

Dissecting the impact of $CO₂$ and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi

Lennart T. Bach 1,* , Luke C. M. Mackinder 1,2,4,* , Kai G. Schulz 1 , Glen Wheeler 2,3 , Declan C. Schroeder 2 , Colin Brownlee² and Ulf Riebesell¹

¹Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), D-24105, Kiel, Germany; ²Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK; ³Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK; ⁴ Present address: Department of Plant Biology, Carnegie Institution, 260 Panama Street, Stanford, CA 94305, USA

Author for correspondence: Luke C. M. Mackinder Tel: +1 650 739 4292 Email: lukemack@stanford.edu

Received: 10 December 2012 Accepted: 8 February 2013

New Phytologist (2013) doi: 10.1111/nph.12225

Key words: calcification, carbonconcentrating mechanisms (CCMs), climate change, coccolithophores, Emiliania huxleyi, ocean acidification, phytoplankton.

Summary

 Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO₂. However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters ($CO₂$, bicarbonate, carbonate and protons) on the physiological responses to elevated $CO₂$.

 \bullet Here, we adopted a multifactorial approach at constant pH or CO₂ whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters.

• We show that *Emiliania huxleyi* is sensitive to low $CO₂$ (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated $CO₂$ and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to $CO₂$ and bicarbonate but not to pH.

• *Emiliania huxleyi* appears to have evolved mechanisms to respond to limiting rather than elevated CO₂. Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E . huxleyi will respond to changing carbonate chemistry at a cellular level.

Introduction

Marine photoautotrophic organisms fix c. 55 gigatonnes of carbon yr^{-1} which is equal to the photosynthetic production by the terrestrial biosphere (Field et al., 1998). Coccolithophores play a major role in the global carbon cycle by contributing c . 1–10% to total organic carbon fixation (Poulton et al., 2007) and providing ballast through the formation of calcite, which enhances organic matter sinking into the deep ocean (Thierstein et al., 1977). The globally most abundant coccolithophore species is Emiliania huxleyi, which has the ability to form blooms up to 8×10^{6} km² (Moore *et al.*, 2012). Despite the global significance of E. huxleyi, there is only a limited understanding of important cellular processes and their response to environmental change.

Under present-day conditions, marine phytoplankton growth is mostly limited by low light availability or by the insufficient supply of inorganic nutrients, such as nitrogen, phosphorus or iron (Sarmiento & Gruber, 2006), while carbon dioxide ($CO₂$) is

usually not considered to be limiting. Nevertheless, $CO₂$ diffusion rates are in most cases not high enough to account for the photosynthetic rates seen in the majority of phytoplankton (Falkowski & Raven, 2007). This discrepancy is explained by the action of carbon (or $CO₂$) concentrating mechanisms (CCMs). In algae these are predominantly C3 biophysical mechanisms which link carbonic anhydrases (CAs), dissolved inorganic carbon (DIC) transporters and pH gradients to enhance $[CO₂]$ at the active site of Ribulose-1,5-bisphosphate carboxylase oxygenase (RubisCO) (Reinfelder, 2011). It is thought that nearly all marine phytoplankton operate a CCM, although the DIC species used (CO₂ and/or bicarbonate (HCO₃)), its regulation, cellular components, and DIC affinity can vary significantly between species (Giordano et al., 2005). E. huxleyi operates a low-affinity CCM (Rost et al., 2003). Several studies indicate that CO_2 is the primary source for photosynthesis, although there are some discrepancies over the importance of HCO_3^- , especially at lower CO₂ concentrations (Paasche, 1964; Sikes et al., 1980; Nimer & Merrett, 1992; Sekino & Shiraiwa, 1994; Herfort et al., 2002; *These authors contributed equally to this work. Rost et al., 2003; Schulz et al., 2007; Bach et al., 2011). In

addition to a biophysical mechanism, intracellular calcification has been proposed to act as a CCM by providing protons $(H⁺)$ as a by-product of calcification to support the dehydration of HCO_3^- to CO_2 (reviewed in; Paasche, 2001). Although there are some supporting data (Nimer & Merrett, 1992; Buitenhuis et al., 1999), other studies contradict the concept (Paasche, 1964; Herfort et al., 2004; Trimborn et al., 2007; Leonardos et al., 2009).

In the forthcoming centuries, ongoing uptake of anthropogenic atmospheric $CO₂$ into the oceans will continuously change the marine carbonate chemistry – a process known as ocean acidification (Caldeira & Wickett, 2003). Chemically, ocean acidification leads to a strong decrease of the carbonate ion (CO_3^{2-}) concentration, a slight increase in $[HCO_3^-]$ and a strong increase in $[CO_2]$ and $[H^+]$ (Wolf-Gladrow et al., 1999). These components are thought to affect coccolithophores in varying ways, with $[CO₃^{2–}]$ influencing calcite saturation concentrations, $[H⁺]$ affecting cellular pH homeostasis, $[CO₂]$ affecting photosynthesis and $[HCO₃⁻]$ influencing calcification (and photosynthesis). The potential effects of ocean acidification on calcification and photosynthesis by *E. huxleyi* have been repeatedly reported (reviewed in Riebesell & Tortell, 2011), but the importance of changes in the individual carbonate parameters for the observed responses is still not fully understood.

The present study disentangles the carbonate system to improve our conceptual understanding of the acquisition of DIC and its subsequent use in calcification and photosynthesis. In particular, we address two important questions in E. huxleyi ecophysiology: how sensitive is E. huxleyi to low and elevated components of the carbonate system; and does calcification act as a CCM?

Materials and Methods

Conceptual background of the experiments

The marine carbonate system is defined by the concentrations of CO₂, HCO₃, CO₃⁻, pCO₂, total alkalinity (TA), DIC (i.e. combined CO_2 , HCO_3^- and CO_3^{2-}), and pH ([H⁺]; Zeebe & Wolf-Gladrow, 2001). The physiologically relevant parameters of the carbonate system are CO_2 , HCO_3^- , CO_3^{2-} and H^+ , as only these can be perceived by a cell. They are connected to each other in the equilibrium reaction:

$$
CO_2 + H_2O \Leftrightarrow HCO_3^- + H^+ \Leftrightarrow CO_3^{2-} + 2H^+ \qquad \text{Eqn 1}
$$

As no other parameters of physiological relevance other than CO_2 , HCO_3^- , CO_3^{2-} and H^+ were changed in the experiments (e.g. light or temperature), it is assumed that only changing concentrations of these particular parameters can induce physiological or genetic responses. CO_2 , HCO_3^- , CO_3^{2-} and H^+ are closely codependent (Eqn 1) and any change in the concentration of one will lead to changes in the others. Nevertheless, it is possible to keep one of the four parameters constant while changing the other three. We made use of this feature and performed three experiments where we kept either $[CO_2]$ or $[H^+]$ constant between treatments ([H⁺] was kept constant at two different

concentrations). The constant carbonate system parameter within an experiment can be excluded from being responsible for the observed physiological or genetic response (Buitenhuis et al., 1999). Note that we chose to focus on CO_2 and H^* , as previous work points towards a primary importance of these particular parameters for *E. huxleyi* physiology (Schulz et al., 2007; Bach et al., 2011).

