performance
evaluation [Georges et al., 2007].

LF-02 Performance Visualisation

The library must provide mechanisms to visualise the analysed performance
properties of parallel programs that were developed using it. In particular, it
must be possible to plot arithmetic means and confidence intervals computed
for a series of measurements.

LF-03 Benchmark Execution

The library must support the execution of benchmarks in order to analyse
its intrinsic time behaviour. The benchmark execution must support micro-
benchmarks that execute individual space operations, macro-benchmarks that
execute compound space operations and application-specific benchmarks that
execute complete SCOPE programs. In conformance to Fiedler et al. [2005] on
Space-Based Systems (SBS) performance measurement, scalability should be
measured in terms of throughput and response time.

LNF-00 Domain Conformance

The library must be conformant to domain concepts, ideally providing distinct
constructs for each distinct concept.

148

7.2. Coordination Workbench

LNF-01 Time Behaviour

The library must be scalable on multi-core machines. Additionally, the library
must perform well in contrast to lock-based programming.

LNF-02 Portability

The library must be portable across different parallel platforms. The parallel
platforms targeted are described as multi-core machines that provide a shared
memory abstraction.

LNF-03 Genericity

The library must be applicable to coordination in arbitrary application domains.
It must not be restricted to be used in a certain application domain (e. g.,
business, health, or energy).

LNF-04 Extensibility

The library must be extensible and adaptable to future requirements and
platforms.

LNF-05 Usability

The library must be as comfortable as possible from the programmer’s view-
point. This includes module test support, continuous build integration, and
dependency management.

7.2 Coordination Workbench

The purpose of the coordination workbench is to provide an implementation
of the conceptual SCOPE coordination model as a concrete Domain-Specific
Language (DSL). It is supported by appropriate tooling that can be used
by application engineers and transformation engineers for Coordination
Engineering. The implementation of the workbench illustrates the appli-
cation of the Tool Engineering process (Section 5.3.3) within Coordination
Engineering. In the following, we describe the requirements we derived
from this goal, separated into functional requirements (WF, describe what
the system should do) and non-functional requirements (WNF, describe

149

7. Requirements for a Coordination Engineering Library and Workbench

how the system should be), see Table 7.2.

Table 7.2. Coordination workbench requirements.

WF-00 Textual Representation

In contrast to a graphical representation, a textual representation supports the
iterative collaboration among stakeholders due to its block-based structure. It
allows to separate models across different files and to separate work within a
single file across different model blocks. Additionally, textual representations
profit from broad tool support. This is in particular the case with version
management systems. The SCOPE DSL must therefore provide a textual concrete
syntax.

WF-01 Visual Representation

Developing parallel applications using traditional programming languages
can be tedious and error-prone due to the linearity of textual source code.
Visual representations are multi-dimensional, thus able to present multiple
concurrent components naturally, while fine-grained concurrency control can
be encapsulated in appropriate model feature semantics [Browne et al., 1994;
Kleppe, 2008]. The SCOPE DSL must therefore provide a graphical concrete
syntax.

WF-02 Model Editing

The workbench must provide an editor for SCOPE models. In particular, models
must be editable by their textual representation in order to support collaborative
work.

WF-03 Model Validation

The workbench must support the structural and domain-specific validation of
SCOPE models. Errors and warnings should be indicated instantaneously and
corrected automatically, if possible.

WF-04 Model Visualisation

The workbench must provide a mechanism to render the visual representation
of SCOPE models in order to support the dissemination and understanding of
models.

150

7.2. Coordination Workbench

WF-05 Iterative Development Process

The workbench must support Coordination Engineering as an iterative develop-
ment process to reduce cascading change effects when existing SCOPE models
are manipulated.

WF-06 Transformation Editing

The workbench must provide a mechanism to edit Parallel Platform Transformation

sets.

WF-07 Transformation Execution

The workbench must provide a mechanism to execute Parallel Platform Transfor-

mation sets.

WNF-00 Domain Conformance

The SCOPE DSL’s metamodel must be conformant to domain concepts, ideally
providing distinct constructs for each distinct concept.

WNF-01 Business Process Model and Notation (BPMN) 2.0 Conformance

The DSL must be conformant to the BPMN specification in order to benefit from
its wide use and tool support. In particular, conformance to the SCOPE subset is
required.

WNF-02 BPMN 2.0 Interoperability

The workbench must be interoperable with BPMN tools in order to establish
seamless development tool chains.

WNF-03 Genericity

The workbench must be applicable to coordination in arbitrary application
domains. It must not be restricted to be used in a certain application domain
(e. g., business, health, or energy).

WNF-04 Extensibility

The workbench must be extensible and adaptable to future requirements and
uses.

WNF-05 Usability

The workbench must be as comfortable as possible and meet current expecta-
tions to contemporary tooling.

151

Chapter 8

Design of a Coordination

Engineering Library and

Workbench

In this chapter, we define the fundamental software architecture of a co-
ordination library and a workbench to support Coordination Engineering
with Space-Coordinated Processes (SCOPE). The chapter can be used as the
basis to implement a SCOPE coordination library and a SCOPE coordination
workbench.

For each of the two systems, the library and the workbench, we describe
the platform- and implementation-independent components.

8.1 Coordination Library

The coordination library consists of the following components that are inter-
connected via interfaces, see Figure 8.1. The specification of the interfaces
is not part of the component design.

� Scope: The component realises the SCOPE coordination model. It inter-
nally consists of the components Space Based System and Process Orches-

tration. It provides interfaces to access the two inner components, and
requires an interface to attach the Logging component.

� Space Based System: The component realises an Space-Based Systems (SBS).
It provides the functionalities to create and use spaces that provide the
space operations considered in the SCOPE model, see Section 6.3. The
component provides an interface to access its implementation.

153

8. Design of a Coordination Engineering Library and Workbench

«component»
Logging

«component»
MyProgram

«component»
PerformancePlotter

«component»
SpaceBasedSystem

«component»
ProcessOrchestration

«component»
SpaceBasedSystem

«component»
ProcessOrchestration

«component»
Scope LogAppenderLogger

«component»
BenchmarkSuite

Space
Acces

Process
Access

Figure 8.1. Component diagram of the coordination library.

Process Orchestration: The component provides coordination-specific pro-
cess components and abstract components to realise application-specific
processes. These use the SBS to coordinate themselves, and control flows
to orchestrate their internal activities. The component provides an access
interface, and requires an interface to the Space Based System and an
interface to attach the Logging component.

Logging: The component realises a logging component. The component
can be regarded as a generic logging service, but should be adapt-
able/able to produce custom log files. It provides an interface to access
the Logging service, and requires an interface to attach custom log appen-
ders to process log messages.

Performance Plotter: The component realises a custom log appender that
examines log messages to analyse and report the time behaviour of
SCOPE programs in a statistically rigorous way. It provides an interface
to append its functionality to the Logging component.

Benchmark Suite: The component realises a benchmark suite to conduct
several benchmarks on the SBS component. It provides the functionality

154

8.2. Coordination Workbench

to conduct micro-benchmarks (individual space operations) and macro-
benchmarks (compound space operations). The component requires an
interface to access the Space Based System component, and an interface to
attach the Logging component.

� My Program: The component is a placeholder for parallel programs re-
alised with SCOPE. This includes application-specific benchmarks. It
requires an interface to access the Space Based System component and
one to access the Process Orchestration component. An interface to the Log-
ging component is not required since application logging occurs through
the Process Orchestration component.

8.2 Coordination Workbench

The coordination workbench consists of the following components that
are interconnected via interfaces, see Figure 8.2. The specification of the
interfaces is not part of the component design.
The component design assumes the coordination workbench to realise

an external Domain-Specific Language (DSL) piggybacked on the Business
Process Model and Notation (BPMN) specification, instead of an internal DSL
embedded in a programming language, see Section 4.5.3. The reasons are a
clear separation of higher-level coordination-related DSL code from lower-
level computation-related programming code, sophisticated coordination-
specific validation, and accessibility by non-programmers.

� Coordination Workbench: The component realises the coordination work-
bench. It consists of the components Model Registry, Scope Model, Scope
Ui, Code Generator, and Bpmn Generator. It can be regarded as a generic
platform for language workbenches that was extended by coordination-
specific components. Additional generic platform details, such as generic
workspace, user interface, and plug-in toolkits, are omitted.

� Model Registry: The component realises a registry for models that can be
accessed by the components of the platform. This is, most importantly,
the metamodel of the SCOPE coordination model. The purpose of the

155

8. Design of a Coordination Engineering Library and Workbench

Model
Registry
Access

«component»
ScopeModel

«component»
ScopeUi

«component»
CodeGenerator

«component»
BpmnGenerator

Model
Registry
Access

«component»
ScopeModel

«component»
ScopeUi

«component»
CodeGenerator

«component»
BpmnGenerator

«component»
CoordinationWorkbench

«component»
ModelRegistry

Figure 8.2. Component diagram of the coordination workbench.

central registry is to decouple components from each other. This, for
example, makes it easier to extend the workbench by components that
provide additional notations and interoperability transformations for the
SCOPE metamodel. The Model Registry provides an interface to its service
to make metamodels available and to access available metamodels.

Scope Model: The component realises the SCOPE coordination model as a
domain-specific language (DSL). This comprises a metamodel for SCOPE
as well as a concrete textual syntax as the main notation of the language.
The textual notation is preferred over a graphical syntax as the main
notation of the DSL because it better supports editing, collaborative work,
and version management. The component requires an interface to the
Model Registry in order to make the SCOPE metamodel available to the
other components.

Scope Ui: The component realises an editor for the SCOPE DSL, including
mechanisms for coordination validation and error fixing. To do so, it
requires an interface to the Model Registry to access the SCOPE metamodel.

156

8.2. Coordination Workbench

� Code Generator: The component realises a generator for coordination code.
It comprises a transformation engine to execute Model-to-Text (M2T)
transformations to the parallel platform, as well as an editor for the
transformation engineer to produce sets of transformation, each set for a
different parallel platform. It requires an interface to the Model Registry
to access the SCOPE metamodel.

� Bpmn Generator: The BPMN generator represents a special generator that
executes a predefined model-to-model transformation that maps the
SCOPE metamodel to the metamodel of the BPMN specification. This
enables to generate BPMN models and diagrams from SCOPE models that
were created with the SCOPE DSL. The component requires an interface
to the Model Registry to access the SCOPE metamodel and to provide the
BPMN metamodel.

157

Part III

Evaluation

Chapter 9

Implementation

This chapter presents the implementation of a coordination library and a
coordination workbench for Space-Coordinated Processes (SCOPE). For each
of the two, we first describe the implementation decisions and then discuss
the individual sub-projects.

9.1 Coordination Library

In this section we present the implementation of the Process Coordination
Library (PROCOL), a library-based embodiment of the SCOPE coordination
model.1 Its purpose is two-fold: It provides a proof of concept for SCOPE,
and eases the development of concurrent space-based programs in Java.
PROCOL can be considered as an internal Domain-Specific Language (DSL) for
SCOPE. All PROCOL projects are integrated with Maven for build support.2

9.1.1 Implementation Decisions

We made several decisions for the implementation of the coordination
library. We document these decisions in the following. For convenience
and traceability, we associated the decisions to the requirements described
in Section 7.1. We also make references to the design of the coordination
library, see Section 8.1.

1http://procol.sourceforge.net/
2http://maven.apache.org/

161

9. Implementation

LF-00 Performance Measurement

Performance measurement is realised in the component Benchmark Suite. Since
we adopt the space operations of the LighTS tuple space framework [Balzarotti
et al., 2007] for the SCOPE coordination model (see Section 3.3.4 and Section 6.3),
it uses the interface class ITupleSpace as its Space Access interface. The imple-
mentation makes use of the libraries apache-commons-cli to provide a robust
command line interface, log4j as a generic logging component (i. e., the Logging
component in Section 8.1), and junit for testing.

LF-01 Performance Analysis

Performance analysis is realised in the component Performance Plotter. The
implementation distinguishes between start-up and steady state execution.
Confidence intervals are used to discuss independent measurement series.
Different techniques are used to compute confidence intervals based on whether
the number of individual measurements for a series is large or not. The
implementation makes use of the libraries apache-commons-math as a statistics
component, JFreeChart to plot the average means and the confidence intervals of
measurements series, STAX for processing Extensible Markup Language (XML)-
based log files, log4j as a generic logging component (i. e., the Logging component
in Section 8.1), and junit for testing.

LF-02 Performance Visualisation

The implementation of the Performance Plottermakes use of the library JFreeChart
to plot the average means and the 95% confidence intervals of measurements
series in high quality charts.

LF-03 Benchmark Execution

The experiments executed by the Benchmark Suite are directly concerning the
space operations, thus supporting micro-benchmarks and macro-benchmarks
natively. Application-specific benchmarks are not supported by the Benchmark

Suite since PROCOL applications make use of the generic logging component
log4j to measure their overall and per-component response time. For conve-
nience, the logging functionality is encapsulated in the abstract classes of the
implementation of the Process Orchestration component. In conformance to
Fiedler et al. [2005] on Space-Based Systems (SBS) performance measurement,
scalability is measured in terms of throughput and response time.

162

9.1. Coordination Library

LNF-00 Domain Conformance

The domain concepts described in Section 6.3 are realised in the implementation
of the components Space Based System and Process Orchestration. We selected
the LighTS framework as a basis for implementing the component Space Based

System since it provides a minimal, non-distributed (local) SBS implementation
and an adaptation layer for own extensions. junit is used for testing. The
implementation of the component Process Orchestration realises the coordination
components of the SCOPE coordination model, see Section 6.3. Its implemen-
tation uses apache-commons-cli for a robust command line interface, log4j as a
generic logging component, and junit for testing.

LNF-01 Time Behaviour

In SBSs, scalability is to a great extend determined by the ability of coordination
components to exchange data objects via spaces. To provide a scalable coordina-
tion library, we provide several alternative space data structure implementations
in the component Space Based System. The actual scalability and performance
are examined in several experiments discussed in Section 10.2.

LNF-02 Portability

The coordination library is implemented in Java, a widely used General-Purpose
Programming Language (GPL) based on a managed-runtime system, the so-
called Java Virtual Machine (JVM). Java guarantees portability by providing
JVM implementations for several platforms. As a consequence, the coordination
library can be used on a variety of platforms, as long as there exists a JVM
implementation for the platform.

LNF-03 Genericity

The support of genericity is two-fold: First, the use of the Java GPL does
not restrict the implementation to a certain application domain. Second, the
implementations of the components Space Based System and Process Orchestration

do not make any assumptions about the application domain.

163

9. Implementation

LNF-04 Extensibility

Extensibility is guaranteed by the adaptation layer provided by the LighTS
framework in the Space Based System component, and the interface classes of
the Process Orchestration component. Additionally, the ability of SBS to deal with
incomplete knowledge and the LighTS-specific extensions for context-based
systems makes it easy to provide future extensions for open systems. The
coordination library itself is purely written in Java, which reduces the need to
use additional technologies for own extensions.

LNF-05 Usability

To increase the usability of the coordination library from the programmer’s
viewpoint, all component implementations of the coordination library are
integrated with Maven for continuous build integration and dependency man-
agement.a Module tests are supported by junit.

ahttp://maven.apache.org/

9.1.2 Project procol-tuplespace

The project procol-tuplespace realises an SBS. Regarding the coordination
library software architecture described in Section 8.1, it represents the
implementation of the component Space Based System.
We already constituted the use of the LighTS tuple space framework

as a basis for implementation. We extended the framework as follows but
retained its original interface (see Section 3.3.4). We refer to the original
authors for an extensive overview of the LighTS framework [Balzarotti
et al., 2007]. Table 9.1 summarises the synchronisation mechanisms we used
in our extensions.

1. We exchanged the original synchronised Vector-based tuple space by a
version based on the unsynchronised java.util.LinkedList to allow for
more coarse-grained synchronisation and constant-time insert and re-
moval operations.3 Synchronising the tuple space operations is achieved

3http://docs.oracle.com/javase/tutorial/collections/implementations/list.html

164

9.1. Coordination Library

using the synchronized keyword. The resulting tuple space (TS) is re-
garded as a straight-forward reference implementation.

2. We added a CopyOnWriteTupleSpace (CoWTS) based on java.util.con-

current.CopyOnWriteArrayList. Synchronising the blocking tuple space
operations is achieved using the synchronized keyword. The non-blocking
read operation is not synchronised since it is allowed to return a null
value and operates on a local copy of the underlying array of the CopyOn-
WriteArrayList.4 The operation inp must be synchronised. Otherwise,
possibly interleaving inp operations can consume a tuple that conception-
ally has already been consumed by another component.5 The CoWTS is
expected to perform well for read operations, but writes should add a
performance penalty since mutative operations on the CopyOnWriteArray-
List internally make a fresh copy of the underlying array.

3. We added a ReadWriteLockedTupleSpace (RWLTS) based on LinkedList,
and java.util.concurrent.locks.ReentrantReadWriteLock and java.ut-

il.concurrent.locks.Condition for synchronisation. The RWLTS should
show the effect of differentiating read locks from write locks in contrast
to the TS, since ReentrantReadWriteLock allows multiple read locks to be
held on the LinkedList.

4. We added a ReadWriteLockedCopyOnWriteTupleSpace (RWLCoWTS) ba-
sed on CopyOnWriteArrayList. Synchronisation is achieved using Re-

entrantReadWriteLock and Condition. The non-blocking read operations
are not synchronised.

5. We added a ConcurrentHashMapTupleSpace (CHMTS) based on java.ut-

il.concurrent.ConcurrentHashMap. Synchronising the tuple space opera-
tions is achieved using the synchronized keyword. Tuples are stored as
values and keys are generated upon insertion as simple unique identifiers
using java.util.UUID. The count operation does not require synchronisa-
tion.
4“The iterator provides a snapshot of the state of the list when the iterator was constructed. No

synchronization is needed while traversing the iterator. The iterator does NOT support the remove
method.” (Java SE 1.5 API)

5We denote this behaviour as defective reduplication.

165

9. Implementation

6. We added a ReadWriteLockedConcurrentHashMapTupleSpace (RWLCHM-

TS) based on ConcurrentHashMap. Synchronisation is achieved using
ReentrantReadWriteLock and Condition. Tuples are stored as values and
keys are generated upon insertion as simple unique identifiers using
java.util.UUID.

7. We added a PreselectingReadWriteLockedConcurrentHashMapTupleSpace (PR-

WLCHMTS) based on ConcurrentHashMap. Synchronisation is achieved
using ReentrantReadWriteLock and Condition. Tuples are stored as val-
ues and keys are generated upon insertion. A generated key consists of
tuple arity (i. e., the number of fields), an encoded representation of field
types, and a generated unique id using java.util.UUID. This enables to
preselect tuple candidates before the actual matching by filtering with
the first two matching rules arity and type equivalence. Filtering relies on
splitting the keys to compute the candidates. Therefore, we suppose that
this implementation can show a decreased performance in contrast to
the other data structures. This is especially likely when there are many
similar tuples in the space, since both the key set as well as the candidate
set must be iterated and examined.

8. For convenience, we added a simple factory interface (and exemplary fac-
tories for CoWTS, RWLCoWTS, RWLTS, and TS) for setting up consistent
tuple space infrastructures, and added Maven build integration, addi-
tional tests, and documentation. The overall project structure resembles
that of the original LighTS framework with only small differences.

9.1.3 Project procol-tuplespace-benchmark

The project procol-tuplespace-benchmark realises an experimentation suite for
the project procol-tuplespace. Regarding the coordination library software
architecture described in Section 8.1, it represents the implementation of the
component Benchmark Suite. Table 9.2 provides an overview of the package
structure of the project.

Figure 9.1 and Figure 9.2 show Unified Modeling Language (UML) class
diagrams that illustrate the main classes of the experimentation suite. The

166

9.1. Coordination Library

Table 9.1. Overview of space operation synchronisation used in the different space
implementations; � denotes synchronisation with the synchronized keyword;

⊗
denotes the use of ReentrantReadWriteLock and Condition (r for readLock, w for
writeLock); © denotes that no synchronisation is used for the respective space
operation.

TS CoW-
TS

RWL-
TS

RWL-
CoW-
TS

CHM-
TS

RWL-
CHM-
TS

PRWL-
CHM-
TS

out � �

⊗
w

⊗
w �

⊗
w

⊗
w

outg � �

⊗
w

⊗
w �

⊗
w

⊗
w

in � �

⊗
w

⊗
w �

⊗
w

⊗
w

inp � �

⊗
w

⊗
w �

⊗
w

⊗
w

ing � �

⊗
w

⊗
w �

⊗
w

⊗
w

rd � �

⊗
r

⊗
r �

⊗
r

⊗
r

rdp � © ⊗
r © �

⊗
r

⊗
r

rdg � © ⊗
r © �

⊗
r

⊗
r

count � © ⊗
r © © © ©

Table 9.2. Overview of the package structure of the project procol-tuplespace-
benchmark.

scalability.benchmark

Contains the main class of the project, BenchmarkDriver, and auxiliary enumera-
tion types

scalability.benchmark.*
Contains the individual experiments supported by the project

scalability.exception

Defines a BenchmarkException

scalability.interfaces

Defines the interface IBenchmark and appropriate abstract classes

167

9. Implementation

implementation is based on a BenchmarkDriver that executes one or more
experiments via runExperiments. These, in turn, execute a set of IBenchmark
implementations via runBenchmarks. Between each benchmark, runBench-
marks makes use of the method pause to minimise possible interferences of
the individual benchmarks: it pauses the suite for a certain time, invokes
Garbage Collection (GC), and again pauses the application for a certain time.
The other methods of the BenchmarkDriver are either auxiliary methods for
logging or for command line interface construction. Table 9.3 shows an
overview of the command line interface parameters and their effects on the
experimentation suite. An exemplary command line invocation is shown in
the following:

java jar procol-tuplespace-benchmark-<version>.jar -cl 1 -cu 128 -b CONSUMERPRODUCER

-bi 8 -li 10000 -rt 10000 -pt 2000 -a 0 -ts ALL

Implementations of IBenchmark instantiate a set of concurrent workload
simulators that implement the Callable interface, see Figure 9.2. The simu-
lators either simulate work given a fixed run-time for throughput measure-
ment (i. e., implement AbstractFixedRuntimeWorkloadSimulator) or given a
fixed number of workload iterations to measure the response time (i. e., im-
plement AbstractFixedIterationCountWorkloadSimulator). The operations
to be simulated in each workload iteration are implemented in the method
simulateWorkloadIteration, which is required by the abstract superclass
of the respective simulator. Conceptually, each benchmark consists of an
implementation of IBenchmark (or AbstractBenchmark, to be more specific),
and an implementation of one of the two abstract workload simulators. The
benchmark suite considers the following benchmarks:

� OutBenchmark: Each workload iteration of a workload simulator publishes
a simple tuple in the tuple space via the out operation.

� OutInBenchmark: Each workload iteration checks the availability of a
certain tuple with a non-blocking rdp, and if there is no result, it produces
one with out. Else, it consumes the tuple with the non-blocking inp

operation.

� OutReadBenchmark: Each workload iteration checks the availability of a
certain tuple with a non-blocking rdp and if there is no result, it produces

168

9.1. Coordination Library

Table 9.3. Command line parameters for the project procol-tuplespace-benchmark.

cl: int

The lower border of the examined concurrency interval; beginning with this
value, the benchmark driver starts experiments with a number of workload
simulators equal to the current concurrency level, doubling the level until the
upper border is reached or excessed;a the value of cl is stored in the field
CONCURRENCY_LEVEL_LOWER

cu: int

The upper border of the examined concurrency interval; the value of cu is
stored in the field CONCURRENCY_LEVEL_UPPER

b: String

The benchmarks to be executed; allowed values are OUT, OUTIN, OUTREAD,
CONSUMERPRODUCER, and ALL

bi: int

The number of benchmark executions (iterations); the value of the parameter is
stored in the field BENCHMARK_ITERATIONS

li: long

The number of workload executions (iterations) used in each benchmark execu-
tion; the value of the parameter is stored in the field WORKLOAD_ITERATIONS

rt: long

The benchmark runtime (if runtime-dependent) in milliseconds; the value of
the parameter is stored in the field RUN_TIME

pt: long

The pause-time with GC between individual benchmark executions in millisec-
onds; the value of the parameter is stored in the field PAUSE_TIME

a: int

The tuple prepopulation count to simulate aged tuple spaces; the value of the
parameter is stored in the field AGEING_POPULATION_COUNT

ts: String

The tuple spaces to be benchmarked; allowed values of the parameter are TS,
RWLTS, COWTS, RWLCOWTS, CHMTS, RWLCHMTS, and ALL

h: boolean

A flag parameter that prints a help text on the command line, if used

ae. g., experiments with 1, 2, 4, 8, and 16 workload simulators for the interval [1, 16]

169

9. Implementation

BenchmarkDriver
- CONCURRENCY_LEVEL_LOWER: int
- CONCURRENCY_LEVEL_UPPER: int
- AGEING_POPULATION_COUNT: int
- RUN_TIME: long
- PAUSE_TIME: long
- BENCHMARK_ITERATIONS: int
- WORKLOAD_ITERATIONS: int
- LOG_PROPERTIES_FILE: String
- log: Logger
- benchmarks: ArrayList<IBenchmark>
- tuplespaces: ArrayList<Class<? extends ITupleSpace»
+ main (args:String[]): void
- runExperiments (): void
- createOptions (): Options
- runBenchmarks (
 benchmarks: ArrayList<IBenchmark>,
 currentConcurrencyLevel: int
 spaceClass: Class<? extends ITupleSpace>): void
- pause (): void
- initializeLogging (): void
- finalizeLogging (): void
- printUsage (): void

«interface»
IBenchmark

+ getName (): String
+ getDescription (): String
+ runbenchmark (
 numThreads: int,
 runTime: long,
 numIter: int,
 spaceClass: Class<? extends ITupleSpace>,
 agingPopulationCount: int)
 throws BenchmarkException: void

 0..nexecutes

AbstractBenchmark
ts: ITupleSpace
numThreads: int
+ getName (): String
+ runbenchmark (
 numThreads: int,
 runTime: long,
 numIter: int,
 spaceClass: Class<? extends ITupleSpace>,
 agingPopulationCount: int)
 throws BenchmarkException: void
- doBenchmarking (
 numThreads: int,
 runTime: long,
 numIterations: int)
- setUpSpace(
 spaceClass: Class<? extends ITupleSpace>)
 throws BenchmarkException: ITupleSpace
- populateSpace(agingPopulationCount: int)

AConcreteBenchmark

AnotherConcreteBenchmark

Figure 9.1. The UML class diagram for the benchmark driver and the benchmark
interface classes.

one with out. Since the first workload iteration produces a tuple, this is
a non-blocking read test.

ConsumerProducerBenchmark: The Benchmark starts a number of n con-
sumer (blocking in per workload iteration) and n producer simulators
(out per workload iteration), where n is the number of workload simula-
tors specified by the respective command line parameter.

The output of the benchmark suite is in XML format. The schema
of the XML format is presented in Appendix A. Essentially, it consists
of experiments that each consist of a number of benchmarks, whereas each
benchmark comprises a set of measurements. A measurement, in turn, contains
a data sample and defines its unit of measurement.

170

9.1. Coordination Library

AbstractFixedIterationCountWorkloadSimulator
implements Callable<Long>

ats: ITupleSpace
throuput: AtomicLong
barrier: CyclicBarrier
runTime: long
operationCount: long
- numIterations: int
+ AbstractFixedIterationCountWorkloadSimulator (
 ats: ITupleSpace ,
 throughput: AtomicLong,
 barrier: CyclicBarrier,
 numIterations: int)
+ call (): Long
barrierAwait (): int
simulateWorkloadIteration (): void

AbstractFixedRuntimeWorkloadSimulator
implements Callable<Long>

ats: ITupleSpace
throuput: AtomicLong
barrier: CyclicBarrier
runTime: long
operationCount: long
seriesNumber: int
seriesName: String
concurrencyDegree: int
Log: Logger
+ AbstractFixedIterationCountWorkloadSimulator (
 ats: ITupleSpace ,
 throughput: AtomicLong,
 barrier: CyclicBarrier,
 numIterations: int)
+ call (): Long
barrierAwait (): int
simulateWorkloadIteration (): void

AConcreteBenchmark

AConcreteWorkloadSimulator AnotherConcreteWorkloadSimulator
 0..n

 uses

AnotherConcreteBenchmark

 0..n

 uses

Figure 9.2. The UML class diagram for the workload simulators.

9.1.4 Project procol-benchmark-logging

The project procol-benchmark-logging realises a log analysis and plotting tool
for the project procol-tuplespace. Regarding the coordination library software
architecture described in Section 8.1, it represents the implementation of
the component Performance Plotter.6

The project analyses the log files of the benchmark suite. It computes
and plots the arithmetic mean and the 95% confidence interval for a series
of measurements that describes the behaviour of a tuple space. Example
plots can be found in Chapter 10. The confidence intervals are computed
using the Central Limit Theorem and the sample standard deviation if the
number of measurements is large (n 30), and the Student’s t-distribution

6As described in Section 9.1.1, the Logging component of the coordination library software
architecture (Section 8.1) is realised by the generic log4j logging service.

171

9. Implementation

when the number of measurements is small (n � 30). We refer to the
work of Georges et al. [2007] as an excellent reading on the importance of
confidence intervals for statistically rigorous Java performance evaluation.

