Dr. Sascha Flögel IFM-GEOMAR Wischhofstr. 1-3 24148 Kiel

Tel.: +49-431-6002317 Fax.: +49-431-6002459 Email: sfloegel@ifm-geomar.de

> Short Cruise Report RV METEOR 84/5

Vigo - Brest May 31 – June 21 2011 Chief Scientist: Dr. Sascha Flögel Captain: Michael Schneider



1. **TransBiscay 2011:** Cold-water coral occurrences and distribution in the Bay of Biscay in space and time; focussing on hydrography, geology, geochemistry, and biology



# 1.1. Map with working areas

Figure 1: Map of Galician waters and the Bay of Biscay incl. working areas visited during M84/5.

## 1.2. Cruise objectives

The applied cruise with RV Meteor was planned and conducted to add important information on existing data sets in adjacent waters to the North (Irish Seas and Norway) and South (Gulf of Cadiz and Mauretania) regarding living and fossil coldwater corals and the biological, chemical, and hydrographical factors controlling their distribution. During past cruises we have collected extensive information on the most important drivers of cold-water corals such as oceanographical and geological properties. Previous studies showed that parameters such as temperature, salinity, dissolved oxygen content, current intensities, and different substrates vary widely without specifically impacting the distribution of living cold-water coral reefs. Our previous data (Dullo et al., 2008) indicate that living cold-water coral reefs occur within a distinct density envelope of sigma-theta ( $\sigma_{\Theta}$  = 27.5 ± 0.15 kg/m<sup>3</sup>), thus highlighting the importance of physical boundary conditions for cold-water coral growth and distribution, thus being one of the most important controlling factors. Until now it is unclear if this density envelope is increasing the nutrient availability and/or favors the distribution and transport of larvae. This research will be conducted within the new EC-funded project Hermione. The cruise focuses on the physical, chemical, and biological boundary conditions controlling cold-water coral growth in the Gulf of Biscay – an area which will close the gap to existing data sets. It will result in a comprehensive transect spanning a large portion of NE-Atlantic, ranging from the waters off Mauretania at 16°N to data from northern Norway at 70°N. We aim to study the boundary conditions necessary for thriving cold-water coral reefs using CTDs, ADCPs, biogeochemistry, geology and sedimentology, as well as biology. Furthermore we will explore promising new areas, previously not investigated. Į.

The Bay of Biscay is a region critically located to investigate two climatically important phenomena: (1) the influence of the Mediterranean Outflow Water (MOW) in a far-field sense, and (2) the influence of the Fennoscandian ice sheets in a near-field sense. Therefore, another goal is to determine the far-field extent of MOW influence in the modern Bay of Biscay in three-parameter space (T, S,  $\epsilon$ Nd). This will involve collecting water column samples. Additionally, we will test the veracity of cold-water corals as an archival source of Nd, through comparison of the isotopic signal of modern bottom water and living corals. Plus, we will sample shallow water meta-oxide nodules with accurate orientation through manned submersible collection, invaluable to radiogenic isotopic studies.

# 1.3. Cruise narratives

The first members of the scientific crew arrived on RV METEOR on the 29<sup>th</sup> of May to unpack most of the containers as well as technical and lab equipment. The scientific crew was completed on the 30<sup>th</sup> to finalize all necessary preparations since rough weather was expected at sea. RV METEOR left the port of Vigo at 9:00 in the morning on May 31<sup>st</sup>.

As expected 3+ meter waves were waiting for the meteor outside Vigo where we immediately began the scientific program with a calibration of the multibeam and parasound system by representatives of Kongsberg and Bremen University. After a successful calibration we started mapping our first working area – Mugia Canyon NW

of Vigo in the early morning hours of the 1<sup>st</sup> of June. The extensive mapping formed the base for all other deployments and investigations such as CTD casts and the TV/video sled. First signs of living corals were encountered in a water depth of 1800 m. Most of the area is characterized by thin sediment cover and dead coral rubble. We aimed for a deployment of our oceanographic lander system. Due to bad weather with wind gusts of up to force 9 a safe deployment was impossible. Instead we ran the TV sled until the 3<sup>rd</sup> of June when weather conditions calmed down. On the 3<sup>rd</sup> we performed two successful TV grabs with samples of *Solesnosmilia* colonies, brachiopods, mollusks, and even a Cretaceous belemnite. This was followed by box cores and repeated CTD casts. On Saturday, 4<sup>th</sup> of June we left for La Coruna to drop our multibeam calibration team.