Experimental design and basic setup

Three experiments were conducted to test the physiological and molecular responses of Emiliania huxleyi (Lohmann) Hay and Mohler to changes in individual carbonate chemistry parameters. DIC was varied in all experiments, while either pH_f (8.34 or 7.74 on free scale) or CO_2 (16 μ mol kg⁻¹) was kept constant. In all experiments, cells of E. huxleyi (strain B92/11) were grown in monoclonal dilute batch cultures (LaRoche et al., 2010) at 15°C and 150 μ mol m $^{-2}$ s $^{-1}$ incident photon flux density under a 16 : 8 h, light: dark cycle. The growth medium was artificial seawater prepared as described in Kester et al. (1967) but without the addition of $NAHCO₃$, which was added in a later step (see the following section). Artificial seawater was enriched with c. 64 μ mol kg⁻¹ nitrate, 4 μ mol kg⁻¹ phosphate, f/8 concentrations of a trace metal and vitamin mixture (Guillard & Ryther, 1962), 10 nmol kg^{-1} of SeO₂, and 2 ml kg^{-1} of natural North Sea water. Concentrations of nitrate and phosphate were measured according to Hansen & Koroleff (1999). The nutrientenriched artificial seawater was sterile-filtered into polycarbonate bottles where the carbonate chemistry was manipulated. After taking samples for carbonate chemistry measurements (see the following section), the artificial seawater was divided carefully into three 2.3 l polycarbonate bottles before inoculation. Before inoculation, E. huxleyi cells were acclimated to exponential growth and carbonate chemistry conditions for at least seven generations. Approximate cell densities ranged from 50 to 300 cells ml⁻¹ at inoculation and 40 000-100 000 cells ml⁻¹ at sampling (see description of sampling later).

Carbonate chemistry manipulation and determination

In all experiments, target DIC concentrations were adjusted by adding calculated amounts of $NAHCO₃$ or $Na₂CO₃$ (see Bach et al., 2012 for details). In the constant- CO_2 experiment, CO_2 was set to a constant concentration of c. 16 (\pm 2) μ mol kg⁻ through additions of calculated amounts of HCl (3.571 molar). In the constant-pH experiments, pH was adjusted to 7.74 (\pm 0.004) or 8.34 (\pm 0.008) by adding 2 mmol kg⁻¹ of 2-[-4-(2-
hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid (HEPES, hydroxyethyl)-1-piperazinyl]-ethanesulfonic adjusted to target pH_f levels).

Carbonate chemistry in the constant- $CO₂$ experiment was determined by measuring TA and pH_f , while in both constant-pH experiments it was determined from pHf and DIC. Carbonate chemistry samples were taken at the beginning and the end of the experiments. Samples for TA were filtered $(0.7 \mu m)$, poisoned with saturated HgCl₂ solution (0.5 $\%$ final concentration) and stored at 4°C until measured (Dickson et al., 2003). TA values higher than 4700 μ mol kg⁻¹ were outside the range that can be accurately determined with the applied method and therefore diluted with double deionizedwaterasdescribedinBachet al.(2012).

Samples for DIC were sterile-filtered $(0.2 \mu m)$ by gentle pressure into 4 ml borosilicate bottles, made air-tight without headspace and subsequently measured as described in Stoll et al. (2001). DIC samples lower than 1000 or higher than 3000 μ mol kg⁻¹ could not be reliably measured with the applied method and were therefore either diluted or concentrated (see Bach et al., 2011, 2012).

Samples for pH_f were measured potentiometrically at 15°C with separate glass and reference electrodes (METROHM) calibrated with reference seawater, certified for TA and DIC (supplied by Prof. A. Dickson, La Jolla, CA, USA; see Bach et al., 2011, 2012 for details).

Carbonate chemistry parameters that were not directly measured were calculated from two measured values (DIC and TA or DIC and pH_f) and known salinity, temperature, and phosphate concentrations with the software CO2SYS (Lewis & Wallace, 1998) using equilibrium constants determined by Roy et al. (1993). Biological response data are plotted against the means of the initial and final values of the carbonate chemistry. Error bars in plotted carbonate chemistry parameters denote the mean change of the three replicates of the particular carbonate chemistry parameter from the beginning of the experiment to the end.

Sampling, measurements and calculations of growth, organic, and inorganic carbon production rates

Sampling started 2 h after the onset of the light period and lasted not longer than 2.5 h. Duplicate samples for total particulate carbon (TPC) and particulate organic carbon (POC) were filtered (200 mbar) on to precombusted (5 h at 500°C) GF/F filters. To remove HEPES from the filters of the constant-pH experiments, samples were rinsed with 60 ml of artificial seawater medium supersaturated with respect to calcium carbonate and free of HEPES buffer immediately after filtration. Filters were stored at 20°C until measurements were carried out. POC filters were placed for 2 h in a desiccator containing fuming HCl to remove all calcite and then dried for c. 6 h at 60°C. TPC filters were dried under the same conditions but without the acid treatment. TPC and POC analyses were performed using an elemental analyzer (HEKATECH, Wegberg, Germany) combined with an isotope ratio mass spectrometer (FINNIGAN, Schwerte, Germany). Particulate inorganic carbon (PIC) was calculated as the difference between TPC and POC.

Cell numbers were determined with a Coulter Counter (Beckman Coulter, Krefeld, Germany) at the beginning and the end of the experiments c . 4 h after the onset of the light period. Growth rates (μ) were calculated as

$$
\mu = \frac{\log_e(f_{fin}) - \log_e(t_0)}{d}
$$
 Eqn 2

where t_0 and t_{fin} are the cell numbers at the beginning and the end of the experiments, respectively, and d is the growth period in days. POC and PIC production rates were calculated by multiplying growth rates with the cellular POC or PIC contents.

Treatments were further analyzed by scanning electron microscopy (SEM) and cross-polarized light microscopy to confirm the presence or absence of internal coccoliths (Bach et al., 2012). Cells were considered to be actively calcifying if coccoliths were present.

For gene expression analysis, c. 10 million cells were filtered (200 mbar) onto polycarbonate filters with a pore size of $0.8 \mu m$ and subsequently rinsed off the filters with 1 ml RNAlater (Qiagen). This cell suspension was kept on ice until storage at -20° C.

Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR)

Quantitative reverse-transcriptase polymerase chain reaction was performed for 15 target genes (Table 1). Each sample was measured in triplicate. Experimental procedures were performed as described previously (Mackinder et al., 2011). Primers were designed using expressed sequence tag (EST) clusters from von Dassow et al. (2009), the E. huxleyi Genome Project (http:// genome.jgi-psf.org/Emihu1/Emihu1.home.html) or from the current literature (Supporting Information, Table S1). Efficiency curves for each primer pair were generated using serial dilutions on pooled cDNA from all samples. All primers except beta-carbonic anhydrase (β CA) had efficiencies between 90 and 105% and generated curves with R^2 values > 0.99. βCA efficiency remained undetermined as a result of the low cycle threshold (C_T) values of pooled cDNA even at undiluted levels. For relative expression calculations, its efficiency was assumed to be 100%. This assumption results in a potential decrease in the accuracy of the absolute fold changes, but the trend of expression and the order of magnitude will remain unaffected. For each sample, 2–20 ng of RT RNA were analyzed in technical triplicates. For each primer pair, all samples were analyzed across three plates, and in order to allow for the correction of between-plate variation two standards in triplicate were run on each plate. GeNorm (Vandesompele et al., 2002) was used to test the stability of four potential endogenous reference genes (ERGs).

Analysis of qRT-PCR data was done using an efficiencycorrected $\Delta\Delta C_t$ method, normalizing to the geometric mean of three ERGs (Vandesompele *et al.*, 2002). For each gene, all samples were plotted relative to the sample with lowest expression from all three experiments. The sample with the lowest expression level was normalized to 1, allowing the expression ratios between samples to be easily identified.

