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Abstract--In situ measu remen t  of fluid flow rates from active margins is an important  parameter  
in evaluating dissolved mass  fluxes and global geochemical balances as well as tectonic dewater- 
ing during developments  of  accretionary prisms. We have constructed and deployed various 
devices that  allow for the direct measu remen t  of  this parameter .  An  open bo t tom barrel with an 
exhaust  port at the top and equipped with a mechanical  flowmeter was initially used to measure  
flow rates in the Cascadia accretionary margin during an Alvin dive program in 1988. Sequen- 
tially activated water  bottles inside the barrel sampled the increase of venting methane  in the 
enclosed body of water. Subsequently,  a thermistor  flowmeter was developed to measure  flow 
velocities from cold seeps. It can be used to measure  velocities between 0.01 and 50 cm s -1 , with 
a response t ime of 200 ms.  It was deployed again by the submersible Alvin in visits to the 
Cascadia margin seeps (1990) and in conjunction with sequentially activated water  bottles inside 
the barrel. We report  the values for the flow rates based on the thermistor  flowmeter and 
est imated from methane  flux calculations. These  results are then  compared with the first 
measu remen t  at Cascadia margin employing the mechanical  flowmeter. The  similarity between 
water flow and methane  expulsion rates over more  than one order of magni tude  at these sites 
suggests that the mass  fluxes obtained by our  in situ devices may be reasonably realistic values for 
accretionary margins.  These  values also indicate an enormous  variability in the rates of fluid 
expulsion within the same accretionary prism. 

Finally, during a cruise to the active margin off Peru,  another  version of the same ins t rument  was 
deployed via a TV-controlled frame within an acoustic t ransponder  net  f rom a surface ship, the 
R.V.  Sonne. The venting rates obtained with the  thermistor  flowmeter used in this configuration 
yielded a value of 4411 m -2 day-  1 at an active seep on the Peru slope. The  ability for deployment  of  
deep-sea ins t ruments  capable of measur ing  fluid flow rates and dissolved mass  fluxes from 
conventional research vessels will allow easier access to these seep sites and a more  widespread 
collection of the data  needed to evaluate geochemical  processes resulting from venting at cold 
seeps on a global basis. Compar ison  of  the in situ flow rates with rates from steady-state compactive 
dewatering models  differ by more  than 4 orders of  magnitude.  This implies that  only a small area of 
the margin  is venting and that  there must  be recharge zones associated with venting at convergent  
margins.  
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INTRODUCTION 

FLUID venting at subduction zones is a current research frontier (SUESS et aI. ,  1985; KULM 
et al. ,  1986; MOORE, MASCLE et al. ,  1987; BOUL~GUE et al. ,  1987; CARSON et al. ,  1990; 
CARSON and HOLMES, 1991; MOORE, 1991; MOORE et al. ,  1991). Rates of water discharge 
and dissolved material flux rates are parameters of the highest significance to marine 
scientists, but only a few attempts of direct measurements exist (CARSON e t  al. ,  1990; 
SAYLES and DICKINSON, 1991 and references cited therein). Very high temperatures 
coupled with jet-like discharge velocities of fluids at mid-ocean ridge systems require 
special corrosion-resistant materials for these vents to become accessible to direct 
experiments. Fluid venting at plate subduction zones, on the other hand, result in small 
temperature anomalies at the sediment-water  interface (cold seeps) and the water is 
expelled at imperceptibly slow rates. 

We have developed a concept for determining water and dissolved material flux rates at 
subduction zones, and have designed a simple instrument to isolate, collect and measure 
the flow rates of vent fluids. In designing this equipment we made use in the beginning of 
existing and proven technologies that could be assembled with off-the-shelf components. 
This initial instrument, which we termed the "Benthic Barrel",  was successfully deployed 
several times by the D.S.R.V. A l v i n  in 1987, 1988 and 1990 at vent sites of the Cascadia 
subduction zone and some of the initial measurements from these deployments have 
already been published (CARSON e t  al. ,  1990). In this paper we document the initial design 
of the OSU Benthic Barrel, which has not been published in detail, subsequent improve- 
ments involving a more sophisticated flowmeter, and present additional data sets of 
methane flux and water flow rates for the Cascadia accretionary margin (675 and 2424 m 
water depth, Table 1). These results show the applicability of using short-term experi- 
ments from submersibles to obtain such data. Furthermore,  we report  the recent 
development of a TV-controlled device (VEnt SPider- -VESP)  for deployment of a new 
( G E O M A R )  Benthic Barrel from a conventional surface research vessel, eliminating the 
need and associated costs of deployment by submersible. This device was sucessfully 
deployed on a seep site at the Peru margin from board the R.V. Sonne .  The results 
obtained are compared with those from a background station in the abyssal plain of the 
northern Peru Basin. These direct measurements of fluid flow rates are then discussed in 
the context of estimates obtained using hydrologic models (BEKINS and DREISS, 1992) and 
subbottom temperature measurements (DAvis et al. ,  1990; LE PICHON et al. ,  1992; HENRY 
et al. ,  1992) from the Cascadia and the Nankai accretionary margin. 