From La Coruna we steamed to our second working area, Pajès escarpment west of the Le Danois bank. Here we initiated our investigations with a thorough bathymetric survey followed by promising observations with the TV sled (OFOS). These indicated potential coral sites in water depths of 820-900 m. Additional OFOS transects showed only few living corals on various substrates while dead coral rubble was abundant. TV grabs verified these observations with samples of dead and sub-fossil calcareous organisms, brachiopods, stony corals as well as pieces of *Desmophyllum*, a solitary coral. In the afternoon of June 9<sup>th</sup> we recovered our benthic lander system after 3.5 days in 776 m of water depths. Preliminary data show a strong tidal signal while bottom currents were rater slow. This was followed by multiple gravity cores with a length of up to 2,70 m – rather long if one takes the thin sediment cover into account.

Early on the 10<sup>th</sup> of June we left for our third working area, Cap Breton Canyon in the SE most corner of the Bay of Biscay. We began our work with a sound velocity profile for the multibeam mapping survey. On June 11, this was followed by intense OFOS tracks which revealed a rather monotonous sea-floor with dominating fine and soft sediments. This was confirmed by multiple TV grabs. These findings resulted in the decision to leave for our final working area, St. Nazaire Canyon on the French shelf/slope. After sailing 160 nm to the North we arrived at our first CTD station on the 13<sup>th</sup>. Our plan was to focus on St. Nazaire Canyon (46°13,9'N und 004°20,5'W) and its tributaries. Our schedule of mapping and video observations (6/13 and 6/14) was kept and thus we found very promising coral bearing sites (dead and living) on various ridges in the area. On the 15<sup>th</sup> we deployed our lander system for the last time during this cruise, this time in a water depth of 804 m. Additional TV grabs and box cores (up to 400 cm) on the ridges were very successful, delivering abundant living corals and associated fauna.

Unfortunately, we had to leave the area because of low pressure system (985 hPa) coming our way. Instead of waiting we sailed back to the Cap Breton area to investigate open questions such as 'pockmarks'. But these didn't show any active venting. Instead we sampled some shallow corals for genetic studies in water depth of 200 m. Improving weather conditions allowed us to return to St. Nazaire Canyon on the 18<sup>th</sup>. Here, we finished our work a successful lander recovery and final mapping efforts before we sailed to Brest. We arrived at Brest in the early morning hours of June 21.

### 1.4. Participants of M84/5

| 1.  | Sascha Flögel         | Chief Scientist            | IFM-GEOMAR          |
|-----|-----------------------|----------------------------|---------------------|
| 2.  | Wolf-Christian Dullo  | Marine Geology/Hydrography | IFM-GEOMAR          |
| 3.  | Andres Rüggeberg      | Marine Geology/Hydrography | Gent University     |
| 4.  | Lelia Matos           | Geologist/Sedimentologist  | Bremen University   |
| 5.  | Luciana Genio         | Biology/Macrofauna         | Aveiro University   |
| 6.  | Ronan Becheler        | Coral genetics             | lfremer             |
| 7.  | Volker Liebetrau      | Isotope chemistry          | IFM-GEOMAR          |
| 8.  | Claudio Stalder       | Sedimentology/Foraminifera | Fribourg University |
| 9.  | Marina da Cunha       | Benthic biology            | Aveiro University   |
| 10. | Martin Frank          | Sediment-/Hydrochemistry   | IFM-GEOMAR          |
| 11. | Moritz Zieringer      | Sediment-/Hydrochemistry   | IFM-GEOMAR          |
| 12. | Yannick Frank         | Student                    | IFM-GEOMAR          |
| 13. | Christian Fietzke     | Student                    | IFM-GEOMAR          |
| 14. | Covadonga Orejas      | Marine biology             | IEO                 |
| 15. | Andrea Gori           | Marine biology             | IEO                 |
| 16. | Thorsten Garlichs     | Hydrochemistry             | IFM-GEOMAR          |
| 17. | Gerrit Obermüller     | Multibeam                  | Bonn University     |
| 18. | Matthias Lopez-Correa | Benthic ecology/Geology    | Erlangen University |
| 19. | An De Cleyn           | Pore water chemistry       | Leuwen University   |
| 20. | Aurore Movellan       | Foraminifera               | Angers University   |
| 21. | Asmus Petersen        | Technician                 | IFM-GEOMAR          |
| 22. | Thorsten Schott       | Technician                 | Oktopus             |
|     |                       |                            |                     |