Statistical analysis

We tested if the carbonate chemistry had a statistically significant effect $(P< 0.05)$ on individual physiological and molecular response parameters with either a one-factorial analysis of variance (ANOVA) using Statistica (Statsoft, Hamburg, Germany) in case the data subsets were normally distributed, or with a permutational multivariate analysis of variance (PERMANOVA) using Primer 6 in case they were not. Normality was tested with

Table 1 Emiliania huxleyi genetic response to carbonate system manipulations Table 1 Emiliania huxleyi genetic response to carbonate system manipulations

up-regulation with decreasing levels of the respective carbonate system parameter (see Fig. 4). aNo statistical evaluation was possible because some replicates were below the detection limit.

bIndicates partially characterized in coccolithophores.

Shapiro–Wilk's test ($P = 0.05$). Nonnormally distributed subsets were Box–Cox-transformed. Subsets that remained nonnormally distributed were analyzed with the PERMANOVA.

ANOVA: The difference of individual treatments within an experiment was tested with Tukey's HSD post-hoc test (P values from *post-hoc* tests are denoted by $P_{\text{post hoc}}$. Homogeneity of variance was tested using Levene's test and was accepted if the *P*-value was > 0.05 . Where *P* was smaller, the significance level (P-value of the ANOVA and the post-hoc test) was decreased to 0.01. Subsets treated this way are marked in Table S2.

PERMANOVA: A resemblance matrix was created using the Euclidian distance function and further processed with a one-factorial PERMANOVA design choosing type III partitioning of the sum of squares. In cases where statistically significant differences were detected, a pairwise comparison of treatments (analog to a *post-hoc* test) was conducted in a second PERMANOVA run. The numbers of permutations for each run are given in Table S2. In pairwise PERMANOVA runs, these numbers were not sufficiently high $($ < 100) to get reasonable results for P, so that an additional Monte Carlo test was conducted. Significance levels of the PERMANOVA analysis are the same as for the ANOVA, but by convention are termed $P(\text{perm})$ for the permutation P -value and $P_{\text{post hoc}}(MC)$ for the Monte Carlo P-value to distinguish them.

Results

2013 The Authors

Growth and POC production rates are sensitive to low $CO₂$ (and HCO_3^-) and to low pH, but not to elevated CO_2

To determine the importance of individual components of the carbonate system for E. huxleyi physiology, cells were grown in three separate experiments at constant pH_f (7.74 and 8.34) and constant CO_2 (16 μ mol kg⁻¹). Fig. 1 shows how the carbonate system changed within the three experiments. By maintaining relatively low cell concentrations, changes in carbonate chemistry as a result of biological processes were kept to a minimum over the time of the experiments. This is indicated by the error bars in Fig. 1 with the corresponding values in Table S3.

Within the ranges examined, growth and POC production rates were primarily influenced by changes in carbonate chemistry from low to intermediate HCO_3^- (160–2000 µmol kg⁻¹) and CO_2 (0.8–20 μ mol kg⁻¹) (Fig. 2) with neither pH nor CO_3^{2-} having a pronounced influence (Fig. S1). Growth rates increased in all experiments with increasing concentrations of HCO_3^- and CO_2 until reaching maximum rates of c. 1.1 d⁻¹ where further CO_2 or HCO_3^- increases had no effect on growth rates. The constant-pH experiments allow us to differentiate between the effects of CO_2 and HCO_3^- on growth rate. CO_2 demonstrates a good correlation with growth rate in both constant-pH experiments, whereas the influence of HCO_3^- on growth rate is more variable (Fig. 2a,b), suggesting that $CO₂$ is the principal factor responsible for growth inhibition below a [CO₂] of c. 7.5 μ mol kg⁻¹ (Fig. 2b). No effect of pH on growth rate was observed in the constant-pH treatments (7.74 and 8.34). However, at constant $CO₂$, growth rates are significantly

Fig. 1 Physiologically relevant carbonate chemistry parameters in relation to dissolved inorganic carbon (DIC). (a) pH_f . (b) [HCO₃]. (c) [CO₃⁻]. (d) $[CO₂]$. Error bars account for the mean change (mean of triplicates) of the particular carbonate chemistry parameter over the course of the experiments. Black circles, constant $pH_f = 7.74$; red circles, constant $pH_f =$ 8.34; triangles, constant $CO₂$. Note that error bars are in most cases masked by symbol size.

lower at pH 7.58 than at pH 7.83 ($P_{post-hoc}$ =0.009), which cannot be explained by a decrease in $[CO_2]$ or $[HCO_3^-]$ (Fig. 2a,b). Thus, below pH_f 7.74, $[H^+]$ appears to have a direct negative influence on growth rate.

Particulate organic carbon production rates in both constantpH experiments were highly sensitive to HCO_3^- and CO_2 when the concentrations dropped below c. 2000 and 10 μ mol kg⁻¹, respectively (Fig. 2c,d). The rates appear to correlate best to $CO₂$ at concentrations $\leq c$. 5 µmol kg⁻¹, although there are limited data points in this range. At a constant CO_2 , the lowest $HCO_3^$ treatment also showed significantly lower POC production rates than at intermediate HCO_3^- ($P_{\text{post hoc}} = 0.002$, Fig. 2c). At HCO₃ concentrations > c. 2000 μ mol kg⁻¹ POC production rates display a slight but significant decrease of c. 20% at a constant pH_f of 8.34 and 10% at a constant pH_f of 7.74 up to the highest HCO_3^- concentrations (Fig. 2c; pH 8.34, $P_{\text{post hoc}}$ 0.001; pH 7.74, $P_{\text{post hoc}}$ (MC) = 0.004). In summary, POC production showed no clear overall correlation with any of the carbonate chemistry parameters, but appears to be driven by $CO₂$ in the very low CO_2 range (< c. 5 µmol kg⁻¹) and decreased by HCO_3^- at concentrations > 2000 µmol kg⁻¹. Fand Control of the Control

At low DIC, $C : N$ ratios decreased significantly in the constant-pH experiments, which appear to be driven primarily by a reduction in $CO₂$ (Table S2). This is supported by no significant changes at constant $CO₂$ (Table S2). Differences in $C : N$ between treatments probably reflect variable cellular amounts of nitrogen-free relative to nitrogen-rich organic compounds. As 40 -60% of the total cellular carbon in E. huxleyi is in the form of lipids (Fernandez et al., 1994), the decrease in $C : N$ is likely to reflect reduced assimilation of lipids and polysaccharides at low DIC.

Fig. 2 Physiological response parameters for *Emiliania huxleyi* in relation to [HCO $_3^-$] (left column) and [CO $_2$] (right column). (a, b) Growth rates; (c, d) particulate organic carbon (POC) production; (e, f) C : N ratio; (g, h) particulate inorganic carbon (PIC) production. Black circles, constant pH_f = 7.74; red circles, constant $pH_f = 8.34$; triangles, constant CO₂. Vertical error bars denote the standard deviation of three replicates. Horizontal error bars show the mean change in [HCO $_3^-$] or [CO $_2$] (mean of triplicates) from the beginning to the end of the experiments.

Calcification is primarily driven by HCO_3^- and does not act as a CCM

Calcification rates (PIC production) increased similarly in all experiments with increasing $[HCO_3^-]$ (Fig. 2g). Maximum calcification rates at constant pH_f values of 8.34 and 7.74 were identical, but were reached at lower CO_2 and higher CO_3^{2-} at a constant pH_f of 8.34, indicating that calcification is not primarily dependent on $[CO_2]$ or $[CO_3^{2-}]$ (Figs 2h, S1h). A limited control of calcification by $[CO_2]$ is further supported by the decrease in calcification rates found in the constant- $CO₂$ experiment. Here, calcification rates would have to remain constant if $[CO₂]$ were of primary importance. No signs of calcification could be found in the two lowest HCO_3^- treatments at a constant pH_f of 7.74 and in two replicates of the lowest HCO_{3}^{-} treatment at constant $CO₂$ (Table 2). In these treatments, calcite saturation (Ω_{calite}) is < 0.31, so post-production dissolution could potentially have taken place. However, cross-polarized light microscopy and

scanning electron microscopy show the absence of internal coccoliths under these conditions, indicating that the production of coccoliths is inhibited (Bach et al., 2012).