CONCEPT 

The Benthic Barrel is a cylindrical chamber with a large opening at the bottom and a 
small exhaust port at the top. The chamber is deployed over a suspected vent site with the 
purpose of channelling the effluent from the sea floor into a semi-enclosed environment. 
The internal volume of the chamber is initially flooded with ambient seawater and is then 
slowly replaced by vented fluids. In this way a water mixture develops within the chamber 
with increasing amounts of vent fluid. Sequentially timed water samples are collected 
during deployment by bottles mounted inside the chamber. Changes in the concentration 
of dissolved components among these bottles are then used to calculate their flux rates 
(CARSON e t  al. ,  1990). 
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The exhaust port at the top of the chamber accepts either a mechanical flowmeter or a 
hot-bead-thermistor flowmeter, both calibrated for a wide range of fows. The mechanical 
flowmeter is inserted by the manipulator arm of a submersible into the exhaust port upon 
completion of the internal water sampling cycle. The thermistor flowmeter can be 
permanently mounted at the Benthic Barrel, and it directly records the flow rate from the 
chamber. The reading of the mechanical meter is monitored photographically from the 
submersible, whereas the signal of the thermistor flowmeter is continuously recorded and 
stored via cable on board the submersible during the entire sampling period. Temperature 
changes are also monitored during the deployment period by a temperature sensor 
mounted inside the chamber. 

Since the costs of deep-sea submersibles are rather high, we developed a TV-controlled 
device for deployment of the Benthic Barrel from a conventional surface research vessel. 
The barrel is attached to the central piston of a modified multicorer frame (BARNETT et al. ,  
1984), which operates on a water hydraulic basis and assures gentle deployment of the 
barrel once the frame settles on the sea floor. The GEOMAR Barrel is equipped with five 
water bottles and a storage CTD probe, which is used to activate the water-sampling cycle 
and to continuously record conductivity, temperature, pressure and flow data. 

INSTRUMENTATION 

O S U  Barrel  

A commercially available 55-gallon polyethylene barrel constitutes the shell of the 
benthic chamber (Fig. 1). It is fitted with a removable lid, an O-ring seal and a bolt-on 
retaining ring. The internal instrumentation is attached to the lid and can be easily 
removed from the shell as a unit, giving access to the water bottles and timer for sampling 
and staging. A 3.3-cm diameter hole--the exhaust port--is centered on two polycarbonate 
plate rings in the lid. This opening allows fluid to escape and serves as a port for inserting 
the flowmeter. The barrel is open at the bottom so that it can be pushed into the sediment a 
short distance, thereby forming a seal over the seep site. A flared skirt about 25 cm wide, 
made of three overlapping sections of silicon rubber, can be fitted around the bottom edge 
of the barrel to ensure a seal at sites where poor sediment penetration is expected. An 
anchor chain or other weights may be wrapped around the outside of the barrel (about 20 
cm above the bottom edge) to facilitate penetration and to add vertical stability (Plate 1D). 
Two stainless steel bands (not shown in Fig. 1 but visible in Plate 1D), mounted to the 
outside of the barrel with polypropylene line, provide a harness for deploying, positioning, 
and recovering the instrument via submersible. The barrel encloses 0.26 m 2 of the bottom 
surface area and has an internal displaceable volume of 180 1. 

Six General Oceanics 2-1 Niskin T M  bottles are mounted vertically around a cylindrical 
polycarbonate frame. The bottles are tripped sequentially by a motor-driven plate with a 
wedge mounted off-center (Fig. 1). As the plate turns, the wedge consecutively depresses 
the tripping piston of each Niskin T M  bottle. The motor, controller-electronics and 
batteries are contained in an aluminum pressure case mounted in the center of the 
polycarbonate frame. The controller, a model IV "Tattletale" Micro-computer (Onset 
Computer Corporation), provides motor control and position sensing, analog to digital 
conversion and internal battery level monitoring. It is powered by a single 9-V battery. 
Sample collection times are pre-programmed to the desired day/hour/minute before the 
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Fig. 1. Schematic diagram of the Benthic Barrel and its components shown deployed on the 
sediment with a subsurface carbonate concretion. 

dive. The high-torque DC gear motor is powered by four standard 9-V batteries. The 
motor shaft coupled to a drive shaft penetrates the pressure case through a double O-ring 
seal. The shaft also drives a concentric cylinder in which six narrow slots are cut; these slots 
pass between an infra-red emitter-detector pair to give positional signals. Temperature 
readings (to an accuracy of 0.01°C) are taken before each sample is collected and the data 
are stored in the controller. In contrast to the much smaller device of SAVLES and 
DICKINSON (1991), the OSU Barrel does not contain a stirring device for mixing of the 
internal volume; this was not deemed necessary due to the stirring effect that results from 
the closing of the bottles inside the barrel housing by means of the two large plungers on 
each end. 