Table 9.4. Overview of the package structure of the project procol-benchmark-
logging.

org.procol.framework.logging

Contains the main classes of the project, PerformanceEvaluator,
IntervalValuePlotter, and IntervalValuePlotterAppender

org.procol.framework.logging.util

Contains the auxiliary classes SimpleStatistics and ConfidenceLevel

Table 9.4 provides an overview of the package structure of the project.
The implementation is based on the classes PerformanceEvaluator, Interval-
ValuePlotter, and IntervalValuePlotterAppender.

� PerformanceEvaluator parses XML log files from the benchmark suite and
invokes IntervalValuePlotter for plotting. The XML files must conform
to the schema presented in Appendix A. PerformanceEvaluator is either
used as a standalone tool or invoked by IntervalValuePlotterAppender.

� IntervalValuePlotterAppender is a log appender for the log4j logging
service. By implementing org.apache.log4j.AppenderSkeleton, it can be
used as a log appender for the benchmark suite at runtime.

� IntervalValuePlotter represents the file plotter. It uses the Deviation-

Renderer from the jFreeChart library to plot the average mean and the
confidence intervals for the given measurement series. The implementa-
tion supports up to eight different series with an individual layout color
scheme each.

� SimpleStatistics is an auxiliary class that implements the formula for
calculating confidence intervals, and ConfidenceLevel is an auxiliary
class that represents a confidence level and the corresponding properties.

172

9.1. Coordination Library

9.1.5 Project procol-components

The project procol-components provides coordination-specific process com-
ponents for the realisation of application-specific processes. Regarding the
coordination library software architecture described in Section 8.1, it repre-
sents the implementation of the component Process Orchestration. Table 9.5
provides an overview of the package structure of the project.

Table 9.5. Overview of the package structure of the project procol-components.

org.procol.framework

Defines the generic abstract main class of the project, AbstractAppRunner

org.procol.framework.components

Defines interfaces, abstract classes, and generic concrete implementations for
coordination-specific process components

org.procol.framework.exception

Defines exceptions for the project

The implementation fosters orchestration by introducing the interfaces
IComponent, ICompositeComponent, and IMultipleInstanceComponent. While
the former extends java.util.concurrent.Callable, the latter two extend
IComponent. By convention, IComponents are only allowed to (a) communi-
cate with each other indirectly using SBS, (b) concurrency is implemented
by java.util.concurrent.ExecutorService, and (c) domain-specific compu-
tational activities are implemented using parameterless methods that use
the private fields of the component.
Figure 9.3 presents an overview of the project as a UML class diagram.

The implementation consists of the following interfaces and abstract classes:

� IComponent is a marker interface that specifies a call method that returns
a Boolean value upon successful termination.

� ICompositeComponent specifies the methods add, remove and getComponent

to handle composition (internal IComponents).

� IMultipleInstanceComponent describes components that instantiate and

173

9. Implementation

execute multiple instances of a single component. The method setInvokee

specifies the component to be invoked.

� AbstractComponent is an abstract implementation of IComponent that pro-
vides a constructor to initialise components with a map of known tuple
spaces with which component instances can communicate. The call

method is implemented to initialise runtime measurement, if isReported
is true. The method call invokes doExecute, an abstract method that
represents execution logic. It must be implemented by concrete imple-
mentations of AbstractComponent.

� AbstractCompositeComponent is an abstract implementation of ICompo-
siteComponent that provides implementations for the methods add, remove,
getComponent, and call. The class also extends AbstractComponent, mean-
ing that the method call invokes doExecute, which, in turn, must be
implemented by concrete implementations.

� AbstractMultipleInstanceComponent is an abstract implementation of
IMultipleInstanceComponent that provides implementations for the meth-
ods setInvokee and call. The class also extends AbstractComponent,
meaning that the method call invokes doExecute, which, in turn, must
be implemented by concrete implementations.

� AbstractAppRunner is an abstract class that provides methods to enable
performance monitoring for PROCOL programs. It is intended to be
implemented by the main class of a PROCOL program. The execute

method uses the methods initializeLogging and finalizeLogging to set-
up and shut-down logging, and runApp. runApp is an abstract method
that executes the coordination, including the set-up of the used SBS, and
the initialisation of the participating process components.

To address concurrency and composition, the project provides the fol-
lowing concrete process component implementations:

� MultipleInstanceParallelComponent is an extension of AbstractMultiple-
InstanceComponent that concurrently instantiates and executes multiple
instances of a single component as specified by the method setInvokee.

174

9.1. Coordination Library

«interface»
IComponent

+ call ()
 throws ComponentInvocationException: Boolean

AbstractAppRunner
isReporting: boolean
- LOG_PROPERTIES_FILE: String
- log: Logger
+ AbstractAppRunner (isReporting: boolean)
+ execute (): void
runApp (): void
- initializeLogging (): void
- finalizeLogging (): void

«interface»
ICompositeCopmponent

+ add (component: IComponent): void
+ remove (component: IComponent): void
+ getComponent (i: int): IComponent

«interface»
IMultipleInstanceCopmponent

+ setInvokee (
 invokee: Class <? extends AbstractComponent>,
 invokeCount: int): void

AbstractComponent
spaces: HashMap <String, ITupleSpace>
isReporting: boolean
name: String
- log: Logger
- _defaultName: String
+ AbstractComponent (
 spaces: HashMap <String, ITupleSpace>,
 isReporting: boolean,
 name: String)
+ doExecute ()
 throws ComponentInvocationException: Boolean
+ call (): Boolean

«interface»
java.util.concurrent.Callable <Boolean>

AbstractCompositeComponent

AbstractMultipleInstanceComponent

Figure 9.3. The UML class diagram for process orchestration.

To do so, it makes use of java.util.concurrent.ExecutorService and its
newFixedThreadPool method to instantiate and execute implementations
of AbstractComponent as java.util.concurrent.Futures.

MultipleInstanceSequentialComponent is an extension of AbstractMulti-
pleInstanceComponent that sequentially instantiates and executes multiple
instances of a single component as specified by the component’s con-
structor.

ParallelInvocationCompositeComponent is an extension of AbstractCom-
positeComponent that concurrently instantiates and executes a number of
different components as specified in the internal List populated by the
method add. To do so, it makes use of java.util.concurrent.Executor-
Service and its newFixedThreadPoolmethod to instantiate and execute im-

175

9. Implementation

plementations of AbstractComponent as java.util.concurrent.Futures.

� SequentialInvocationCompositeComponent is an extension of AbstractCom-
positeComponent that sequentially instantiates and executes a number of
different components as specified in the internal List populated by the
method add.

9.2 Coordination Workbench

In this section we present the implementation of a coordination workbench
for SCOPE, including an external DSL.7 The SCOPE DSL workbench uses the
PROCOL coordination library as a platform for code generation.

9.2.1 Implementation Decisions

We made several decisions for the implementation of the coordination work-
bench that we document in the following. For convenience and traceability,
we associated the decisions to the requirements described in Section 7.2.
We also make references to the design of the coordination workbench, see
Section 8.2.
We used the Xtext framework as a basis for DSL and workbench imple-

mentation [Xte, 2011]. Xtext is a mature language workbench framework
that is well-integrated with the Eclipse Modeling Project, see Section 4.5.5.
Its functionalities for syntax definition, model validation, and editor defi-
nition makes it an reasonable choice for rapid prototyping. Regarding the
design of the coordination workbench described in Section 8.2, Xtext pro-
vides project structures for the components Scope Model and Scope Ui in the
form of the projects scope and scope.ui, and acts as an interface framework to
use the Eclipse Modeling Framework (EMF) as both a development platform
and as a Model Registry component.

7http://scope-dsl.sourceforge.net/

176

9.2. Coordination Workbench

WF-00 Textual Representation

The Xtext framework supports concrete syntaxes by nature. Syntax definition
and validation are realised in the project scope, an implementation of the
component Scope Model from Section 8.2.

WF-01 Visual Representation

The graphical concrete syntax of the SCOPE DSL is defined as the Business
Process Model and Notation (BPMN) notation subset presented in Section 6.5.
BPMN model output is guaranteed by the project scope.generator.bpmn, an imple-
mentation of the component Bpmn Generator from Section 8.2. The project uses
medini QVT for Model-to-Model (M2M) transformation since it is integrated in
the Eclipse Integrated Development Environment (IDE) environment and since
it can support both the BPMN 2.0 metamodel as well as the SCOPE metamodel
using EMF Ecore.a

WF-04 Model Visualisation

Model visualisation is considered as a matter of third party tooling in the
responsibility of the application engineer. As an example, in-editor model
visualisation can be realised by using the BPMN2 component of the Eclipse
Model Development Tools (MDT) project.b.

WF-02 Model Editing
WF-03 Model Validation
WNF-05 Usability

The project scope.ui realises a textual editor for SCOPE models, including quick-
fixes for common model errors, model completion, and an appropriate search-
able outline view. The outline view uses BPMN notation elements to decrease
the conceptual distance between the textual representation of the SCOPE DSL
and the SCOPE BPMN subset defined in Section 6.5.

WF-05 Iterative Development Process

The transformation engine of medini QVT makes use of tracing information over
multiple executions. Only the modified parts of a SCOPE model are transformed
to BPMN when transformations are repeated. This facilitates a robust update
behaviour of the SCOPE tooling. Changes to SCOPE models can be propagated
to BPMN models even after the BPMN models were modified.

ahttp://projects.ikv.de/qvt
bhttp://www.eclipse.org/modeling/mdt/?project=bpmn2

177

9. Implementation

WF-06 Transformation Editing
WF-07 Transformation Execution

Transformation editing and execution is supported by the integration of medini
QVT in the coordination workbench.

WNF-00 Domain Conformance

Domain conformance is guaranteed by the abstract and concrete syntax of the
SCOPE DSL, see Section 9.2.2.

WNF-01 BPMN 2.0 Conformance
WNF-02 BPMN 2.0 Interoperability

BPMN 2.0 conformance is based on the SCOPE BPMN subset from Section 6.5
and the identification of the related metamodel fragments in the BPMN 2.0
metamodel. The interoperability between the SCOPE workbench and third
party tools that conform to the BPMN 2.0 specification is guaranteed by a M2M
transformation defined with Query/View/Transformation (QVT) QVT [2011].
The QVT transformation maps all SCOPE elements and their relations to the
corresponding BPMN elements and establishes the operational conformance of
the SCOPE coordination model to the BPMN 2.0 specification.

WNF-03 Genericity

Neither the Scope Model nor the Scope Ui component implementation makes
any restrictions to the targeted application domain. The SCOPE DSL provides
a simple type system that allows to define domain specific data types by
aggregation as part of the language.

WNF-04 Extensibility

Future extensions can be provided in different ways. First, toolsmiths can use
the Eclipse plug-in mechanism for workbench extensions such as additional
model editors, version management interfaces, and analysis tools. Second,
transformation engineers can provide additional generator projects to map the
SCOPE DSL to additional target platforms. Third, toolsmiths can extend the
SCOPE DSL by modifying the Xtext syntax definition.a

aLanguage extension is relatively easy concerning the SCOPE DSL since both the textual
notation of the language as well as its metamodel are inferred almost completely from the
Xtext syntax definition. However, such modification can require cascading modifications of
the validation, quickfix, and outline mechanisms of the workbench.

178

9.2. Coordination Workbench

9.2.2 Project scope

The project scope realises the SCOPE coordination model as a DSL. It repre-
sents the implementation of the component Scope Model in the coordination
workbench software architecture described in Section 8.2. Its development
refers to the activity Syntax Definition in the Tool Engineering process, see
Section 5.3.3.
The basic project structure is provided by the Xtext framework, see

[Xte, 2011], and was extended as needed. It includes the source code folders
src, src-gen and xtend-gen.

� src contains the implementation of the SCOPE DSL provided by the tool-
smith. Table 9.6 provides an overview of the package structure of the
src-folder of the project.

� src-gen contains DSL infrastructure code that is generated from the
contents of the src-folder.

� xtend-gen contains the generated class ScopeGenerator that can be used
for code generation.

Main Artefacts The package org.xtext.scope contains the main artefacts
of the SCOPE DSL and its infrastructure:

� The ScopeRuntimeModule represents the main runtime configuration of
the DSL infrastructure. It can be used to register custom components to
be used at runtime.

� The ScopeStandaloneSetup allows the SCOPE DSL to run in standalone
mode and initialises the Guice dependency injection framework used by
Xtext.89

8http://code.google.com/p/google-guice/
9The term standalone refers to the use of an Xtext language without using the Eclipse IDE,

or Eclipse Equinox extension points, respectively (http://www.eclipse.org/equinox/).

179

9. Implementation

Table 9.6. Overview of the package structure of the src-folder of the scope project.

org.xtext.scope

Contains the syntax definition of the SCOPE DSL and the main artefacts of the
DSL infrastructure.

org.xtext.scope.formatting

Contains means for language formatting. The package content is unmodified
since we do not consider custom formatting.

org.xtext.scope.generator

Contains means for code generation. The package is intended for Model-to-
Text (M2T) transformation templates. We refrain from the Xtext convention
of considering code generation as a part of the language definition since it
impedes a proper separation of concerns and the establishment of software
product lines by different generator sets, see Section 9.2.4.

org.xtext.scope.scoping

Contains means for scoping.a The package content is unmodified since we leave
custom scoping for future work.

org.xtext.scope.serializer

Contains means for serialisation.b The package content is unmodified since we
do not consider custom EMF serialisation.

org.xtext.scope.typesystem

Contains the class TypeSystemHelper, a helper class that we introduced to pro-
vide several convenience methods for type system navigation.

org.xtext.scope.validation

Contains means for validation.

aThe term scoping denotes the calculation of which model elements can be referenced by a
certain reference.

bThe term serialisation denotes the transformation of EMF models to its textual representation
to support DSL parsing and lexing.

180

9.2. Coordination Workbench

� GenerateScope is a Modeling Workflow Engine (MWE) 2 workflow that
triggers the Xtext framework to generate several DSL infrastructure com-
ponents in the src-gen folders of the projects scope and scope.ui. The
workflow allows to configure the generation with various components,
for example, for grammar access and validation.

� Scope is the definition of the abstract and concrete syntax of the SCOPE
DSL in the Extended Backus-Naur Form (EBNF)-like Xtext language.

� ScopePostProcessor is an Xtend file that modifies the Ecore metamodel
of the SCOPE DSL after it was generated from the Scope Xtext syntax
definition. We use it to create bidirectional relations between model
elements, which are not directly supported by Xtext but exceptionally
useful for M2T transformation template definition. The implementation
creates a EReference back-reference from the contained element to its
container, and sets each other as their respective EOpposite. The following
Xtend code illustrates this pattern by the example of Definitions and their
Imports.

process(ecore::EPackage this) :

let d = this.eClassifiers.typeSelect(ecore::EClass) :

d.select(e|e.name == "Import").first()

.eStructuralFeatures

.add(this.createBackRefFromImportToDefinitions())

->

d.select(e|e.name == "Definitions").first()

.eStructuralFeatures.typeSelect(ecore::EReference)

.select(e|e.name == "imports").first()

.setEOpposite(

this.eClassifiers.typeSelect(ecore::EClass)

.select(e|e.name == "Import")

.eStructuralFeatures.typeSelect(ecore::EReference)

.select(e|e.name=="definitionsRef").first())

->

<...>

;

create ecore::EReference createBackRefFromImportToDefinitions(ecore::EPackage p) :

this.setName("definitionsRef") ->

this.setEType(p.eClassifiers.typeSelect(ecore::EClass)

.select(e|e.name == "Definitions").first()) ->

this.setEOpposite(p.eClassifiers.typeSelect(ecore::EClass)

181

9. Implementation

.select(e|e.name == "Definitions")

.eStructuralFeatures.typeSelect(ecore::EReference)

.select(e|e.name=="imports").first()) ->

this.setLowerBound(0) ->

this.setUpperBound(1) ->

this

;

Abstract Syntax The concrete syntax of the SCOPE DSL is defined by the
EBNF-like Xtext file Scope in the package org.xtext.scope. The abstract
syntax of the language is defined in the Ecore metamodel that was inferred
from the Scope Xtext file and modified by the ScopePostProcessor. It is
located in the package org.xtext.scope in the folder src-gen. We discuss
the abstract syntax in terms of the metamodel. The Xtext language definition
can be found in Appendix B.
Figure 9.4 presents an overview of the SCOPE metamodel. The actual

metamodel development can be considered as language piggybacking [Mernik
et al., 2005]: Domain-specific elements were added to parts of a host lan-
guage (the previously identified BPMN 2.0 subset).

First, we discuss which metamodel elements we retained from the BPMN
2.0 specification: The main element of a SCOPE model is Definitions. In
accordance with the specification, we use it to define the scope of visibility
and the namespace for all contained elements [Axway et al., 2010, p. 51].
The Import class is used to reference elements contained in other Definitions
[Axway et al., 2010, p. 53]. The interaction between spaces and clients are
defined by Collaboration, which defines them as Participants. Client Participants
can reference a Process in order to be executable. Processes have Properties
(renamed to Process Properties) and a Sequence Flows elements. We refactored
the graph-based Sequence Flow modelling of the BPMN 2.0 standard into a
block-based structure: Instead of defining the sourceRef and the targetRef of
a single Sequence Flow, we define the order of execution of Flow Nodes within
a Process by the order of references to them with the nodes property of the
Sequence Flows or Conditional Sequence Flows elements. Start Events and End

Events can be omitted since the order of the references indicate the start and
end of the Sequence Flows. Flow Node is an abstract superclass for elements
in Sequence Flows. As Flow Nodes, we consider the Exclusive Gateway and
Activities. Activities can have Loop Characteristics to model looping or multiple

182

9.2. Coordination Workbench

�������
	

�

����
	

�

�������������
	

�

�������	

�

������������
	

�

������������	

�

������������	

�

��������������� 	

�

��������
	

�

��������������������������

	

�

��������	

�

����������

	

�

������������	

�

���	

�

����	

�

���������

	

�

����	

�

����������� 	

�

����������

	

�

����������������	

�

������������������
	

�

����� 	

�

�������

	

�

������� 	

�

��������������

	

�

�����	

�

�������

	

�

������ ����

	

�

�������������	

�

���������������

	

�

!���	

�

�����
	

�

�������"����
	

�

���������	

�

���������	

�

����

	

�

��������
	

�

����#�$����

	

�

�������������

	

�
�������������

	

�

����#�$����
	

�

��� ��

	

�

��������	

�

������������ 	

�

���

	

�
�����	

�

���	

�

�����

	

�

��� 	

�

����� 	

�

Figure 9.4. The metamodel of the SCOPE DSL.
Color print version: blue: elements from BPMN; green: SBS-specific elements; yellow:
primitive type system; red: support elements from grammar definition with Xtext.

183

9. Implementation

instantiation (using Standard Loop Characteristics or Multiple Instance Loop

Characteristics). Conventional looping behaviour is distinguished in For Loop

(pre-testing iterating loop), While Loop (pre-testing conditional loop), and Do

While Loop (post-testing conditional loop). Structurisation is supported by
Sub Processes: Sequential Sub Process allows to structure sequential activities
(e. g., to loop over sequences), and Parallel Sub Process allows to concurrently
execute different activities. The Call Activity can be used to invoke other
Processes from the current one. Finally we model the conditions of Conditional
Sequence Flows, While Loop, and Do While Loop as Expression declarations
instead of providing a complete expression system.
We added the following elements to model space-based inter-process

communication: We differentiate between Space and Client Participants.
Spaces do not have a reference to a Process since their behaviour is as-
sumed to be black-box. The Domain Task is an Activity (more specifically a
custom BPMN 2.0 Task) that represents domain-specific logic. It has a weight

attribute that allows software architects to specify a relative processing
time estimate that can be used for simulation before domain-specific logic
is actually implemented in subsequent analysis phases (see Section 5.3.1).
The Space Send Task is a BPMN 2.0 Send Task that publishes data objects to
a Space. The data objects to be published are specified by a reference to
a Process Property. Complex data objects are defined as Object Types that
have Object Properties. The Space Access Task represents the BPMN 2.0 idiom
for consuming or reading data objects from Spaces. The data objects to
be consumed or read are specified via a Query Specification that requests
an Object Type. Actual values to be matched are identified with an Object

Property Assignment Expressions that allows to assign the expected values

to the Object Properties of the requested data object. Finally, Expressions
have probabilities using Real Values. They can be used for simulation before
domain-specific logic is implemented.
There are some additional classes in the metamodel: Process Property

Call, Process Property Navigation Expression, Object Property Call, Object Property
Navigation Expression, and Object Property Assignment Expression. They support
the grammar definition in the Xtext framework. The differentiation between
Process Properties and Object Properties also simplifies grammar definition.
The elements Type and Value Call and their subclasses represent a simple

184

9.2. Coordination Workbench

type system that can be extended in future versions of the SCOPE language.

Concrete Syntax The concrete syntax of the SCOPE DSL was developed
with the Xtext language, see Appendix B. Appendix D and Appendix E
shows examples of the concrete syntax. The example are discussed in the
experiments described in Chapter 10.

In principle, sequences of activities are represented by a semicolon mark
(“;”) after the individual statements, while concurrency is represented
as either multiple-instantiated Call Activities (“multi-instance(...) call

...”) or Parallel Sub-Processes (“parallel {...}”).
We also use meaningful names for the coordination primitives: “publish”

denotes the operation out and “publish-all” denotes outg. The notation
for the consuming operations are “take” for in, “take-available” for inp,
and “collect” for ing. Analogously, the notation elements for the reading
operations are “read” for rd, “read-available” for rdp, and “scan” for rdg.
Finally, the concrete syntax employs an Structured Query Language

(SQL)-like rendering for Object Property Assignment Expressions: “where”-
clauses greatly simplify the specification of templates to be sent as queries to
spaces. The ordering of the clause (the “where”-part before the “from”-part)
is restricted by the language definition in Xtext. The following listing shows
an example:

take Image where (Image.isRendered = false) from Mandelbrot.ImageSpace

Validation The package org.xtext.scope.validation implements DSL val-
idation by the class ScopeJavaValidator. Table 9.7, Table 9.8, and Table 9.9
summarise the implemented model validations.

Table 9.7. Overview of the information validation for the SCOPE metamodel.

Informations

DOMAIN_TASK_NO_WEIGHT

Informs that a Domain Task should be weighted.

185

9. Implementation

Table 9.8. Overview of the warning validations for the SCOPE metamodel.

Warnings

COLLABORATION_NAME_NOT_CAPITALIZED

Warns that the name of a Collaboration should start with a capital letter.

PARTICIPANT_NAME_NOT_CAPITALIZED

Warns that the name of a Participant should start with a capital letter.

PROCESS_NAME_NOT_CAPITALIZED

Warns that the name of a Process should start with a capital letter.

OBJECT_TYPE_NAME_NOT_CAPITALIZED

Warns that the name of a Object Type should start with a capital letter.

CLIENT_NO_PROCESS_REFERENCE

Warns that Client should reference a Process to be executable.

EXPRESSION_EQUALS_ONE

Warns that the probability of a condition Expression should be lesser than 1.0

for simulation.

9.2.3 Project scope.ui

The project scope.ui realises an editor for the SCOPE DSL. Regarding the
coordination workbench software architecture described in Section 8.2, it
represents the implementation of the component Scope UI. Its development
contributes to the activity Workbench Development in the Tool Engineering
process, see Section 5.3.3.

Figure 9.5 shows a screenshot of the editor. The main editor window is
located on the upper left side of the workbench. It shows an example of
a SCOPE model with validation errors. Validation errors are also presented
in the Problems view at the bottom of the workbench. In the main editor
window, a pop-up dialogue provides so-called quick fixes for the error. To
the right side the outline view presents an overview of the SCOPE model.
It is synchronised with the main editor so that model elements selected
in the outline view are highlighted in the textual notation. Additionally,
the outline view provides a shortcut-triggered pop-up search dialogue

186

9.2. Coordination Workbench

Table 9.9. Overview of the error validations for the SCOPE metamodel.

Errors

SPACE_ACCESS_GROUP_COLLECTION_TYPE_REQUIRED

Checks that group Space Access Operations must be assigned to List Type proper-
ties.

SPACE_ACCESS_NONGROUP_NO_COLLECTION_TYPE_ALLOWED

Checks that non-looping non-group Space Access Operationsmust not be assigned
to a List Type properties.

SPACE_SEND_GROUP_COLLECTION_TYPE_REQUIRED

Checks that group Space Send Operations must publish List Type properties.

SPACE_SEND_NONGROUP_NO_COLLECTION_TYPE_ALLOWED

Checks that non-group Space Send Operations must not publish List Type proper-
ties.

PROCESS_MISSING_ATTENDANCE_IN_COLLABORATION

Checks that Processes must attend a Collaboration.

EXPRESSION_GREATER_THAN_ONE

Checks that the probabilities of condition Expressions must not be greater than
1.0.

EXPRESSION_BELOW_ZERO

Checks that the probabilities of condition Expressions must not be smaller than
0.0.

(STRG + o).
The basic project structure is provided by the Xtext framework, see

[Xte, 2011]. It includes the source code folders src, src-gen.

� src contains the configuration and implementation of the SCOPE DSL

editor provided by the toolsmith. Table 9.10 provides an overview of the
package structure of the src-folder of the project.

� src-gen contains DSL editor code that is generated from the project scope
and complemented by the contents of the src-folder.

Table 9.10 provides an overview of the package structure of the src-

187

9. Implementation

Figure 9.5. The editor for the SCOPE DSL.

folder of the project.

Outline View Xtext provides an outline view for model navigation that
provides a hierarchical view on domain models [Xte, 2011]. By default, it
shows the complete containment hierarchy without referenced elements.
To improve the outline view we modified and extended the default im-
plementation. First, we added several label implementations in the class
ScopeLabelProvider located in the package org.xtext.scope.ui.labeling.

� Labels for metamodel elements that have references to other elements
do not only contain the name of the elements, but also the referenced

188

9.2. Coordination Workbench

Table 9.10. Overview of the package structure of the of the src-folder of the project
scope.ui.

org.xtext.scope.ui

Contains the generated ScopeUiModule that can be used to register additional
custom components.

org.xtext.scope.ui.contentassist

Contains means for content assistance such as proposals for element naming.

org.xtext.scope.ui.labeling

Contains means for labelling. Text and image labels are used by the outline
view, for example.

org.xtext.scope.ui.outline

Contains the configuration of the outline view of the SCOPE DSL editor.

org.xtext.scope.ui.quickfix

Contains means to provide quick fixes for validation.

org.xtext.scope.wizard

Contains means to define a project wizard dialogue to set up new SCOPE
projects.

element (e. g., the type of a Process Property).

� Labels of Exclusive Gateways also name the number of the alternative
Sequence Flows.

� Conditional Sequence Flows labels show the probability of their execution
in percent.

� Space Access Task and Space Send Task labels also name their target Ref. Ad-
ditionally, Object Property Assignment Expression labels show the complete
assignment.

� Domain Task labels show the weight attribute.

� Labels for Loop Characteristics show the loop Condition or the loop Maximum,
respectively.

189

9. Implementation

Second, we customised the default structure of the outline view by
implementing the ScopeOutlineTreeProvider located in the package org.x-
text.scope.ui.outline.

� We disabled the generation of child nodes in the outline hierarchy for
the elements Object Property, Process Property, Object Property Assignment

Expression, and Loop Characteristics.

� For Conditional Sequence Flows, we enabled child node creation for refer-
enced nodes.

� For Call Activities and Domain Tasks, we enabled child node creation for
referenced Loop Characteristics, if available.

� For Space Access Tasks and Space Send Tasks, we enabled child node
creation for message Ref and referenced Loop Characteristics, if available.

Finally, we defined several image icons for the relevant metamodel ele-
ments in the class ScopeLabelProvider located in the package org.xtext.sco-
pe.ui.labeling. The image icons illustrate BPMN elements to minimise the
conceptual distance between the SCOPE BPMN subset and the textual syntax
of the SCOPE DSL.

Quick Fixes The Xtext framework allows to define so-called quick fixes to
resolve model validation issues defined by implementations of Abstract-
DeclarativeValidator. Table 9.11 shows the implemented quick fixes for
errors defined in the ScopeJavaValidator from the scope project10

9.2.4 Project scope.generator

The project scope.generator realises a generator for Java coordination code
that uses the PROCOL library. Regarding the coordination workbench soft-
ware architecture described in Section 8.2, it represents the implementation
of the component Code Generator.

10The ScopeJavaValidator extends the AbstractScopeJavaValidator, which, in turn, is an
extension of AbstractDeclarativeValidator. The AbstractScopeJavaValidator is generated by
the Xtext framework.

190

9.2. Coordination Workbench

Table 9.11. Quick fixes for model validation errors.

fixSpaceAccessRemoveGroup

fixes ScopeJavaValidator.SPACE_ACCESS_GROUP_COLLECTION_TYPE_REQUIRED

Changes the space operation to request non-group data objects.

fixSpaceAccessRemoveLoop

fixes ScopeJavaValidator.SPACE_ACCESS_GROUP_COLLECTION_TYPE_REQUIRED

Removes the loop characteristics of a Space Access Task to request non-group
data objects.

fixSpaceAccessNongroupDoesNotUseCollectionType

fixes ScopeJavaValidator.SPACE_ACCESS_NONGROUP_NO_COLLECTION_TYPE_ALLOWED

Changes the Space Access Operation to query List Type data objects.

fixSpaceSendGroupUsesCollectionType

fixes ScopeJavaValidator.SPACE_SEND_GROUP_COLLECTION_TYPE_REQUIRED

Changes the Space Send Operation to publish non-List Type data objects.

fixSpaceSendNongroupDoesNotUseCollectionType

fixes ScopeJavaValidator.SPACE_SEND_NONGROUP_NO_COLLECTION_TYPE_ALLOWED

Changes the Space Send Task to publish List Type data objects.

fixProcessAttendsCollaboration

fixes ScopeJavaValidator.PROCESS_MISSING_ATTENDANCE_IN_COLLABORATION

Makes the Process attend an existing Collaboration; also creates a new Collaboration

if none exists yet.