Low DIC therefore results in a decrease in growth rate and POC production as well as in calcification (Figs 2, S2). However, PIC production appears to be the most sensitive to low DIC, with low calcification rates observed in several low-DIC conditions where there was no appreciable effect on POC production and growth rate (Fig. S2). This indicates that POC production is prioritized over PIC production under Ci limitation (Fig. S2), and suggests that reducing calcification rate may enable cellular resources (such as those relating to HCO_3^- uptake) to be used for photosynthesis. Calcification is clearly not operating as a CCM at low DIC, as in this case we would expect a stimulation of calcification at low DIC.

At a genetic level, the CCM is up-regulated only at low $CO₂$ and is not induced at current ocean $CO₂$ concentrations

In order to identify the molecular basis of the physiological response of *E. huxleyi* to the individual carbonate system parameters, 15 genes with putative roles in carbon transport, pH homeostasis and biomineralization were chosen for investigation (Table S1). The measurement of relative transcript abundance was chosen as the most suitable approach to allow the expression profiles of multiple genes to be accurately determined. Although transcript abundance is not a direct measurement of protein abundance or activity, it gives a good insight into the cellular demand for specific proteins and provides a strong foundation for the further characterization of genes related to a particular cellular process. All genes are normalized to three endogenous reference genes (ERGs; $ACTIN$, α -TUBULIN and $EFG1-\alpha$) with

Table 2 Presence or absence of *Emiliania huxleyi* coccoliths from SEM investigations

Experiment	$HCO3-$ (µmol kg ⁻¹)	H^+ (nmol kg^{-1})	Coccoliths found?
Constant $pH_f = 7.74$	200	18.2	No
	160	18.2	N ₀
	200	18.2	No
	300	17.8	No
	330	17.8	No
	320	17.8	No
Constant $pH_f = 8.34$	170	4.8	Yes
	160	4.7	Yes
	170	4.7	Yes
Constant $CO2$	520	30.9	No
	510	26.3	No
	490	22.9	Yes ^a

Table showing SEM analysis of individual replicates of treatments where particulate inorganic carbon (PIC) production was < 0.5 pg per cell d^{-1} . Note that coccoliths were found in all treatments and replicates not listed in this table.

^aCell concentrations were higher in this replicate at the end of the experiment (76 000 compared with 36 000 cell m I^{-1} in first replicate). This caused a stronger decrease in [HCO₃] and [H⁺].

New
Phytologist

Table 3 Assumptions within the conceptual model for inorganic carbon uptake in *Emiliania huxleyi*

expression plotted relative to the lowest expression level, which is set to one.

Plotting gene expression against DIC indicates the transcriptional response to changes in total DIC (Fig. 3, Table S3). Out of the 15 genes investigated, 11 showed a marked increase in expression when the cells became DIC-limited (DIC $<$ 1000 μ mol kg⁻¹) but showed no repression above this concentration. This corresponds to $[CO_2]$ and $[HCO_3^-]$ thresholds of c. 7.5 and 800 μ mol kg^{-1} , respectively, below which CCM gene up-regulation occurs (Fig. 4a,b). Both of these values are approximately half that of average current oceanic values (i.e. similar to

pre-industrial values), suggesting that the E. huxleyi CCM, at least in this strain, is actually only induced at DIC concentrations lower than ambient.

Of the selected genes with putative roles in DIC transport, AEL1 (anion exchanger like 1, belonging to the solute carrier 4 (SLC4) family), αCAI (alpha-carbonic anhydrase 1), δCA (deltacarbonic anhydrase 1) and *rubisco* (RubisCO large subunit) showed a significant DIC limited up-regulation between four and 11-fold (Table 1, Fig. 3a). Two genes, βCA and $LCIX$ (low $CO₂$ induced gene X), had a large response at low DIC, with a respective 450- and 180-fold up-regulation at the lowest DIC

value in the constant-pH_f (= 8.34) experiment relative to the treatment with the lowest expression (Table 1, Fig. 3e,f). βCA encodes a putative carbonic anhydrase responsible for catalyzing the interconversion of CO_2 and HCO_3^- , whereas LCIX exhibits similarity to the *Chlamydomonas* LCIB protein, which is located in the chloroplast and plays a crucial role in HCO_{3}^{-} uptake (Miura et al., 2004; Wang & Spalding, 2006). Furthermore, β CA showed a highly correlated expression with $LCIX (R^2 > 0.99,$ data not shown), indicating that these genes could be under the same transcriptional control.

Of the putative H⁺ transport-related genes, $CAX3$ (Ca^{2+}/H^+ exchanger 3), NhaA2 (Na⁺/H⁺ exchanger 2), ATPVc'/c (vaculoartype H^+ pump) and *PATP* (plasma membrane-type H^+ pump) showed a 4–7.5 fold up-regulation (Table 1, Fig. 3b). Four genes with potential roles in H^* and DIC transport, $HVCNI$ (H^* channel), AQP2 (aquaporin 2), aCA2 (alpha-carbonic anhydrase 2), and γ CA (gamma-carbonic anhydrase), showed no significant transcriptional response over the carbonate system range tested (Fig. 3c; Table S2). Above 1000 μ mol kg⁻¹, DIC changes in gene expression of most investigated genes was minimal with no repression of DIC-responsive genes, but a small but significant decrease $(P_{\text{post hoc}} = 0.02)$ seen in GPA expression > c. 2000 μ mol $\rm kg^{-1}$ (Fig. 3d).

Fig. 3 Relative expression of investigated Emiliania huxleyi genes plotted against dissolved inorganic carbon (DIC). (a, b) Inorganic carbon transport and H⁺ transport genes that were significantly up-regulated ($P < 0.05$) at DIC $\leq c$. 200 µmol kg⁻¹ relative to DIC > 1000 μ mol kg⁻¹. Panel (c) shows nonresponsive genes ($P > 0.05$) over the DIC ranges tested. Panels (a)–(c) are combined data from the constant pH_f 7.74, constant pH_f 8.34 and constant $CO₂$ experiments for each gene. Error bars have been omitted to improve clarity but standard deviations are listed in Table S3. Plots in (d)–(f) show expression of GPA , βCA , and $LCIX$ in the three individual experiments with standard errors shown. Note the logarithmic y-axis for plots in (e) and (f). The absence of error bars for some samples in (e) is the result of undetectable abundances of β CA transcripts in some of the biological replicates. (d) shows GPA, which was significantly downregulated at high ($>$ 2000 µmol kg⁻¹) DIC compared with low (< 400 μ mol kg⁻¹) DIC. Note that fold changes and corresponding significances are shown in Tables 1 and S2. AEL1, anion exchanger like 1; α CA1, alphacarbonic anhydrase 1; δ CA, delta-carbonic anhydrase 1; rubisco, RubisCO large subunit; CAX3, Ca^{2+}/H^{+} exchanger 3; NhaA2, Na⁺/ H⁺ exchanger 2; ATPVc'/c, vaculoar-type H⁺ pump; PATP, plasma membrane-type H⁺ pump; HVCN1, H⁺ channel; AQP2, aquaporin 2; xCA2, alpha-carbonic anhydrase 2; γ CA, gamma-carbonic anhydrase; β CA, beta-carbonic anhydrase; $LCIX$, low $CO₂$ induced gene X.