F l o  w m e t e r s  

The mechanical and thermistor flowmeters are mounted in interchangeable assemblies 
(Fig. 2), which are inserted into the opening at the top of the barrel (Plate 1D,E). Each 
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Plate 1. (A) Active seep site with clam colonies consisting of live and dead Calyptogena sp. in 
clusters around cold seep. Size of clams: 10-15 cm. (B) White streaks on the rock surface (arrow) 
reveal an active seep surrounded by Calyptogena sp. clams and bacterial mats (C). (D) OSU Barrel 
deployed at Cascadia seep site (Alvin dive 2283); the barrel is 92 cm high, the exhaust port atop the 
barrel is open (without flowmeter inserted) and a heavy chain aids in forming a seal at the sediment 
surface. During the deployment of the OSU Barrel at the active gas hydrate site on the Cascadia 
margin a vigorous methane flux was measured from the sequential water samples taken within the 

barrel. (E). OSU Barrel with inserted thermistor flowmeter. 
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Fig. 2~ (A) Mechanical (Bernoulli-type) and (B) thermistor flowmeter mounted inside a stainless 
steel cage with T-bar handle for submersible operation; the opening with the O-ring seal fits the 

exhaust port of the barrel; radius of the pipe: 1.3 cm. 

a s s e m b l y  cons is t s  o f  a f l o w m e t e r  m o u n t e d  ins ide  a P V C  p i p e  (2 .6 -cm i n n e r  d i a m e t e r )  a n d  a 

s t a in less  s t ee l  c a g e  w i t h  a T - b a r  h a n d l e  fo r  m a n i p u l a t i o n  by  t h e  s u b m e r s i b l e .  T h e  e n d  o f  

t h e  P V C - p i p e  is f i t t ed  w i t h  a s i l i con  r u b b e r  O - r i n g  (Fig .  2) to  p r o v i d e  a sea l  b e t w e e n  t h e  

f l o w m e t e r  a n d  t h e  p o l y c a r b o n a t e  r ing  in t h e  b a r r e l  l id.  
T h e  m e c h a n i c a l  m e t e r s ,  t h r e e  G i l m o n t  T M  p r e c i s i o n  f l o w m e t e r s  w e r e  c a l i b r a t e d  fo r  

s e p a r a t e  b u t  o v e r l a p p i n g  r a n g e s  f r o m  0.01 to  4 .0  ml  m i n  -1  , so  tha t  a w i d e  r a n g e  o f  f luid 

f low r a t e s  c o u l d  b e  m e a s u r e d  in  s i tu .  C a l i b r a t i o n  o f  this  f l o w m e t e r  is an  e l a b o r a t e  

p r o c e d u r e  d e s c r i b e d  e l s e w h e r e  (CARSON et  a l . ,  1990);  i t  i n c l u d e s  f luid v i scos i ty  as a 

Plate 2. (A) VESP (VEnt SPider) on the deck of the R.V. Sonne. The main flame, a modified multicorer, 
carries: (1) an underwater video-telemetry system; (2) a low-light TV-camera; (3) two flood lights; (4) two 
batteries; (5) a transponder used as subtransponder; (6) a camera; and (7) a flash for a TV-controlled 
deployment, exact positioning, and documentation of the deployment site. (B) View of the GEOMAR Barrel 
with the transparent shell (inner diameter 41.4 cm) on the deck of the R.V. Sonne. The internal instrumentation 
is attached to the central piston of the multicorer; the shell can be easily removed. Five 2-1 water bottles and a 
storage CTD are mounted vertically around a cylindrical stainless steel flame; the bottles are tripped sequentially 
by a motor in the center of this frame. The central exhaust port (arrow) allows fluids to escape, which are 
channelled through a pipe to the centrally mounted thermistor flowmeter. (C) TV-guided deployment of the 
GEOMAR Barrel from the R.V. Sonne at Sta. 152-17 in the northern Peru Basin. This deployment is regarded as 
a background station without active venting to obtain an in situ flow baseline (see Fig. 6). Note the good seal 
between the soft sediment surface and the transparent barrel shell. (D) TV-guided deployment of the GEOMAR 
Barrel from the R.V. Sonne at Sta. 168-2, an active seep site at the Peru margin. The sediment surface at this site 
was rough and covered with mudstones and clam shells, but with only a thin layer of sediment, allowing only little 

penetration of the polyethylene barrel shell. 



728 P. LINKE et al. 

function of temperature,  pressure and salinity as well as material compressibilities. The 
calibration also compensates for the reduction of flow induced by back-pressure when the 
natural flow of vent water from the sampling area (0.26 m 2) is channelled through the small 
orifice of the flowmeter (approx. 3 ram2). The correction factor for calculating the "true" 
flow from the "metered"  flow is non-linear and depends on the total magnitude of flow. 

The thermistor (hot-bead) flowmeter (modified after LABA~ERA and VO6EL 1976) can 
be used to measure flow velocities from about 0.01 to 50 cm s -1, with a response time of 
about 200 ms and a spatial resolution of about 1 ram. The circuit has low power 
requirements due to a self-balancing bridge circuit that minimizes the requisite thermistor 
heating. Data are encoded in terms of frequency and continuously recorded on a casette 
tape recorder. The flowmeter is centered in the pipe mounted on the exhaust port of the 
barrel and consists of a stainless steel rod with a plastic Eppendorf  TM pipette tip. The tip is 
filled with epoxy resin, embedding the two bead thermistors (Fig. 2B). The bead at the top 
of the tip is used as the sensing thermistor (Fenwal Electronics, GD22J1, 2001~/25°C, stub 
end glass coated, 0.9 mm in diameter),  whereas a glass encapsulated bead (Fenwal 
Electronics, GB35J1, 5 K1~/25°C) serves as the temperature compensator. 