#### 1.5. Acknowledgements

We like to thank captain Michael Schneider, his officers and crew of RV METEOR for their support of our sampling and measurement programme and for creating a very friendly atmosphere on board.

The ship time on METEOR was provided by the Deutsche Forschungsgemeinschaft within the core program METEOR/MERIAN. Financial support for the different projects carried out during the cruise was provided though the EU-Projects HERMIONE. We also benefited from financial contributions by the research institutes involved. We gratefully acknowledge all this support.

### 1.6. Station list M84/5

| no. | Meteor<br>no. | Area detail                           | Gear                    | Gear<br>Depth | Date    | Time  | Depth | Lat   | Long |
|-----|---------------|---------------------------------------|-------------------------|---------------|---------|-------|-------|-------|------|
|     |               |                                       |                         |               |         | (UTC) |       |       |      |
| 1   | 556           | 6nm from Cabo<br>Corubedo             | Sound velocity          |               | 5/31/11 | 11:42 | 97    | 42.53 | 9.20 |
| 2   | 557           | Mugia Canyon                          | Sound velocity          |               | 5/31/11 | 22:24 | 1603  | 42.96 | 9.69 |
| 3   | 558           | Mugia Canyon                          | Multibeam/Paraso<br>und | -             | 6/2/11  | 5:11  | 812   | 42.95 | 9.62 |
| 4   | 559           | Mugia Canyon                          | CTD-Ro                  | 2300          | 6/2/11  | 8:45  | 2344  | 43.00 | 9.72 |
| 5   | 560           | Mugia Canyon                          | CTD-Ro                  | 1100          | 6/2/11  | 10:31 | 2350  | 43.01 | 9.72 |
| 6   | 561           | Mugia Canyon                          | OFOS                    | 1800          | 6/3/11  | 4:34  | 1835  | 42.99 | 9.67 |
| 7   | 562           | Mugia Canyon                          | TVG                     | 1833          |         |       | 1835  | 42.99 | 9.67 |
| 8   | 563           | Mugia Canyon                          | TVG                     | 1905          | 6/3/11  | 12:00 | 1902  | 42.98 | 9.68 |
| 9   | 564           | Mugia Canyon                          | Box Coring              | 1848          | 6/3/11  | 16:40 | 1792  | 42.99 | 9.67 |
| 10  | 565           | Mugia Canyon                          | Box Coring              | 1848          | 6/3/11  | 18:20 | 1788  | 42.99 | 9.67 |
| 11  | 566           | Mugia Canyon                          | Plankton Net            | 50            | 6/3/11  | 19:00 | 1853  | 42.99 | 9.68 |
| 12  | 567           | Mugia Canyon                          | Plankton Net            | 100           | 6/3/11  | 19:30 | 1852  | 42.99 | 9.68 |
| 13  | 568           | Mugia Canyon                          | CTD-Ro                  | 1869          | 6/3/11  | 21:35 | 1846  | 42.99 | 9.68 |
| 14  | 569           | Mugia Canyon                          | CTD-Ro                  | 1000          | 6/3/11  | 23:05 | 1851  | 42.99 | 9.68 |
| 15  | 570           | Mugia Canyon                          | CTD-Ro                  | 1000          | 6/4/11  | 0:00  | 1851  | 42.99 | 9.68 |
| 16  | 571           | Mugia Canyon                          | CTD-Ro                  | 1000          | 6/4/11  | 0:55  | 1854  | 42.99 | 9.68 |
| 17  | 572           | Mugia Canyon                          | CTD-Ro                  | 1000          | 6/4/11  | 1:47  | 1851  | 42.99 | 9.68 |
| 18  | 573           | Mugia Canyon                          | CTD-Ro                  | 1000          | 6/4/11  | 2:43  | 1852  | 42.99 | 9.68 |
| 19  | 574           | Mugia Canyon                          | CTD-Ro                  | 1000          | 6/4/11  | 3:42  | 1845  | 42.99 | 9.68 |
| 20  | 575           | Mugia Canyon                          | CTD-Ro                  | 1000          | 6/4/11  | 4:42  | 1849  | 42.99 | 9.68 |
| 21  | 576           | W´ Le Danois<br>Bank Abyssal<br>Plain | CTD-Ro                  | 3250          | 6/5/11  | 4:05  | 3295  | 44.13 | 6.00 |
| 22  | 577           | W´ Le Danois<br>Bank Abyssal<br>Plain | CTD-Ro                  | 1000          | 6/5/11  | 5:51  | 3326  | 44.13 | 6.00 |
| 23  | 578           | W´ Le Danois<br>Bank                  | Multibeam/Parasou       | nd            | 6/5/11  | 12:44 | 2837  | 44.11 | 5.99 |
|     |               |                                       |                         |               |         |       |       |       |      |