The CCM is responsive to CO₂ and HCO $_3^-$ but not to pH

An understanding of the regulation of the E. huxleyi CCM may provide important information about its mode of operation and cellular function. An examination of the individual carbonate system parameters indicated that the expression of these genes correlates closely with $[CO_2]$ and $[HCO_3^-]$ at low DIC (Fig. 4a,b). This indicates that although pH and CO_3^{2-} may have a synergistic effect with other factors on the expression of some genes, they do not appear to be the main parameters of the carbonate system driving the genetic responses (Fig. 4c,d). Table 1 summarizes the responses of the investigated genes along with their putative or confirmed function and potential cellular locations.

Transcriptional response to reduced calcification

Previously we demonstrated that the expression of several genes with putative roles in DIC, Ca^{2+} and H⁺ transport (AEL1, CAX3) and $ATPVc'/c$) show a close correlation with calcification rate, suggesting that these genes play a direct role in the calcification process (Mackinder et al., 2011). When calcification was inhibited by the removal of Ca^{2+} , the expression of these calcification-associated genes was strongly repressed (Mackinder et al., 2011).

the carbonate system for eight dissolved inorganic carbon (DIC)-responsive genes. Error bars have been omitted to improve clarity, but standard deviations are listed in Table S1: (a) vs. $HCO₃$; (b) vs $CO₂$; (c) vs $CO₃$; (d) vs pH_f. AEL1, anion exchanger like 1; α CA1, alpha-carbonic anhydrase 1; δ CA, delta-carbonic anhydrase 1; rubisco, RubisCO large subunit; ATPVc′/c, vaculoartype H⁺ pump; PATP, plasma membranetype H⁺ pump; CAX3, Ca²⁺/H⁺ exchanger 3; NhaA2, Na⁺/H⁺ exchanger 2.

However, in the present study, these genes were all induced at low DIC (Fig. 3), whereas calcification was inhibited. This indicates that these genes may play a dual role within the cell, supporting calcification under ambient conditons but switching to support photosynthesis when DIC becomes limiting.

Discussion

Growth and calcification responses to the carbonate system

The predicted changes in the ocean's carbonate system caused by increasing atmospheric $CO₂$ may have multiple impacts on coccolithophore physiology (Riebesell & Tortell, 2011). Using experimental manipulation of the carbonate system, we show that individual aspects of *E. huxleyi* physiology can be attributed to separate components of the carbonate system.

Growth rates presented in this study correlate closely to $[CO₂]$ (Fig. 2a), with pH_f having a significant negative impact below values of c. 7.7 (Fig. S1a). Although POC production does not show such a clear coupling to $[CO₂]$ as growth rates (Fig. 2d), it also responds negatively to pH_f when it drops below c. 7.7. A similar regulation of pH and $CO₂$ on growth and POC production was also seen in Bach et al. (2011) with a linear decrease from a pH_f of c. 7.7–7.0 and CO_2 dependence above a pH_f of 7.7. However, a study by Buitenhuis et al. (1999) saw no clear tightly coupled correlation between E. huxleyi growth rate and [CO₂]. Instead, the authors suggested that both CO_2 and $HCO_3^$ are important for growth rates. The reason behind this discrepancy is unclear, although it should be kept in mind that threshold values for individual carbonate system components may differ between strains and may be modulated by light conditions (Langer et al., 2009; Rokitta & Rost, 2012).

Calcification rates are tightly coupled to $[HCO₃⁻]$ (Fig. 2g), suggesting that HCO_3^- is the primary carbon source used for $CaCO₃$ precipitation in E. huxleyi. This is in agreement with previous studies (reviewed in Paasche, 2001). Simulated ocean acidification has been shown to affect coccolithophore calcification mostly negatively (Riebesell & Tortell, 2011). By comparing ocean acidification with constant-pH experiments, Bach et al. (2011) showed that it is the increase in H^+ at elevated CO_2 that negatively affects calcification rates of E. huxleyi. It is also known that intracellular pH in coccolithophores is particularly sensitive to changes in external pH (Suffrian et al., 2011; Taylor et al., 2011). Under these considerations, it could be expected that calcification rates would remain consistently lower throughout the constant pH_f = 7.74 experiment compared with the constant pH_f = 8.34 experiment. Surprisingly, however, this is not the case. Instead, maximum calcification rates are similar in both constant-pH experiments (Fig. 2g,h). This indicates that the direct negative effect of high [H⁺] on calcification rates may at some point be overcome by increasing availability of HCO_{3}^{-} substrate. This is further supported by our finding that higher $[HCO_3^-]$ was necessary to initiate calcification when [H⁺] in the seawater medium was higher (Table 2). Considering carbonate chemistry conditions of the past, this might provide a further explanation as to why coccolithophores were able to thrive in the early Mesozoic era, a time that was characterized by relatively low sea water pH (as low as pH 7.7) and high DIC substrate (up to 5000 μ mol kg⁻¹; Ridgwell, 2005).

The nature and regulation of the CCM

Previous mass spectrometrically based work by Rost et al. (2003) showed that *E. huxleyi* operates a regulated CCM but gave no

indication of the mechanism. Our results support the presence of a regulated CCM and furthermore have identified several of its molecular components, the carbonate species to which it responds, the threshold at which it is induced, and its possible interactions with calcification.

The transcriptional data identify the genetic basis of a CCM in E. huxleyi with a clear up-regulation in multiple putative CCMrelated genes as DIC becomes limiting for growth, POC and PIC production (Fig. 3, Table 1). The majority of genes were up-regulated when HCO_3^- or CO_2 dropped below *c*. 800 and 7.5 μ mol kg⁻¹, respectively. Interestingly, most of the DICresponsive genes were not further repressed at $CO_2 > c$. 7.5 μ mol kg⁻¹ ([HCO₃] c. 800 μ mol kg⁻¹); this indicates a potential basal level of the CCM, with a low amount of active DIC transport taking place even when growth rates and POC production are saturated. The presence of active transport at ambient CO_2 and HCO_3^- is supported by Schulz *et al.* (2007), who showed active DIC uptake even at ambient conditions.

Photosynthetic O_2 evolution curves and ¹⁴C incorporation studies have indicated that photosynthesis is not saturated at ambient CO₂ (Paasche, 1964; Herfort et al., 2002; Rost et al., 2003). This is not supported by our data with growth rates and organic carbon fixation both saturated at or below ambient $[CO₂]$. However, these differences could theoretically be attributed to the different light intensities used between the studies and to the fact that O_2 evolution is a measurement of photosystem II activity, not a direct measurement of $CO₂$ fixation. Furthermore, these thresholds may vary between strains, as seen with strain-specific responses in calcification and growth to changing carbonate chemistry (Langer et al., 2009). These responses do not necessarily indicate that the underlying cellular mechanisms differ between strains, but most likely highlight differences in the regulation of cellular processes, such as calcification. This is further supported by an optimum curve response, with different strains and species having varying optimum calcification rates in relation to $pCO₂$, but the overall response (i.e. the shape of the curve) being very similar (Langer et al., 2006, 2009; Ridgwell et al., 2009; Bach et al., 2011; Krug et al., 2011). However, a greater understanding at the molecular level of the response of different E. huxleyi strains and coccolithophore species to changes in carbonate chemistry is critical to extrapolate our data to other coccolithophores.

The CCM of E. huxleyi shows a number of differences from those of other partially characterized eukaryotic algae. One outstanding feature is its low affinity for $CO₂$ (Rost et al., 2003) with a $K_{1/2}$ for CO_2 that is several-fold higher than the $K_{1/2}$ for the prymnesiophyte Phaeocystis globosa and several diatom species (Johnston & Raven, 1996; Rost et al., 2003; Trimborn et al., 2009). Another feature of the E . huxleyi CCM is that up-regulation of molecular components seems to occur only when very low $CO₂$ concentrations are reached. This is strikingly different from diatoms and *Chlamydomonas*, where molecular CCM components are already strongly induced at ambient $CO₂$ and even above (Harada et al., 2005; Brueggeman et al., 2012).