In this design, the potential difference across the bridge circuit is approximately 
proportional to the logarithm of the flow velocity. The nonlinear scale can be a 
disadvantage in some applications, but it does allow high sensitivities to low-speed flows 
without interruption due to momentary exposures to higher speeds (such as passing 
waves). The flowmeter is connected to the submersible by a 9 m long cable that allows the 
data to be recorded inside the submersible. The potential across the bridge circuit is 
amplified and the voltage needed to heat the sensing thermistor in stagnant (zero flow) 
water is subtracted. The amplifier contains a voltage-to-frequency converter with a (low 
power) timer (Texas Instruments ICM7555) used as an astable multivibrator. The pulse 
repetition rate varies from about 300 to 1500 Hz and is recorded on an inexpensive battery- 
powered tape recorder. A rechargeable power pack (24-30 V, current drain 100-200 mA) 
provides the possibility of having a fully portable and power independent board unit. To 
recover the data from the magnetic tape a frequency-to-voltage converter is used. 

Calibration o f  the thermistor f lowmeter unit 

The flowmeter was temperature-compensated in two water baths with stagnant (zero 
flow) water (after LABARBERA and VOOEL, 1976) at --1 and +4°C. The calibration was 
conducted in an arrangement similar to that described by VO~EL (1981), where water 
emerges from a long pipe (1.2 m length; 0.98 cm radius) at rates determined with the aid of 
an overflow and a graduated cylinder. Both procedures were carried out in a temperature- 
controlled room at + I°C. The signals of the flowmeter, which is positioned at the end of 
the pipe, are visible on the 0-50/~A meter of the amplifier and are recorded on a strip chart 
recorder and encoded on tape. Assuming laminar flow, the mean velocity (U) can be 
calculated by dividing the water flow (F = volume per time) by the area (A) of the pipe: 

U (cm S - 1 )  = F (cm 3 s-1)/A (cm2). (1) 

As shown in Fig. 3A the output of the flowmeter approximates a logarithmic function, 
indicating a higher sensitivity of the flowmeter for smaller velocities. On a semi- 
logarithmic plot (Fig. 3B) the conversion of the flowmeter signal on the strip cart recorder 
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Fig. 3. (A) Thermis tor  f lowmeter calibration plot, mean  velocity (U) versus flowmeter signal on a 
strip chart  recorder,  demonst ra t ing  that  the output  of the flowmeter approximates  a logarithmic 
function. (B) Semi-logarithmic thermistor  flowmeter calibration plot, log U versus flowmeter 
signal on a strip chart  recorder. The  regression of the calibration graph is used for the conversion of 
the flowmeter signal to velocity. (C) Linear  calibration plot with flowmeter signals observed as 
meter  readings versus recorded signals on a strip chart  recorder. (D) Semi-logarithmic thermistor  
flowmeter calibration graph,  log U versus flowmeter signal after recovery from the magnet ic  tape 

on a strip chart  recorder. 

(mm) to velocity corresponds to the regression of the calibration graph which is described 
by the function: 

Flowmeter signal (mm) = a × log U + b (2) 

U (cm s -1) = 10 ((mm)-b)/a. (3) 

Therefore, by using the regression of the calibration graph (Flowmeter signal (mm) = 
74.64 x log U + 62.24; r e = 0.99; in Fig. 3B) the fiowmeter signal can be converted to 
velocity: 

U (cm S - 1 )  ~-- 10  ((mm)-62'24)/74"64. (4) 

The linear correlation (Fig. 3C) between flowmeter signal (mm) on the strip chart recorder 
and the observed meter readings ~ A )  is described by the function: 

Flowmeter signal (mm) = 2.38 x (pA) - 2.34; r e = 1. (5) 

The encoded (recorded on tape) flowmeter signals are decoded (played back from tape) 
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on the strip chart recorder and converted to velocity according to the regression shown in 
Fig. 3D (decoded signal (ram) = 14.82 × log U + 77.77; r 2 = 0.93): 

U (cm S - 1 )  = 1 0  ( (mm) - 77.77)/14.82 (6) 

VESP (VEnt SPider) and G E O M A R  Barrel 

For TV-guided remote deployment from a conventional surface research vessel the 
barrel is lowered to the sea floor using the main frame of a modified multicorer (BARNETr et 
al., 1984, see Plate 2A). The frame is constructed from steel pipes connected by scaffolding 
clamps; it has a total height of 3.5 m and a base that covers 7 me. The addition of further 
diagonal pipes provides more stability, and a platform for mounting of accessory 
equipment. The frame carries an underwater video-telemetry system (Preussag Meeres- 
technik 1987) consisting of a telemetry unit (Preussag, GC 1-87/U1), a low light TV- 
camera (Osprey, OE 0111-6006), two flood lights (ROS, 24V, 150 W halogen) and two 
batteries (Ocean Power, each 12 V, 230 A). The underwater telemetry unit communicates 
with that aboard ship (Preussag, GC 1-87/B1) and controls the various functions such as 
data and video transfer, power supply and triggers the sampling cycle of the barrel. The 
cable harness is attached to the frame (Burton underwater plugs). The frame also carries a 
transponder ( EG&G,  723A used as subtransponder, 11 kHz receive-interrogate, 9 kHz 
reply-transmit) for exact positioning of the instrument within a transponder field; as well as 
a camera (Benthos, Edgerton standard camera, 372) and flash (Benthos, standard flash, 
382) for documentation of the deployment site. 