| 24 | 579 | W´ Le Danois<br>Bank                      | OFOS              | 1031 | 6/5/11 | 19:29 | 1069 | 44.04 | 5.68 |
|----|-----|-------------------------------------------|-------------------|------|--------|-------|------|-------|------|
| 25 | 580 | W´ Le Danois<br>Bank                      | POZ Lander        | 776  |        |       | 762  | 44.02 | 5.71 |
| 26 | 581 | W´ Le Danois<br>Bank                      | Multibeam/Parasou | nd   | 6/6/11 | 6:00  | 1320 | 44.04 | 5.75 |
| 27 | 582 | W´Le Danois<br>Bank/ Pajes<br>Escarpment  | CTD-Ro            | 766  | 6/6/11 | 8:08  | 763  | 44.02 | 5.70 |
| 28 | 583 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 766  | 6/6/11 | 9:03  | 763  | 44.02 | 5.70 |
| 29 | 584 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 762  | 6/6/11 | 9:50  | 763  | 44.02 | 5.70 |
| 30 | 585 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 760  | 6/6/11 | 10:41 | 764  | 44.02 | 5.70 |
| 31 | 586 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 760  | 6/6/11 | 11:30 | 764  | 44.02 | 5.70 |
| 32 | 587 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 759  | 6/6/11 | 12:25 | 763  | 44.02 | 5.70 |
| 33 | 588 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 760  | 6/6/11 | 13:06 | 763  | 44.02 | 5.70 |
| 34 | 589 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 760  | 6/6/11 | 14:00 | 764  | 44.02 | 5.70 |
| 35 | 590 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | OFOS              | 304  | 6/6/11 | 23:01 | 354  | 44.00 | 5.69 |
| 36 | 591 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 759  | 6/7/11 | 0:52  | 762  | 44.02 | 5.70 |
| 37 | 592 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 760  | 6/7/11 | 1:35  | 761  | 44.02 | 5.70 |
| 38 | 593 | W´Le Danois<br>Bank/ Pajes<br>Escarpment  | CTD-Ro            | 759  | 6/7/11 | 2:18  | 763  | 44.02 | 5.70 |
| 39 | 594 | W´ Le Danois<br>Bank/ Pajes               | CTD-Ro            | 759  | 6/7/11 | 2:57  | 761  | 44.02 | 5.70 |