In contrast to the Xtext convention to consider code generation as a
part of the language definition, the scope.generator is held separate from
the language definition in the scope project. The reason lies in the sepa-
ration of concerns: Coordination Engineering considers workbench and
transformation development as two different activities that are executed by
different roles – the toolsmith and the transformation engineer (Chapter 5).
Holding the generator projects separate from the language definition allows
to provide additional generators without modifying the language definition,
thus fostering the establishment of software product lines.

Table 9.12 provides an overview of the package structure of the project.

191

9. Implementation

Table 9.12. Overview of the package structure of the project scope.generator.

org.scope.generator.java

Contains the ScopeGenerator MWE 2 workflow that performs the actual code
generation.

org.scope.generator.java.helper

Contains convenience classes. This is currently only the class GeneratorHelper. It
provides internal Universally Unique Identifiers (UUIDs) reference names for
the anonymous Parallel Sub-Processes and Sequential Sub-Processes.

org.scope.generator.java.templates

Contains Xpand templates used by the ScopeGenerator workflow for M2T trans-
formation.

Template Dependencies The scope.generator generates PROCOL Java coor-
dination code by executing the ScopeGenerator MWE 2 workflow located
in the package org.scope.generator.java. The ScopeGenerator uses the
Xtext component org.eclipse.xpand2.Generator to expand the Xpand M2T
transformation templates located in the package org.scope.generator.ja-
va.templates.

Figure 9.6 shows the call dependencies of the template files. For the sake
of clarity, the figure shows the template files as black boxes, the individual
template definitions are omitted. Instead, Table 9.13 presents a classification
of the template definitions on a per-file basis:

� Top-level templates are directly expanded (i. e., executed) by the Scope-
Generator. They initiate code generation by calling file generator tem-
plates.

� File generators generate code files. The granularity of the individual tem-
plate definitions is very coarse-grained. They call contextual templates
for repetitive chunks of configurable code.

� Contextual templates are used to generate repetitive chunks of code
that is configured by its context. The granularity of the individual
template definitions is medium to coarse-grained. Contextual templates
call type-system related templates.

192

9.2. Coordination Workbench

�����
����	
��	

����������
�����
��

���
�����
��

�
��
�	�����

�����
��

�	�����
�����
��

������
����

�����
��

�������
������	

��������
�����

�����!�	

�	���	��
�����!�	

���"��
����
	
����

�����!�	

#��������
����
	
����

�����!�	

����
���	����
�����!�	

$
���
#
��

�����!�	

Figure 9.6. The call dependencies of the generator templates.

� Type-system related templates are used to generate type-system relevant
code snippets. They map the primitive type system of the SCOPE DSL to
the type and data object system of Java and the PROCOL library. Type-
system related templates are fine-grained and recursive.

Code Generation The code generation for SCOPE programs is as follows.
First, the POMTemplate generates a pom.xml file for dependency management
and build integration with Maven. The pom.xml file represents the Project
Object Model (POM) – the fundamental project configuration required by
Maven to build target SCOPE projects. Appendix C discusses the project
structure of target SCOPE projects.

193

9. Implementation

Table 9.13. Generator template classification.

Template Classification Description

Definitions-

Template

Top-level tem-
plate

Triggers code generation for src/main/java
and src-gen/main/java.

POMTemplate Top-level tem-
plate, file gen-
erator

Generates the fundamental POM configu-
ration required by Maven to build SCOPE
projects.

MainProcess-

Template

File generator Generates Java classes for SCOPE Processes

that are directly referenced by a Client. Also
generates the class ExpressionHelper for
condition evaluation simulation to make
the entire SCOPE program executable before
domain code is supplemented.

ProcessTem-

plate

File generator Generates classes for all other SCOPE Pro-

cesses that attend the Collaboration.

ObjectType-

Template

File generator Generates Java classes for SCOPE Object

Types.

Options-

Builder

Contextual
template

Generates the parameter options for the
command line interface of target SCOPE
projects.

MethodDecla-

rationResol-

ver

Contextual
template

Generates method declarations for the ab-
stract and concrete classes that represent
SCOPE Processes.

Sequence-

FlowsResolver

Contextual
template

Generates Java code for the Sequence Flows

and the Flow Nodes of SCOPE models.

ConditionDe-

clarationRe-

solver

Contextual
template

Generates abstract and concrete Java meth-
ods for condition Expressions.

PropertyRe-

solver

Type-system
template

Generates Java code for the Process Proper-

ties of a Process.

Type-

Reference-

Resolver

Type-system
template

Generates Java code for Type References.
Uses the fall-through semantics of Xpand
templates to deal with complex metamodel
element hierarchies.

ValueCallRe-

solver

Type-system
template

Generates Java code for Value Calls.

194

9.2. Coordination Workbench

Second, the MainProcessTemplate, the ProcessTemplate, and the Object-
TypeTemplate generate Java code files. The Java files are generated into
the source folders src/main/java and src-gen/main/java. The ScopeGenerator

employs a conventional Generation Gap pattern [Vlissides, 1996]. Class in-
heritance is used to encapsulate the generated coordination code in abstract
classes and domain code in concrete implementations:

The MainProcessTemplate generates classes for SCOPE Processes that are
directly referenced by a Client. These are regarded as the main classes (entry
points for execution). For each Process, the template generates three files:

� An abstract class Abstract<process-name> that extends org.procol.fra-
mework.AbstractAppRunner. It contains the coordination code that uses
the PROCOL library. The file is generated to the folder src-gen/main/java.

� An abstract class Initialized<process-name> that extends Abstract<pro-
cess-name>. It uses the library apache-commons-cli to provide a robust
command line interface for the SCOPE project. The command line param-
eters are constructed from those Process Properties of the SCOPE Process

whose isInit attribute is set. The names of a parameter is initially gen-
erated using the first character of the corresponding Process Properties

supplemented with a deterministically generated integer id to prevent
ambiguities. Object Type Reference properties are recursively explored un-
til their primitive properties can be mapped to command line parameters.
The file is generated to the folder src/main/java.

� A concrete class <process-name> that extends Initialized<process-name>.
It contains empty method stubs for domain-specific logic to be provided
by domain engineers. The file is generated to the folder src/main/java.

The ProcessTemplate generates classes for all other SCOPE Processes that
attend the Collaboration. For each Process, the template generates two files:

� An abstract class Abstract<process-name> that extends org.procol.fra-
mework.components.AbstractComponent. It contains the coordination code
that uses the PROCOL library. The file is generated to the folder src-
gen/main/java.

195

9. Implementation

� A concrete class <process-name> that extends Abstract<process-name>. It
contains empty method stubs for domain code to be provided by domain
engineers. The file is generated to the folder src/main/java.

ObjectTypeTemplate generates Java classes for SCOPE Object Types. The
generated Java classes implement the interface lights.utils.ITuplable to
flatten the Object Types into tuples with the method toTuple, and to recreate
the objects from a retrieved tuple with setFromTuple, see Section 3.3.4. Both
methods are completely generated, along with getter and setter methods
for the corresponding Object Properties. The classes also implement the
interface java.io.Serializable to enable the SBS component of the PROCOL
library to handle deep object hierarchies. Java classes for Object Types are
generated to the folder src/main/java.
Code generation was designed to allow the prototyping of SCOPE pro-

grams. In particular, the following aspects were considered to facilitate
prototyping. First, if the weight attribute of a Domain Task is set, the Me-

thodDeclarationResolver generates a sleep statement for the process. The
statement simulates that the process takes time to perform some compu-
tation. The value of the weight attribute is multiplied with the factor 500,
considered as milliseconds by the sleep statement. Second, the MainPro-

cessTemplate generates the class ExpressionHelper. The class provides the
method boolExpr(double probability) that returns true with a given proba-
bility. The class is used by Conditional Sequence Flows, While Loop, and Do While

Loop to simulate the evaluation of boolean expressions to manipulate control
flow behaviour. Both, computation simulation and expression evaluation
simulation, should be replaced by domain code for further implementation.

9.2.5 Project scope.generator.bpmn

The project scope.generator.bpmn represents a M2M generator that generates
BPMN models from SCOPE models. Regarding the coordination workbench
software architecture described in Section 8.2, it represents the implementa-
tion of the component Bpmn Generator. Table 9.14 provides an overview of
the folder structure of the project.
The package org.scope.generator.bpmn contains the Java implementa-

tion for command line usage. The class ScopeToBpmn2QVTHeadlessGenerator

196

9.2. Coordination Workbench

Table 9.14. Overview of the folder structure of the project scope.generator.bpmn

src
Contains the Java sources to execute the SCOPE to BPMN model transformation
using the medini QVT transformation engine as a standalone command line
tool.

model
Can be used to contain example SCOPE models to test the QVT transformation.

qvt
Contains the scope2bpmn2.qvt QVT transformation file.

traces
Target folder for trace models generated by the medini QVT transformation
engine upon transformation execution.

implements a QVT generator that uses the scope2bpmn2.qvt transformation
file located in the project folder qvt. The implementation of the class is
based on a modified version of the medini QVT Java integration example
from the medini QVT web site.11 ScopeBpmnGenerator extends ScopeToBpmn2-
QVTHeadlessGenerator and adds a command line interface using the Apache
library apache-commons-cli. The command line parameters are described
in Table 9.15. An exemplary command line invocation is shown in the
following:

java jar scope.generator.bpmn-<version>.jar -i model/my.scope -o my.bpmn2 -d model/result"

At its core, the module executes a QVT Relations M2M transformation
scope2bpmn2.qvt. The QVT transformation was developed with medini QVT.
It is located in the folder qvt.
Figure 9.7 presents an overview on the transformation approach. The

transformation rules map the SCOPE metamodel to the BPMN 2.0 metamodel.
Thereby, a single BPMN model is generated from the SCOPE model by map-
ping the main Definitions and all imported Definitions namespaces of the
SCOPE model to a single Definitions elements in the BPMN model. The project

11http://projects.ikv.de/qvt/wiki/integration

197

9. Implementation

Table 9.15. Command line parameters of the project scope.generator.bpmn.

input (-i): String

The input file path

output (-o): String

The output file name

outputDir (-d): String

The output directory path

uses the following plug-in dependencies as the source and target metamod-
els for the QVT transformation:

� scope defines the source metamodel for the transformation (see Sec-
tion 9.2.2)

� org.eclipse.bpmn2 defines the BPMN 2.0 target metamodel for the transfor-
mation; the component is a part of the MDT.12

Ecore

SCOPE
Metamodel

BPMN 2.0
Metamodel

SCOPE
Model

BPMN 2.0
Process Model

conformsTo conformsTo

conformsTo conformsTo

Mapping

Transformation

defines

Layout
Update

Figure 9.7. SCOPE-to-BPMN transformation approach.

12http://www.eclipse.org/modeling/mdt/?project=bpmn2#bpmn2

198

9.3. Categorisation of the Implementation

Graphical BPMN models require additional layout information. These
can be generated after the transformation. We considered simple default
layout information since the development of layout algorithms for complex
graphical languages such as the BPMN 2.0 are out of the scope of this work.
If necessary, an appealing layout can be created by subsequent stakeholders
in any BPMN 2.0 conformant modeling tool.
The QVT transformation engine makes use of tracing information over

multiple executions. In subsequent transformations, only changes to a SCOPE
model are transformed to BPMN. This facilitates a robust update behaviour
of the tooling. Changes to SCOPE models can be propagated to BPMN models
even after the BPMN models were modified. Thus, the QVT transformation
establishes the conformance of the SCOPE coordination model to the BPMN
2.0 specification.

9.3 Categorisation of the Implementation

We can categorise our SCOPE implementation considering the taxonomy
for high-level concurrent software engineering presented in Section 2.5.
Table 9.16 shows an overview of the categorisation of the SCOPE implemen-
tation as a high-level concurrent software engineering approach.
The SCOPE workbench can clearly be identified as an IDE for Model-

Driven Software Development (MDSD). It applies Parallel Algorithmic Skele-
tons in the form of M2T transformation templates. The SCOPE DSL can be
used to illustrate and transport coordination architecture patterns. Since
the generated coordination code is almost directly executable by itself, the
SCOPE workbench can also be used for prototyping (i. e., the exploration of
system features in an early state of development). The workbench can be
considered as the embodiment of a coordination-specific DSL for concur-
rent programs that is based on a graph-based abstraction (i. e., the BPMN
2.0 specification) and intended to be mapped to a SBS-based coordination
library as its execution platform. Data parallelism can be modelled with
Multi Instance Loop Characteristics.
The PROCOL coordination library can be considered as a conventional

object-oriented library that can also be regarded as an internal DSL. Data

199

9. Implementation

Table 9.16. Categorisation of the SCOPE implementation; � denotes direct category
membership;© denotes amenability.

SCOPE DSL PROCOL

Techniques

Autotuning ©
Pattern languages © ©
Skeletons � ©
Prototyping © ©
IDEs � ©
MDSD � ©
Approaches

Library © �

Data parallelism © ©
Functional programming
Logic programming
Functional logic programming
COOP �

Coordination � �

Graph �

DSL � �

parallelism can be expressed using MultipleInstanceParallelComponents.
In principle, PROCOL can be combined with other high-level techniques such
as autotuning to find the best degree of concurrency for multi-instance
process components. As a conventional programming library, it is also
amenable for design patterns, skeleton/template definition, IDE supported
programming, and code generation with MDSD techniques.

200

Chapter 10

Experiments

This chapter documents several experiments that we conducted to illus-
trate the feasibility of our approach. First, we discuss the relevant perfor-
mance metrics. Second, we justify the SCOPE coordination model by proto-
benchmarks we conducted with the PROCOL coordination library. Third,
we illustrate the Coordination Engineering approach by two experiments
using the Space-Coordinated Processes (SCOPE) coordination workbench: an
experiment on the visualisation of the Mandelbrot set on the complex plane,
and one on Point-Feature Label Placement (PFLP) in Enterprise Architecture
Visualisation (EAV). For each of the experiments, we also document the
experimental configuration. The chapter is concluded with a discussion of
the threats to validity.

10.1 Performance Metrics

The performance metrics used in this chapter focus on throughput and
response time. Following the work of Fiedler et al. [2005], we measured the
scalability of a Space-Based Systems (SBS) Si

� in terms of the throughput Xbenchq(Si,Obench) in relation to the number
of workload simulators q given a fixed response time Tbenchq , or

� as the response time Tbenchq given a fixed number of completed space
operations Lbenchq(Si,Obench), see equation (10.1).

Thereby, bench denotes the respective experiment and Obench denotes
the (primitive or compound) operations to be completed. Subsequently,

201

10. Experiments

we define the scalability of a space-based data structure as presented in
Definition 1.

Xbenchq(Si,Obench) =
Lbenchq(Si,Obench)

Tbenchq

(10.1)

Definition 1 (Scalability) A space-based system Si is scalable, if
⎛
⎜⎜⎜⎜⎜⎝

Rthroughputbench
(Si,Obench, n,m) = Xbenchn(Si ,Obench)

Xbenchm(Si ,Obench)
� 1 �

Tbenchn = Tbenchm � Tbenchn , Tbenchm � 0 �

n � m � n,m � N

⎞
⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rresptimebench(Si,Obench, n,m) =
Tbenchn
Tbenchm

� 1 �

Lbenchn(Si,Obench) = Lbenchm(Si,Obench) �

Lbenchn(Si,Obench), Lbenchm(Si,Obench) � 0 �

n � m � n,m � N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

10.2 Justification of the Coordination Model

To justify the SCOPE coordination model presented in Chapter 6 as a rea-
sonable solution for concurrent programming in Java, we investigate the
behaviour of the Process Coordination Library (PROCOL) library (an internal
Domain-Specific Language (DSL) for SCOPE). We consider two quantitative
questions regarding the realisation and application of PROCOL, as shown in
Figure 10.1:

1. Which space-based data structures scale well on multi-core machines
(realisation)?

202

10.2. Justification of the Coordination Model

Go
al

Q

ue
st

io
ns

M

et
ric

s

Throughput Response time

Improve Multi-Core Programming in Java
using PROCOL

Which space-based data
structures scale well on multi-

core machines?

Does the PROCOL library
perform well compared to the

thread model?

Figure 10.1. The quantitative questions and metrics considered according to the
Goal Question Metric approach by Basili et al. [1994].

2. Does the PROCOL model show a reasonable performance compared to the
lock-based thread model (application)?

To answer these questions, we conducted a comparative evaluation of
two representative scenarios: the scalability of different PROCOL tuple space
data structures, and the scalability of a Mandelbrot application that is im-
plemented with the PROCOL library compared to an equivalent application
implemented with the standard Java thread model. The conclusions drawn
from these experiments are that in principle, SBS implementations can be
provided that scale reasonably well on multi-core architectures, and that
the performance overhead imposed by the PROCOL library is at least for the
considered application a reasonable trade-off for the provided benefits.

In the following, we first present the experimental configuration. Second,
we evaluate the scalability of several space-based data structures that we
have implemented (question 1). Third, we evaluate two equivalent programs
that compute the Mandelbrot set concurrently and that show it on the
complex plane. The first is implemented using the PROCOL library, and the
second using the Java standard thread model (question 2).

203

10. Experiments

10.2.1 Experimental Configuration

To minimise interferences between the individual benchmark runs of an
experiment the BenchmarkDriver pauses for 5,000 ms, then invokes the Java
Garbage Collection (GC), and pauses again for 5,000 ms between benchmark
runs. We executed 12 runs for each experiment, where the first two are
excluded as warm-up runs to reduce the effects of bytecode interpretation
and Just-In-Time (JIT) compilation [Goetz, 2009]. We use the arithmetic
mean and the 95% confidence interval for the remaining ten results. The
confidence intervals allow us to address two questions: Do different tuple
space implementations show significantly different behaviour or not?1 How
large is the performance variation of the individual measurements for a
single tuple space implementation? Experiments that implement Abstract-
FixedRuntimeWorkloadSimulator executed workload simulation iterations
for 10,000 ms. Unless otherwise stated, the benchmarks used primitive
type tuples as data objects (floats and integers). The benchmarks were
conducted on four machines M0 to M3. M1 and M2 are identical machines
with different operating systems and Java environments. M0, M2 and M3
use the same operating system. M0 and M2 also use the same Java Version.
This means that differences in the execution behaviour of M0 and M2 must
be a matter of hardware, and differences between M1 and M2 must be a
matter of different software stacks:

� (M0) T6340, 2xUltraSparcT2+ 8core 1.4Ghz, 16x4GB FB DIMM, Solaris 10,
Java Version 1.6.0_21, Java(TM) SE Runtime Environment (build 1.6.0_21-
b06), Java HotSpot(TM) Server VM (build 17.0-b16, mixed mode)

� (M1): X6270, 2xIntel Xeon E5540 4core 2.53GHz, 12x2GB DDR3-1066MHz
ECC, Debian Lenny, Java Version 1.6.0_0, OpenJDK Runtime Environ-
ment (build 1.6.0_0-b11), OpenJDK 64-Bit Server VM (build 1.6.0_0-b11,
mixed mode)

� (M2) X6270, 2xIntel Xeon E5540 4core 2.53GHz, 12x2GB DDR3-1066MHz
ECC, Solaris 10, Java Version 1.6.0_16, Java(TM) SE Runtime Environment
1If the confidence intervals for two implementations do not overlap, the performance

difference between the two is significant. Else, it is most likely caused by random performance
variations in the system under measurement [Georges et al., 2007].

204

10.2. Justification of the Coordination Model

(build 1.6.0_16-b01), Java HotSpot(TM) Server VM (build 14.2-b01, mixed
mode)

� (M3) X6240, 2xAMD Opteron 2384 4core 2.7GHz, 8x2GB DDR2-667,
Solaris 10, Java Version 1.5.0_20, Java(TM) 2 Runtime Environment,
Standard Edition (build 1.5.0_20-b02), Java HotSpot(TM) Server VM
(build 1.5.0_20-b02, mixed mode)

10.2.2 Data Structure Benchmark Results

Figures 10.2, 10.3, 10.4, 10.5, and 10.6 show the results of different experi-
ments regarding the appropriateness of different Java Data structures as a
SBS component. The experiments can be regarded as microscopic (individual
operations) and macroscopic (compound operations) proto-benchmarks.2

In the following, we discuss the results of each experiment separately, and
summarise the general observations at the end of the section.
The figures do not contain the measurements for the PRWLCHMTS

since it showed catastrophic response time behaviour. For example, in
previous test runs on M0 the PRWLCHMTS took an average of 2,013,632.33
milliseconds (33.56 minutes) to complete the ConsumerProducerBenchmark

using 2 workload simulators. A possible reason is that there are many
similar tuples in the space so that both the key set as well as the candi-
date set contain all entries of the tuples so far produced. Both must be
iterated and examined for matching. However, the response time of the
PRWLCHMTS is about magnitudes worse than that of the RWLCHMTS
so that we must consider the possibility that the implementation of the
PRWLCHMTS contains defects that we have not yet identified. Deemed as
impractical in its current implementation, we excluded the PRWLCHMTS
from the discussion of benchmarks.

2Sim et al. [2003] state that a benchmark has three components, a motivating comparison that
states its purpose for comparison and its need for research, a representative task sample, and
performance measures that illustrate its fitness for purpose by showing how the benchmarked
technology is used. In addition, they denote benchmarks that lack one of these components
as proto-benchmarks. Consequently, we identify ours as proto-benchmarks since there is no
standardisation upon the task samples nor the measures.

205

10. Experiments

OutBenchmark @ 10,000 ms

1 2 4 8 16 32 64 128
Workload simulators

0
500

1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
5.500
6.000
6.500

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

1 2 4 8 16 32 64 128
Workload simulators

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

1 2 4 8 16 32 64 128
Workload simulators

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

1 2 4 8 16 32 64 128
Workload simulators

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

TupleSpace ReadWriteLockedTupleSpace CopyOnWriteTupleSpace

ReadWriteLockedCopyOnWriteTupleSpace ConcurrentHashMapTupleSpace

ReadWriteLockedConcurrentHashMapTupleSpace

Figure 10.2. Results of the OutBenchmark on machines M0 to M3 from left to right,
top to bottom.

OutBenchmark Each workload iteration of the workload simulator pub-
lishes a simple tuple in the tuple space via the out operation. Regarding
the OutBenchmark, we see a drop of throughput between the use of 1 and
2 workload simulators on all machines. For example, RthroughputOut (STS,
OOut, 1, 2) = 1.25 on M2. Except for that, all six tuple space implementations
scale well on M0, M2, and M3. On M1, the throughput of the TS increases
slightly from 2 to 4 workload simulators (RthroughputOut (STS, OOut, 2, 4) =
0.94) and then decreases again (RthroughputOut (STS, OOut, 4, 128) = 1.23). We
can see that the 95% confidence intervals of the TS and the RWLTS, and
of the CHMTS and the RWLCHMTS mostly overlap. This means that the

206

10.2. Justification of the Coordination Model

behaviour of the traditionally synchronised implementations is not signifi-
cantly different from the read-write-locked versions. In general, the CoWTS
and the RWLCoWTS show a much lower performance than the TS and
the RWLTS due to the copy-on-write behaviour of the underlying Copy-

OnWriteArrayList. Also, the CHMTS and the RWLCHMTS show a lower
performance than the TS and the RWLTS.

OutInBenchmark @ 10,000 ms

1 2 4 8 16 32 64 128
Workload simulators

0

2.500

5.000

7.500

10.000

12.500

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

1 2 4 8 16 32 64 128
Workload simulators

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

1 2 4 8 16 32 64 128
Workload simulators

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

60.000

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

1 2 4 8 16 32 64 128
Workload simulators

0

2.500

5.000

7.500

10.000

12.500

15.000

17.500

20.000

22.500

25.000

27.500

30.000

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

TupleSpace ReadWriteLockedTupleSpace CopyOnWriteTupleSpace

ReadWriteLockedCopyOnWriteTupleSpace ConcurrentHashMapTupleSpace

ReadWriteLockedConcurrentHashMapTupleSpace

Figure 10.3. Results of the OutInBenchmark on machines M0 to M3 from left to
right, top to bottom.

OutInBenchmark Each workload iteration checks the availability of a cer-
tain tuple with a non-blocking rdp, and if there is no result, it produces one
with out. Else, it consumes the tuple with the non-blocking inp operation.

207

10. Experiments

The RWLTS and the RWLCHMTS perform surprisingly well on M0 and M2
with increasing performance until reaching an observable peak at 64 work-
load simulators, then levelling off. A possible reason is the differentiation
of read and write locks that let both excel in reading tuples. The decreasing
performance after the peak can be explained by effects of write locking
when the number of concurrent simulators increases. We can also see a large
performance variation for both implementations on M0, which starts when
4 workload simulators are used, as indicated by their confidence intervals.
When 8 workload simulators or more are used both implementations show
similar behaviour since their confidence intervals begin to overlap. On M1
we see a strong decrease in throughput and a fluctuating behaviour of the
RWLTS and the RWLCHMTS. This is especially the case between 4 and 8
workload simulators. For example, RthroughputOutIn (SRWLTS, OOutIn, 4, 8) =
2.38 and RthroughputOutIn (SRWLTS, OOutIn, 8, 16) = 0.70. Using 16 simulators
or more stabilises throughput. A possible explanation is contention with
OS and VM threads. As their overlapping confidence intervals indicate,
the RWLTS and the RWLCHMTS show similar behaviour. In contrast, the
RWLCoWTS shows significantly different behaviour. This is likely due to
the fact that the RWLCoWTS does not have to synchronise the rdp operation.
All in all, throughput decreases from 1 to 128 workload simulators for all
implementations on M1. On machine M2, the overall throughput of the
RWLTS and the RWLCHMTS is much higher than on M1, and the other
implementations scale better than on M1. Since M2 is hardware-wise similar
to M1, we can identify the software stack of M1 as inferior compared to that
of M2. On M3, the CoWTS and the RWLCoWTS scale well, with increas-
ing throughput between 1 and 2 workload simulators. While the CoWTS
scales constantly when using more than 2 simulators, the throughput of
the RWLCoWTS decreases between 4 and 8 simulators before it stabilises.
Again, a possible explanation is OS and VM thread contention. The other
implementations, on the contrary, show a small drop of throughput between
the use of 1 and 2 workload simulators (RthroughputOutIn (SRWLTS, OOutIn, 1, 2)
= 1.12) and a constant scalability from 2 to 128 simulators. Except for that,
the TS and the CHMTS scale well on M0, M2, and M3. They show a worse
performance than the CoWTS and the RWLCoWTS since the former employ
conventional synchronisation for the space operations, and the latter do not

208

10.2. Justification of the Coordination Model

employ any synchronisation for non-blocking read operations at all. Finally,
the CHMTS and the RWLCHMTS show a slightly worse performance than
the TS and the RWLTS. A possible reason is the additional synchronisation
in the ConcurrentHashMap of the CHMTS and the RWLCHMTS in contrast to
the TS and the RWLTS, which internally use the unsynchronised LinkedList.

OutReadBenchmark @ 10,000 ms

1 2 4 8 16 32 64 128
Workload simulators

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

450.000

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

1 2 4 8 16 32 64 128
Workload simulators

0
25.000
50.000
75.000

100.000
125.000
150.000
175.000
200.000
225.000
250.000
275.000
300.000
325.000

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

1 2 4 8 16 32 64 128
Workload simulators

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

450.000

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

1 2 4 8 16 32 64 128
Workload simulators

0

25.000

50.000

75.000

100.000

125.000

150.000

175.000

200.000

225.000

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

TupleSpace ReadWriteLockedTupleSpace CopyOnWriteTupleSpace

ReadWriteLockedCopyOnWriteTupleSpace ConcurrentHashMapTupleSpace

ReadWriteLockedConcurrentHashMapTupleSpace

Figure 10.4. Results of the OutReadBenchmark on machines M0 to M3 from left to
right, top to bottom.

OutReadBenchmark Each workload iteration checks the availability of a
certain tuple with a non-blocking rdp and if there is no result, it produces
one with out. Since the first workload iteration produces a tuple, this is
a non-blocking read test. The TS and the CHMTS scale constantly since

209

10. Experiments

their operations are synchronised with the synchronized keyword. The
CoWTS, the RWLTS, the RWLCoWTS, and the RWLCHMTS perform ex-
ceptionally well, with increasing performance until 8 workload simulators
on M1 and M3, and until 16 workload simulators on M2 (RthroughputOutRead
(SRWLCHMTS, OOutRead, 1, 16) = 0.13). Then their performance turns into a
near-constant throughput on a high level of performance (RthroughputOutRead
(SRWLCHMTS, OOutRead, 16, 128) = 0.98). An obvious explanation is that
concurrency can not further be exploited for real concurrency. On M1, the
decease of throughput of the CoWTS, the RWLTS, the RWLCoWTS, and
the RWLCHMTS between 8 and 16 workload simulators is much greater
than on M2. Again, we can identify the software stack of M1 as inferior
compared to that of M2 since both are hardware-wise similar to each other.
On M0, throughput continues to increase up to 128 workload simulators,
the exact number of logical processing elements of M0 (2 processors with 8
cores each, which each support 8 logical processing elements). The reason
for the overall behaviour of the implementations is that the OutReadBench-
mark is essentially a non-blocking read benchmark. The CoWTS’s and the
RWLCoWTS’s CopyOnWriteArrayList can excel since their rdp operation is
not synchronised. The differentiation of read and write locks suggest that
the RWLTS and the RWLCHMTS also excel at read benchmarks. The TS and
the CHMTS can not speed up since their rdp operation is conventionally
synchronised.