The G E O M A R  Barrel is attached to the central piston of the above described 
multicorer frame, which operates on a water hydraulic basis and assures gentle deploy- 
ment of the barrel on the sediment surface once the frame has reached the sea floor (Plate 
2B). The depth of penetration depends on the softness of the sediment and can be adjusted 
by a stopper clamp to the height of the barrel. The outer shell of the barrel is exchangeable: 
during deployment from a submersible as was the case with the D.S.R.V. Nautile (DIA et 
al., submitted) a transparent PVC-shell is advantageous, whereas for deployment from a 
surface vessel a more rigid polyethylene shell is required. For deployment during the R.V. 
Sonne cruise in 1992 we used a commercially available 55-gallon polyethylene barrel as the 
shell of the benthic chamber. The bottom of the barrel is cut away as with the OSU Barrel 
so that it can be pushed into the sediment forming a seal over the vent site. It encloses 0.238 
m 2 of the sediment surface and has an internal displacement volume of 284 1. The 
transparent PVC shell used alternately covers 0.135 m 2 of the sediment surface and has an 
internal displacement volume of 100 1. 

A 6 cm diameter ho le- - the  exhaust port-- is  centered in the lid to allow fluids to escape 
and to serve as a port for mounting the thermistor flowmeter. The flowmeter is centrally 
mounted near the top end of a thick-walled tube, which at its lower internal circumference 
is funnel-shaped to channel the outflowing fluids from the barrel into the pipe (33.5 mm 
inner diameter; 8.81 cm 2 orifice). The thermistor flowmeter was calibrated (using the 
procedure described above) at 1.7°C, close to the in situ temperature at the deployment 
sites. 

The internal instrumentation is attached to a central stand, and the shell can be easily 
removed from it to provide access to the water bottles and the storage CTD probe for 
sampling, programming and data recovery. Five 2-1 water bottles (Hydrobios) are 
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mounted vertically around a cylindrical stainless steel frame; the bottles are tripped 
sequentially by a motor in the center of this frame just as with the OSU Barrel. The 
sampling cycle is activated either by a reed contact switch, pulled by the mechanical ann 
from a submersible or by the buoyancy of a small piece of syntactic foam or, in case of 
deployment from a surface vessel, by the telemetry unit on board ship. 

A storage CTD probe (ADM Elektronik GmbH) is also mounted on the frame. Both 
the motor and the storage CTD probe are contained in a titanium pressure case 
(Hydrobios, 6000 dBar). The electronic components are mounted on a main logic board 
and consist of an AC/DC converter, RS 232 transmitter/receiver, microprocessor (32 kB 
EPROM), storage unit (4 kB and 124 kB RAM), quartz clock and six bridge circuits. The 
storage CTD probe can be connected to a portable hand terminal (ADM, Termi 120), 
which serves as a control, display and storage unit. With this device the water sample 
sequence (the trigger interval, which can be set between 1 and 120 min), the calibration 
coefficients, the setting and installation of the sensors (time or pressure dependent), the 
duration of one measuring cycl6 (0.5-32 cycles s-1 or min-1) and the averaging of scanned 
data are programmed before deployment. Thereby the storage probe can be optimally 
adjusted for the duration of a deployment. 

Deployment procedure 

The VESP is lowered from the surface vessel by the ship's (R.V. Sonne) coaxial cable 
(18.2 mm diameter, 7100 m length, 50fZ). Thirty meters above the instrument two 
syntactic foam floats (Euroshore, FM 280, each 27.9 kp buoyancy) are attached to the 
cable to keep it away from the instrument during deployment. VESP is lowered to 2-5 m 
above the sea floor and a place for deployment is selected by observing the TV-monitor 
while the ship proceeds at a speed of about i kn. The position of VESP is tracked within the 
transponder net for exact positioning or to repeatedly visit an attractive location (e.g. an 
active vent site as indicated by clusters of living Calyptogena clams). If the vent site is 
considered active, the VESP is then lowered immediately (within a few seconds) to the 
sediment surface and approximately 20 m of slack cable are released. Depending on 
weather, current velocities, positioning capabilities and navigatory skills of ship and crew, 
further slack has to be given to avoid disturbance during the sampling procedure. When 
the frame achieves bottom contact, the central piston with the attached barrel is slowly 
drawn down by its own weight towards the sediment surface. The penetration and sealing 
of the barrel is observed on the TV-monitor, as well as any movements of the frame due to 
insufficient slack of the ship's cable. After waiting for the resuspensed particles to settle or 
being swept away, the water sampling sequence and the data recording are activated by the 
trigger from the on-board telemetry unit. 