|    |     | Escarpment                                |                   |      | ,      |       |      |       |      |
|----|-----|-------------------------------------------|-------------------|------|--------|-------|------|-------|------|
|    |     | W´Le Danois<br>Bank/ Paies                |                   |      |        |       |      |       |      |
| 40 | 595 | Escarpment                                | CTD-Ro            | 759  | 6/7/11 | 3:54  | 761  | 44.02 | 5.70 |
| 41 | 596 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 600  | 6/7/11 | 4:42  | 764  | 44.02 | 5.70 |
| 42 | 597 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 761  | 6/7/11 | 5:40  | 763  | 44.02 | 5.70 |
| 43 | 598 | W´ Le Danois<br>Bank/ Pajes<br>Escarpment | CTD-Ro            | 761  | 6/7/11 | 6:25  | 764  | 44.02 | 5.70 |
| 44 | 599 | W´Le Danois<br>Bank/ Pajes<br>Escarpment  | Plankton Net      | 100  | 6/7/11 | 8:11  | 667  | 43.98 | 5.72 |
| 45 | 600 | Pajes<br>Escarpment                       | Box Coring        | 665  | 6/7/11 | 9:45  | 666  | 43.98 | 5.72 |
| 46 | 601 | Pajes<br>Escarpment                       | Box Coring        | 666  | 6/7/11 | 10:54 | 668  | 43.98 | 5.72 |
| 47 | 602 | Pajes<br>Escarpment                       | Box Coring        | 595  | 6/7/11 | 12:15 | 594  | 43.99 | 5.72 |
| 48 | 603 | Pajes<br>Escarpment                       | Box Coring        | 583  | 6/7/11 | 13:28 | 582  | 43.99 | 5.72 |
| 49 | 604 | Pajes<br>Escarpment                       | Box Coring        | 638  | 6/7/11 | 14:43 | 634  | 43.99 | 5.73 |
| 50 | 605 | Pajes<br>Escarpment                       | Box Coring        | 350  | 6/7/11 | 15:45 | 348  | 43.99 | 5.71 |
| 51 | 606 | Pajes<br>Escarpment                       | Box Coring        | 350  | 6/7/11 | 16:24 | 350  | 43.99 | 5.71 |
| 52 | 607 | Pajes<br>Escarpment                       | Box Coring        | 354  | 6/7/11 |       | 353  | 44.00 | 5.69 |
| 53 | 608 | Pajes<br>Escarpment                       | Multibeam/Parasou | nd   | 6/8/11 | 5:22  | 2257 | 44.06 | 5.62 |
| 54 | 609 | Pajes<br>Escarpment                       | Plankton Net      |      | 6/8/11 | 5:45  | 565  | 43.96 | 5.77 |
| 55 | 610 | Pajes<br>Escarpment                       | OFOS              | 1252 | 6/8/11 | 15:45 | 1251 | 44.02 | 5.84 |
| 56 | 611 | Pajes<br>Escarpment                       | CTD-Ro            | 1992 | 6/8/11 | 18:20 | 1996 | 44.00 | 5.90 |
| 57 | 612 | Pajes<br>Escarpment                       | CTD-Ro            | 1248 | 6/8/11 | 20:28 | 1252 | 44.02 | 5.84 |