Although the E. huxleyi CCM may be of a lower affinity, the basic components appear to be similar to other eukaryotic algae.

CAs play fundamental roles within algal CCMs, and CAs associated with the CCM are generally up-regulated under carbon limitation (Badger, 2003; Raven & Giordano, 2009). Genome analysis shows that E. huxleyi has nine putative CAs belonging to the α , β , γ and δ families. This CA composition demonstrates strong similarities with *Chlamydomonas*, which has 10 putative CAs in its genome belonging to the α , β and γ families (Spalding, 2008). It is also very similar to the diatom CA repertoire, with Phaeodactylum tricornutum also having nine CAs distributed across the same four families (Tachibana et al., 2011). Diatoms also possess multiple homologs to AEL1. The characterization of P. tricornutum SLC4-2 shows that it is induced at low $CO₂$, localizes to the plasma membrane and stimulates HCO_{3}^{-} uptake and photosynthesis (Nakajima et al., 2013). Wolf PSORT predicts a plasma membrane location for AEL1 (Table 1) and its low HCO_3^- /CO₂-dependent expression suggests a related function in E. huxleyi.

Localized intracellular pH gradients and regulation are thought to be a fundamental part of CCMs (Raven, 1997). The increased expression of putative proton pumps (ATPVc′/c and PATP) and cation/H⁺ exchangers (NhaA2 and CAX3) suggests an increased demand of these transporters to maintain pH homeostasis, membrane potential or alter compartmental pH in order to promote changes in CO_2 : HCO_3^- ratios. More alkaline regions would maintain DIC as HCO_3^- , which is one million times less permeable to membranes than $CO₂$ (Moroney et al., 2011). This could prevent $CO₂$ loss via diffusion across membranes, while more acidic regions in the proximity of RubisCO would result in a shift to $CO₂$ (Raven, 1997).

Although HCO_3^- use appears to become increasingly important at low DIC (Rost et al., 2003; Schulz et al., 2007; AEL1 up-regulation at low DIC shown here), growth rates are ultimately determined by $CO₂$ (Fig. 2b). By operating a CCM, the cell actively accumulates HCO_3^- and CO_2 at a higher concentration in the proximity of RubisCO than externally. DIC has to be presented to RubisCO as CO_2 , so ultimately HCO_3^- accumulated for carbon fixation will have to be converted to $CO₂$. If the external $CO₂$ concentration is very low, the diffusion gradient from the chloroplast to the outside will be large and leakage increases (Rost et al., 2006). Leakage in E. huxleyi has been measured to be c . 79% at ambient $CO₂$ (Schulz et al., 2007) and shown to increase as $CO₂$ decreased (Rost et al., 2006). Thus, external [CO₂] largely determines how much accumulated DIC stays within the cell as a result of the strong inside-to-out $CO₂$ gradient and high permeability of membranes to $CO₂$.

Calcification as a CCM

Coccolithophores have maintained calcification since coccoliths appeared in the fossil record c . 220 million yr ago (Bown et al., 2004). A proposed role for the maintenance of calcification in coccolithophores is to support photosynthesis by using H⁺ generated by the production of calcium carbonate from bicarbonate (Paasche, 2001). Whilst carbon fixation by photosynthesis and calcification can occur at a similar rate within a cell, there is increasing evidence suggesting that the two processes are not

tightly linked. It is possible to inhibit calcification by limiting calcium (Herfort et al., 2004; Trimborn et al., 2007; Leonardos et al., 2009) or DIC (Buitenhuis et al., 1999; this study), whilst photosynthesis, growth and POC production rates remain unaffected (Trimborn et al., 2007; constant- $CO₂$ experiment of this study). Photosynthesis therefore appears to have no mechanistic dependence on calcification (Leonardos et al., 2009). Our data support this and strongly suggest that calcification does not function as a CCM at low DIC.

Moreover, our data reveal that calcification is actually inhibited at low DIC, rather than induced. Current evidence indicates that coccolithophores largely use $CO₂$ for photosynthesis and HCO_3^- for calcification (reviewed in Paasche, 2001), which is supported by our own observations. Thus, inhibition of calcification would enable the cell to utilize the HCO_3^- normally acquired for calcification as a substrate for photosynthesis. Here we provide the first transcriptional dataset in support of this hypothesis. We found that the expression of three putative calcification-related ion transporters was elevated under limiting DIC, whilst calcification was inhibited. For example, assuming AEL1 functions as a plasma membrane $HCO_3^$ transporter in E. huxleyi, as with SLC4-2 in diatoms, under normal conditions it most probably acts to transport $HCO_3^$ into an intracellular pool for calcification (Fig. 5a). This is supported by AEL1 expression being repressed when calcification is inhibited by calcium limitation or in noncalcifying strains (Mackinder et al., 2011). However, under low $CO₂$ and $HCO₃⁻$ availability, AEL1 is induced, whereas calcification is inhibited. This suggests that there is an increased need for HCO_3^- transport at low DIC, but that this HCO_3^- is diverted away from the coccolith vesicle into the chloroplast for

photosynthetic carbon fixation (Fig. 5b). Further functional characterization and localization of AEL1 and other CCM/calcification components is critical to validate this model and to fully understand this process at the molecular level.

Extrapolation to the real ocean

The expression data indicate an up-regulation of the CCM occurring at low DIC ($[CO_2]$ c. 7.5 μ mol kg⁻¹), suggesting that an inducible CCM is redundant in this E. huxleyi strain under current oceanic $[CO_2]$ (*c*. 16 μ mol kg⁻¹). However, in their natural habitat, it is possible that cells sporadically experience $[CO₂]$ $<$ 7.5 μ mol kg⁻¹, in particular at the end of a bloom where [CO₂] is reduced as a result of photosynthetic carbon drawdown. Values as low as c. 5 μ mol kg⁻¹ were seen in a mesocosm experiment where an E. huxleyi bloom occurred after a Phaeocystis sp. and diatom bloom (Purdie & Finch, 1994). Furthermore, [CO₂] was significantly lower before the onset of anthropogenic $CO₂$ release c. 200 yr ago, so that limiting DIC concentrations might have occurred more frequently in the past. A third aspect, which has to be considered, is a possible variability in the threshold DIC concentration below which the CCM is up-regulated. Variable thresholds either could result from strain-specific differences between E. huxleyi clones (Langer et al., 2009) and/or could be altered by culture conditions (Rokitta & Rost, 2012). At very high light conditions, for example, it is possible that the CCM becomes up-regulated at a higher $CO₂$ threshold, owing to the cell having a larger DIC demand. Finally, the necessity of an inducible CCM in E. huxleyi can only be reliably determined by in field experiments where regulation patterns are investigated in in situ conditions.

Fig. 5 A conceptual model of inorganic carbon uptake in *Emiliania huxleyi* at high (a) and low (b) dissolved inorganic carbon (DIC). The model is based on the data presented in this manuscript and previous studies (see Table 3 for all assumptions within the model). (a) With increasing $CO₂$, the $CO₂$ gradient into the cell becomes, at some point, sufficient to saturate photosynthesis and maintain maximum particulate organic carbon (POC) fixation and growth rates. Hence CO₂ is the most important external substrate for photosynthesis at high CO₂, while HCO $_{\overline{3}}$ is the main substrate for calcification with a putative HCO $_3^-$ exchanger AEL1 playing a key role. (b) At low CO $_2$, HCO $_3^-$ becomes more and more important as the inorganic carbon source for photosynthesis. Therefore, HCO $_{3}^{-}$ and its uptake mechanism shift from providing inorganic carbon for calcification to photosynthesis, leading to a reduction and, eventually, to a deactivation of calcification. Furthermore, the carbon-concentrating mechanism (CCM) (including the components shown: RubisCO, external and internal CAs) is up-regulated to support inorganic carbon supply. Although HCO $_3^-$ becomes the dominant external carbon source for photosynthesis, external CO₂ still strongly influences growth rates and POC fixation as a result of increasing CO₂ leakage as external CO₂ decreases (see text for details). C, chloroplast; P, pyrenoid; N, nucleus; M, mitochondrium; CV, coccolith vesicle; eCA, external carbonic anhydrase; iCA, internal carbonic anhydrase.