ConsumerProducerBenchmark The Benchmark starts a number of n con-
sumer (blocking in per workload iteration) and n producer simulators (out
per workload iteration), where n is the number of workload simulators
specified by the respective command line parameter. We observe constant
and almost identical response time behaviour for the TS and the RWLTS,
and the CHMTS and the RWLCHMTS given a fixed number of operations
to be performed. Thereby, the CHMTS and the RWLCHMTS show a lesser
and less scaling performance than the TS and the RWLTS. Again, an ex-
planation is the additional synchronisation in the ConcurrentHashMap of the
CHMTS and the RWLCHMTS. The CoWTS and the RWLCoWTS show less
scaling response time behaviour and noticeable performance variations in
the measurements as indicated by their confidence intervals. Most striking,

210

10.2. Justification of the Coordination Model

ConsumerProducerBenchmark @ 10,000 operations/workload simulator

1 2 4 8 16 32 64 128
Workload simulator pairs (consumers and producers)

0
500

1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
5.500
6.000
6.500

R
es

po
ns

e
Ti

m
e

(m
s,

 n
or

m
al

iz
ed

)

1 2 4 8 16 32 64 128
Workload simulator pairs (consumers and producers)

0

250

500

750

1.000

1.250

1.500

1.750

R
es

po
ns

e
Ti

m
e

(m
s,

 n
or

m
al

iz
ed

)

1 2 4 8 16 32 64 128
Workload simulator pairs (consumers and producers)

0
100
200
300
400
500
600
700
800
900

1.000
1.100
1.200
1.300

R
es

po
ns

e
Ti

m
e

(m
s,

 n
or

m
al

iz
ed

)

1 2 4 8 16 32 64 128
Workload simulator pairs (consumers and producers)

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

R
es

po
ns

e
Ti

m
e

(m
s,

 n
or

m
al

iz
ed

)

TupleSpace ReadWriteLockedTupleSpace CopyOnWriteTupleSpace

ReadWriteLockedCopyOnWriteTupleSpace ConcurrentHashMapTupleSpace

ReadWriteLockedConcurrentHashMapTupleSpace

Figure 10.5. Results of the ConsumerProducerBenchmark on machines M0 to M3
from left to right, top to bottom.

on M3 the response time of the RWLCoWTS starts to increase continuously
from 8 to 128 workload simulators in contrast to the other implementations.
Surprisingly, the conventionally synchronised CoWTS scales well on M3
although we would have expected a similar performance penalty for both
implementations caused by the copy-on-write behaviour of the underlying
CopyOnWriteArrayList. The reason for the observed behaviour remains to
be revealed by further investigation.

AgeingBenchmark We exemplary examined the effects of tuple space
ageing on the results of the ConsumerProducerBenchmark, see Figure 10.6.

211

10. Experiments

ConsumerProducerBenchmark @ 8 workflow simulator pairs,
10,000 operations/workload simulator

0 2.000 4.000 6.000 8.000 10.000 12.000
Prepopulation (simple string tuples)

0

25.000

50.000

75.000

100.000

125.000

150.000

175.000

200.000

225.000

250.000

275.000

R
es

po
ns

e
tim

e
(m

s)

0 2.000 4.000 6.000 8.000 10.000 12.000
Prepopulation (simple string tuples)

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

R
es

po
ns

e
tim

e
(m

s)

0 2.000 4.000 6.000 8.000 10.000 12.000
Prepopulation (simple string tuples)

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

R
es

po
ns

e
tim

e
(m

s)

0 2.000 4.000 6.000 8.000 10.000 12.000
Prepopulation (simple string tuples)

0
5.000

10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000
55.000
60.000
65.000

R
es

po
ns

e
tim

e
(m

s)

TupleSpace ReadWriteLockedTupleSpace CopyOnWriteTupleSpace

ReadWriteLockedCopyOnWriteTupleSpace ConcurrentHashMapTupleSpace

ReadWriteLockedConcurrentHashMapTupleSpace

Figure 10.6. Effects of tuple space ageing on the ConsumerProducerBenchmark on
machines M0 to M3 from left to right, top to bottom.

The benchmarks used 8 producer and 8 consumer workload simulators
as the degree of concurrency. We pre-populated the tuple spaces with
different numbers of tuples that contained a single string value each. We
used different values for each string tuple. The benchmark indicates worst-
case performance since the matching algorithm for tuple lookup iterates
the tuple space in a straight-forward manner. Response time increased by
about 741.97% from a zero pre-population to a pre-population of 12,000
tuples regarding the RWLTS on M1, for instance. The reason is the primitive
matching algorithm. It has to iterate over all the string tuples in the aged

212

10.2. Justification of the Coordination Model

space each time a relevant tuple should be retrieved. A more sophisticated
matching algorithm can certainly mitigate the effects of ageing up to a
certain degree.

Table 10.1. Percentaged results of benchmark runs on M0 compared to M1, M2, and
M3 using the TS with one (1) workflow simulator.

Performance of TS on M0 compared . . .
Xbench1(STS,Obench) Tbench1

Out OutIn OutRead ConsumerProd.

to M1 12.40% 11.93% 11.39% 12.66%
to M2 12.35% 12.04% 11.39% 13.54%
to M3 17.69% 16.74% 16.63% 17.99%

Table 10.2. Percentaged results of benchmark runs on M0 compared to M1, M2, and
M3 using the TS with eight (8) concurrent workflow simulators.

Performance of TS on M0 compared . . .
Xbench8(STS,Obench) Tbench8

Out OutIn OutRead ConsumerProd.

to M1 : 14.08% 14.86% 13.69% 14.32%
to M2 : 13.84% 13.43% 12.96% 13.44%
to M3 : 18.42% 17.39% 17.39% 17.55%

General observations We observed a lower overall performance of M0
compared to the other machines. For example, the number of completed
space operations per second XOut1 (STS,OOut) is only about 12.4% of that on
M1, as shown in Table 10.1 and Table 10.2. Except for the AgeingBenchmark,
the benchmarks were executed as single VM invocations. Benchmarking
with multiple parallel VMs can show different results. Second, the reason
for the different behaviour of the space implementations on M1 in contrast
to M2 must be a matter of using different operating systems and Java VMs

213

10. Experiments

since M1 and M2 are hardware-wise similar. This is especially the case
for the OutInBenchmark, in which the performance of the RWLTS and the
RWLCHMTS on M1 differs significantly to that on M2. It seems that for
non-block inp in operations, the software stack of M2 provides better and
more reliable results than that of M1. We suppose that the OpenJDK VM
is not as optimised as its Java HotSpot counterpart. For most of the tuple
spaces we observed a noticeable overhead for data structure management.
As a consequence, further optimisations of the PROCOL framework should
not only focus on improving the matching algorithm but on reducing space
management overhead in general to improve scalability. However, in each
of the benchmarks we found tuple space implementations for which our
definition of scalability (Definition 1) holds or is only slightly violated. The
conclusion drawn from the results is that scalable SBS implementations can
be provided given that the effects of ageing are not yet considered. This is
at least the case for multi-core machines with a number of cores that is in
the single-digit range, since the machines on which the benchmarks were
conducted only have 4 and 8 core processors.

We give the following recommendations which tuple spaces should be
used:

� The CoWTS and the RWLCoWTS represent a reasonable choice when
non-blocking read operations are used heavily since they do not need to
synchronise these. On the other hand, they do not show a significantly
better performance than the RWLTS, and are clearly not advisable for
applications that favour blocking in and out operations over rd.

� As a general recommendation, we advise to use the RWLTS over the
other implementations since its throughput and response time behaviour
scale reliably in most benchmarks, and since it performs very well for
applications that heavily depend on read operations. The RWLCHMTS
can be regarded as an alternative to the RWLTS. It shows similar reliable
behaviour as the RWLTS, but its performance is worse.

214

10.2. Justification of the Coordination Model

Pa
ra

lle
l S

ub
-P

ro
ce

ss

Presenter

Renderer

in
+ out

Render
Image

�

Assemble
Matrix

�

in
+

Save File
� x

x

Print Gui

�

||| -

 M
an

de
lb

ro
t

+

Image Provider

rd

�

-
Create
Image

Partitions

out
+

rd
+

out

Configuration Configuration
config

List<Image>
images

Config Image
where

(isRendered
== true)

Image
where

(isRendered
== false)

Image
rendered

Image

ImageSpace

-
�

�

�

Figure 10.7. Coordination model of the Mandelbrot application (illustrated using
the SCOPE BPMN subset).

10.2.3 Mandelbrot Set Visualisation Results

Using PROCOL, we created a program that computes the Mandelbrot set
concurrently and shows it on the complex plane. The program represents
an application benchmark for massive concurrency since each point of
the complex plane can be computed independently. Figure 10.7 shows an
overview on the coordination model of the application using the SCOPE
Business Process Model and Notation (BPMN) subset.

The two participants of the program are ImageSpace and Mandelbrot. The
former represents the SBS, and the latter represents the main client process.
The Mandelbrot process mainly consists of a Parallel Sub-Process that invokes
the processes Image Provider, Renderer, and Presenter. While the Mandelbrot
process represents an implementation of AbstractAppRunner, the called pro-

215

10. Experiments

cesses are IComponents that extend the abstract class AbstractComponent. The
Parallel Sub-Process is realised as a ParallelInvocationCompositeComponent. The
multiple-instance behaviour of the Renderer is realised using the concrete
class MultipleInstanceParallelComponent.
The behaviour of the program is as follows: Firstly, the Mandelbrot’s

main method outs a configuration data object which is constructed from
the program’s command line parameters. Second, all domain-specific com-
ponents are started concurrently with a Parallel Sub-Process. The components
coordinate themselves along the data flows of the space operations. The
ImageProvider provides a set of unrendered image slices that are consumed
by as many concurrent Renderer instances as there are image slices in or-
der to produce rendered images. While Renderer encapsulates the domain
knowledge to compute the Mandelbrot set on the plane, Presenter consumes
rendered image slices, assembles them into a single image, and saves it into
a file.
As Figure 10.8 shows, the application scales very well on the given

machines using the RWLTS until 8 concurrent Renderer instances. The figure
shows the mean of ten measurements after two warm-up runs. Regarding
M1, we see that the response time decreased from 2,781.2 ms to 1,806.8
ms (RresptimeMandel (SRWLTS, OMandel , 1, 8) = 1.54) until 8 concurrent Renderer
instances were used, then begun to increase back to 2,561.6 ms using 265
concurrent Renderers (RresptimeMandel (SRWLTS, OMandel , 16, 256) = 0.71). Also,
we can see that the application scales better on machines M0 and M3 than
on M1 and M2 when more than 8 Renderer instances are used. A possible
reason is that incipient effects of hyperthreading impose a performance
penalty while up to using 8 renderers all renderers can be mapped directly
to the cores of the two Xeon processors of M1 and M2. We also measured
the execution times of each component individually to provide a hint for
the increase in response time.
Measuring and logging the execution times of the individual compo-

nents of the program has virtually no effect on the overall response time
(Mandelbrot-Procol vs. Mandelbrot-Procol-Silent). The performance variation
of Mandelbrot-Procol-Silent at 128 Renderers on M3 originates from a notice-
able outlier in the measurements. Figure 10.9 illustrates that the Presenter
component represents a constant serial fraction of the overall response time

216

10.2. Justification of the Coordination Model

1 2 4 8 16 32 64 128 256
Number of concurrent renderers

0

2.500

5.000

7.500

10.000

12.500

15.000

17.500

20.000

R
es

po
ns

e
tim

e
(m

s)

1 2 4 8 16 32 64 128 256
Number of concurrent renderers

0

250

500

750

1.000

1.250

1.500

1.750

2.000

2.250

2.500

2.750

R
es

po
ns

e
tim

e
(m

s)

1 2 4 8 16 32 64 128 256
Number of concurrent renderers

0

250

500

750

1.000

1.250

1.500

1.750

2.000

2.250

2.500

2.750

3.000

R
es

po
ns

e
tim

e
(m

s)

1 2 4 8 16 32 64 128 256
Number of concurrent renderers

0
250
500
750

1.000
1.250
1.500
1.750
2.000
2.250
2.500
2.750
3.000
3.250
3.500
3.750

R
es

po
ns

e
tim

e
(m

s)

Mandelbrot-Procol Mandelbrot-Procol-Silent Mandelbrot-Threaded

Figure 10.8. Results of the Mandelbrot program using the RWLTS on machines M0
to M3 from left to right, top to bottom; the command line parameters were: image
width (-w): 1200 pixels, image height (-ht): 1024 pixels, number of image partitions
and Renderer instances (-r), top left complex number on plane (-tl): (1) + 1i,
bottom right complex number on plane (-br): 1+ (1)i.

217

10. Experiments

0

5000

10000

15000

20000

25000

1 256

El
ap

se
d

Ti
m

e
(m

s)

Number of Concurrent Renderers

0

500

1000

1500

2000

2500

3000

3500

1 256

El
ap

se
d

Ti
m

e
(m

s)

Number of Concurrent Renderers

0

500

1000

1500

2000

2500

3000

3500

1 256

El
ap

se
d

Ti
m

e
(m

s)

Number of Concurrent Renderers

0

500

1000

1500

2000

2500

3000

3500

4000

1 256
El

ap
se

d
Ti

m
e

(m
s)

Number of Concurrent Renderers

ImageProvider

Longest Running
Renderer
Presenter

Overall Run-Time

Figure 10.9. Results of the individual Mandelbrot program components at 1 and
256 concurrent Renderer instances on machines M0 to M3 from left to right, top to
bottom.

and that the execution time of the Renderers decrease as more Renderer

instances are used. The response time of the ImageProvider increases slightly
with an increasing number of Renderer instances. A possible reason is that
it must prepare and publish more image partition tuples the more Ren-

derer instances are used. Another explanation is that the ExecutorService’s
thread management can show a noticeable effect on response time with
an increasing number of Renderer instances although there is no data to be
shared among threads. In each case, however, the response time using 256
Renderer instances never exceeded the time elapsed when only one Renderer
instance was used.

As a reference application, we implemented a version of the Mandelbrot
application that is solely based on the standard Java thread model. Its
implementation follows the instructions of the project course “Mandelbrot

218

10.3. Application of Coordination Engineering

Set Visualization” held by Daniel Tang at the Purdue University in 20093.
Since there is no data to be shared among threads, there is no synchro-
nisation needed and the application measurements can be regarded as a
best-case measurements. We see that in all cases the difference between
the measurements of the space-based solution and those of the reference
application was less than an entire order of magnitude (which we regarded
as a KO criterion). For example, when using 8 (256) concurrent Renderer
instances, the response time of the PROCOL implementation takes 1.33 (1.81)
times longer to execute on M0, 1.32 (1.85) times longer on M1, 1.32 (2.05)
times longer on M2, and 1.31 (1.44) times longer on M3. We conclude that
the performance overhead that the PROCOL programming model imposes is
at least for the Mandelbrot application a reasonable trade-off for the benefits
that the PROCOL programming model provides.

10.3 Application of Coordination Engineering

In this section, we demonstrate the application of Coordination Engineering
with SCOPE by two examples, a variant of the Mandelbrot visualisation
program from Section 10.2.3, and a program component to address the PFLP
problem in an existing framework for EAV. The two examples serve the
following purposes:

The Mandelbrot visualisation program is used to answer the question if
programs development with Coordination Engineering and SCOPE scale
well for a best-case example. The motivation is to collect evidence about if
the approach can exploit a provided opportunity for massive parallelism or
not. It is also used to make a comparison to the behaviour of the Mandelbrot
visualisation program version that was realised with the conventional Java
thread model (see Section 10.2.3).
The PFLP-solving program component is used to illustrate the Applica-

tion Engineering process within Coordination Engineering (see Section 5.3).
It can be considered as a non-best-case example since PFLP is an Non-
Deterministic Polynomial-Time (NP)-hard global (i. e., combinatorial) op-
timisation problem, see [Christensen et al., 1995]. Finally, the example

3http://web.ics.purdue.edu/~cs180/Fall2009Web/projects/p3/

219

10. Experiments

provides insights on applying Coordination Engineering with SCOPE within
an existing application.

10.3.1 Experimental Configuration

We conducted performance experiments with SCOPE programs for con-
currency degrees ranging from 1 to 256. The mapping of the degree to
concurrent components is dependent on the respective program. To min-
imise interferences between individual program runs we pause between
each run for 5,000 ms. Furthermore, we executed 12 runs for each exper-
iment, where the first two are excluded as warm-up runs to reduce the
effects of bytecode interpretation and JIT compilation [Goetz, 2009]. We use
the arithmetic mean and the 95% confidence interval for the remaining ten
results. The confidence intervals allow us to address the questions of how
large the performance variation of the individual measurements for a single
programs is, and if different program versions show significantly different
behaviour or not (if confidence intervals overlap or not).
The benchmarks were conducted on four machines M0 to M3. For the

label positioning example (Section 10.3.3), we also used a test machine that
represents the environment in which the program is most likely used. Note
that the machines M0 to M3 show a slightly different configuration than the
configuration described in Section 10.3.1 regarding the Java versions used:

� (M0) T6340, 2xUltraSparcT2+ 8core 1.4Ghz, 16x4GB FB DIMM, Solaris
10, Java Version 1.5.0_32, Java(TM) 2 Runtime Environment, Standard
Edition (build 1.5.0_32-b05), Java HotSpot(TM) Server VM (build 1.5.0_-
32-b05, mixed mode)

� (M1): X6270, 2xIntel Xeon E5540 4core 2.53GHz, 12x2GB DDR3-1066MHz
ECC, Debian Lenny, Java Version 1.6.0_18, OpenJDK Runtime Environ-
ment (IceTea6 1.8.13) (6b18-1.8.13-0+squeeze1), OpenJDK 64-Bit Server
VM (build 14.0-b16, mixed mode)

� (M2) X6270, 2xIntel Xeon E5540 4core 2.53GHz, 12x2GB DDR3-1066MHz
ECC, Solaris 10, Java Version 1.5.0_32, Java(TM) 2 Runtime Environment,
Standard Edition (build 1.5.0_32-b05), Java HotSpot(TM) Server VM
(build 1.5.0_32-b05, mixed mode)

220

10.3. Application of Coordination Engineering

� (M3) X6240, 2xAMD Opteron 2384 4core 2.7GHz, 8x2GB DDR2-667,
Solaris 10, Java Version 1.5.0_32, Java(TM) 2 Runtime Environment,
Standard Edition (build 1.5.0_32-b05), Java HotSpot(TM) Server VM
(build 1.5.0_32-b05, mixed mode)

� (Test Machine) Intel(R) Core(TM) i5-2410M CPU @ 2.30 GHz 2.30 GHz,
4GB DDR3-666.7MHz, Windows 7, Java Version 1.7.0_03, Java(TM) SE
Runtime Environment (build 1.7.0_03-b05), Java HotSpot(TM) 64-Bit
Server VM (build 22.1-b02, mixed mode)

10.3.2 Mandelbrot Set Visualisation

Using the SCOPE coordination workbench, we created an alternative ver-
sion of the Mandelbrot set program from Section 10.2.3. The program is
used to gather evidence on the question if SCOPE programs can exploit the
opportunity of massive parallelism. Appendix D shows the coordination
architecture of the program developed with the SCOPE DSL. An overview of
the coordination model of the application is presented in Figure 10.7 using
the SCOPE BPMN subset.

Target Project Structure Figure 10.10 shows an overview of the project
structure of the Mandelbrot program after code generation. The Java classes
relate to the SCOPE model as follows:

� The namespaces of the project directly conform to the namespaces of the
Definitions of the SCOPE model.

� AbstractMandelbrotProc, InitializedMandelbrotProc and MandelbrotProc

represent the Mandelbrot Proc process that implements the Mandelbrot

Client.

� AbstractImageProvider and ImageProvider represent the Image Provider

process of the SCOPE model.

� AbstractRenderer and Renderer represent the Renderer process of the
SCOPE model.

221

10. Experiments

Figure 10.10. Project structure of the SCOPE Mandelbrot program.

222

10.3. Application of Coordination Engineering

Figure 10.11. Development process for SCOPE prototype program.

AbstractPresenter and Presenter represent the Presenter process of the
SCOPE model.

The ExpressionHelper is generated by the scope.generator. By default, it
is used to simulate expression evaluation for prototyping (execution
without supplemented domain code). The class is not used in the final
program.

Prototyping After we modelled the coordination architecture of the pro-
gram, we used the generated coordination code for prototyping – the analy-
sis of the behaviour of the program before domain code is supplemented.
Figure 10.11 illustrates the conducted activities to produce a program pro-
totype.

First, we weighted the Domain Tasks of the SCOPE model of the program.
We weighted each Domain Task equally with a value of 1.0. Second, we
initialised the data objects in the coordination code that are published to
the Image Space with mock-up data. Else, client processes would possibly
wait indefinitely for data objects when the non-blocking space operations
take and read are used. As a rule of thumb, the mock up data should
resemble the data that is expected in practical usage scenarios as closely
as possible. Third, we executed the prototype and analysed its runtime
behaviour on the Test Machine. To do so, we used the log files of the PROCOL
library and the NetBeans 7.1 Integrated Development Environment (IDE).4

The latter was chosen for its extensive support for out-of-the-box profiling
including CPU bottleneck identification, memory usage tracking, and thread
status monitoring.5 More sophisticated analysis could be achieved with
the application performance monitoring and dynamic software analysis

4http://netbeans.org/
5http://netbeans.org/features/java/profiler.html

223

10. Experiments

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

prototype scope.mandelbrot

El
ap

se
d

Ti
m

e
(m

s)
 ImageProvider

Renderer (Longest-
Running Instance)

Renderers (MI Parallel
Component)

Presenter

Overall Runtime

Figure 10.12. Sample run of the SCOPE Mandelbrot prototype using 16 concurrent
Renderer instances on Test Machine; Renderers (MI) denotes the anonymous Mul-

tipleInstanceParallelComponent that instantiated the Renderers.

tool suite Kieker [van Hoorn et al., 2009].6 The performance analysis
of prototype sample runs revealed that the Presenter is most likely the
performance bottleneck in the implemented program as it acts completely
sequentially and must assemble the individual image slices rendered by
the Renderer instances into a single image file. Figure 10.12 illustrates the
findings by the example of a sample run using 16 concurrent Renderer
instances.

Results After analysis, we supplemented the Mandelbrot program with
domain code similar to the implementation of the PROCOL version. Test
samples on the Test Machine using the NetBeans profiler were used to
confirm that all concurrent Renderers are actually busy with rendering, see
Figure 10.13. They also indicate that the performance bottlenecks imposed
by the Image Provider and the Presenter are not as severe as the prototype
suggested, see Figure 10.12.

Figure 10.14 and Figure 10.15 show the results of experiments conducted
on machines M0 to M3. The figures show the average mean of ten measure-
ments after two warm-up runs were excluded. The absence of confidence
intervals in the figures show that there were hardly any variations in the

6http://se.informatik.uni-kiel.de/kieker/

224

10.3. Application of Coordination Engineering

Figure 10.13. Test samples on the Test Machine using the NetBeans profiler.

individual measurements.

As Figure 10.14 shows, the program scales best on M0, until 32 concur-
rent Renderer instances. The response time decreased from 39,497.8 ms to
13,947.1 ms (RresptimeScopeMandel (SRWLTS, OScopeMandel , 1, 32) = 2.83). However,
the overall runtime behaviour of M0 is significantly worse than that of the
other machines, emphasising its eligibility as a server before its usefulness
for high-performance computing.

On M1, the program scales very well until 16 concurrent Renderer in-
stances are used (2,179.1 ms), and then again starts to increase slightly, see

225

10. Experiments

SCOPE Mandelbrot@M0 SCOPE Mandelbrot@M1 SCOPE Mandelbrot@M2

SCOPE Mandelbrot@M3

1 2 4 8 16 32 64 128 256
Number of concurrent renderers

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

R
es

po
ns

e
tim

e
(m

s)

Figure 10.14. Results of the SCOPE Mandelbrot program using the RWLTS on
machines M0 to M3.
The command line parameters were: image width (-w): 1200 pixels, image height
(-ht): 1024 pixels, number of image partitions and Renderer instances (-r), top left
complex number on plane (-tl): 0.402589755868683+ 0.1921543496459i, bottom right
complex number on plane (-br): 0.402679825967559+ 0.192064279547024i, reporting
(-rp): true.

Figure 10.15. However, its overall behaviour is similar to the behaviour of the
program on M2 and M3: The most significant performance increase can be
observed between 1 and 2 Renderer instances. The response time decreased
from 4,371.6 ms to 3,017.9 ms (RresptimeScopeMandel (SRWLTS, OScopeMandel , 1, 2)
= 1.45). After that, the runtime does not change as dramatically between
each concurrency step in the scale.

Given the slightly different experimental configuration of the machines
in contrast to the experiments described in Section 10.2, we could not
observe a performance penalty on M1 and M2 between 8 and 16 concurrent
Renderers that may stem from incipient effects of hyperthreading.7

7Up to using 8 Renderers all Renderers can be mapped directly to the cores of the two Xeon
processors of M1 and M2.

226

10.3. Application of Coordination Engineering

SCOPE Mandelbrot@M1 SCOPE Mandelbrot@M2 SCOPE Mandelbrot@M3

Threaded Mandelbrot@M1

1 2 4 8 16 32 64 128 256
Number of concurrent renderers

0
500

1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
5.500
6.000

R
es

po
ns

e
tim

e
(m

s)

Figure 10.15. Results of the SCOPE Mandelbrot program using the RWLTS on
machines M1 to M3 compared to the results of the conventionally threaded program
version from Section 10.2.3.
The command line parameters were: image width (-w): 1200 pixels, image height
(-ht): 1024 pixels, number of image partitions and Renderer instances (-r), top left
complex number on plane (-tl): 0.402589755868683+ 0.1921543496459i, bottom right
complex number on plane (-br): 0.402679825967559+ 0.192064279547024i, reporting
(-rp): true.

When compared to the conventionally threaded version of the Mandel-
brot application (see Section 10.2.3), we see that the SCOPE implementation
of the program does not scale as well as the threaded version on M1, but
that the performance gain between 1 and 16 concurrent Renderers is high.
For the SCOPE program, the response time decreased from 4,371.6 ms to
2,179.1 ms (RresptimeScopeMandel (SRWLTS, OScopeMandel , 1, 16) = 2.01), and for the
threaded version, response time decreased from 2,723.9 ms to 1,100.1 ms
(RresptimeThreadMandel (SRWLTS, OThreadMandel , 1, 16) = 2.48). Overall, the SCOPE
implementation does not exploit the opportunity for massive parallelism
as well as the conventionally threaded version, but is not even more than
2 times worse than the threaded version using 16 Renderers (the exact
number of logical Processing Elements (PEs) of the machine).

227

10. Experiments

10.3.3 Label Positioning

In EAV [Kruse et al., 2009], the Application Interface Overview (AIO) map is
an important diagram type to visualise the data transfer interfaces between
the individual applications of an organisational unit. In its basic form,
applications are represented as boxes that are connected by edges that
represent the transfer paths, see Figure 10.16. To render the data transfers,
their paths are routed around the applications considered as obstacles, and
around or across each other. As these paths have meaningful names, their
names are also rendered as labels. The degree to which labels obscure
features of a map significantly affects its clarity. Therefore, it must be clear
which label belongs to which path, and labels must not overlap with each
other, see Figure 10.17. The problem can be identified as an instance of PFLP,
described by Christensen et al. [1995] as “the problem of placing text labels
adjacent to point features on a map or diagram so as to maximize legibility”.
It represents a form of global (combinatorial) optimisation problem and is
NP-hard, leading to solutions that are either incomplete or show exponential
time complexity [Christensen et al., 1995].

Executive Summary The subject of interest is an existing application for
EAV, which produces several map types (including AIO maps) for different
file formats such as Scalable Vector Graphics (SVG) and Microsoft Visio
diagram files. The main use of the application is that of a demonstrator for
EAV map types for arbitrary enterprise architecture models provided as a
Microsoft Excel file or in a proprietary Extensible Markup Language (XML)
format. The application currently employs a sequential algorithm for label
positioning that shows a low performance even with small domain models,
see Table 10.3. The used example domain model is an anonymised real-
world model in Excel format retrieved from industry. It contains 29 obstacles
and 39 transfer paths.

Problem Statement To illustrate Coordination Engineering with SCOPE,
the label positioning functionality of the program should be replaced with
a concurrent component that either yields a better runtime given the same
result quality, or better results (i. e., less label collisions) given the same

228

10.3. Application of Coordination Engineering

Figure 10.16. Generic example of an Application Interface Overview map.