| 58 | 613   | Pajes<br>Escarpment | OFOS               | 766  | 6/8/11     | 23:18 | 767  | 44.02 | 5.71  |
|----|-------|---------------------|--------------------|------|------------|-------|------|-------|-------|
| 59 | 614   | Pajes<br>Escarpment | OFOS               | 812  | 6/9/11     | 1:45  | 813  | 44.03 | 5.70  |
| 60 | 615   | Pajes<br>Escarpment | CTD-Ro             | 609  | 6/9/11     | 5:57  | 620  | 43.99 | 5.73  |
| 61 | 616   | Pajes<br>Escarpment | Multibeam/Parasour | nd   | 6/9/11     | 5:09  | 922  | 43.94 | 6.01  |
| 62 | 617   | Pajes<br>Escarpment | TVG                | 1234 | 6/9/11     | 8:28  | 1234 | 44.02 | 5.84  |
| 63 | 618   | Pajes<br>Escarpment | TVG                | 813  | 6/9/11     | 11:16 | 811  | 44.03 | 5.68  |
| 64 | 619   | Pajes<br>Escarpment | TVG                | 812  | 6/9/11     | 13:35 | 813  | 44.03 | 5.68  |
| 65 | 620   | Pajes<br>Escarpment | POZ Lander         |      | 6/9/11     | 15:00 | 780  | 44.02 | 5.71  |
| 66 | 621   | Pajes<br>Escarpment | Gravity Coring     | 967  | 6/9/11     | 17:58 | 899  | 44.03 | 5.68  |
| 67 | 622   | Pajes<br>Escarpment | Gravity Coring     | 953  | 6/9/11     | 19:33 | 898  | 44.03 | 5.68  |
| 68 | 623   | Pajes<br>Escarpment | Gravity Coring     | 975  | 6/9/11     | 20:56 | 899  | 44.03 | 5.68  |
| 69 | 624   | Cap Breton          | CTD-Ro             | 2365 | 6/10/11    | 13:15 | 2384 | 43.73 | 2.62  |
| 70 | 625   | Cap Breton          | CTD-Ro             | 980  | 6/10/11    | 15:00 | 2365 | 43.73 | 2.62  |
| 71 | 626   | Cap Breton          | Multibeam/Parasour | nd   | 6/11/11    | 7:49  | 2061 | 43.74 | 2.65  |
| 70 | ( ) 7 | Can Dratan          | 0500               | 726  | , ,,,,,,,, | 10.00 | 747  |       | 2 ( 2 |
| 72 | 627   | Cap Breton          | OFUS               | 170  | 0/11/11    | 12:03 | /1/  | 43.64 | 2.03  |
| /3 | 628   | Cap Breton          | OFUS               | 478  | 6/11/11    | 16:47 | 476  | 43.62 | 2.71  |
| 74 | 629   | Cap Breton          | Multibeam/Parasour | nd   | 6/12/11    | 5:11  | 306  | 43.58 | 2.77  |
| 75 | 630   | Cap Breton          |                    |      |            |       |      |       |       |
| 76 | 631   | Cap Breton          | TVG                | 235  | 6/12/11    | 10:35 | 238  | 43.53 | 2.76  |
| 77 | 632   | Cap Breton          | TVG                | 244  | 6/12/11    | 11:02 | 240  | 43.53 | 2.76  |
| 78 | 633   | Cap Breton          | TVG                | 235  | 6/12/11    | 12:12 | 221  | 43.53 | 2.76  |
| 79 | 634   | Cap Breton          | TVG                | 233  | 6/12/11    | 13:13 | 238  | 43.53 | 2.76  |
| 80 | 635   | Cap Breton          | CTD-Ro             | 223  | 6/12/11    | 14:07 | 230  | 43.53 | 2.76  |
| 81 | 636   | Cap Breton          | TVG                | 2365 | 6/12/11    | 18:15 | 2366 | 43.73 | 2.62  |
| 82 | 637   | Cap Breton          | Plankton Net       | 100  | 6/12/11    | 18:45 | 2366 | 43.73 | 2.62  |
|    |       |                     |                    |      |            |       |      |       |       |