RESULTS 

Submersible-guided deployments 

During Alvin Dive 2283 the OSU Barrel was placed for approximately 3 h over a densely 
populated colony of Calyptogena clams and bacterial mats (Plate 1A-C), a benthic 
community known to thrive at active vent sites (SuEss et al., 1985). A zero flow signal of 7 
/~A was observed and recorded while the thermistor flowmeter remained in a bucket 
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Fig. 4. (A) Fluid flow at Alvin dive sites 2283 and 2285 (B) measured with the thermistor  
flowmeter inserted into the exhaust  port of  the OS U Barrel. A zero flow signal (in situ baseline) 
was recorded while the flowmeter remained in a bucket mounted  on the transport basket of  the 
submersible Alvin. Flow data were calculated according to equation (6) from the strip chart 

recorder readings after recovery from the magnetic tape. 

mounted on the transport basket of the D.S.R.V. Alvin. After inserting the flowmeter into 
the exhaust port at the top of the barrel and establishing a stable flow signal of 30-35/~A 
(mean 33 pA) for about 10 min, the signal was recorded on tape. By using the linear 
regression between observed ftowmeter signal ~ A )  and output on the strip chart recorder 
(in scale units of mm) described in equation (5) the difference between both signals 
(measurement--zero flow), approximating 62 scale units, amounted to an actual outflow 
velocity of 0.99 cm s -~ based on the equation of the calibration graph (4). 

The continuous record of flow data at the seep site (Alvin 2285) taken onboard the 
submersible revealed a signal of 81 scale units (after decoding the flowmeter readings from 
the tape recorder), whereas a zero flow signal of 75 scale units was recorded. After 
converting these signals to velocity (1.65 and 0.65 cm s -1, respectively, see Fig. 4A) by 
using equation (6), the difference between both measurements yields an actual outflow 
velocity of 1 cm s-1, which agrees with the velocity obtained from the observed ampere 
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Fig. 5. (A) and (B) Increase in methane concentration with time for deployments at Alvin dive 
sites 2283, 2285 (this study) and 1907 (CARsoN et al., 1990); the flow rates measured directly with 
flowmeters at each site are indicated by the letter "F". Note the different scales. (C) Relationship 
between mass fluxes of methane and fluid expulsion rates measured with the mechanical flowmeter 
at site 1907 (CARSON et al., 1990) and with the thermistor flowmeter at sites 2283 and 2285 (this 

study). 

meter  readings. Thus the actual fluid flow calculated according to equation (1) amounts to 
5.31 cm 3 s-1. This yields a flow of 4591 day-1 f rom the barrel,  which has a bo t tom surface 
area of  0.26 m 2, and therefore a total fluid flow rate of 1765 1 m -2day  -1 (Table 1). 

During this deployment  an enormously vigorous methane flux was obtained f rom the 
sequential water  sampler  inside the barrel. Methane  was stripped f rom the samples and 
measured by gas chromatography using an FID detector (ScnMrrr e t  a l . ,  1991); the 
sensitivity of  the method ranges from 10 to 30 nl CH41-1 (better  than 0.001/zmol CH4 1-1). 
The concentrat ion of methane  rose from 13 to 458/~mol 1-1 over  a period of 162 min; 
normally vent waters contain about  1 to 10/~mol CH41-1. The increase in methane content  
inside the barrel  was not linear but increased with increasing time of deployment  (Fig. 
5A). This could be due to initially incomplete mixing of the incoming vent water  with the 
enclosed ambient  bo t tom water  or could be due to consumption of methane during the 
deployment .  Hence  we would underest imate  the methane  flow. These and other impli- 
cations in deriving total mass fluxes f rom concentration measurement  with the Benthic 
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Fig. 6. Fluid flow recordings when VESP was deployed from the R.V. Sonne  in the northern Peru 
basin (Sta. 152-17) to obtain a baseline under  in situ conditions but  without active venting, and the 
recordings at the Peru margin (Sta. 168-2) on an active seep site. The fluid expulsion rate at Sta. 

168-2 was calculated using the increase of fluid flow over the background values (Table 1). 

Barrel are discussed elsewhere (SuEss et al., in preparation); it suffices here to report  that 
the minimum CH4-flux measured at Alvin dive site 2283 was 118 mmol m-2  day-1. 

During Alvin dive 2285, the barrel was deployed for 90 min over a sparsely populated 
Solemya clam field at 2424 m of depth. The continuous record of flow data over a period of 
50 min at this site revealed a signal of 82.18 scale units, whereas zero flow amounted to 82 
scale units. After converting these signals to velocity (1.98 and 1.93 cm s -1, respectively, 
see Fig. 4B) by using equation (6), the difference between both measurements yields an 
actual outflow velocity of only 0.05 cm s - t  . This corresponds to an actual fluid flow rate of 
861 m -2 day -1 (Table 1). The concentration of methane rose from 0.015 to 0.051/~mol 1-1 
during the 90 min of the deployment (Fig. 5B). 