Increased $pCO₂$ has been shown to affect intracellular processes like calcification and photosynthesis in coccolithophores (Riebesell et al., 2000; Langer et al., 2006, 2009). In contrast to these physiological responses, our data suggest that the regulatory response to these changes at a genetic level is very limited. $CO₂$ and HCO_3^- only enhanced transcription of genes at concentrations significantly below those currently experienced and well below concentrations predicted in the near future. Furthermore, none of the investigated genes – even putative H^* pumps – were responsive to increasing sea water [H⁺]. There are two possible explanations for this lack of regulatory response: we have simply missed the critical pH and high $CO₂$ responsive genes; or E. huxleyi does indeed entirely lack a regulatory machinery to cope with ocean acidification. The former can only be addressed in similar future studies that investigate the whole transcriptome. However, if future studies support the latter then the inability to regulate to changing pH could offer an explanation as to why calcification and photosynthesis are negatively affected below certain pH thresholds.

The novel approach applied in this study has allowed us to tease out the complexities of, and interactions between, photosynthesis and calcification in the ecologically important phytoplankton, E. huxleyi, and their responses to changing pCO_2 . The data presented provide a significant step forward in understanding the underlying cellular and molecular mechanisms of these processes, providing strong evidence that calcification does not function as a CCM and indicating that $E.$ huxleyi may have evolved mechanisms to deal with limiting rather than elevated $pCO₂$.

Acknowledgements

Silke Lischka is acknowledged for support on statistics and Janett Voigt for support during sampling. Furthermore, we thank three anonymous reviewers for their valuable comments, which helped to improve the manuscript. The work was funded by CalMarO a FP7 Marie Curie Initial training network and the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung; 03F0608A) in the framework of the Biological Impacts of Ocean Acidification (BIOACID) project (subproject 3.1.1).

References

- Bach LT, Bauke C, Meier KJS, Riebesell U, Schulz KG. 2012. Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi. Biogeosciences 9: 3449–3463.
- Bach LT, Riebesell U, Schulz KG. 2011. Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnology and Oceanography 56: 2040–2050.
- Badger M. 2003. The roles of carbonic anhydrases in photosynthetic $CO₂$ concentrating mechanisms. Photosynthesis Research 77: 83–94.
- Bown PR, Lees JA, Young JR. 2004. Calcareous nannoplankton evolution and diversity through time. In: Thierstein HR, Young JR, eds. *Coccolithophores* from molecular processes to global impact. Berlin, Germany: Springer Verlag, 481–505.
- Brueggeman AJ, Gangadharaiah DS, Cserhati MF, Casero D, Weeks DP, Ladunga I. 2012. Activation of the carbon concentrating mechanism by $CO₂$

deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. Plant Cell 24: 1860–1875.

- Buitenhuis E, de Baar H, Veldhuis M. 1999. Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species. Journal of Phycology 35: 949-959.
- Caldeira K, Wickett ME. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365.
- Corstjens P, Araki Y, González EL. 2001. A coccolithophorid calcifying vesicle with a vacuolar-type ATPase proton pump: cloning and immunolocalisation of the V0 subunit c1. Journal of Phycology 37: 71–78.
- Corstjens P, Van Der Kooij A, Linschooten C, Brouwers GJ, Westbroek P, de Vrind de Jong E. 1998. GPA, a calcium–binding protein in the coccolithophorid Emiliania huxleyi (Prymnesiophyceae). Journal of Phycology 34: 622–630.
- von Dassow P, Ogata H, Probert I, Wincker P, Da Silva C, Audic S, Claverie J-M, de Vargas C. 2009. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biology 10: R114.
- Dickson AG, Afghan JD, Anderson GC. 2003. Reference materials for oceanic $CO₂$ analysis: a method for the certification of total alkalinity. Marine Chemistry 80: 185-197.
- Falkowski PG, Raven J. 2007. Aquatic photosynthesis. Princeton, NJ, USA: Princeton University Press.
- Fernandez E, Balch WM, Maranon E, Holligan PM. 1994. High rates of lipid biosynthesis in cultured, mesocosm and coastal populations of the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series 22: 13–22.
- Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.
- Giordano M, Beardall J, Raven JA. 2005. $CO₂$ concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 56: 99–131.
- Guillard R, Ryther J. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Canadian Journal of Microbiology 8: 229–239.
- Hansen HP, Koroleff F. 1999. Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M, eds. Methods of seawater analysis, 3rd edn. Weinheim, Germany: Wiley-VCH Verlag GmbH, 159–228.
- Harada H, Nakatsuma D, Ishida M, Matsuda Y. 2005. Regulation of the expression of intracellular beta-carbonic anhydrase in response to $CO₂$ and light in the marine diatom Phaeodactylum tricornutum. Plant Physiology 139: 1041–1050.
- Herfort L, Loste E, Meldrum F, Thake B. 2004. Structural and physiological effects of calcium and magnesium in *Emiliania huxleyi* (Lohmann) Hay and Mohler. Journal of Structural Biology 148: 307–314.
- Herfort L, Thake B, Roberts J. 2002. Acquisition and use of bicarbonate by Emiliania huxleyi. New Phytologist 156: 427–436.
- Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Research 35: W585–W587.
- Johnston AM, Raven JA. 1996. Inorganic carbon accumulation by the marine diatom Phaeodactylum tricornutum. European Journal of Phycology 31: 285– 290.
- Kester DR, Duedall IW, Connors DN, Pytkowicz RM. 1967. Preparation of artificial seawater. Limnology and Oceanography 12: 176-179.
- Kitao Y, Harada H, Matsuda Y. 2008. Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum. Physiologia Plantarum 133: 68–77.
- Krug SA, Schulz KG, Riebesell U. 2011. Effects of changes in carbonate chemistry speciation on *Coccolithus braarudii*: a discussion of coccolithophorid sensitivities. Biogeosciences 8: 771-777.
- Langer G, Geisen M, Baumann K-H, Kläs J, Riebesell U, Thoms S, Young JR. 2006. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry Geophysics Geosystems 7: Q09006.
- Langer G, Nehrke G, Probert I, Ly J, Ziveri P. 2009. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6: 4361–4383.

Lapointe M, MacKenzie TDB, Morse D. 2008. An external δ -carbonic anhydrase in a free-living marine dinoflagellate may circumvent diffusionlimited carbon acquisition. Plant Physiology 147: 1427–1436.

LaRoche J, Rost B, Engel A. 2010. Bioassay, batch culture and chemostat experimentation. In: Riebesell U, Fabry V, Hansson L, Gattuso JP, eds. Guide for best practices for ocean acidification research and data reporting: Publications Office of the European Union, 81–94.

Leonardos N, Read B, Thake B, Young JR. 2009. No mechanistic dependence of photosynthesis on calcification in the coccolithophorid Emiliania huxleyi (Haptophyta). Journal of Phycology 45: 1046–1051.

Lewis E, Wallace DWR. 1998. Program developed for CO_2 systems calculations. Oak Ridge, TN, USA: ORNL/CDIAC-105 Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, US Department of Energy.