Table 10.3. Average response time and number of overlapping labels of the EAV
application on Test Machine.
The configuration was: Number of obstacles: 29, Number of transfer paths: 39

No label positioning Label positioning Overlapping

569.4 ms 16,504.5 ms 3.0 per file

229

10. Experiments

Figure 10.17. Example of overlapping labels in an Application Interface Overview
map.

runtime.

Algorithm and Data Structures The application distinguishes the concep-
tual domain model from its visualisation. The most important data objects
for the positioning of labels to data transfer interfaces are Path, the repre-
sentation of a path that has a start Point and an end Point and may have
bendpoints, and PathWalker, a movable content container that can travel
along a given Path and can hold an Object (i. e., the text label). These data
objects are, amongst others, mapped to SVG model representation elements
to draw the AIO map. Labels are positioned after the transfer paths were
routed from their start point to their end point applying a shortest path
routing algorithm.
There are several alternative algorithms to solve PFLP. An overview is

provided by Christensen et al. [1995]. The current implementation uses
a sequential local search algorithm that can be trapped in local minima.
Simulated annealing, developed by Kirkpatrick et al. [1983], is a heuristic
technique for solving combinatorial problems that avoids local minima. The
name of the technique stems from the analogy of metallurgic annealing,
where controlled cooling is carried out to prevent defects in the structure of
a heated solid, producing a more durable result [Heaton, 2007]. Simulated
annealing emulates this process by the notion of a temperature in the
optimisation process: As the temperature is high, label relocations may be

230

10.3. Application of Coordination Engineering

accepted at random, even if they are not better than the original position.
As the temperature decreases, the likelihood for such acceptance decreases
also, down to the point where only better positions are accepted. Following
Christensen et al. [1995], the algorithm can be described by the following
outline:

1. For each Path, place the corresponding PathWalker in any of the Points
on the Path.

2. Repeat until a given threshold is reached; this can be a maximum number
of cycles or when the rate of improvement falls under a given threshold.

(a) Decrease the temperature T, according to an annealing schedule
(b) Pick a PathWalker and move it to another position
(c) Compute ΔE, the change in the objective function which calculates

the quality of the repositioning
(d) If the repositioning is worse that the previous position, undo the

repositioning with a temperature-dependent probability

We consider parallel simulated annealing as the basis for label position-
ing. An overview on parallel simulated annealing is provided by Onbaşoğlu
and Özdamar [2001], examples are presented by Jelenković and Poljak [1998]
and Kliewer and Tschöke [2000]. Onbaşoğlu and Özdamar [2001] observed
that an approach that occasionally applies partial information exchange
among processors yields particularly notable results.

Platform Description The target programming platform is the Java Vir-
tual Machine (JVM). In addition to the machines M0 to M3, we also in-
troduced a Test Machine that represents the environment in which the
program is most likely used.

Performance and Cost Requirements The current implementation takes
an overall run-time of 16,504.5 ms for the example model, compared to only
569.4 ms when label positioning is disabled. For the SCOPE implementation
of a new label positioning component, we consider a response time below
5,000 ms as desirable.

231

10. Experiments

Category of Parallelism The category of parallelism can be described as
activity parallelism, focussing on the decomposition of the data and the
algorithm into tasks that are not committed to certain chunks of data and
can therefore operate in any order.

Category of Processing From the description of the algorithm, it is clear
that the overall solution is obtained by applying the same computation on
every PathWalker. The processing is therefore a homogeneous one.

Coordination Model Synthesis According by categorisation of paral-
lelism and processing and the pattern recommendations provided by Ortega-
Arjona [2010], the Manager-Workers pattern is best suited for parallel sim-
ulated annealing. Appendix E shows the synthesised coordination model
for PFLP with parallel simulated annealing. The model can be described as
follows:
The LabelPositioning collaboration contains the space LabelSpace and

ObstacleSpace, and the client AIOMapBuilder. LabelSpace contains the Path-
WalkerWrappers that contain the PathWalkers to be repositioned, and Obstacle-

Space contains the obstacles with which overlapping must not occur. These
are, in fact, also the PathWalkerWrappers, but can be extended with other
obstacles in future extensions. Holding the walkers (i. e., the PathWalker-

Wrappers) in the LabelSpace and the ObstacleSpace distributes the required
space operations, but requires occasional data exchanges to deal with up-
dated positions.

We introduced the data objects PathWalker and PathWalkerWrapper. The
former is a stub for the existing PathWalker, which will not be overwritten
by the code generation component of the SCOPE workbench. The latter is a
wrapper for the PathWalker that has the properties trials and id. trials
the number of how many times a PathWalker was processed by a worker,
and id provides a unique identifier for PathWalkers. We also introduce a
Configuration object. It consists of the properties maxCycles, the maximum
number of cycles to be performed by a worker, maxTrials, the maximum
number of times a PathWalker should be processed, spacing, the minimum
distance between two PathWalker not considered as a collision, temperature,

232

10.3. Application of Coordination Engineering

the current temperature of the overall problem, temperatureDecreaseFactor,
the factor by which the temperature is decreased, and partitionSize, the
number of PathWalkers processed in each processing cycle.

The behaviour of the AIOMapBuilder is implemented by the process Con-
currentAIOMapBuilder. It simply publishes all walkers to the LabelSpace and
the ObstacleSpace, calls the process PositionSolver, and finally collects all
solved walkers from the LabelSpace. The PositionSolver, in turn, publishes
the Configuration to the LabelSpace, and invokes multiple instances of the
SolverWorker. SolverWorker contains the main logic of the coordination:

1. Each worker reads the Configuration and initialises itself.

2. Each worker repeats the following steps as long as notMaxCyclesReached
is true.8

(a) Read all obstacles from the ObstacleSpace

(b) Do the following for a number of PathWalkerWrappers defined by
partitionSize

i. Take an available walker from the LabelSpace
ii. If the walker should be processed (at least if it exists), solve it
by simulated annealing, and update the corresponding copy in
the ObstacleSpace if its position was changed

iii. Put the walker back to the LabelSpace

(c) Increase the cycle count and reset the obstacles for the next iteration

Obviously, SolverWorkers will likely resolve the position of PathWalker-
Wrappers with respect to a subset of obstacles, since other SolverWorkers
may just update a PathWalkerWrappers as an obstacle, leading to missed
overlapping. The drawback is taken, but quality control must assure the
quality of the overall label positioning.

Note that after coordination code generation, the Java classes for the pro-
cess ConcurrentAIOMapBuilder, including the abstract classes, were modified
to integrate the generated code into the existing application. Otherwise, it

8The actual implementation of condition evaluations such as notMaxCyclesReached is pro-
vided by the domain engineer.

233

10. Experiments

would be necessary to provide a modified template set for the scope.generator
to re-establish the Generation Gap pattern.

Domain Engineering The configuration is represented by the Configura-
tion provided by the PositionSolver. Table 10.4 presents the configuration
parameters. The parameter maxTrials was not used and is seen as a possible
refinement to control the maximum number of times a PathWalker should
be processed. PathWalkers are initially placed at a third of the length of
their associated path.
The objective function contains an integer value candidateCollisions

that is increased once if the distance of a PathWalker is smaller that spacing,
and once again if the distance is too near (dist � spacing/3).
The annealing schedule is realised as the method anneal(int delta),

borrowing its implementation from Heaton [2007]. The method takes a
value delta as a parameter, defined as the difference between the number
of collisions of the repositioning and the number of collisions of the former
best result. Essentially, the method checks if the temperature has fallen
below a certain threshold or not. If the temperature has fallen below a
threshold of 1.0E� 4, the old position is retained if the delta is greater than
zero, else accepted. If the temperature is above the threshold, the delta and
the temperature are used to determine if the position should be retained or
not. See [Heaton, 2007] for further details on the implementation.
To guarantee the copy behaviour of the SBS component of the PROCOL

library, the relevant data objects that already existed in the application were
modified to implement the interface java.io.Serializable.

Analysis Figure 10.18 shows the results of the SCOPE-based label posi-
tioning component. The figure shows only the response time of the label
positioning component, as generated by the coordination code generator of
the SCOPE workbench.
The implementation scales reasonably well on machine M0 until 32

concurrent workers, ranging from 16,974.1 ms to 13,719.8 ms (RresptimeScopeEav

(SRWLTS, OScopeEav, 1, 32) = 0.81). However, the overall runtime of the
implementation is much worse on M0 than on the other machines, providing

234

10.3. Application of Coordination Engineering

Table 10.4. Configuration of the SCOPE EAV application.

Parameter Value

partitionSize { � n
m + 0.5� if n m
1 if n m

where n denotes the number of walkers and
m denotes the number of workers

maxCycles 10

maxTrials 10

spacing 25

temperature 10.0

temperatureDecreaseFactor 0.97

M0 M1 M2 M3 TestMachine

1 2 4 8 16 32 64 128 256
Number of concurrent workers

0
2.500
5.000
7.500

10.000
12.500
15.000
17.500
20.000
22.500
25.000
27.500
30.000
32.500
35.000
37.500

R
es

po
ns

e
tim

e
(m

s)

Figure 10.18. Response time results of the label positioning component.

235

10. Experiments

further evidence that M0 is best used as a server for multiple requests
instead of heavy computation. On M0, the required response time below
5,000 ms could not be met. On machines M1, M2, M3 and the Test Machine
the response times do not differ as much from each other as they do to M0.
Table 10.5 illustrates the best result for each measurement series. For

machines M0 to M3, the best results were achieved using 4 concurrent
worker instances. For the Test Machine, a conventional end user system,
the best results were achieved using only 2 concurrent renderers. All
measurement series show an average mean of overlapping labels per file
that is considerably lower than the original version.

Table 10.5. Best results of the SCOPE EAV application.

M0 M1 M2 M3 Test Ma-
chine

Best result 10,539.5
ms

1,365.6
ms

1,778.4
ms

1,944.0
ms

1,344.6
ms

Number of workers
(n)

4 4 4 4 2

RresptimeScopeEav

(SRWLTS, OScopeEav,
1, n)

0.62 0.69 0.81 0.73 0.87

Average mean of
overlapping labels
per file @ n

0.4 0.5 0.3 0.8 0.3

Increasing the number of workers further above the best measurement
point yields a considerable performance decrease (see Figure 10.18). The
response time shows an exponentially growth. For example, on the Test
Machine, the application is rendered unacceptable when 64 or more con-
current workers are used (32 workers: 4,085.5 ms, 64 workers: 6,737.7 ms).
A possible explanation for the exponential growth rate is that the number
of cycles of the main loop is relative small. When too much workers are
available, each can take only a small number of walkers to be solved. This,

236

10.3. Application of Coordination Engineering

in turn, will result in more frequent read accesses to the ObstacleSpace

as a whole – a considerable expensive space operation (PROCOL’s atomic
rdg) that is necessary to avoid the multiple read problem [Rowstron, 1996].
Figure 10.19 illustrates the unfavourable ratio between computation and
waiting when more than the ideal number of workers are used at the ex-
ample of a test sample on the Test Machine using 8 concurrent worker
instances (4 times as much workers as the optimum). In contrast, using
the ideal number of workers results in a proper workload distribution, see
Figure 10.20. Further refinements of the coordination architecture should
therefore consider a parameter space exploration on the respective platform
to determine the best degree of concurrency for the given coordination
architecture and the current problem size.

Figure 10.19. Test samples on the Test Machine using 8 concurrent worker instances.

Figure 10.20. Test samples on the Test Machine using 2 concurrent worker instances.

237

10. Experiments

10.4 Threats to Validity

Any empirical study like ours is vulnerable to certain threats to validity. We
consider the threats discussed in this section as the most severe. The discus-
sion focusses on construct validity and internal validity as they represent
the pre-requisites for a high degree of external validity [Wright et al., 2010].
Wright et al. [2010] provide us the descriptions for the terms construct
validity, internal validity, and external validity.

Construct validity denotes the degree to which the studied experimental
configuration and its parameters are relevant to the research questions. Our
experiments are amenable to the following construct validity threats:

1. The experiments focussed on the micro- and macro-benchmarks Out-
Benchmark, OutInBenchmark, OutReadBenchmark, ConsumerProdu-
cerBenchmark, and an AgeingBenchmark, and on the two application
experiments on Mandelbrot set visualisation and label positioning. Fur-
ther micro- and macro-benchmarks (e. g., for the ing and rdg operations)
can simply be integrated by implementing the appropriate abstract
benchmark classes in the project procol-tuplespace-benchmark, and further
application experiments (e. g., for programs that apply other architectural
patterns than Manager-Worker) can be integrated by providing addi-
tional SCOPE programs that conform to the project structure discussed in
Appendix C.

2. The benchmarks and the SCOPE programs have only been executed on
multi-core machines and the performance on many-cores is yet to prove.
The threat can be addressed by providing additional data structure
implementations for the extended LighTS framework and by using many-
core machines, when available.

3. The ageing technique applied to the SBS component only considers single
different strings as data objects. The observed ageing behaviour may
therefore not adequately represent real-world ageing. Addressing age-
ing in more detail can be achieved by populating the SBS component
with data objects of different size and type before benchmark execution
[Fiedler et al., 2005].

238

10.4. Threats to Validity

4. Although stemming from practice, we only considered a single input
model for the application experiment on label positioning. It is likely
that the size of the input model as well as the actual positioning of
the obstacles and the transfer paths could have a significant impact
on the performance of the program and the quality of the outcomes.
The issue can be addressed with further experiments with other input
models. However, the example serves us mainly as a demonstration of
the Application Engineering process of Coordination Engineering.

Internal validity denotes confounding factors in experiments. As Wright
et al. [2010] observe, selection bias is a prevalent threat to the internal
validity in software engineering research:

1. Our benchmark suite could contain defects that we have not identified.
These could cause benchmarks to be executed improperly or metrics to
be calculated incorrectly. We addressed this threat by using existing and
established libraries for statistics calculation and plotting. Additionally,
we tested the calculations itself using unit tests.

2. Third party effects such as uncontrolled user logins and program inter-
ferences on the benchmark machines could compromise the experiments.
We prevented such interference by inspecting the running processes
on the machines and coordinating user logins with an agreed usage
schedule amongst users.

External validity denotes the applicability of experimental results to
domains beyond those under study, or simply, the generalisability of the
results. We perceive the following external threats:

1. The different Mandelbrot programs based on PROCOL and the SCOPE DSL)
were only compared to an equivalent version that is based on the Java
thread model. Comparative analyses to other programming models (e. g.,
light-weight publish-subscribe frameworks) are desirable to address the
applicability of SCOPE beyond the domain of SBS as a general technology
for concurrency.

239

Chapter 11

Related Work

We separate the discussion of related work into the categories high-level
concurrent programming with Space-Based Systems (SBS), model-driven ap-
proaches for concurrent software development, rigorous performance eval-
uation and experimentation, Domain-Specific Language (DSL) development,
and future target platforms. Finally, we categorise the Space-Coordinated
Processes (SCOPE) implementation and compare the SCOPE DSL with several
workflow languages.

11.1 Concurrent Programming with SBS

Balzarotti et al. [2007] present LighTS, a minimalistic SBS originally devel-
oped as the core tuple space layer for the LIME middleware.1 The frame-
work can be extended in various ways, for example, by exchanging the
back-end implementation. Also, it finds a reasonable compromise between
object encapsulation stemming from object-orientation and the requirement
to publish the internals of a data object stemming from generative commu-
nication, see Section 3.3.4. Although the framework emphasises its use for
context-aware applications, we use LighTS as a basis for the SBS component
of our Process Coordination Library (PROCOL) library (see Section 9.1.2).
There are several other Java implementations of SBSs that are mostly

oriented towards distributed computing. Examples are Blitz JavaSpaces,
SemiSpace, and the LighTS framework.2 Wells et al. [2004] present a
survey of selected SBSs in Java. Their discussion focusses on the commer-

1http://lime.sourceforge.net/
2http://www.dancres.org/blitz/, http://www.semispace.org/semispace/

241

11. Related Work

cial offerings of the implementations and on the capability to provide
alternative mechanism for matching. They state that their performance
measurements for a simple ray-tracing application indicate that none of
the implementations considered were particularly suitable for fine-grained
parallel processing. However, they also state that the employed hardware
was barely adequate to benchmark Java applications. It is also unclear how
representative the results are, as the number of individual measurements is
not stated.

11.2 Model-Driven Concurrent Software Develop-

ment

There are few comparable approaches regarding the use of Model-Driven
Software Development (MDSD) for concurrent software engineering. Tan
et al. [2003] present an infrastructure to use design patterns to generate par-
allel code for distributed and shared memory environments. Programmers
are required to select appropriate parallel design patterns, and to adapt
the selected patterns for the specific application by selecting appropriate
code-configuration options. Our approach does not necessarily consider
the modification of generated code for performance fine tuning.

Hsiung et al. [2009] present an approach of model-driven development
of multi-core embedded software. The approach is based on SysML models
as an input, and generates multi-core embedded software code in C++. The
code architecture consists of an OS, the Intel Threading Building Blocks
(TBB) library [Reinders, 2007], a framework for executing concurrent state
machines, and the application code. The described approach is restricted to
multi-core embedded software and abstracts from a specific target platform.
Our Coordination Engineering-approach is instead applicable to different
target platforms.
Pllana et al. [2009] propose an intelligent programming environment

that targets multi-core systems. This environment is envisioned to combine
model-driven development with software agents and high-level parallel
building blocks to automate time-consuming tasks such as performance
tuning. Unified Modeling Language (UML) extensions are proposed for

242

11.3. Rigorous Performance Analysis

graphical program composition. Our approach and that of Pllana et al.
share the focus on multi-core systems. While the latter exclusively considers
those, we consider ours to be applicable to distributed system development
by providing additional generators that include appropriate transformation
sets.
In his Intel white paper, Lingam [2009] briefly presents the Microsoft

Integration Services platform as a means for building parallel applications
by the example of a video conversion and File Transfer Protocol (FTP) pro-
gram example, emphasising that “Model Driven Development is a fantastic
way to take advantage of multi-core computing infrastructure”. While the
article falls short on presenting details on the realisation of the example, we
regard it as an evidence that model-driven software development is gaining
momentum in the parallel programming domain.

11.3 Rigorous Performance Analysis

Our benchmark suite (Section 9.1.3) was inspired by the chapter on testing
in the book “Java Concurrency in Practice” from Goetz [2009] and by the
work of Fiedler et al. [2005]. The latter present an approach to measure
the throughput and the response time of a tuple space when it handles
concurrent local space interactions [Fiedler et al., 2005]. They also present
an ageing technique to populate a tuple space before the execution of a
benchmark. The approach considers the phases Aging, Startup, Write (equal
to out), Pause, Take, Shutdown, Aging Cleanup. It is used to measure the per-
formance of a JavaSpace implementation. The presented benchmarks were
focused on blocking operations to characterise the worst-case performance
of the JavaSpace take operation (equal to in).
Our tool for performance analysis (Section 9.1.4) and the data analysis

itself (Chapter 10) are motivated by the work of Georges et al. [2007] on
statistical rigorous Java performance evaluation. We followed their advice
on distinguishing start-up from steady state execution, and on using the
confidence intervals to discuss independent measurement series. We also
followed their advice on using different techniques to compute the confi-
dence interval based on whether the number of individual measurements

243

11. Related Work

for a series is large or not.

11.4 DSL Development

Mernik et al. [2005] describe patterns for the analysis, design, and imple-
mentation of a DSL. We already justified the development of the SCOPE
coordination model in terms of DSL decision patterns – AVOPT, product
lining, and interaction specification – see Section 6.7. The domain analysis
can be described as formal and extract from model: While Coordination Engi-
neering is modelled using an explicit megamodel (see Chapter 5 and Favre
and NGuyen [2005]), The SCOPE coordination model is extracted from the
Business Process Model and Notation (BPMN) 2.0 specification. Because we
used parts of the BPMN 2.0 specification and extended them by elements
for SBS, its design can be categorised as language piggybacking (a special case
of language exploitation). The implementation of our Process Coordination
Library (PROCOL) applies the embedding pattern, and the implementation of
the SCOPE coordination workbench applies the compiler/generator pattern.

In their work on building blocks for performance-oriented DSLs, Rompf
et al. [2011] state that the higher-level of abstraction and willingness to sac-
rifice generality make it feasible for a DSLs compiler and runtime system to
generate high-performance code that can even target parallel heterogeneous
architectures that consists of a number of Central Processing Units (CPUs)
and Graphics Processing Units (GPUs): “Reasoning across domain constructs
[. . .] enables more powerful and aggressive optimizations that are infea-
sible otherwise”. To alleviate the challenge of building appropriate DSLs,
they developed the Delite Compiler Framework, a compiler and runtime
infrastructure for heterogeneous target code generation and domain-specific
optimisations that can be understood as a toolbox to create internal parallel
DSLs.
At its core, the framework relies upon language virtualisation [Chafi

et al., 2010], a hybrid approach that strives to obtain the flexibility and
performance of external DSLs with internal DSLs, argumenting that the
development of external DSLs requires extreme effort and thus does not
scale [Lee et al., 2011]. As a case study, Rompf et al. [2011] present OptiML,

244

11.4. DSL Development

a DSL for machine learning, and demonstrate its performance on a system
with multi-core CPUs and GPUs.

In contrast to the language virtualisation approach of the Delite Com-
piler Framework, the language piggybacking approach applied in this thesis
produced SCOPE implementations as both an internal and an external DSL
(PROCOL and SCOPE), including opportunities for sophisticated domain-
specific validation and a clear separation of roles and concerns. It is this
organisational separation of concerns that let us establish software product
lines as well as factories in Coordination Engineering, while language virtu-
alisation favours an amalgamation of roles and concerns to the level of the
programmer.

The practicability of language piggybacking for external DSLs is guaran-
teed by the recent development and availability of language workbenches –
technologies that greatly alleviate the development of external DSLs. As
illustrates by the development of the SCOPE DSL at the example of the Xtext
framework [Xte, 2011], such language workbenches can support scalability
by a proper separation of concerns according to the roles involved.
There are many examples for the extension of the BPMN for domain-

specific aspects. For instance, Awad et al. [2009] describe how BPMN 1.1
process diagrams can be extended by constraints for resource assignment.
The authors extend a BPMN metamodel for additional classes such as roles
that are assigned to task instances via resources, while constraints on the
assignment of resources to tasks are modelled using the Object Constraint
Language (OCL).

Rodríguez et al. [2007] developed their own metamodel based on BPMN
1.0 process diagrams, and extended it by security requirements aspects.
These examples have in common that they rely on an own metamodel
interpretation for their pre-BPMN-2.0 dialect. In contrast to our piggybacking
approach, it remains to be proven that these approaches conform to the
current BPMN 2.0 metamodel.

Schleicher et al. [2010] describe an extension of the BPMN 2.0 metamodel.
They use the extension mechanism of the BPMN 2.0 specification to add
so-called compliance scopes to process diagrams. In contrast to the language
piggybacking approach, the approach is limited in interoperability. The
BPMN 2.0 extension mechanism is not widely and uniformly supported

245

11. Related Work

Communication
and Documentation

Code Generation
and Execution

Plain Text and
Unstructured

Figures

EPC BPMN WS-BPEL SCOPE DSL WF

Standardised Rendering

Standardised Serialisation

Graph-Based Modelling

Well-Formedness

Block-Structured Modelling

Structured Loops

Arbitrary Cycles

Restricted Choice

Explicit Data Flows Expl. Data Fl.

Stdrd. Rend.

Figure 11.1. Comparison of the SCOPE DSL with the workflow languages BPMN,
EPC, WS-BPEL, and WF.

across tool chains, and means for higher-level validation of BPMN models
extended by domain-specific elements are often missing.

11.5 Comparison with Workflow Languages

Based on the work of Kopp et al. [2008], we characterise the SCOPE DSL
in terms of workflow language features to compare it with four common
workflow languages – BPMN, Event Driven Process Chains (EPCs), Web
Services Business Process Execution Language (WS-BPEL), and Windows
Workflow Foundation (WF). Figure 11.1 summarises the comparison. The
individual characteristics of the SCOPE DSL are discussed in the following.
We refer to Kopp et al. [2008] for the characterisation of the workflow
languages BPMN, EPCs, WS-BPEL, and WF.

246

11.5. Comparison with Workflow Languages

Intention The intention of a coordination language expresses whether the
language has been designed primarily for human-to-human or human-to-
machine communication. While human-to-human communication is mostly
used for documentation, the use of human-to-machine communication can
be differentiated in executable code generation and direct automatic execution.
Also human-to-machine communication requires a language to provide
clearly defined and unambiguous semantics for code generation or execu-
tion. The SCOPE DSL is a human-to-machine language that it is aimed on
code generation.

Representation The representation refers to whether the language spec-
ification defines a standardised rendering (graphical representation) or a
standardised serialization (textual representation), or both. Graphical rep-
resentations are multi-dimensional, thus able to present multiple concurrent
control flows naturally, while fine-grained concurrency control can be en-
capsulated in appropriate language feature semantics [Browne et al., 1994;
Kleppe, 2008]. On the other side, they are often unambiguous and take
much space. Developing concurrent programs using complex textual repre-
sentations (such as provided by general programming languages) can be
tedious and error-prone due to the linearity of the textual representations.
On the other side reduced textual representations are more compact and
formal than graphical representations. Since SCOPE DSL is oriented towards
collaborative work a textual representation is preferred over a graphical
one. However, mapping the SCOPE language to the graphical BPMN is an
intrinsic part of the language definition.

Control Flows When regarding the control flows dimension, there are
several sub-dimensions. These sub-dimensions concern the control style,
well-formedness, join condition types, and loop structurisation. The control
style denotes how control flows are expressed by a language. Graph-oriented
control flow modelling is more applicable to graphical representations and
usually allows to model arbitrary cycles without the notion of dedicated
loop constructs. Block-structured control flow modelling, on the other hand,
is more applicable to textual representations and restricts cycles to struc-
tured loops represented by dedicated loop constructs with well-defined

247

11. Related Work

semantics. Being realised as a textual DSL, we selected block-structured
control flow modelling as the primary control style of the SCOPE language.

Well-formedness refers to whether the language restrict consecutive split
and join operations (also often denoted as choices or decisions) to the same
type or not. For example, a well-formed language requires a control flow
that is split using an XOR-split-choice to be joined through an XOR-join-
choice and not otherwise. As a block-oriented language we require the
SCOPE language to be well-formed.

The selection of join condition types is tightly related to the well-formed-
ness of the language. There are two types of join conditions. Coordination
languages with restricted choice only allow control flows to be joined by a
restricted set of operators, for example AND, OR, and XOR. The negation
operator is normally not included. On the other side, languages that allow
arbitrary expressions allow to define arbitrary boolean expressions over either
the status of incoming links, or over the status of processes by the notion of
process variables. Well-formed languages can not support arbitrary boolean
join conditions and so the SCOPE DSL cannot either.

Regarding loop structurisation there are typically two types of loops,
block-structured loops and graph-based loops. While block-structured loops
are characterised by explicit loop constructs with exit conditions (for ex-
ample, repeat until and while-clauses), graph-based loops can be modelled
simply by defining arbitrary control flow cycles between processes. The
SCOPE DSL is restricted to block-structured loops to avoid semantic ambigui-
ties that can arise with arbitrary graph-based cycles.

Data Flows Data flows define the availability of passive data structures
to active processes. The most prominent and archetypical forms of data
flow modelling are message passing and data sharing. While message
passing explicitly defines to send and receive data structures over distributed
memory or address spaces, data sharing regards data flows as accessing data
structures that reside in memory that is shared among processes. For data
flow modelling in the SCOPE language, we consider a data-sharing approach
that is based on SBS.

248

11.5. Comparison with Workflow Languages

Data Type System When regarding the types of passive data structures
that shall be supported by a coordination language, there are two main
types. A well-typed language provides a defined type set that is especially
suited for executable languages (for example basic types such as boolean,
string, and integer). However, for code generation, there must be a dedicated
mapping of the type system to the type system of the target programming
language. An arbitrary type set, on the other hand, does require an ad-hoc
mapping of the types used in the respective coordination models of the
language, or the adoption of the type system of the target programming
language. For the SCOPE language, we consider a simple defined type set.

249

Part IV

Conclusion and Outlook

Chapter 12

Conclusion

The present thesis is motivated by three prominent challenges to software
engineering that are imposed by the ongoing transition from sequential to
parallel machines. Portability and human perception require the provision
of standardised higher-level concurrency models, continuity with prevalent
technologies must be guaranteed, and existing patterns and practice of
parallel software design must be disseminated to software engineers of all
kinds and domains.

The goal of the thesis is to address these challenges with a novel combi-
nation of coordination models and languages with techniques from Model-
Driven Software Development (MDSD). We use the Business Process Model
and Notation (BPMN) 2.0 specification as a vehicle for dissemination, model
transformations to enforce compliance, a combination of BPMN and Space-
Based Systems (SBS) as a coordination model, and a concrete method that is
embedded in the Parallel Software Design method as application guidance.

The essential contribution of the thesis is as follows:

Space-Coordinated Processes (SCOPE) is a conceptual coordination model that
introduces SBS-based choreography of independent processes, which
internally orchestrate fine-grained workflow activities. The model com-
bines BPMN and SBS.

Coordination Engineering is a method that regards the coordination model
of a concurrent software system as the first development artefact in
the software development process, and facilitates the separation of
concerns according to the roles application engineer, domain engineer,
and toolsmith. The method targets concurrent software development
as a Model-Driven System (MDS) that emphasises the establishment of

253

12. Conclusion

concurrent software product lines and families.