TV-guided remote deployments 

Several VESP-deployments were conducted in April 1992 during the R.V. Sonne cruise 
78 to the continental margin off Peru (SuEss et al., 1992). A previous survey with the 
French deep-sea submersible Nautile revealed active vent fields in two tectonic settings: in 
the accretionary prism at the base of the continental slope and along a fault-scarp created 
by a submarine landslide (BouRGOIS et al., in press). A preliminary deployment of VESP in 
the northern Peru basin (07°04.6'S, 88°27.8'W, 4162 m water depth) was performed to 
obtain information about the background values for the chemical constituents (e.g. 
oxygen, methane, helium, trace metals) and the actual fluid flow in an area not influenced 
by subduction processes and active venting. Figure 6 shows the actual record obtained 
from the thermistor flowmeter during the background deployment in the northern Peru 
basin. During the first 2 min the flow measurements showed higher flow values, probably 
due to the generation of internal turbulences immediately after deployment of the barrel 
on the seafloor. The flow gradually declined to a constant value of 0.25 cm 3 s -1 (mean 
0.44 cm 3 s-a), which can be regarded as a baseline flow under in situ conditions 
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(temperature,  pressure, salinity and viscosity), but without active venting. The sediment 
surface at this station was very soft, and thus a very good seal between the barrel and 
surface sediments was achieved (Plate 2C). Therefore,  an outflow due to an insufficient 
sealing at the sediment surface can be excluded. Figure 6 shows also the results of a 
successful deployment over an active seep site at the Peru margin (3672 m water depth, 
Table 1), where a mean fluid flow rate of 1.99 cm 3 s -1 was directly measured. The 
sediment surface at this site was rough and covered with mudstone ledges and clam shells 
and only a thin layer of sediment (Plate 2D), allowing little penetration of the barrel. The 
actual fluid flow estimated from these values amounts to 441 I m -2 day-  ~ (Table 1). The 
accompanying methane flux at this site was insignificant, although a regionally elevated 
CH4-anomaly pattern was observed. This was surprising since at all other vent sites 
previously investigated, CH4 always was the most obvious indicator for venting. However,  
an unusual discovery of liquid higher hydrocarbons, emanating from this seep site, could 
explain the minor role which methane played here (SuEss et al., 1992). 

DISCUSSION 

The discovery of active discharge of fluids and gases in subduction zones, collision zones 
of oceanic and continental plates and from areas which are not obviously effected by plate 
tectonic forces, has opened up new aspects in existing views of the marine cycle of matter. 
The magnitude of material transport from these geological settings are still largely 
unknown and are predominantly unquantified. It is certain, however, that the chemically 
mobile compounds of carbon, methane and carbon dioxide play a prominent role in the 
dewatering of collision zones just as they do in oceanic spreading zones. In these 
environments several attempts have been made to determine water and dissolved material 
flux rates by the use of submersibles (CARSON et al., 1990; SAYLES and DICKINSON, 1991). 
These attempts consisted essentially of placing a sampling chamber "a benthic barrel" over 
active vent sites. 

In this paper we have presented the results of the direct measurement of fluid flow from 
a submersible with a thermistor flowmeter from two deployments at the Cascadia 
subduction zone during Alv in  dives 2283 and 2285 in 1990. During an earlier deployment in 
1988 (dive 1907), Alv in  visited an active seep site located at 2046 m of depth atop the back- 
thrust of the first accretionary ridge; a tectonic setting described by KULM et al. (1986) and 
MOORE et al. (1991). At this deployment the OSU Barrel was equipped with the 
mechanical flowmeter and with six Niskin TM bottles as reported by CARSON et al. (1990). 
Water samples were collected sequentially inside the barrel while it was placed over the 
seep site for 207 min. After completion of the sampling cycle, the flowmeter was inserted 
and a constant reading recorded for at least 15 min. The corrected water flow reported by 
CARSON et al. (1990) was 188 1 m -2 day -1. The flux rate of methane,  assuming no 
consumption during deployment,  was 10.3 mmol m-2 day-  1. Using this flux rate and the 
methane concentration in the sediment pore fluids which feed the seep, an estimated flow 
rate of 1561 m -2 day -1 can be obtained (CARSON et al., 1990). The "true" water flow rate at 
Alvin  dive site 1907, therefore,  lies between 156 and 188 1 m-2 day-1. The two estimates 
are independent of each other,  yet both were obtained by a single deployment of the OSU 
Barrel. 

We can now compare the results reported by CARSON et al. (1990) to the new 
measurements obtained with the thermistor flowmeter (Table 1). This improvement 
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allows for the continuous recording over extended periods of flow, more accurate and 
sensitive measurements, and the avoidance of back-pressure effects inherent in the 
mechanical flowmeter which required correction with a large uncertainty (CARSON et al., 
1990). The deployment during Alv in  dive 2283 was at 675 m of water depth on the second 
accretionary ridge along a fault off-setting the seafloor. This fault intersects a subsurface 
gas hydrate layer and thereby gives rise to vigorous venting of methane (CARSON and 
HOLMES, 1991; MOORE, 1991: MOORE et al., 1991). This site has been successfully drilled by 
the JOIDES Resolution (Leg 146) to determine the deeper plumbing system. 