Mackinder L, Wheeler G, Schroeder D, von Dassow P, Riebesell U, Brownlee C. 2011. Expression of biomineralization-related ion transport genes in Emiliania huxleyi. Environmental Microbiology 13: 3250–3265.

McGinn PJ, Morel FM. 2008. Expression and regulation of carbonic anhydrases in the marine diatom *Thalassiosira pseudonana* and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiologia Plantarum 133: 78–91.

Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, et al. 2004. Expression Profiling-Based Identification of CO₂-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiology 135: 1595–1607.

Moore TS, Dowell MD, Franz BA. 2012. Detection of coccolithophore blooms in ocean color satellite imagery: a generalized approach for use with multiple sensors. Remote Sensing of Environment 117: 249-263.

Moroney J, Ma Y, Frey W, Fusilier K, Pham T, Simms T, DiMario R, Yang J, Mukherjee B. 2011. The carbonic anhydrase isoforms of *Chlamydomonas* reinhardtii: intracellular location, expression, and physiological roles. Photosynthesis Research 109: 133–149.

Nakajima K, Tanaka A, Matsuda Y. 2013. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proceedings of the National Academy of Sciences, USA 110: 1767–1772.

Nimer NA, IglesiasRodriguez MD, Merrett MJ. 1997. Bicarbonate utilization by marine phytoplankton species. Journal of Phycology 33: 625–631.

Nimer NA, Merrett MJ. 1992. Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi Lohmann. New Phytologist 121: 173–177.

Paasche E. 1964. A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi. Physiologia Plantarum Supplementum 3: 1–82.

Paasche E. 2001. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40: 503–529.

Poulton AJ, Adey TR, Balch WM, Holligan PM. 2007. Relating coccolithophore calcification rates to phytoplankton community dynamics: regional differences and implications for carbon export. Deep Sea Research Part II 54: 538–557.

Price GD, Badger MR. 1989. Expression of human carbonic anhydrase in the cyanobacterium Synecoccus PCC 7942 creates a high CO₂-requiring phenotype. Plant Physiology 91: 505-513.

Purdie DA, Finch MS. 1994. Impact of a coccolithophorid bloom on dissolved carbon dioxide in sea water enclosures in a Norwegian fjord. Sarsia 79: 379-387.

Quiroga O, González EL. 1993. Carbonic anhydrase in the chloroplast of a coccolithophorid (Prymnesiophyceae). Journal of Phycology 29: 321–324.

Raven J. 1997. Putting the C in phycology. European Journal of Phycology 32: 319–333.

Raven JA, Giordano M. 2009. Biomineralization by photosynthetic organisms: evidence of coevolution of the organisms and their environment? Geobiology 7: 140–154.

Reinfelder JR. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review of Marine Science 3: 291–315.

Ridgwell A. 2005. A Mid Mesozoic revolution in the regulation of ocean chemistry. Marine Geology 217: 339-357.

Ridgwell A, Schmidt DN, Turley C, Brownlee C, Maldonado MT, Tortell P, Young JR. 2009. From laboratory manipulations to earth system models: predicting pelagic calcification and its consequences. Biogeosciences Discussions 6: 3455–3480.

Riebesell U, Tortell PD. 2011. Effects of ocean acidification on pelagic organisms and ecosystems. In: Gattuso JP, Hansson L, eds. Ocean acidification. Oxford, UK: Oxford University Press, 99–121.

Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO₂. Nature 407: 364-367.

Rokitta SD, Rost B. 2012. Effects of $CO₂$ and their modulation by light in the life-cycle stages of the coccolithophore *Emiliania huxleyi*. Limnology & Oceanography 57: 607–618.

Rost B, Riebesell U, Burkhardt S, Sültemeyer D. 2003. Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography 48: 55–67.

Rost B, Riebesell U, Sültemeyer D. 2006. Carbon acquisition of marine phytoplankton: effect of photoperiod length. Limnology and Oceanography 51: 12–20.

Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ, Campbell DM. 1993. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Marine Chemistry 44: 249–267.

Sarmiento J, Gruber N. 2006. Ocean biogeochemical dynamics. Princeton, NJ, USA: Princeton University Press.

Schulz KG, Rost B, Burkhardt S, Riebesell U, Thoms S, Wolf-Gladrow DA. 2007. The effect of iron availability on the regulation of inorganic carbon acquisition in the coccolithophore *Emiliania huxleyi* and the significance of cellular compartmentation for stable carbon isotope fractionation. Geochimica et Cosmochimica Acta 71: 5301–5312.

Sekino K, Shiraiwa Y. 1994. Accumulation and utilization of dissolved inorganic carbon by a marine unicellular coccolithophorid, Emiliania huxleyi. Plant and Cell Physiology 35: 353–361.

Sikes CS, Roer RD, Wilbur KM. 1980. Photosynthesis and coccolith formation – inorganic carbon-sources and net inorganic reaction of deposition. Limnology and Oceanography 25: 248–261.

Soto AR, Zheng H, Shoemaker D, Rodriguez J, Read BA, Wahlund TM. 2006. Identification and preliminary characterization of two cDNAs encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi. Applied and Environmental Microbiology 72: 5500–5511.

Spalding MH. 2008. Microalgal carbon-dioxide-concentrating mechanisms: chlamydomonas inorganic carbon transporters. Journal of Experimental Botany 59: 1463–1473.

Stoll MHC, Bakker K, Nobbe GH, Haese RR. 2001. Continuous-flow analysis of dissolved inorganic carbon content in seawater. Analytical Chemistry 73: 4111–4116.

Suffrian K, Schulz KG, Gutowska MA, Riebesell U, Bleich M. 2011. Cellular pH measurements in *Emiliania huxleyi* reveal pronounced membrane proton permeability. New Phytologist 190: 595-608.

Tachibana M, Allen A, Kikutani S, Endo Y, Bowler C, Matsuda Y. 2011. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynthesis Research 109: 205–221.

Taylor AR, Chrachri A, Wheeler G, Goddard H, Brownlee C. 2011. A voltagegated H⁺ channel underlying pH homeostasis in calcifying coccolithophores. Plos Biology 9: e1001085.

Thierstein HR, Geitzenauer KR, Molfino B, Shackleton NJ. 1977. Global synchroneity of late Quaternary coccolith datum levels validation by oxygen isotopes. Geology 5: 400–404.

Trimborn S, Langer G, Rost B. 2007. Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in *Emiliania huxleyi*. Limnology and Oceanography 52: 2285–2293.

Trimborn S, Wolf-Gladrow D, Richter K-U, Rost B. 2009. The effect of pCO₂ on carbon acquisition and intracellular assimilation in four marine diatoms. Journal of Experimental Marine Biology and Ecology 376: 26–36.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3: research0034.0031–research0034.0011

- Wang Y, Spalding MH. 2006. An inorganic carbon transport system responsible for acclimation specific to air levels of $CO₂$ in *Chlamydomonas reinhardtii*. Proceedings of the National Academy of Sciences, USA 103: 10110–10115.
- Wolf-Gladrow DA, Riebesell U, Burkhardt S, Bijma J. 1999. Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus Series B Chemical and Physical Meterology 51: 461–476.
- Zeebe RE, Wolf-Gladrow D. 2001. $CO₂$ in seawater: equilibrium, kinetics, isotopes. Amsterdam, the Netherlands: Elsevier.

Supporting Information

Additional supporting information may be found in the online version of this article.

Fig. S1 Physiological response parameters for Emiliania huxleyi in relation to pH_f and CO_3^{2-} .

Fig. S2 Emiliania huxleyi PIC production, POC production and growth rates plotted against DIC.

Table S1 Target and endogenous reference gene information

Table S2 Applied statistics to physiological and gene expression data

Table S3 Tabulated values for the carbonate system, physiological response and gene expression from all experiments

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.