The evaluation of our contribution comprises the implementation of
two prototypes for SCOPE and several experiments on performance and
applicability. The description of the implementation illustrates the Tool
Engineering process of the Coordination Engineering method. The im-
plemented prototypes can be regarded as two kinds of a Domain-Specific
Language (DSL):

Process Coordination Library (PROCOL) is a library-based embodiment of the
SCOPE coordination model as a proof of feasibility. It eases the develop-
ment of concurrent SBS-based programs for the Java platform and can
be considered as an internal DSL for SCOPE.

SCOPE DSL and Workbench is an embodiment of the SCOPE coordination
model in an external textual DSL that conforms to the BPMN, and a
workbench for the SCOPE DSL that is based on the Xtext language frame-
work. M2M and Model-to-Text (M2T) transformations guarantee the
interoperability with arbitrary BPMN-conformant third party tools and
the compliance of PROCOL coordination code to the corresponding SCOPE
coordination architecture models.

We conducted several experiments to justify the SCOPE coordination
model and to show the application of Coordination Engineering with SCOPE.
Statistical rigour is guaranteed by considering several measurement series
from which measurements were excluded that were likely amenable for
effects of JIT compilation and GC. For the rest, the average mean and the
95% confidence interval were considered.

Micro- and macro-benchmarks investigate the question if we can provide a
scalable SBS implementation for the Java programming platform as the
core of our PROCOL library. The findings show that in each of the
benchmarks an implementation for which our definition of scalability
holds or is only slightly violated was provided.

The conclusion drawn from the results is that scalable SBS implemen-
tations can be provided given that the effects of ageing are not yet

254

considered. This is at least the case for multi-core machines with a
number of cores that is in the single-digit range.

Application-specific benchmarks on Mandelbrot set visualisation in the complex
plane investigate if PROCOL and SCOPE programs exploit a given oppor-
tunity for massive parallelism. They also compare the PROCOL and SCOPE
programs with an equivalent program realised with conventional Java
threading mechanisms.

For the PROCOL program,1 the findings show that the program scales
very well on the given machines until 8 concurrent renderer instances.
They also show the performance of the PROCOL program in comparison
to the conventionally threaded program. For example, when using 8
concurrent renderer instances, the response time of the PROCOL imple-
mentation takes between 1.31 and 1.33 times longer to execute, and
between 1.44 and 2.05 times longer to execute when 256 concurrent
renderers are used, depending on the respective machine. In all cases
the difference between measurements was less than an entire order of
magnitude.

For the SCOPE program,2 the findings show that the program scales very
well on the given machines until 16, and in one case until 32 concurrent
renderer instances. The response time of the SCOPE program is not even
more than 2 times higher than the threaded version using 16 renderers
on the considered machine.

We conclude that the performance overhead that PROCOL and SCOPE

impose is at least for the considered applications a reasonable trade-off
for the benefits that they provide.

An application-specific benchmark on parallel simulated annealing illustrates
the Application Engineering process of the Coordination Engineer-
ing method at the example of Point-Feature Label Placement (PFLP)

1The program was directly programmed using the PROCOL library.
2The program was developed using the SCOPE DSL to develop its coordination architecture,

and the SCOPE coordination workbench to generate PROCOL coordination code from the
architecture model. Domain code was supplemented after prototyping to implement a
complete program.

255

12. Conclusion

in Enterprise Architecture Visualisation (EAV). The results show that
Coordination Engineering was successfully employed to develop a con-
current component for PFLP in an existing EAV application.

The benchmark also motivates further optimisation of the PROCOL library
and the use of parameter space exploration to determine the best degree
of concurrency for the size of a given problem on the considered parallel
system: For the relatively small size of the input domain model to be
labelled, the best response time results were achieved using only 4, and
in one case only 2, concurrent worker instances. Increasing the number
of workers further resulted in exponentially growing response times
since SBS access prevails over computation, rendering the component as
unacceptable at 32, or in one case at 64, concurrent workers.

The applicability of Coordination Engineering with SCOPE showed its
eligibility as an engineering approach. The implementation of SCOPE guar-
antees interoperability and conformance with the widely known BPMN,
both a means for high-level coordination modelling and for dissemination.
Experimentation showed the eligibility of SCOPE as a high-level approach
for concurrent engineering. We therefore consider Coordination Engineer-
ing with SCOPE as a promising candidate to address the three prevailing
challenges of concurrent software engineering – standardised higher-level
concurrency models, continuity with prevalent technologies, and the dis-
semination of existing patterns and practice of parallel software design.
However, despite our positive conclusion, further extensions and im-

provements are necessary to bring Coordination Engineering and the SCOPE
coordination model forward from a mere prototype to a professional alter-
native for concurrent software engineering.

256

Chapter 13

Outlook

The implementation of the SCOPE coordination model and its application in
Coordination Engineering provides several opportunities for extension and
improvement. First, the Coordination Engineering can be supplemented
with the following extensions:

� The analysis activity in the Application Engineering process determines
the performance and cost requirements from the problem specifica-
tion and decides whether the coordination model serves its purpose or
whether previous activities must be re-iterated (Section 5.3.1). It can
be worthwhile to further separate concerns by regarding analysis as a
sub-process that can contain the following activities:

� In Section 10.3.2 we employed a simple prototyping process. It can be
considered as a separate prototyping activity to anticipate the dynamic
behaviour of Space-Coordinated Processes (SCOPE) programs.

� Section 6.6 describes the operational behaviour of SCOPE with Petri
nets. A separate static analysis activity can be introduced that checks
the corresponding Petri net model of a SCOPE program, for example,
for deadlocks. Tool support can possibly be realised with the Model-
Checking Kit – a toolkit that allows to apply a variety of analysis
techniques to a single model representation that can be provided by a
variety of modelling languages.1

� Autotuning could explore the parameter space of SCOPE prototypes and
programs in order to determine the best degree of concurrency for the
given target platform.
1http://www.fmi.uni-stuttgart.de/szs/tools/mckit/

257

13. Outlook

Second, we consider the following extensions as promising to further
refine the implementation of the SCOPE coordination model:

� The Process Coordination Library (PROCOL) framework represents a pro-
totypical implementation of an internal Domain-Specific Language (DSL)
for the SCOPE coordination model. The optimisation of the Space-Based
Systems (SBS) component is appealing to increase the performance of
inter-process communication. In particular, a more sophisticated match-
ing strategy could mitigate the effects of ageing (see Section 10.2.2).
Separating the matching algorithm from the space data structures and
replacing it with a strategy design pattern could increase the config-
urability of the implementation using its factory interface. For highly
concurrent systems, space implementations with multiple internal data
structures and a concurrent matching algorithm could be worthwhile in-
vestigating. Finally, the introduction of a collect primitive that dismisses
atomicity in favour to competition amongst client processes could further
improve the overall performance.

� To show the feasibility of our approach, PROCOL maps the SCOPE coordi-
nation model to the Java programming language and the Java Virtual
Machine (JVM), used as a closed local platform. As SBS are also used
for open and distributed systems, additional generator projects for such
platforms provide a basis for product lining and further experimentation.

� The SCOPE coordination workbench represents a prototypical implemen-
tation of an external DSL for the SCOPE coordination model. Its com-
ponents are realised as a set of Eclipse plug-ins that can be combined
with third-party plug-ins to form custom workbench configurations.
When considered as an essential part of Model-Driven Systems (MDSs)
for Coordination Engineering, different workbench configurations can
be considered as viewpoints on the MDS that alleviate the activities of the
different participating roles. Such viewpoints itself require configuration
versioning and documentation, and application guidance. While the
former can be realised with Yoxos workspace configuration profiles for
the Eclipse Integrated Development Environment (IDE),2 the latter can

2http://eclipsesource.com/en/yoxos/

258

be supported with intelligent project wizards.

� Interesting combinations of space data structures and matching strategies
could be abstracted into DSL extensions: They could be represented by
parameters to configure the Spaces that attend a Collaboration, for example,
to specify that a read-optimized Space should be used.

� To foster the statical analysis of SCOPE models, a SCOPE-to-Petri net
generator component could transform SCOPE models to Petri nets. Rea-
sonable output formats are Petri Net Markup Language (PNML) [Hillah
et al., 2009], and one of the many input formats of the Model-Checking
Kit toolkit.

� Further optimisation of the code generator templates can reduce code
redundancies by considering finer-grained context-dependent templates,
possibly increasing the performance of SCOPE programs. Optimisations
of the Query/View/Transformation (QVT) transformation in the Business
Process Model and Notation (BPMN) generator can map the different
Definitions namespaces of a SCOPE model to different Definitions elements
in BPMN models, using its import mechanism. The result is the generation
of compound output models that consists of separate BPMN models for
each SCOPE Definitions element.

� Heiser [2009] makes a case for Virtual Shared Memory (VSM) as an at-
tractive model for future many-core systems. VSM is a shared memory
abstraction that is implemented over physically distributed memory by a
hypervisor. It allows operating systems to directly access all memory of
a many-core system. The model provides several benefits for hardware
manufacturers since it integrates well with virtualisation for resource
management, and simplifies to handle message loss in the interconnect,
faulty cores, and core heterogeneity [Heiser, 2009]. Heiser also presents
results from a cluster-based prototype that indicate that the VSM abstrac-
tion does not impose a significant overhead when shared memory is
not required. We consider VSM-based many-cores as an attractive future
target architecture for SCOPE since it provides a natural abstraction for
the SBS model.3

3An overview of the architecture of future many-core systems in general is presented

259

13. Outlook

Finally, the experiments can be extended by the following aspects:

� In our experiments, we investigated the operational behaviour of our
PROCOL library. Further experiments can perform comparative analy-
ses to other programming models, for example, light-weight publish-
subscribe frameworks.

� The experiments on Mandelbrot Set visualisation and Point-Feature
Label Placement (PFLP) employed the Manager-Worker pattern for their
coordination architectures. Developing and analysing applications that
employ different architectural patterns could provide hints for useful
extensions of the SCOPE coordination model that further increase its
expressiveness.

� To investigate the effects of ageing, we pre-populated the SBS component
of the PROCOL library with different-string-values data objects. Ad-
dressing ageing in more detail can be achieved by populating the SBS
component with data objects of different size and type before benchmark
execution.

� For the analysis of SCOPE, we employed a mechanism that measures
response time and throughput. More sophisticated analysis can be
achieved with continuous performance monitoring and dynamic analysis
frameworks, such as Kieker [van Hoorn et al., 2009].

� Further experiments could identify interesting combinations of space
data structures and matching strategies, as discussed above.

in condensed form by Borkar [2007]. It discusses the topics power management, memory
bandwidth, on-die-networks, and system resiliency.

260

Part V

Appendix

Appendix A

XML Schema Definition for SBS

Benchmarks

This chapter describes a schema for benchmarks, see Section 9.1.3. It is
formulated as an XML Schema Definition (XSD). The schema is used by
the project procol-tuplespace-benchmark, a part of the Process Coordination
Library (PROCOL) library for Space-Based Systems (SBS) programming in
Java. Essentially, the schema defines experiments that each consist of a
number of benchmarks, whereas each benchmark comprises a set of measure-

ments. A measurement, in turn, contains a data sample and defines its unit of
measurement.

<?xml version="1.0" encoding="utf-16"?>

<xsd:schema attributeFormDefault="unqualified"

elementFormDefault="qualified" version="1.0"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="experiments" type="experimentsType" />

<xsd:complexType name="experimentsType">

<xsd:sequence>

<xsd:element maxOccurs="unbounded" name="experiment"

type="experimentType" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="experimentType">

<xsd:sequence>

<xsd:element name="timestamp" type="xsd:dateTime" />

<xsd:element name="type" type="xsd:string" />

<xsd:element name="concurrency-degree" type="xsd:int" />

<xsd:element name="ageing-population" type="xsd:int" />

<xsd:element name="run-time" type="xsd:double" />

<xsd:element name="pause-time" type="xsd:double" />

<xsd:element name="benchmark-iterations" type="xsd:int" />

<xsd:element name="workload-iterations" type="xsd:int" />

<xsd:element name="benchmarks" type="benchmarksType" />

265

A. XML Schema Definition for SBS Benchmarks

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="benchmarksType">

<xsd:sequence>

<xsd:element maxOccurs="unbounded" name="benchmark" type="benchmarkType" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="benchmarkType">

<xsd:sequence>

<xsd:element name="benchmark-name" type="xsd:string" />

<xsd:element name="measurements" type="measurementsType" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="measurementsType">

<xsd:sequence>

<xsd:element maxOccurs="unbounded" name="measurement"

type="measurementType" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="measurementType">

<xsd:sequence>

<xsd:element name="measurement-name" type="xsd:string" />

<xsd:element name="index" type="xsd:int" />

<xsd:element name="sample" type="xsd:double" />

<xsd:element name="unit" type="xsd:string" />

<xsd:element name="concurrency-kind" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

266

Appendix B

SCOPE Xtext Syntax Definition

This chapter describes the Xtext language definition for the SCOPE DSL, see
Section 9.2. It comprises both the concrete and the abstract syntax of the
language. The language definition is formulated using the Extended Backus-
Naur Form (EBNF)-like Xtext language of the Xtext language workbench
[Xte, 2011].

File Scope.xtext

grammar org.xtext.scope.Scope with org.eclipse.xtext.common.Terminals

generate scope "http://www.xtext.org/scope/Scope"

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

// ***
// PART I: Definitions

// ***

Definitions :

’definitions’ name=QualifiedName

’{’

(imports+=Import)*
(types+=ObjectType)*
(collaboration=Collaboration)?

(processes+=Process)*
’}’ ;

QualifiedName :

ID (’.’ ID)* ;

QualifiedNameWithWildCard :

QualifiedName (’.*’)? ;

Import :

’import’ importedNamespace=QualifiedNameWithWildCard ;

// ***
// Collaboration and Participants

267

B. SCOPE Xtext Syntax Definition

// ***

Collaboration :

’collaboration’ name=ID

’{’

(participants+=Participant)*
’}’ ;

Participant :

Space | Client ;

Space :

’space’ name=ID ;

Client :

’client’ name=ID ’:’ processRef=[Process] ;

// ***
// Processes

// ***

Process :

’process’ name=ID (’attends’ definitionalCollaborationRef=[Collaboration])?

’{’

(properties+=ProcessProperty)*
sequenceFlows=SequenceFlows

’}’ ;

ProcessProperty :

type=TypeReference name=ID

(isInit ?= ’init’)? ’;’ ;

// ***
// Sequence Flows

// ***

SequenceFlows :

{SequenceFlows} (nodes+=FlowNode)* ;

ConditionalSequenceFlows :

’case’ ’(’ condition=Expression ’)’ ’:’ (nodes+=FlowNode)* ;

Expression :

name=ID probability=RealValue ;

ExclusiveGateway :

{ExclusiveGateway}

’xor’

’{’

(sequenceFlows+=ConditionalSequenceFlows)*
(’default’ ’:’ defaultSequenceFlows=SequenceFlows)?

268

’}’ ;

// ***
// Activities

// ***

FlowNode :

Activity | ExclusiveGateway ;

Activity :

DomainTask | SpaceSendTask | SpaceAccessTask | SubProcess | CallActivity

;

enum SpaceSendOperation :

OUT = ’publish’ |

OUTG = ’publish-all’;

enum SpaceAccessOperation :

IN = ’take’ |

INP = ’take-available’ |

ING = ’collect’ |

RD = ’read ’ |

RDP = ’read-available’ |

RDG = ’scan’ ;

DomainTask :

(loopCharacteristics=LoopCharacteristics)?

name=ID (’weighted’ weight=RealValue)?

’;’ ;

SpaceSendTask : //

(loopCharacteristics=LoopCharacteristics)?

spaceOperation=SpaceSendOperation messageRef=[ProcessProperty] ’to’ targetRef=[Space|QualifiedName]

’;’ ;

SpaceAccessTask :

(assignedProperty=ProcessPropertyCall ’=’)?

(loopCharacteristics=LoopCharacteristics)?

spaceOperation=SpaceAccessOperation message=QuerySpecification ’from’ targetRef=[Space|QualifiedName]

’;’ ;

QuerySpecification :

requestedTypeRef=[ObjectType]

(’where’ ’(’ (actualProperty+=ObjectPropertyAssignmentExpression)* ’)’)? ;

ObjectPropertyAssignmentExpression : // differ between fromType or fromValue/Instance

actualPropertyRef=[ObjectProperty|QualifiedName] ’=’ value=ValueCall (’,’)? ;

ValueCall :

ValueExpression | ProcessPropertyCall // | ObjectTypeInstantiationExpression ;

ObjectTypeInstantiationExpression :

269

B. SCOPE Xtext Syntax Definition

’new’ typeRef=[ObjectType] ’(’ (parameterValues+=ValueCall)* ’)’ ;

ProcessPropertyCall :

propertyRef=[ProcessProperty|ID]

({ProcessPropertyNavigatingExp.left=current} ’.’ right=ObjectPropertyCall)? ;

ObjectPropertyCall :

propertyRef=[ObjectProperty]//|ID

({ObjectPropertyNavigatingExp.left=current} ’.’ right=[ObjectProperty])? ;

SubProcess :

ParallelSubProcess | SequentialSubProcess ;

ParallelSubProcess :

{ParallelSubProcess}

(loopCharacteristics=LoopCharacteristics)?

’parallel’ // anonymous name=ID

’{’

(nodes+=FlowNode)*
’}’ ;

SequentialSubProcess :

{SequentialSubProcess}

(loopCharacteristics=LoopCharacteristics)?

’{’

(nodes+=FlowNode)*
’}’ ;

CallActivity :

(loopCharacteristics=LoopCharacteristics)?

’call’ processRef=[Process] //calledElementRef

’;’ ;

// ***
// Loops

// ***

LoopCharacteristics :

StandardLoopCharacteristics | MultiInstanceLoopCharacteristics ;

StandardLoopCharacteristics :

ForLoop | WhileLoop | DoWhileLoop ;

ForLoop :

’for’ ’(’ loopMaximum=ValueCall ’)’ ;

WhileLoop :

’while’ ’(’ loopCondition=Expression ’)’ ;

DoWhileLoop :

’do-while’ ’(’ loopCondition=Expression ’)’ ;

270

MultiInstanceLoopCharacteristics :

{MultiInstanceLoopCharacteristics}

’multi-instance’ (’(’ loopMaximum=ValueCall ’)’)? ;

// ***
// PART II: Types and Object Definitions

// ***

Type :

BuildinType | ObjectType ;

BuildinType :

PrimitiveType | CollectionType ;

CollectionType :

ListType | MatrixType | CubeType ;

PrimitiveType :

IntType | BooleanType | RealType | StringType ;

// ***
// Collection Types

// ***

ListType :

{ListType} ’list’ ’<’baseType=TypeReference’>’

;

MatrixType :

{MatrixType} ’matrix’ ’<’baseType=TypeReference’>’

;

CubeType :

{CubeType} ’cube’ ’<’baseType=TypeReference’>’

;

// ***
// Object Types

// ***

ObjectType :

’type’ name=ID

’{’

(properties += ObjectProperty)*
’}’ ;

ObjectProperty :

(isReadonly?=’readonly’)? type=TypeReference name=ID ’;’ ;

TypeReference :

271

B. SCOPE Xtext Syntax Definition

BuildinType | ObjectTypeReference ;

ObjectTypeReference :

typeRef=[ObjectType] ;

// ***
// Primitive Types

// ***

IntType :

{IntType} ’integer’ ;

BooleanType :

{BooleanType} ’boolean’

;

RealType :

{RealType} ’real’ ;

StringType :

{StringType} ’string’ ;

// ***
// Literals and Terminals

// ***

RealLiteral :

INT ’.’ INT ;

BoundLiteral returns ecore::EInt :

INT | ’*’ ;

terminal BOOLEAN returns ecore::EBoolean: ’true’ | ’false’ ;

// ***
// Value Expressions

// ***

ValueExpression :

IntValue | BooleanValue | RealValue | StringValue ;

IntValue :

value=INT ;

BooleanValue :

value=BOOLEAN ;

RealValue :

value=RealLiteral ;

StringValue :

value=STRING ;

272

Appendix C

Project Structure of PROCOL

Projects developed with SCOPE

This chapter describes the project structure of concurrent programs that
use the Process Coordination Library (PROCOL) coordination library and
are developed with the Space-Coordinated Processes (SCOPE) coordination
workbench.

Project Folders A PROCOL project developed with SCOPE is a conventional
Maven project extended with an additional source folder for generated
source files and a model folder for SCOPE Domain-Specific Language (DSL)
models, see Figure C.1. The code generation strategy uses the conventional
Generation Gap pattern, see Section 9.2.4. The individual project folders
are:

� src/main/java contains the Java source code edited by a domain engineer.
Contents of the folder typically include source files for SCOPE Object Types

and Processes that are generated by SCOPE code generators once (i. e., that
are not overwritten in subsequent generator runs).

� src/test/java contains test code provided by a domain engineer.

� src-gen/main/java contains generated Java source code that represents the
coordination architecture of the project. Contents of the folder should
not be modified nor put under the control of a version management
system. SCOPE code generators can overwrite the contents.

� model contains the SCOPE DSL model files from which the coordination
architecture of the program is generated.

273

C. Project Structure of PROCOL Projects developed with SCOPE

config contains additional configuration files such as the generic log4j.prop-
erties required by the PROCOL library for response time reporting.

scripts is intended to contain run scripts provided by the domain engineer.

target contains the compiled project sources after a Maven build is exe-
cuted (e. g., via mvn install).

Figure C.1. Project Structure of PROCOL Projects developed with SCOPE.

Dependencies By default, a PROCOL project developed with SCOPE has the
following project dependencies:

junit is used for module tests provided by the domain engineer

log4j is used by the PROCOL library for response time reporting.

procol-tuplespace represents the Space Based System component of the
PROCOL library.

274

� commons-cli provides a robust command line interface for SCOPE pro-
grams.

� procol-components represents the Process Orchestration component of the
PROCOL library.

Maven Project Object Model The Project Object Model (POM) is the funda-
mental project configuration file required by Maven to build target projects.
It is represented by the file pom.xml. For SCOPE projects, the pom.xml file
is generated by the SCOPE coordination workbench. The following listing
illustrates a pom.xml file for SCOPE projects. Project-specific configuration
parameters are encapsulated in « and -»

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<!-- <parent>

<artifactId>procol</artifactId>

<groupId>org.procol</groupId>

<version>0.0.1</version>

<relativePath>./..</relativePath>

</parent> -->

<modelVersion>4.0.0</modelVersion>

<groupId>org.scope.target.gen</groupId>

<artifactId><<projectName->></artifactId>

<version>0.0.1</version>

<packaging>jar</packaging>

<name>scope-app-<<projectName->></name>

<url>http://scope-dsl.sourceforge.net</url>

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

</properties>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>3.8.1</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>log4j</groupId>

<artifactId>log4j</artifactId>

275

C. Project Structure of PROCOL Projects developed with SCOPE

<version>1.2.16</version>

<scope>compile</scope>

</dependency>

<dependency>

<groupId>org.procol.framework.tuplespace</groupId>

<artifactId>procol-tuplespace</artifactId>

<version>0.0.1</version>

<type>jar</type>

<scope>compile</scope>

</dependency>

<dependency>

<groupId>log4j</groupId>

<artifactId>log4j</artifactId>

<version>1.2.16</version>

<scope>compile</scope>

</dependency>

<dependency>

<groupId>commons-cli</groupId>

<artifactId>commons-cli</artifactId>

<version>1.2</version>

<type>jar</type>

<scope>compile</scope>

</dependency>

<dependency>

<groupId>org.procol.framework.components</groupId>

<artifactId>procol-components</artifactId>

<version>0.0.1</version>

<type>jar</type>

<scope>compile</scope>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-source-plugin</artifactId>

<executions>

<execution>

<id>attach-sources</id>

<goals>

<goal>jar</goal>

</goals>

</execution>

</executions>

</plugin>

276

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-javadoc-plugin</artifactId>

<executions>

<execution>

<id>attach-javadocs</id>

<goals>

<goal>jar</goal>

</goals>

</execution>

</executions>

</plugin>

<plugin>

<artifactId>maven-resources-plugin</artifactId>

<version>2.5</version>

<executions>

<execution>

<id>copy-resources</id>

<!-- here the phase you need -->

<phase>validate</phase>

<goals>

<goal>copy-resources</goal>

</goals>

<configuration>

<outputDirectory>${basedir}/target</outputDirectory>

<resources>

<resource>

<directory>src/main/config</directory>

<filtering>true</filtering>

</resource>

<resource>

<directory>src/main/scripts</directory>

<filtering>true</filtering>

</resource>

</resources>

</configuration>

</execution>

</executions>

</plugin>

<plugin>

<artifactId>maven-dependency-plugin</artifactId>

<executions>

<execution>

<phase>install</phase>

<goals>

<goal>copy-dependencies</goal>

</goals>

<configuration>

<outputDirectory>${project.build.directory}</outputDirectory>

</configuration>

277

C. Project Structure of PROCOL Projects developed with SCOPE

</execution>

</executions>

</plugin>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-jar-plugin</artifactId>

<version>2.3.1</version>

<configuration>

<archive>

<manifest>

<mainClass><<qualifiedPackageName->>.<<this.name->></mainClass>

<addClasspath>true</addClasspath>

</manifest>

</archive>

</configuration>

</plugin>

</plugins>

<pluginManagement><!-- Needed to tell the eclipse m2e plugin to execute

maven-dependency-plugin (under Eclipse 3.7 Indigo)-->

<plugins>

<plugin>

<groupId>org.eclipse.m2e</groupId>

<artifactId>lifecycle-mapping</artifactId>

<version>1.0.0</version>

<configuration>

<lifecycleMappingMetadata>

<pluginExecutions>

<pluginExecution>

<pluginExecutionFilter>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-dependency-plugin</artifactId>

<versionRange>[2.0,)</versionRange>

<goals>

<goal>copy-dependencies</goal>

</goals>

</pluginExecutionFilter>

<action>

<execute /><!-- else use ’ignore’ -->

</action>

</pluginExecution>

</pluginExecutions>

</lifecycleMappingMetadata>

</configuration>

</plugin>

</plugins>

</pluginManagement>

</build>

</project>

278

In addition to the project dependencies, the POM makes use of the
following plugins for build support:

� maven-source-plugin creates a Java jar archive from the source files of the
project into the project’s target directory.

� maven-javadoc-plugin uses the Java Javadoc tool to generate the source
code documentation for the project.

� maven-resources-plugin copies project resources from src/main/config to the
project’s target directory. The location of the config folder under src/main
is a requirement of this plugin.

� maven-dependency-plugin provides the capability to copy and/or unpack
artefacts from local or remote repositories to a specified location. It is
used to copy all project dependencies (libraries) to the project’s target
directory.

� maven-jar-plugin defines the manifest for the Java jar archive of the project
that specifies the project’s main class.

279

Appendix D

SCOPE Model for Mandelbrot Set

Visualisation

This chapter describes a Space-Coordinated Processes (SCOPE) model for the
visualisation of the Mandelbrot set in the complex plane, see Section 10.3.2.
It is formulated using the SCOPE coordination Domain-Specific Language
(DSL), see Section 9.2. The model is used to generate the coordination code
of the program.

File mandelbrot-processes.scope

definitions org.scope.target.gen.mandelbrot.processes

{

import org.scope.target.gen.mandelbrot.types.*
import org.scope.target.gen.mandelbrot.types.Complex.*
import org.scope.target.gen.mandelbrot.types.Configuration.*

collaboration Mandelbrot

{

space ImageSpace

client MandelbrotClient : MandelbrotProc

}

process ImageProvider attends Mandelbrot

{

Configuration config;

list<Image> images;

config = read Configuration from Mandelbrot.ImageSpace;

createImagePartitions weighted 1.0;

publish-all images to Mandelbrot.ImageSpace;

}

process MandelbrotProc attends Mandelbrot

{

Configuration config init;

281

D. SCOPE Model for Mandelbrot Set Visualisation

publish config to Mandelbrot.ImageSpace;

parallel

{

call ImageProvider;

multi-instance (config.numberOfImagePartitions) call Renderer;

call Presenter;

}

}

process Renderer attends Mandelbrot

{

Image image;

image = take Image where (Image.isRendered = false) from Mandelbrot.ImageSpace ;

renderImage weighted 1.0;

publish image to Mandelbrot.ImageSpace;

}

process Presenter attends Mandelbrot

{

Configuration config;

list<Image> images;

matrix<integer> mandelbrotMatrix;

config = read Configuration from Mandelbrot.ImageSpace;

images = for (config.numberOfImagePartitions) take Image

where (Image.isRendered = true) from Mandelbrot.ImageSpace;

computeMatrix weighted 1.0;

saveMandelbrotImageAsFile weighted 1.0;

xor

{

case (printCondition 0.7) : printGui weighted 1.0;

}

}

}

File mandelbrot-types.scope
definitions org.scope.target.gen.mandelbrot.types

{

type Configuration {

integer height;

integer width;

integer numberOfImagePartitions;

Complex topleft;

Complex bottomRight;

boolean isGuiPresented;

}

type Complex {

real a;

282

real b;

}

type Image {

integer id;

Complex topLeft;

Complex bottomRight;

readonly matrix<integer> store;

integer height;

integer width;

boolean isRendered;

}

}

283

Appendix E

SCOPE Model for Label

Positioning

This chapter describes a Space-Coordinated Processes (SCOPE) model for
label positioning, see Section 10.3.3. It is formulated using the SCOPE

coordination Domain-Specific Language (DSL), see Section 9.2. The model is
used to generate the coordination code of a label positioning component
for an exiting tool for Enterprise Architecture Visualisation (EAV).