Alv in  dive site 2285, in contrast, is characterized by low methane fluxes; however, 
venting at this site was inferred by the presence of numerous individuals of the bivalve 
Solemya sp. This site was located at the deformation front on the abyssal plain, under 2424 
m of water, and is thought to emit deeply sourced fluids from the oceanic basement 
(MooI~E et al., 1991). Site 2285 also yielded a short sediment core from which methane was 
extracted by the blender method described by FABER and STAHL (1983). The total methane 
concentration measured in two samples from this core yielded values of 6.25 + 0.06/~mol 
kg- 1 of wet sediment. This methane content includes a large fraction of adsorbed methane 
(approximately 60%), which is not capable of freely moving with the vent water and has to 
be subtracted. Therefore, we can estimate the free methane in the feed water to be 8 + 3 
/~mol CH 41-1, using a value for the wet bulk density of 1.4 g m1-1 and assuming a porosity 
of 80%. Using the methane concentration in the feed water, in conjunction with the 
methane flux measured in the barrel samples (Fig. 5), we obtained an independent fluid 
flow rate of 50 + 20 1 m -2 day -1 at this site (Table 1). 

No sediment core, however, could be obtained for the characterization of the feed water 
at dive site 2283, because little sediment is being deposited at this site. Assuming that the 
water and the methane fluxes are both accurate at these sites, the feed water at dive site 
2283 should contain approximately 66 #mol CH 4 1-1. This is identical to the value 
previously obtained from the pore water at dive site 1907; an assumption that we consider 
valid given the proximity of the two sites and the similarity in subsurface plumbing and 
fluid source. Hence, we think that the same type of fluid is vented at the first and second 
ridge at the Cascadia margin off Oregon, albeit at very different rates (Table 1). This is also 
demonstrated by the very good agreement between the flow rates measured with the 
thermistor flowmeter and the methane fluxes for all the three sites surveyed (Fig. 5C). 

The consistency between water flow and methane expulsion among the Cascadia dive 
sites over almost two orders of magnitude may be reasonably realistic for different tectonic 
settings in accretionary margins and show the applicability of using short-term experi- 
ments from submersibles to obtain such data. Furthermore, the mass fluxes of methane 
reported here for the first time clearly illustrate the enormous variability in the rates of 
fluid expulsion even within the same accretionary prism. 

As described above, the results from the Peru margin, using the TV-controlled frame for 
deployment of the barrel, provide yet another measurement of fluid flow from cold seeps 
in convergent margins. Table 1 summarizes the values obtained by in situ measurements of 
flow in three settings on the Cascadia margin and from one station on the Peru slope. 
These values are compared with estimates using dissolved flow rates at these sites, as well 
as other indirect approaches used in the Nankai accretionary margin. These, to the best of 
our knowledge, are all the available data. Calculations using dewatering estimates based 
on porosity reduction (CARSON et  al., 1990; DAVIS et al., 1990; BEKINS and DREISS, 1992; 
HEMPEL and SUESS, in press) are orders of magnitude lower than expected from mass flux 
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calculations, subbo t tom tempera ture  and direct flow measurements  (LE PICHON et al., 
1992; CARSON et al., 1990). This implies that  only a small area of  the total convergent  
margin is actually venting and that  there also must  be recharge zones associated with 
venting at these sites. Fur the rmore ,  s teady-state compact ive  dewater ing models ,  integrat- 
ing over  a long per iod of  t ime, clearly underes t imate  mass t ranspor t  rates f rom accretion- 
ary margins by not  taking into account  recirculation pathways.  

The  in situ flow measurements  and indirect est imates f rom methane  fluxes in the 
Cascadia margin yield surprisingly similar rates at each site; lending credibility to the 
approach  of  using an in situ ins t rumentat ion of  the sea floor as developed by us. Vertical 
subbo t tom tempera tu re  profiles made  inside a clam colony on Nankai  in 1985 were used to 
infer an upward  Darcy  flow of  about  100 m y-1  (HENRY et al., 1989). Fur ther  measure-  
ments  during the Ka i ko -Na nka i  submersible survey confirmed the est imates of  Darcy  flow 
velocities in the range of  70-150 m y - t .  These  results cor respond approximate ly  to the 
values obta ined  at Alv in  dive site 1907 in the Cascadia  margin.  For  compar i son  all in situ 

flow measurements  are conver ted  to vertical flow velocities ei ther  assuming realistic 
porosit ies or  using actual geotechnical  data  obta ined  f rom sediment  cores at Alv in  dive 
sites 2285 and 1907. 

In situ measurements  and indirect est imates of  fluid flow on the Peru slope give values of  
441 and 200 1 m -2 day -1. All these data  show the variability of  venting rates among  
convergent  margins,  and even within the same tectonic setting, and clearly stress the need  
for a wider  database  in order  to extrapolate  these results in the global context  of  material  
cycling. Direct  measurements  and indirect estimates using dissolved mass balances and 
subbo t tom tempera tures  are all valid and independent  means  to evaluate fluid flow mass 
t ransport  rates. The  ability for dep loyment  of  instruments  capable of  per forming these 
measurements  f rom convent ional  research vessels using the TV-dep loymen t  system 
described here,  will allow easier access to seep sites and a more  widespread collection of  
the data needed  to evaluate geochemical  processes resulting f rom venting at cold seeps on 
a global basis. 
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