| 83  | 638 | St. Nazaire<br>Canyon | CTD-Ro             | 2063 | 6/13/11 | 12:23 | 2057 | 46.17 | 4.47 |
|-----|-----|-----------------------|--------------------|------|---------|-------|------|-------|------|
| 84  | 639 | St. Nazaire<br>Canyon | CTD-Ro             | 900  | 6/13/11 | 13:40 | 2060 | 46.17 | 4.47 |
| 85  | 640 | St. Nazaire<br>Canyon | Multibeam/Parasour | nd   | 6/13/11 | 21:00 | 2070 | 46.17 | 4.47 |
| 86  | 641 | St. Nazaire<br>Canyon | OFOS               | 387  | 6/14/11 | 3:46  | 440  | 46.24 | 4.30 |
| 87  | 642 | St. Nazaire<br>Canyon | POZ Lander         | 809  | 6/14/11 | 7:08  | 814  | 46.23 | 4.33 |
| 88  | 643 | St. Nazaire<br>Canyon | TVG                | 884  | 6/14/11 | 10:05 | 825  | 46.23 | 4.33 |
| 89  | 644 | St. Nazaire<br>Canyon | TVG                | 823  | 6/14/11 | 13:52 | 820  | 46.23 | 4.33 |
| 90  | 645 | St. Nazaire<br>Canyon | Multibeam/Parasour | nd   | 6/15/11 | 1:30  | 1510 | 46.22 | 4.51 |
| 91  | 646 | St. Nazaire<br>Canyon | OFOS               | 614  | 6/15/11 | 7:30  | 660  | 46.23 | 4.32 |
| 92  | 647 | St. Nazaire<br>Canyon | Plankton Net       | 100  | 6/15/11 | 8:11  | 1348 | 46.23 | 4.35 |
| 93  | 648 | St. Nazaire<br>Canyon | Box Coring         | 1107 | 6/15/11 | 10:52 | 1099 | 46.23 | 4.34 |
| 94  | 649 | St. Nazaire<br>Canyon | Box Coring         | 1110 | 6/15/11 | 12:11 | 1105 | 46.23 | 4.34 |
| 95  | 650 | St. Nazaire<br>Canyon | Box Coring         | 988  | 6/15/11 | 13:35 | 990  | 46.23 | 4.34 |
| 96  | 651 | St. Nazaire<br>Canyon | Box Coring         | 985  | 6/15/11 | 14:36 | 982  | 46.24 | 4.34 |
| 97  | 652 | St. Nazaire<br>Canyon | Box Coring         | 788  | 6/15/11 | 15:55 | 781  | 46.24 | 4.33 |
| 98  | 653 | St. Nazaire<br>Canyon | Box Coring         | 756  | 6/15/11 | 16:49 | 753  | 46.24 | 4.33 |
| 99  | 654 | St. Nazaire<br>Canyon | Box Coring         | 679  | 6/15/11 | 17:50 | 669  | 46.24 | 4.32 |
| 100 | 655 | St. Nazaire<br>Canyon | Box Coring         | 527  | 6/15/11 | 19:30 | 530  | 46.24 | 4.31 |
| 101 | 656 | St. Nazaire<br>Canyon | CTD-Ro             | 1364 | 6/15/11 | 21:15 | 1357 | 46.23 | 4.35 |
| 102 | 657 | St. Nazaire<br>Canyon | CTD-Ro             | 1107 | 6/15/11 | 22:32 | 1121 | 46.23 | 4.34 |
|     |     |                       |                    |      |         |       |      |       |      |