File AIOLabelPositioning.scope

definitions de.offis.alis.svggen.concurrent.routing.labeling

{

import de.offis.alis.svggen.concurrent.routing.labeling.types.*
import de.offis.alis.svggen.concurrent.routing.labeling.types.PathWalkerWrapper.*
import de.offis.alis.svggen.concurrent.routing.labeling.types.Configuration.*
import de.offis.alis.svggen.routing.labeling.*

collaboration LabelPositioning

{

space LabelSpace

space ObstacleSpace

client AIOMapBuilder : ConcurrentAIOMapBuilder

}

process ConcurrentAIOMapBuilder attends LabelPositioning

{

list<PathWalkerWrapper> walkers;

publish-all walkers to LabelPositioning.LabelSpace;

publish-all walkers to LabelPositioning.ObstacleSpace;

call PositionSolver;

walkers = collect PathWalkerWrapper from LabelPositioning.LabelSpace;

}

process PositionSolver attends LabelPositioning

285

E. SCOPE Model for Label Positioning

{

Configuration config;

integer numWorkers;

createConfig;

publish config to LabelPositioning.LabelSpace;

multi-instance (numWorkers) call SolverWorker;

}

process SolverWorker attends LabelPositioning

{

Configuration config;

integer cycles;

integer partitionSize;

PathWalkerWrapper walker;

list<PathWalkerWrapper> obstacles;

config = read Configuration from LabelPositioning.LabelSpace;

initWorker;

while (notMaxCyclesReached 0.9)

{

obstacles = scan PathWalkerWrapper from LabelPositioning.ObstacleSpace;

for (partitionSize)

{

walker = take-available PathWalkerWrapper

from LabelPositioning.LabelSpace;

xor

{

case (ShouldProcessWalker 0.9) : // at least if walker exists

solve; // by Simulated Annealing; includes to increase the trial count of the walker

xor

{ // update obstacle space

case (changeOccured 0.5) :

take-available PathWalkerWrapper

where (PathWalkerWrapper.id = walker.id)

from LabelPositioning.ObstacleSpace;

publish walker to LabelPositioning.ObstacleSpace;

}

publish walker to LabelPositioning.LabelSpace;

}

}

increaseCycleCount;

resetObstacles;

}

}

}

File AIOLabelPositioningTypes.scope
definitions de.offis.alis.svggen.concurrent.routing.labeling.types

{

import de.offis.alis.svggen.routing.labeling.*

286

type Configuration {

integer maxCycles;

integer maxTrials;

integer spacing;

real temperature;

real temperatureDecreaseFactor;

integer partitionSize;

}

type PathWalkerWrapper {

PathWalker walker;

integer trials;

integer id;

}

}

File AIOLabelPositioningTypesStubs.scope

definitions de.offis.alis.svggen.routing.labeling

{

type PathWalker { } // Stub for existing PathWalker

}

287

List of Acronyms

AC-MDSD Architecture-Centric Model-Driven Software Development

ADL Architectural Description Language

AIO Application Interface Overview

API Application Programming Interface

AGG Attributed Graph Grammar System

AOM Aspect-Oriented Modeling

AOP Aspect-Oriented Programming

AVOPT Analysis, Verification, Optimization, Parallelization, and
Transformation

BPMI Business Process Management Initiative

BPMN Business Process Model and Notation

CCC Cross-Cutting Concern

CL Coordination Language

ccNUMA Cache-Coherent Non-Uniform Memory Access

COOP Concurrent Object-Oriented Programming

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CSP Communicating Sequential Processes

CT Coordination Theory

289

E. SCOPE Model for Label Positioning

DARE Domain Analysis and Reuse Environment

DMM Distributed Memory Machine

DSL Domain-Specific Language

DSSA Domain Specific Software Architectures

EAV Enterprise Architecture Visualisation

EBNF Extended Backus-Naur Form

EMF Eclipse Modeling Framework

EPC Event Driven Process Chain

FAST Family-oriented Abstractions, Specification and Translation

FODA Feature-oriented Domain-Analysis

FTP File Transfer Protocol

GC Garbage Collection

GPL General-Purpose Programming Language

GPU Graphics Processing Unit

GReAT Graph Rewriting and Transformation

GUI Graphical User Interface

HPC High-Performance Computing

IDE Integrated Development Environment

ISAT Intel Software Autotuning Tool

JIT Just-In-Time

JVM Java Virtual Machine

LHS Left-Hand Side

290

M2M Model-to-Model

M2T Model-to-Text

MDS Model-Driven System

MDSD Model-Driven Software Development

MDT Model Development Tools

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

MOF Meta Object Facility

MPI Message Passing Interface

MPP Massively Parallel Processors

MPS JetBrains Meta Programming System

MWE Modeling Workflow Engine

NP Non-Deterministic Polynomial-Time

NUMA Non-Uniform Memory Access

OCL Object Constraint Language

ODE Ontology-based Domain Engineering

ODM Organization Domain Modeling

OMG Object Management Group

OO Object-Orientation

OS Operating System

PE Processing Element

PFLP Point-Feature Label Placement

291

E. SCOPE Model for Label Positioning

PNML Petri Net Markup Language

POM Project Object Model

PROCOL Process Coordination Library

PSM Platform-Specific Model

PTP Eclipse Parallel Tools Platform

QVT Query/View/Transformation

RAM Random Access Machine

RHS Right-Hand Side

SBS Space-Based Systems

SCOPE Space-Coordinated Processes

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SMM Shared Memory Machine

SMP Symmetric Multiprocessor

SOA Service-Oriented Architectures

SQL Structured Query Language

SVG Scalable Vector Graphics

SVN Subversion

TBB Intel Threading Building Blocks

TPL Microsoft Task Parallel Library

UE Unit of Execution

UML Unified Modeling Language

292

UUID Universally Unique Identifier

VIATRA2 VIsual Automated model TRAnsformations

VSM Virtual Shared Memory

WF Windows Workflow Foundation

WS-BPEL Web Services Business Process Execution Language

WS-CDL Web Services Choreography Description Language

XMI XML Metadata Interchange

XML Extensible Markup Language

XPDL XML Process Definition Language

XSD XML Schema Definition

XSLT Extensible Stylesheet Language Transformations

293

Bibliography

[XPD 2008] XML Process Definition Language, October 2008. URL http:

//www.wfmc.org. (cited on page 42)

[MPI 2009] MPI: A Message-Passing Interface Standard Version 2.2,
September 2009. (cited on page 3)

[MOF 2011] OMG Meta Object Facility (MOF) Core Specification, August
2011. (cited on page 61)

[Ope 2011] OpenMP Application Program Interface Version 3.1, 2011. July.
(cited on pages 3 and 30)

[QVT 2011] Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, January 2011. (cited on pages 61 and 178)

[Xte 2011] Xtext 2.1 Documentation. Technical report, The Eclipse Founda-
tion, 2011. (cited on pages 64, 72, 84, 176, 179, 187, 188, 245, and 267)

[Adiga et al. 2002] N. R. Adiga, G. Almási, G. S. Almasi, Y. Aridor, R. Barik,
D. K. Beece, R. Bellofatto, G. Bhanot, R. Bickford, M. A. Blumrich, A. A.
Bright, J. R. Brunheroto, C. Cascaval, J. G. Castaños, W. Chan, L. Ceze,
P. Coteus, S. Chatterjee, D. Chen, G. L.-T. Chiu, T. M. Cipolla, P. Crumley,
K. M. Desai, A. Deutsch, T. Domany, M. B. Dombrowa, W. E. Donath,
M. Eleftheriou, C. C. Erway, J. Esch, B. G. Fitch, J. Gagliano, A. Gara,
R. Garg, R. S. Germain, M. Giampapa, B. Gopalsamy, J. A. Gunnels,
M. Gupta, F. G. Gustavson, S. Hall, R. A. Haring, D. Heidel, P. Heidel-
berger, L. Herger, D. Hoenicke, R. D. Jackson, T. Jamal-Eddine, G. V.
Kopcsay, E. Krevat, M. P. Kurhekar, A. P. Lanzetta, D. Lieber, L. K. Liu,
M. Lu, M. P. Mendell, A. Misra, Y. Moatti, L. S. Mok, J. E. Moreira, B. J.
Nathanson, M. Newton, M. Ohmacht, A. J. Oliner, V. Pandit, R. B. Pudota,
R. A. Rand, R. D. Regan, B. Rubin, A. E. Ruehli, S. Rus, R. K. Sahoo,
A. Sanomiya, E. Schenfeld, M. Sharma, E. Shmueli, S. Singh, P. Song,

295

Bibliography

V. Srinivasan, B. D. Steinmacher-Burow, K. Strauss, C. W. Surovic, R. A.
Swetz, T. Takken, R. B. Tremaine, M. Tsao, A. R. Umamaheshwaran,
P. Verma, P. Vranas, T. J. C. Ward, M. E. Wazlowski, W. Barrett, C. Engel,
B. Drehmel, B. Hilgart, D. Hill, F. Kasemkhani, D. J. Krolak, C. T. Li,
T. A. Liebsch, J. A. Marcella, A. Muff, A. Okomo, M. Rouse, A. Schram,
M. Tubbs, G. Ulsh, C. D. Wait, J. Wittrup, M. Bae, K. A. Dockser, L. Kissel,
M. K. Seager, J. S. Vetter, and K. Yates. An overview of the BlueGene/L
Supercomputer. Technical report, IBM and Lawrence Livermore National
Laboratory, 2002. (cited on page 24)

[Agha 1990] G. Agha. Concurrent Object-Oriented Programming. Commun.
ACM, 33(9):125–141, 1990. (cited on page 31)

[Agha 1985] G. A. Agha. Actors: A Model Of Concurrent Computation In
Distributed Systems. PhD thesis, MIT Artificial Intelligence Laboratory,
Cambridge, Massachusetts, June 1985. (cited on pages 31 and 145)

[Allweyer 2009] T. Allweyer. BPMN 2.0 - Business Process Model and Nota-
tion: Einführung in den Standard für die Geschäftsprozessmodellierung. Books
on Demand, 2nd edition, November 2009. (cited on page 51)

[Alves et al. 2007] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guízar, N. Kartha, C. K. Liu, R. Khalaf,
D. König, M. Marin, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri,
and A. Yiu. Web Services Business Process Execution Language Version
2.0, April 2007. URL http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.
(cited on page 42)

[AMD 2011] AMD. Multi-Core Processing with AMD, August
2011. URL http://www.amd.com/us/products/technologies/multi-core-processing/

Pages/multi-core-processing.aspx. (cited on page 2)

[Antoy and Hanus 2010] S. Antoy and M. Hanus. Functional logic pro-
gramming. Commun. ACM, 53:74–85, Apr. 2010. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/1721654.1721675. URL http://doi.acm.org/10.

1145/1721654.1721675. (cited on pages 30 and 31)

296

Bibliography

[Arenas Sánchez et al. 2011] P. Arenas Sánchez, S. Estévez Martín, A. J. Fer-
nández Leiva, A. Gil Luezas, F. J. López Fraguas, M. Rodríguez Artalejo,
and F. Sáenz Pérez. TOY: A Multiparadigm Declarative Language Version
2.3.2. Technical report, Universidad Complutense de Madrid, October
2011. (cited on page 31)

[Armstrong 2007] J. Armstrong. Programming Erlang: Software for a Concur-
rent World. The Pragmatic Programmers, LLC., 2007. (cited on pages 30
and 31)

[Awad et al. 2009] A. Awad, A. Grosskopf, A. Meyer, and M. Weske.
Enabling Resource Assignment Constraints in BPMN. BPT Technical
Report 04-2009, Ahmed Awad, Alexander Grosskopf, Andreas Meyer,
Mathias Weske, 2009. (cited on page 245)

[Axway et al. 2010] Axway, BizAgi, Bruce Silver Associates, IDS Scheer,
IBM Corp., MEGA International, Model Driven Solutions, Object Manage-
ment Group, Oracle, SAP AG, Software AG, TIBCO Software, and Unisys.
Business Process Model and Notation (BPMN) Version 2.0. Technical
report, Object Management Group, Inc. (OMG), 2010. (cited on pages 5,
32, 39, 42, 48, 49, 83, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132,
133, 134, and 182)

[Backus 1958] J. W. Backus. Automatic programming: properties and
performance of FORTRAN systems I and II. In Proceedings Symposium on
the Mechanisation of Thought Processes, pages 232–255, Teddington, Mid-
dlesex, England, The National Physical Laboratory, November 1958. Her
Majesty’s Stationary Office (HMSO). (cited on page 82)

[Balzarotti et al. 2007] D. Balzarotti, P. Costa, and G. P. Picco. The LighTS
tuple space framework and its customization for context-aware applica-
tions. Web Intelligence and Agent Systems, 5(2):215–231, 2007. (cited on
pages 7, 29, 39, 44, 46, 116, 145, 162, 164, and 241)

[Basili et al. 1994] V. R. Basili, G. Caldiera, and H. D. Rombach. The Goal
Question Metric Approach. In Encyclopedia of Software Engineering. Wiley,
1994. (cited on page 203)

297

Bibliography

[Ben-Ari 2006] M. Ben-Ari. Principles of Concurrent and Distributed Program-
ming, Second Edition. Addison-Wesley, 2006. ISBN 9780321312839. (cited
on pages 18, 19, and 21)

[Benoit et al. 2005] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Flexible
Skeletal Programming with eSkel. In J. Cunha and P. Medeiros, editors,
Euro-Par 2005 Parallel Processing, volume 3648 of Lecture Notes in Computer
Science, pages 613–613. Springer Berlin / Heidelberg, 2005. ISBN 978-3-
540-28700-1. URL http://dx.doi.org/10.1007/11549468_83. (cited on page 28)

[Bentley 1986] J. Bentley. Programming pearls: little languages. Commun.
ACM, 29:711–721, August 1986. ISSN 0001-0782. doi: http://doi.acm.
org/10.1145/6424.315691. URL http://doi.acm.org/10.1145/6424.315691. (cited
on page 82)

[Bézivin and Gerbé 2001] J. Bézivin and O. Gerbé. Towards a Precise
Definition of the OMG/MDA Framework. In ASE ’01: Proceedings of the
16th IEEE international conference on Automated software engineering, page
273, Washington, DC, USA, 2001. IEEE Computer Society. (cited on
page 56)

[Borkar 2007] S. Borkar. Thousand core chips: a technology perspective.
In Proceedings of the 44th annual Design Automation Conference, DAC ’07,
pages 746–749, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-627-1.
doi: 10.1145/1278480.1278667. URL http://doi.acm.org/10.1145/1278480.1278667.
(cited on page 260)

[Bray et al. 2008] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edition),
November 2008. (cited on page 83)

[Browne et al. 1994] J. C. Browne, J. Dongarra, S. I. Hyder, K. Moore, and
P. Newton. Visual Programming and Parallel Computing. Technical
report, University of Tennessee, Knoxville, TN, USA, 1994. (cited on
pages 150 and 247)

298

Bibliography

[Buschmann et al. 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad, and M. Stal. Pattern-Oriented Software Architecture. A System of
Patterns. John Wiley & Sons Ltd., Chichester, UK, 1996. (cited on page 27)

[Butcher et al. 1994] P. Butcher, A. C. Wood, and M. Atkins. Global
synchronisation in Linda. Concurrency - Practice and Experience, 6(6):505–
516, 1994. (cited on pages 119 and 145)

[Buyya 2000] R. Buyya. The Design of PARAS Microkernel, chapter Parallel
Computing at a Glance. June 2000. URL http://www.buyya.com/microkernel/.
e-book. (cited on page 2)

[Carriero and Gelernter 1989] N. Carriero and D. Gelernter. Linda in
Context. Commun. ACM, 32(4):444–458, 1989. (cited on page 39)

[Chafi et al. 2010] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth,
P. Hanrahan, M. Odersky, and K. Olukotun. Language virtualization for
heterogeneous parallel computing. In Proceedings of the ACM international
conference on Object oriented programming systems languages and applications,
OOPSLA ’10, pages 835–847, New York, NY, USA, 2010. ACM. ISBN
978-1-4503-0203-6. doi: 10.1145/1869459.1869527. URL http://doi.acm.org/

10.1145/1869459.1869527. (cited on page 244)

[Chamberlin and Boyce 1974] D. D. Chamberlin and R. F. Boyce. SEQUEL:
A structured English query language. In Proceedings of the 1974 ACM
SIGFIDET (now SIGMOD) workshop on Data description, access and control,
SIGFIDET ’74, pages 249–264, New York, NY, USA, 1974. ACM. doi:
http://doi.acm.org/10.1145/800296.811515. URL http://doi.acm.org/10.1145/

800296.811515. (cited on page 82)

[Christensen et al. 1995] J. Christensen, J. Marks, and S. Shieber. An empir-
ical study of algorithms for point-feature label placement. ACM Trans.
Graph., 14(3):203–232, July 1995. ISSN 0730-0301. doi: 10.1145/212332.
212334. URL http://doi.acm.org/10.1145/212332.212334. (cited on pages 219, 228,
230, and 231)

[Christiansen et al. 2010] D. R. Christiansen, M. Carbone, and T. Hilde-
brandt. Formal Semantics and Implementation of BPMN 2.0 Inclusive

299

Bibliography

Gateways. In Proc. of Web Services and Formal Methods (WS-FM’10), Berlin,
Heidelberg, 2010. Springer-Verlag. URL http://www.itu.dk/people/maca/papers/

CD10.pdf. (cited on page 133)

[Ciancarini 1996] P. Ciancarini. Coordination Models and Languages as
Software Integrators. ACM Computing Surveys, 28(2):300–302, 1996. ISSN
0360-0300. doi: http://doi.acm.org/10.1145/234528.234732. (cited on
pages 4, 35, 37, 38, 40, and 112)

[Ciechanowicz et al. 2009] P. Ciechanowicz, M. Poldner, and H. Kuchen.
The Münster Skeleton Library Muesli: A Comprehensive Overview. In
J. Becker, K. Backhaus, H. L. Grob, B. Hellingrath, T. Hoeren, S. Klein,
H. Kuchen, U. Müller-Funk, U. W. Thonemann, and G. Vossen, edi-
tors, Working Papers. ERCIS European Research Center for Information
Systems, 2009. (cited on page 28)

[Clocksin and Mellish 1994] W. F. Clocksin and C. S. Mellish. Programming
in Prolog (4. ed.). Springer, 1994. ISBN 978-3-540-58350-9. (cited on
page 30)

[Codd 1970] E. F. Codd. A relational model of data for large shared data
banks. Commun. ACM, 13:377–387, June 1970. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/362384.362685. URL http://doi.acm.org/10.1145/

362384.362685. (cited on page 82)

[Cole 1989] M. I. Cole. Algorithmic Skeletons: Structured Management of
Parallel Computation. MIT Press & Pitman, 1989. (cited on page 28)

[Crowston et al. 2006] K. Crowston, J. Rubleske, and J. Howison. Human-
Computer Interaction in Management Information Systems, chapter Coordi-
nation theory: A ten-year retrospective, pages 120–138. M. E. Sharpe, Inc.,
2006. (cited on page 36)

[Czarnecki and Eisenecker 2005] K. Czarnecki and U. W. Eisenecker. Gen-
erative Programming: Methods, Tool, and Applications. Addison-Wesley, 6th
edition, April 2005. (cited on pages 66 and 72)

300

Bibliography

[Czarnecki and Helsen 2006] K. Czarnecki and S. Helsen. Feature-based
survey of model transformation approaches. IBM Systems Journal, 45(3):
621–646, 2006. (cited on pages 58 and 61)

[DeMarco 1979] T. DeMarco. Structured Analysis and System Specification.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1979. ISBN 0138543801.
URL http://portal.acm.org/citation.cfm?id=1102012. (cited on page 32)

[Deursen et al. 2000] A. Deursen, P. Klint, and J. Visser. Domain-Specific
Languages: An Annotated Bibliography. ACM SIGPLAN Notices, 35:
26–36, 2000. (cited on pages 81, 82, and 84)

[Dijkman et al. 2007] R. M. Dijkman, M. Dumas, and C. Ouyang. Formal
Semantics and Analysis of BPMN Process Models. 2007. URL http:

//eprints.qut.edu.au/7115/. (cited on pages 133 and 137)

[Dijkstra 1968] E. W. Dijkstra. Cooperating sequential pro-
cesses. In F. Genuys, editor, Programming Languages: NATO
Advanced Study Institute, pages 43–112. Academic Press, 1968.
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF. (cited
on page 26)

[Dmitriev 2004] S. Dmitriev. Language Oriented Programming: The Next
Programming Paradigm. Technical report, JetBrains Inc., November 2004.
(cited on page 72)

[Edwards 2000] W. K. Edwards. Core Jini. Prentice Hall PTR, 2nd edition,
December 2000. (cited on page 44)

[Efftinge et al. 2004-2010] S. Efftinge, P. Friese, A. Hase, D. Hübner,
C. Kadura, B. Kolb, J. Köhnlein, D. Moroff, K. Thoms, M. Völter, P. Schön-
bach, M. Eysholdt, S. Reinisch, D. Jockel, and A. Arnold. Xpand Docu-
mentation. Technical report, 2004-2010. (cited on page 64)

[Efftinge et al. 2008] S. Efftinge, P. Friese, A. Haase, D. Hübner, C. Kadura,
B. Kolb, J. Köhnlein, D. Moroff, K. Thoms, M. Völter, P. Schönbach,
M. Eysholdt, D. Hübner, and S. Reinisch. openArchitectureWare User
Guide Version 4.3.1. Technical report, 2008. (cited on page 64)

301

Bibliography

[Eysholdt et al. 2009] M. Eysholdt, S. Frey, and W. Hasselbring. EMF Ecore
Based Meta Model Evolution and Model Co-Evolution. Softwaretechnik-
Trends, 29(2):20–21, May 2009. (WSR 2009 Proceedings). (cited on
page 108)

[Falbo et al. 2002] R. A. Falbo, G. Guizzardi, and K. C. Duarte. An Onto-
logical Approach to Domain Engineering. In ACM, editor, Inproceedings
of the 14th International Conference on Software Engineering and Knowledge
Engineering (SEKE’02), pages 351–358, 2002. (cited on pages 77 and 80)

[Falcou 2009] J. Falcou. Parallel Programming with Skeletons. Computing
in Science and Engineering, 11(3):58–63, 2009. (cited on page 28)

[Favre 2004a] J.-M. Favre. Foundations of Model (Driven) (Reverse) Engi-
neering : Models - Episode I: Stories of The Fidus Papyrus and of The
Solarus. In Language Engineering for Model-Driven Software Development,
2004a. (cited on pages 56 and 109)

[Favre 2004b] J.-M. Favre. Towards a Basic Theory to Model Model Driven
Engineering. In In Workshop on Software Model Engineering, WISME 2004,
joint event with UML2004, 2004b. (cited on pages 56, 77, and 80)

[Favre 2005] J.-M. Favre. Foundations of Meta-Pyramids: Languages vs.
Metamodels – Episode II: Story of Thotus the Baboon. In J. Bezivin
and R. Heckel, editors, Language Engineering for Model-Driven Software
Development, number 04101 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2005. Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany. URL http://drops.dagstuhl.

de/opus/volltexte/2005/21. (cited on page 56)

[Favre and NGuyen 2005] J.-M. Favre and T. NGuyen. Towards a Meg-
amodel to Model Software Evolution Through Transformations. Elec-
tronic Notes in Theoretical Computer Science, 127(3):59–74, April 2005. ISSN
15710661. doi: 10.1016/j.entcs.2004.08.034. URL http://dx.doi.org/10.1016/j.

entcs.2004.08.034. (cited on pages 56, 57, 59, 60, 77, 80, and 244)

[Fiedler et al. 2005] D. Fiedler, K. Walcott, T. Richardson, G. M. Kapfham-
mer, A. Amer, and P. K. Chrysanthis. Towards the measurement of

302

Bibliography

tuple space performance. SIGMETRICS Perform. Eval. Rev., 33(3):51–
62, Dec. 2005. ISSN 0163-5999. doi: 10.1145/1111572.1111574. URL
http://doi.acm.org/10.1145/1111572.1111574. (cited on pages 148, 162, 201, 238,
and 243)

[Floyd 1984] C. Floyd. A systematic look at prototyping. In R. Budde,
K. Kuhlenkamp, L. Mathiassen, and H. Züllighoven, editors, Approaches
to prototyping, pages 1–18, Berlin, 1984. Proceedings of the Working Con-
ference on Prototyping, Springer. (cited on page 28)

[Flynn 1972] M. J. Flynn. Some computer organizations and their effective-
ness. IEEE Trans. Comput., 21:948–960, September 1972. ISSN 0018-9340.
URL http://dl.acm.org/citation.cfm?id=1952456.1952459. (cited on page 16)

[Fowler 2010] M. Fowler. Domain-Specific Languages. Publisher: Addison-
Wesley Professional, October 2010. (cited on pages 75, 83, and 84)

[Frakes et al. 1998] W. Frakes, R. Prieto-Diaz, and C. Fox. DARE: Do-
main Analysis and Reuse Environment. In Annals of Software Engineering,
number 5, pages 125–141, 1998. (cited on pages 77 and 80)

[Freeman et al. 1999] E. Freeman, S. Hupfer, and K. Arnold. Javaspaces Prin-
ciples, Patterns, and Practice. Prentice Hall, June 1999. (cited on page 44)

[Freisleben and Kielmann 1997] B. Freisleben and T. Kielmann. Object-
Oriented Parallel Programming with Objective Linda. Journal of Systems
Architecture, 1997. (cited on pages 43, 112, 113, and 120)

[Freund and Rücker 2010] J. Freund and B. Rücker. Praxishandbuch BPMN
2.0. Carl Hanser Verlag GmbH & CO. KG, 2nd edition, September 2010.
(cited on page 51)

[Garlan and Perry 1995] D. Garlan and D. E. Perry. Introduction to the
Special Issue on Software Architecture. IEEE Trans. Softw. Eng., 21(4):
269–274, 1995. ISSN 0098-5589. (cited on page 145)

[Gelernter 1985] D. Gelernter. Generative Communication in Linda. ACM
Trans. Program. Lang. Syst., 7(1):80–112, 1985. ISSN 0164-0925. doi: http:
//doi.acm.org/10.1145/2363.2433. (cited on pages 31, 39, and 43)

303

Bibliography

[Gelernter and Carriero 1992] D. Gelernter and N. Carriero. Coordination
Languages and their Significance. Communications of the ACM, 35:97–107,
1992. (cited on pages 4, 31, 35, 39, 40, 112, 113, and 146)

[Georges et al. 2007] A. Georges, D. Buytaert, and L. Eeckhout. Statistically
Rigorous Java Performance Evaluation. volume 42 of OOPSLA ’07, pages
57–76, New York, NY, USA, October 2007. ACM. doi: http://doi.acm.
org/10.1145/1297105.1297033. URL http://doi.acm.org/10.1145/1297105.1297033.
(cited on pages 148, 172, 204, and 243)

[Ghosh 2011] D. Ghosh. DSL for the Uninitiated. Queue, 9:10:10–10:21, June
2011. ISSN 1542-7730. doi: http://doi.acm.org/10.1145/1989748.1989750.
URL http://doi.acm.org/10.1145/1989748.1989750. (cited on page 83)

[Goetz 2009] B. Goetz. Java Concurrency in Practice. Addison-Wesley, Pear-
son Education, Inc., 7th Printing edition, January 2009. (cited on pages 26,
148, 204, 220, and 243)

[Graham 1993] P. Graham. On Lisp: Advanced Techniques for Common Lisp.
Prentice Hall PTR, June 1993. (cited on page 83)

[Greenfield et al. 2004] J. Greenfield, K. Short, S. Cook, S. Kent, and
J. Crupi. Software Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley, August 2004. (cited on page 72)

[Gringel et al. 2012] P. Gringel, S. Gudenkauf, and S. Kruse. DeCREE: Eine
Domänenspezifische Sprache zur Modellierung von Choreography-First
Szenarien. In D. C. Mattfeld and S. Robra-Bissantz, editors, Multikonferenz
Wirtschaftsinformatik 2012: Tagungsband der MKWI 2012, pages 1661–1674,
Berlin, 2012. GITO mbH Verlag. ISBN 978-3-942183-63-5. (cited on
page 125)

[Gudenkauf 2010] S. Gudenkauf. A Coordination-Based Model-Driven
Method for Parallel Application Development. In S. Ghosh, editor, Lec-
ture Notes in Computer Science (LNCS): Models in Software Engineering,
Workshops and Symposia at MODELS 2009, Denver, CO, USA, October 4-
9, 2009, Reports and Revised Selected Papers, pages 26–35, Heidelberg, 2010.
Springer. (cited on page 7)

304

Bibliography

[Gudenkauf and Hasselbring 2011] S. Gudenkauf and W. Hasselbring.
Space-Based Multi-Core Programming in Java. In C. Wimmer and C. W.
Probst, editors, PPPJ 2011: Proceedings of the 9th International Confer-
ence on the Principles and Practice of Programming in Java, pages 41–50,
New York, 2011. The Associacion for Computing Machinery, Inc. ISBN
9781450309356. (cited on pages 7 and 45)

[Gudenkauf et al. 2012] S. Gudenkauf, S. Kruse, and W. Hasselbring.
Domain-Specific Modelling for Coordination Engineering with SCOPE.
In E. J. Sinz and A. Schürr, editors, Modellierung 2012, volume P-201 of
GI-Reihe Lecture Notes in Informatics (LNI), pages 203–218. GI, 2012. ISBN
978-3-88579-295-6. (cited on page 8)

[Halloway 2009] S. Halloway. Programming Clojure. Pragmatic Pro-
grammers. The Pragmatic Programmers, LLC., 1 edition, 2009. ISBN
1934356336. (cited on page 30)

[Hanus 2005] M. Hanus. Functional Logic Programming: From Theory to
Curry. Technical report, Institut für Informatik, CAU Kiel, October 2005.
(cited on page 31)

[Hanus 2007] M. Hanus. Multi-paradigm Declarative Languages. In Pro-
ceedings of the International Conference on Logic Programming (ICLP 2007),
pages 45–75. Springer LNCS 4670, 2007. (cited on page 30)

[Harel 1987] D. Harel. Statecharts: A Visual Formalism for Complex
Systems. Sci. Comput. Program., 8(3):231–274, 1987. (cited on page 32)

[Harris et al. 2005] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy.
Composable Memory Transactions. In Proceedings of the Tenth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’05, pages 48–60, New York, NY, USA, 2005. ACM. ISBN 1-59593-080-9.
doi: 10.1145/1065944.1065952. URL http://doi.acm.org/10.1145/1065944.1065952.
(cited on page 30)

[Hasselbring 1998] W. Hasselbring. The ProSet-Linda approach to pro-
totyping parallel systems. Journal of Systems and Software, 43(3):187–196,
1998. (cited on pages 28 and 43)

305

Bibliography

[Hasselbring 2000] W. Hasselbring. Programming languages and systems
for prototyping concurrent applications. ACM Comput. Surv., 32(1):43–79,
2000. (cited on pages 28 and 29)

[Heaton 2007] J. Heaton. Introduction to Neural Networks for Java,
1st Edition, chapter Understanding Simulated Annealing. Heaton
Research, Inc., 1 edition, 2007. URL http://www.heatonresearch.com/book/

programming-neural-networks-java.html. (cited on pages 230 and 234)

[Heiser 2009] G. Heiser. Many-Core Chips – A Case for Virtual Shared
Memory. In Proceedings of the 2nd Workshop on Managed Many-Core Sys-
tems, Washington, DC, USA, March 2009. (cited on page 259)

[Henderson et al. 2012] F. Henderson, T. Conway, Z. Somogyi, D. Jef-
fery, P. Schachte, S. Taylor, C. Speirs, T. Dowd, R. Becket, M. Brown,
and P. Wang. The Mercury Language Reference Manual Version 11.07.
Technical report, The University of Melbourne, 2012. (cited on page 31)

[Herrmannsdoerfer et al. 2009] M. Herrmannsdoerfer, S. Benz, and E. Juer-
gens. COPE - Automating Coupled Evolution of Metamodels and Models.
In S. Drossopoulou, editor, ECOOP 2009 Object-Oriented Programming,
volume 5653 of Lecture Notes in Computer Science, pages 52–76. Springer
Berlin / Heidelberg, 2009. ISBN 978-3-642-03012-3. (cited on page 108)

[Herrmannsdoerfer et al. 2011] M. Herrmannsdoerfer, S. Vermolen, and
G. Wachsmuth. An Extensive Catalog of Operators for the Coupled Evo-
lution of Metamodels and Models. In B. Malloy, S. Staab, and M. van den
Brand, editors, Software Language Engineering, volume 6563 of Lecture
Notes in Computer Science, pages 163–182. Springer Berlin / Heidelberg,
2011. ISBN 978-3-642-19439-9. (cited on page 108)

[Hillah et al. 2009] L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and
N. Trèves. A primer on the Petri Net Markup Language and ISO/IEC
15909-2. Petri Net Newsletter, 76:9–28, October 2009. URL http://www.pnml.

org/papers/pnnl76.pdf. (originally presented at the 10th International work-
shop on Practical Use of Colored Petri Nets and the CPN Tools – CPN’09).
(cited on page 259)

306

Bibliography

[Hillis and Steele 1986] W. D. Hillis and G. L. Steele, Jr. Data parallel
algorithms. Commun. ACM, 29:1170–1183, December 1986. ISSN 0001-
0782. doi: http://doi.acm.org/10.1145/7902.7903. URL http://doi.acm.org/

10.1145/7902.7903. (cited on page 30)

[Hoare 1974] C. A. R. Hoare. Monitors: an operating system structuring
concept. Commun. ACM, 17:549–557, October 1974. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/355620.361161. URL http://doi.acm.org/10.1145/

355620.361161. (cited on page 26)

[Hoare 1978] C. A. R. Hoare. Communicating Sequential Processes. Com-
mun. ACM, 21(8):666–677, 1978. (cited on page 26)

[Hoare 1985] C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985. ISBN 0-13-153271-5. (cited on page 26)

[Horton and Kleinman 2010] N. J. Horton and K. Kleinman. Using R
for Data Management, Statistical Analysis, and Graphics. CRC Press, 2010.
(cited on page 30)

[Hsiung et al. 2009] P.-A. Hsiung, S.-W. Lin, Y.-R. Chen, N.-L. Hsueh, C.-H.
Chang, C.-H. Shih, C.-S. Koong, C.-S. Lin, C.-H. Lu, S.-Y. Tong, W.-T. Su,
and W. C. Chu. Model-Driven Development of Multi-Core Embedded
Software. ICSE Workshop on Multicore Software Engineering, 0:9–16, 2009.
doi: http://doi.ieeecomputersociety.org/10.1109/IWMSE.2009.5071378.
(cited on pages 29 and 242)

[Hutton 2007] G. Hutton. Programming in Haskell. Cambridge University
Press, 2007. (cited on page 30)

[IEEE Architecture Working Group 2000] IEEE Architecture Working
Group. IEEE Std 1471-2000, Recommended practice for architectural
description of software-intensive systems. Technical report, IEEE, 2000.
(cited on pages 15, 18, 39, 40, 69, 84, and 145)

[Intel Corporation 2011a] Intel Corporation. Intel Many In-
tegrated Core Architecture, August 2011a. URL http://www.

intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/

intel-many-integrated-core-architecture.html. (cited on page 2)

307

Bibliography

[Intel Corporation 2011b] Intel Corporation. Parallel Programming. Mul-
ticore processors TODAY, many-core co-processors READY. Technical
report, Intel, 2011b. (cited on page 2)

[Intel Corporation 2011c] Intel Corporation. Intel(R) Threading Building
Blocks Reference Manual. Technical report, Intel Corporation, 2011c.
(cited on pages 29, 32, and 39)

[Jelenković and Poljak 1998] L. Jelenković and J. Poljak. Multithreaded
Simulated Annealing. In Proc. 20th Int. Conference ITI’98, pages 525–530,
Pula, June 14-17 1998. (cited on page 231)

[Kang et al. 1990] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Techni-
cal report, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, November 1990. (cited on pages 77 and 80)

[Karcher and Pankratius 2011] T. Karcher and V. Pankratius. Auto-Tuning
Multicore Applications at Run-Time with a Cooperative Tuner. publika-
tion, February 2011. (cited on page 27)

[Kavantzas et al.] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. La-
fon, and C. Barreto. Web Services Choreography Description Language.
(cited on page 42)

[Kelly and Tolvanen 2008] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation. Wiley-IEEE Computer Society Pr,
March 2008. (cited on page 72)

[Kielmann 1996] T. Kielmann. Designing a Coordination Model for Open
Systems. In COORDINATION ’96: Proceedings of the First International
Conference on Coordination, pages 267–284, London, UK, 1996. Springer-
Verlag. (cited on pages 112, 144, and 145)

[Kirkpatrick et al. 1983] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by Simulated Annealing. Science, 220:671–680, 1983. (cited
on page 230)

308

Bibliography

[Klatt 2007] B. Klatt. Xpand: A Closer Look at the model2text Transforma-
tion Language. Technical report, Chair for Software Design and Quality
(SDQ), Institute for Program Structures and Data Organization (IPD),
University of Karlsruhe, Germany, July 2007. (cited on page 64)

[Kleppe 2008] A. Kleppe. Software Language Engineering: Creating Domain-
Specific Languages Using Metamodels. Addison-Wesley Professional, 2008.
ISBN 0321553454, 9780321553454. (cited on pages 75, 150, and 247)

[Kliewer and Tschöke 2000] G. Kliewer and S. Tschöke. A General Parallel
Simulated Annealing Library and its Application in Airline Industry. In
Proceedings of the 14th International Parallel & Distributed Processing Sym-
posium (IPDPS’00), pages 55–62. IEEE Computer Society, 2000. (cited on
page 231)

[Kopp et al. 2008] O. Kopp, D. Martin, D. Wutke, and F. Leymann. On
the Choice Between Graph-Based and Block-Structured Business Process
Modeling Languages. In P. Loos, M. Nüttgens, K. Turowski, and D. Werth,
editors, Lecture Notes in Informatics (LNI), Modellierung betrieblicher Infor-
mationssysteme (MobIS 2008), pages 59–72. Gesellschaft für Informatik e.V.
(GI), 2008. (cited on page 246)

[Kruse 2011] S. Kruse. On the Use of Operators for the Co-Evolution of
Metamodels and Transformations. In Preliminary Proceedings of the Inter-
national Workshop on Models and Evolution, ME 2011. ACM/IEEE, October
2011. (cited on page 108)

[Kruse et al. 2009] S. Kruse, J. S. Addicks, M. Postina, and U. Steffens. De-
coupling Models and Visualisations for Practical EA Tooling. In A. Dan,
F. Gittler, and F. Toumani, editors, ICSOC/ServiceWave Workshops, vol-
ume 6275 of Lecture Notes in Computer Science, pages 62–71, 2009. ISBN
978-3-642-16131-5. URL http://dx.doi.org/10.1007/978-3-642-16132-2. (cited on
page 228)

[Kuhn 1996] T. S. Kuhn. The Structure of Scientific Revolutions. University
of Chicago Press, 1996. (cited on page 2)

309

Bibliography

[Lea 1999] D. Lea. Concurrent Programming in Java: Design Principles and
Patterns. Addison-Wesley Longman, Amsterdam, 2 edition, 1999. (cited
on page 26)

[Lee 2006] E. A. Lee. The Problem with Threads. IEEE Computer, 39(5):
33–42, May 2006. URL http://www.truststc.org/pubs/96.html. (cited on pages 3,
22, and 111)

[Lee et al. 2011] H. Lee, K. J. Brown, A. K. Sujeeth, H. Chafi, K. Olukotun,
T. Rompf, and M. Odersky. Implementing Domain-Specific Languages
for Heterogeneous Parallel Computing. IEEE Micro, 31:42–53, 2011. ISSN
0272-1732. doi: http://doi.ieeecomputersociety.org/10.1109/MM.2011.68.
(cited on page 244)

[Leijen and Hall 2007] D. Leijen and J. Hall. Optimize Managed Code For
Multi-Core Machines, October 2007. URL http://msdn.microsoft.com/en-us/

magazine/cc163340.aspx. (cited on pages 29 and 39)

[Lingam 2009] C. Lingam. Rapid Parallel Application Development. Tech-
nical report, Intel Software Network, 2009. URL http://software.intel.com/

en-us/articles/rapid-parallel-application-development/. (cited on page 243)

[Liu and Gorton 1998] A. Liu and I. Gorton. PARSE-DAT: An Integrated
Environment for the Design and Analysis of Dynamic Software Architec-
tures. In PDSE, pages 146–, 1998. (cited on page 28)

[Luk 2010] C.-K. Luk. The Intel(R) Software Autotuning Tool (ISAT) User
Manual (version 1.0.0). Technical report, Intel Corporation, 2010. (cited
on page 27)

[Luk et al. 2011] C.-K. Luk, R. Newton, W. Hasenplaugh, M. Hampton,
and G. Lowney. A Synergetic Approach to Throughput Computing on
x86-Based Multicore Desktops. IEEE Software, 28(1):39–50, 2011. (cited on
page 27)

[Malone and Crowston 1994] T. W. Malone and K. Crowston. The Interdis-
ciplinary Study of Coordination. ACM Comput. Surv., 26(1):87–119, 1994.
(cited on pages 31, 36, and 145)

310

Bibliography

[Marowka 2007] A. Marowka. Parallel Computing on any Desktop. Com-
mun. ACM, 50(9):74–78, 2007. ISSN 0001-0782. doi: http://doi.acm.org/
10.1145/1284621.1284622. (cited on page 2)

[Marowka 2010] A. Marowka. Pitfalls and Issues of Manycore Program-
ming. Advances in Computers, 79:71–117, 2010. (cited on pages 2, 3, 27,
and 112)

[Mattson et al. 2004] T. G. Mattson, B. A. Sanders, and B. L. Massingill.
Patterns for Parallel Programming. Addison-Wesley. Pearson Education,
Inc., Boston, September 2004. ISBN 0321228111. (cited on pages 3, 17, 21,
22, 23, 24, 25, 27, 28, and 99)

[Medvidovic and Taylor 1997] N. Medvidovic and R. N. Taylor. A Frame-
work for Classifying and Comparing Architecture Description Languages.
In ESEC / SIGSOFT FSE, pages 60–76, 1997. (cited on page 146)

[Melzer 2007] I. Melzer. Service-orientierte Architekturen mit Web Services.
Elsevier, München, 2nd edition, 2007. (cited on pages 38 and 42)

[Mernik et al. 2005] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM Computing Surveys, 37
(4):316–344, Dec. 2005. ISSN 03600300. doi: 10.1145/1118890.1118892.
URL http://portal.acm.org/citation.cfm?doid=1118890.1118892. (cited on pages 75,
76, 78, 82, 84, 87, 104, 143, 182, and 244)

[Meyer 2000] B. Meyer. Object-Oriented Software Construction. Prentice Hall,
2nd edition, March 2000. (cited on pages 31 and 43)

[Murphy et al. 2006] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME:
A coordination model and middleware supporting mobility of hosts
and agents. ACM Trans. Softw. Eng. Methodol., 15:279–328, July 2006.
ISSN 1049-331X. doi: http://doi.acm.org/10.1145/1151695.1151698. URL
http://doi.acm.org/10.1145/1151695.1151698. (cited on page 46)

[Nichols et al. 1996] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads
programming. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1996.
ISBN 1-56592-115-1. (cited on page 22)

311

Bibliography

[Oechsle 2007] R. Oechsle. Parallele und verteilte Anwendungen in Java.
Hanser Fachbuch, 2 edition, September 2007. (cited on page 19)

[Omicini and Papadopoulos 2001] A. Omicini and G. A. Papadopoulos.
Editorial: Why Coordination Models and languages in AI? Applied
Artificial Intelligence, 15(1):1–10, 2001. (cited on pages 31 and 36)

[Omicini and Zambonelli 1998] A. Omicini and F. Zambonelli. TuCSoN: a
Coordination Model for Mobile Information Agents. In D. G. Schwartz,
M. Divitini, and T. Brasethvik, editors, 1st International Workshop on Inno-
vative Internet Information Systems (IIIS’98), pages 177–187. IDI – NTNU,
Trondheim (Norway), 1998. (cited on page 45)

[Omicini and Zambonelli 1999] A. Omicini and F. Zambonelli. Tuple
Centres for the Coordination of Internet Agents. In 1999 ACM Symposium
on Applied Computing (SAC’99), pages 183–190, San Antonio, TX, USA,
28 Feb. – 2 Mar. 1999. ACM. ISBN 1-58113-086-4. Special Track on
Coordination Models, Languages and Applications. (cited on page 45)

[Onbaşoğlu and Özdamar 2001] E. Onbaşoğlu and L. Özdamar. Parallel
Simulated Annealing Algorithms in Global Optimization. J. of Global
Optimization, 19(1):27–50, Jan. 2001. ISSN 0925-5001. doi: 10.1023/A:
1008350810199. URL http://dx.doi.org/10.1023/A:1008350810199. (cited on
page 231)

[Ortega-Arjona 2006] J. L. Ortega-Arjona. Architectural Patterns for Parallel
Programming: Models for Performance Estimation. PhD thesis, Department
of Computer Science, University College London, 2006. (cited on page 99)

[Ortega-Arjona 2010] J. L. Ortega-Arjona. Patterns for Parallel Software
Design. Wiley Series in Software Design Patterns. John Wiley and Sons,
Ltd., Chichester, West Sussex, UK, 2010. (cited on pages 3, 5, 11, 23, 24,
25, 26, 27, 28, 39, 91, 98, 99, 100, 101, and 232)

[Pankratius et al. 2009] V. Pankratius, A. Jannesari, and W. F.
Tichy. Parallelizing Bzip2: A Case Study in Multicore Software
Engineering. IEEE Software, 26(6):70–77, Nov. 2009. Download:
http://dx.doi.org/10.1109/MS.2009.183. (cited on page 3)

312

Bibliography

[Papadopoulos and Arbab 1998] G. A. Papadopoulos and F. Arbab. Coordi-
nation Models and Languages. In Advances in Computers, pages 329–400.
Academic Press, 1998. (cited on pages 4, 35, 40, and 146)

[Pllana et al. 2009] S. Pllana, S. Benkner, E. Mehofer, L. Natvig, and
F. Xhafa. Towards an Intelligent Environment for Programming Multi-
core Computing Systems. In C. Eduardo, M. Alexander, A. Streit, J. L.
Träff, C. Cérin, A. Knüpfer, D. Kranzlmüller, and J. Shantenu, editors,
Euro-Par 2008 Workshops - Parallel Processing, volume 5415, pages 141–151,
Berlin / Heidelberg, 2009. Springer. (cited on pages 29 and 242)

[Pountain 1987] D. Pountain. A tutorial introduction to Occam program-
ming - including a specification section defining the extended Occam language.
INMOS, 1987. (cited on page 26)

[Quintero et al. 2001] C. E. C. Quintero, P. de la Fuente, and M. Barrio-
Solórzano. Dynamic Coordination Architecture through the use of Re-
flection. In SAC, pages 134–140, 2001. (cited on page 146)

[Rauber and Rünger 2007] T. Rauber and G. Rünger. Parallele Program-
mierung. Springer, Berlin, auflage: 2 edition, 2007. (cited on pages 16
and 21)

[Reinders 2007] J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.
(cited on pages 29 and 242)

[Reisig 2010] W. Reisig. Petrinetze: Modellierungstechnik, Analysemethoden,
Fallstudien. Leitfäden der Informatik. Vieweg+Teubner, 15 July 2010. 248
pages; ISBN 978-3-8348-1290-2. (cited on pages 32 and 133)

[Reussner and Hasselbring 2009] R. Reussner and W. Hasselbring, edi-
tors. Handbuch der Software-Architektur. Dpunkt Verlag, 2nd edition, 2009.
(cited on pages 58, 61, and 107)

[Rivera et al. 2009] J. E. Rivera, J. R. Romero, and A. Vallecillo. Mod-
els in Software Engineering. pages 60–65, Berlin, Heidelberg, 2009.
Springer-Verlag. ISBN 978-3-642-01647-9. doi: http://dx.doi.org/10.
1007/978-3-642-01648-6_7. URL http://dx.doi.org/10.1007/978-3-642-01648-6_7.
(cited on page 73)

313

Bibliography

[Rodríguez et al. 2007] A. Rodríguez, E. Fernández-Medina, and M. Piattini.
A BPMN Extension for the Modeling of Security Requirements in Business
Processes. IEICE - Transactions on Information and Systems, E90-D(4):745–
752, 2007. (cited on page 245)

[Roman and Cunningham 1990] G.-C. Roman and H. C. Cunningham.
Mixed Programming Metaphors in a Shared Dataspace Model of Concur-
rency. IEEE Trans. Softw. Eng., 16:1361–1373, December 1990. ISSN 0098-
5589. doi: 10.1109/32.62445. URL http://dl.acm.org/citation.cfm?id=99197.99202.
(cited on page 41)

[Rompf et al. 2011] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi,
M. Odersky, and K. Olukotun. Building-Blocks for Performance Oriented
DSLs. In O. Danvy and C. chieh Shan, editors, DSL, volume 66 of EPTCS,
pages 93–117, 2011. URL http://dblp.uni-trier.de/db/series/eptcs/eptcs66.html#

abs-1109-0778. (cited on page 244)

[Rowstron 1996] A. I. T. Rowstron. Bulk Primitives in Linda Run-Time
Systems. PhD thesis, Department of Computer Science, University of
York, 1996. (cited on pages 119, 120, 130, and 237)

[Scherp et al. 2009] G. Scherp, A. Höing, S. Gudenkauf, W. Hasselbring,
and O. Kao. Using UNICORE and WS-BPEL for Scientific Workflow
Execution in Grid Environments. In Euro-Par 2009 Workshops - Parallel
Processing, volume LNCS 6043 of LNCS, pages 335–344, Heidelberg, 2009.
Springer. (cited on page 38)

[Schleicher et al. 2010] D. Schleicher, F. Leymann, D. Schumm, and M. Wei-
dmann. Compliance scopes: Extending the BPMN 2.0 meta model to
specify compliance requirements. In 2010 IEEE International Conference
on Service-Oriented Computing and Applications (SOCA), pages 1–8, Perth,
WA, 2010. IEEE. doi: http://dx.doi.org/10.1109/SOCA.2010.5707154.
(cited on page 245)

[Schmidt 2006] D. C. Schmidt. Guest Editor’s Introduction: Model-Driven
Engineering. IEEE Computer, 39(2):25–31, 2006. (cited on pages 67, 72,
and 76)

314

Bibliography

[Seidewitz 2003] E. Seidewitz. What Models Mean. IEEE Softw., 20(5):26–32,
2003. ISSN 0740-7459. doi: http://dx.doi.org/10.1109/MS.2003.1231147.
(cited on page 56)

[Shalom 2006] N. Shalom. Space-Based Architecture and The End of Tier-
based Computing. Technical report, GigaSpaces Technologies Ltd., 2006.
(cited on page 45)

[Sim et al. 2003] S. E. Sim, S. Easterbrook, and R. C. Holt. Using bench-
marking to advance research: A challenge to software engineering. In
Proc. of the 25th Int. Conf. on Software Engineering (ICSE 2003), pages 74–83.
IEEE Computer Society, 2003. (cited on page 205)

[Simonyi et al. 2006] C. Simonyi, M. Christerson, and S. Clifford. Inten-
tional software. In P. L. Tarr and W. R. Cook, editors, Proceedings of the
21th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006,
Portland, Oregon, USA, pages 451–464. ACM, 2006. ISBN 1-59593-348-4.
(cited on page 72)

[Simos and Anthony 1998] M. Simos and J. Anthony. Weaving the Model
Web: A Multi-Modeling Approach to Concepts and Features in Domain
Engineering. In IEEE Computer Society, editor, Proceedings of the 5th
International Conference on Software Reuse, pages 94–102, 1998. (cited on
pages 77 and 80)

[Slonneger and Kurtz 1995] K. Slonneger and B. L. Kurtz. Formal Syn-
tax and Semantics of Programming Languages: A Laboratory Based Approach.
Addison-Wesley Publishing Company, Inc., 1995. (cited on page 80)

[Spinellis 2001] D. Spinellis. Notable design patterns for domain-specific
languages. Journal of Systems and Software, 56(1):91–99, 2001. (cited on
page 82)

[Stachowiak 1973] H. Stachowiak. Allgemeine Modelltheorie. Springer-Verlag,
Wien - New York, 1973. (cited on page 56)

315

Bibliography

[Steinberg et al. 2009] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Profes-
sional, 2nd edition, 2009. ISBN 0321331885. (cited on pages 40 and 67)

[Suarez et al. 2011] G. N. Suarez, J. Freund, and M. Schrepfer. Best Practice
Guidelines for BPMN 2.0. In L. Fischer, editor, BPMN 2.0 Handbook,
chapter 2. Future Strategies Inc., Lighthouse Point FL, USA, 2011. ISBN
978-0-9819870-7-1. (cited on page 122)

[Sutter 2005] H. Sutter. The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software. Dr. Dobb’s Journal, 30(3):202–210, 2005.
(cited on page 1)

[Syme 2010] D. Syme. Expert F# 2.0. Apress, 2010. (cited on page 30)

[Tan et al. 2003] K. Tan, D. Szafron, J. Schaeffer, J. Anvik, and S. Mac-
Donald. Using Generative Design Patterns to Generate Parallel Code
for a Distributed Memory Environment. ACM SIGPLAN Notices, 38(10):
203, October 2003. ISSN 03621340. doi: 10.1145/966049.781532. URL
http://portal.acm.org/citation.cfm?doid=966049.781532. (cited on page 242)

[Taylor et al. 1995] N. R. Taylor, W. Tracz, and L. Coglianese. Software
Development using Domain-Specific Software Architectures. In ACM
SIGSOFT Software Engineering Notes, volume 20, pages 27–37, 1995. (cited
on pages 77 and 80)

[van Hoorn et al. 2009] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller,
J. Ehlers, S. Frey, and D. Kieselhorst. Continuous Monitoring of Software
Services: Design and Application of the Kieker Framework. Bericht
0921, Christian-Albrechts-Universität zu Kiel, November 2009. (cited on
pages 224 and 260)

[Viry 2010] P. Viry. Ateji PX for Java - Parallel programming made simple.
Technical report, Ateji, June 2010. (cited on page 30)

[Visser 2007] E. Visser. Domain-Specific Language Engineering: A Case
Study in Agile DSL Development (Mark I). Technical report, Delft Uni-
versity of Technology, Software Engineering Research Group, 2007. (cited
on pages 72 and 77)

316

Bibliography

[Visser 2008] E. Visser. WebDSL: A case study in domain-specific language
engineering. In R. Lammel, J. Saraiva, and J. Visser, editors, Generative and
Transformational Techniques in Software Engineering (GTTSE 2007), Lecture
Notes in Computer Science. Springer, 2008. (cited on page 72)

[Vlissides 1996] J. Vlissides. Generation Gap [software design pattern]. 8
(10):12, 14–18, Nov.-Dec. 1996. ISSN 1040-6042. (cited on page 195)

[Völter 2005] M. Völter. Patterns for Handling Cross-Cutting Concerns in
Model-Driven Software Development. Technical report, EuroPLoP 2005,
2005. copyright 2005 Markus Völter. Permission is hereby granted to
copy and distribute this paper for the purposes of the EuroPLoP 2005
conference. (cited on pages 108 and 109)

[Völter and Stahl 2006] M. Völter and T. Stahl. Model-Driven Software
Development. Wiley & Sons, 1 edition, May 2006. (cited on pages 29, 55,
56, 58, 68, 69, 70, 72, 73, 98, 101, and 103)

[Voss 2011] M. J. Voss. The Intel Threading Building Blocks Flow Graph,
October 2011. URL http://drdobbs.com/tools/231900177#. [last visited 11/2011].
(cited on page 32)

[Wang 2006] P. Wang. Parallel Mercury. PhD thesis, Department of Com-
puter Science and Software Engineering, The University of Melbourne,
Melbourne, Australia, October 2006. 37 pages. (cited on page 31)

[Ward 1994] M. P. Ward. Language-Oriented Programming. Software -
Concepts and Tools, 15(4):147–161, 1994. (cited on page 72)

[Wegner 1996] P. Wegner. Coordination as Comstrainted Interaction (Ex-
tended Abstract). In P. Ciancarini and C. Hankin, editors, Coordination
Languages and Models, First International Conference, COORDINATION ’96,
Cesena, Italy, April 15-17, 1996, Proceedings, volume 1061 of Lecture Notes in
Computer Science, pages 28–33. Springer, 1996. (cited on pages 31 and 40)

[Wegner 1997] P. Wegner. Why interaction is more powerful than al-
gorithms. Commun. ACM, 40(5):80–91, 1997. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/253769.253801. (cited on pages 3, 27, 36,
and 38)

317

Bibliography

[Weiss and Lay 1999] D. Weiss and C. T. R. Lay. Software Product Line
Engineering. Addison-Wesley, 1999. (cited on pages 77 and 80)

[Wells et al. 2004] G. C. Wells, A. G. Chalmers, and P. G. Clayton. Linda
implementations in Java for concurrent systems: Research Articles. Con-
curr. Comput. : Pract. Exper., 16(10):1005–1022, Aug. 2004. ISSN 1532-0626.
doi: 10.1002/cpe.v16:10. URL http://dx.doi.org/10.1002/cpe.v16:10. (cited on
page 241)

[White 2004] S. A. White. Process Modeling Notations and Workflow
Patterns. Technical report, IBM Corp., United States, May 2004. URL
http://www.bpmn.org. (cited on page 121)

[Withey 1996] J. Withey. Investment Analysis of Software Assets for Prod-
uct Lines. Technical Report CMU/SEI-96-TR-010, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, November 1996.
www.sei.cmu.edu. (cited on pages 66 and 107)

[Wright et al. 2010] H. K. Wright, M. Kim, and D. E. Perry. Validity
concerns in software engineering research. In Proceedings of the FSE/SDP
workshop on Future of software engineering research, FoSER ’10, pages 411–
414, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0427-6. doi: 10.
1145/1882362.1882446. URL http://doi.acm.org/10.1145/1882362.1882446. (cited
on pages 238 and 239)

318