| 103 | 658 | St. Nazaire<br>Canyon | CTD-Ro         | 846  | 6/15/11 | 23:35 | 837  | 46.24 | 4.34 |
|-----|-----|-----------------------|----------------|------|---------|-------|------|-------|------|
| 104 | 659 | St. Nazaire<br>Canyon | CTD-Ro         | 647  | 6/16/11 | 0:36  | 650  | 46.24 | 4.32 |
| 105 | 660 | St. Nazaire<br>Canyon | CTD-Ro         | 483  | 6/16/11 | 1:18  | 486  | 46.24 | 4.31 |
| 106 | 661 | St. Nazaire<br>Canyon | CTD-Ro         | 351  | 6/16/11 | 2:00  | 355  | 46.24 | 4.29 |
| 107 | 662 | St. Nazaire<br>Canyon | CTD-Ro         | 1145 | 6/16/11 | 3:22  | 1132 | 46.23 | 4.34 |
| 108 | 663 | St. Nazaire<br>Canyon | CTD-Ro         | 829  | 6/16/11 | 4:26  | 837  | 46.24 | 4.34 |
| 109 | 664 | St. Nazaire<br>Canyon | CTD-Ro         | 649  | 6/16/11 | 5:20  | 646  | 46.24 | 4.32 |
| 110 | 665 | St. Nazaire<br>Canyon | CTD-Ro         | 473  | 6/16/11 | 6:05  | 483  | 46.24 | 4.31 |
| 111 | 666 | St. Nazaire<br>Canyon | CTD-Ro         | 798  | 6/16/11 | 7:07  | 808  | 46.23 | 4.32 |
| 112 | 667 | St. Nazaire<br>Canyon | Plankton Net   | 100  | 6/16/11 | 7:23  | 845  | 46.23 | 4.33 |
| 113 | 668 | St. Nazaire<br>Canyon | Gravity Coring | 538  | 6/16/11 | 8:30  | 535  | 46.24 | 4.31 |
| 114 | 669 | St. Nazaire<br>Canyon | Gravity Coring | 669  | 6/16/11 | 9:28  | 674  | 46.24 | 4.32 |
| 115 | 670 | St. Nazaire<br>Canyon | Gravity Coring | 746  | 6/16/11 | 10:20 | 750  | 46.24 | 4.33 |
| 116 | 671 | St. Nazaire<br>Canyon | Gravity Coring | 749  | 6/16/11 | 11:15 | 752  | 46.24 | 4.33 |
| 117 | 672 | St. Nazaire<br>Canyon | Gravity Coring | 978  | 6/16/11 | 12:28 | 980  | 46.24 | 4.34 |
| 118 | 673 | St. Nazaire           | Gravity Coring | 1116 | 6/16/11 | 13:45 | 1098 | 46.23 | 4.34 |
| 110 | 674 | St. Nazaire           | Gravity Coring | 515  | 6/16/11 | 14.53 | 499  | 46.24 | 4 31 |
| 120 | 675 | St. Nazaire           | Gravity Coring | 536  | 6/16/11 | 16.16 | 530  | 46.24 | 1 21 |
| 120 | 675 | St. Nazaire           | Cravity Coring | 070  | 6/16/11 | 17.20 | 000  | 46.24 | 1.24 |
| 121 |     |                       |                | 717  |         | 17.30 | 700  | 40.24 | 4.34 |
| 122 | 677 | Cap Breton            | IVG            | 225  | 6/17/11 | 11:15 | 214  | 43.53 | 2.76 |
| 123 | 678 | Cap Breton            | TVG            | 227  | 6/17/11 | 12:08 | 215  | 43.53 | 2.76 |

| 43.53 2.76                      | 3.53 2.7 | 76                                                                                           |
|---------------------------------|----------|----------------------------------------------------------------------------------------------|
| 43.53 2.76                      | 3.53 2.7 | 76                                                                                           |
| 43.67 2.73                      | 3.67 2.7 | 73                                                                                           |
| 43.67 2.75                      | 3.67 2.7 | 75                                                                                           |
| 43.66 2.72                      | 3.66 2.7 | 72                                                                                           |
| 43.66 2.72                      | 3.66 2.7 | 72                                                                                           |
| 43.66 2.72                      | 3.66 2.7 | 72                                                                                           |
| 43.73 2.87                      | 3.73 2.8 | 87                                                                                           |
| 46.24 4.31                      | 6.24 4.3 | 31                                                                                           |
| 46.24 4.32                      | 6.24 4.3 | 32                                                                                           |
| 46.24 4.33                      | 6.24 4.3 | 33                                                                                           |
| 46.24 4.33                      | 6.24 4.3 | 33                                                                                           |
| 46.23 4.28                      | 6.23 4.2 | 28                                                                                           |
| 46.23 4.32                      | 6.23 4.3 | 32                                                                                           |
| 1<br>1<br>1<br>1<br>4<br>4<br>4 |          | -3.66 2.<br>-3.73 2.<br>-6.24 4.<br>-6.24 4.<br>-6.24 4.<br>-6.24 4.<br>-6.24 4.<br>-6.23 4. |