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Abstract
A multi-model ensemble of regional climate projections for Europe is employed to investigate
how the time of emergence (TOE) for seasonal sums and maxima of daily precipitation
depends on spatial scale. The TOE is redefined for emergence from internal variability only;
the spread of the TOE due to imperfect climate model formulation is used as a measure of
uncertainty in the TOE itself. Thereby, the TOE becomes a fundamentally limiting timescale
and translates into a minimum spatial scale on which robust conclusions can be drawn about
precipitation trends. Thus, minimum temporal and spatial scales for adaptation planning are
also given. In northern Europe, positive winter trends in mean and heavy precipitation, and in
southwestern and southeastern Europe, summer trends in mean precipitation already emerge
within the next few decades. However, across wide areas, especially for heavy summer
precipitation, the local trend emerges only late in the 21st century or later. For precipitation
averaged to larger scales, the trend, in general, emerges earlier.

Keywords: time of emergence, precipitation, extreme events, regional climate change,
adaptation

S Online supplementary data available from stacks.iop.org/ERL/8/014004/mmedia

1. Introduction

Significant trends have been detected in global mean and
extreme precipitation, and partly been attributed to increasing
anthropogenic greenhouse gas emissions (Zhang et al 2007,
Min et al 2011). Human activities are projected to influence
the global water cycle throughout the 21st century (Meehl
et al 2007). But future projections of precipitation are afflicted
with high uncertainties due to limited knowledge of radiative
forcing, imperfect climate models and internal climate
variability (Déqué et al 2007). For adaptation planning, it is
crucial to understand when the forced climate change signal
is expected to emerge from the adhering uncertainties. To
assess the relative role of the different sources of uncertainty

Content from this work may be used under the terms
of the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.

as function of time, the concept of fractional uncertainty has
been introduced (Hawkins and Sutton 2009). Uncertainties
adhering to changes in precipitation are in general larger
than that for temperature trends (Hawkins and Sutton
2011, Kendon et al 2008). Giorgi and Bi (2009) identified
large-scale hot spots, where precipitation trends, relative to
present day climate, will emerge from the uncertainty due to
model errors and internal variability within the 21st century.
The signal-to-noise ratio and detectability of large-scale future
trends in extreme precipitation has been studied by Hegerl
et al (2004).

In this context several questions remain: (1) end users
of climate change scenarios often demand information on
local scales (Maraun et al 2010) which are much smaller than
those investigated by Hawkins and Sutton (2009) and Giorgi
and Bi (2009). But it is not yet clear when, relative to
present day climate, precipitation trends will emerge on local
scales. (2) Adaptation measures are planned by local to
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Table 1. Chosen multi-model ensemble.

Institute RCM GCM

C4I RCA3 HadCM3Q16
DMI HIRHAM5 ARPEGE
DMI HIRHAM5 ECHAM5
DMI HIRHAM5 BCM
ETHZ CLM HadCM3Q0
KNMI RACMO2 ECHAM5
UK MetOffice HadRM3Q0 HadCM3Q0
UK MetOffice HadRM3Q16 HadCM3Q16
UK MetOffice HadRM3Q3 HadCM3Q3
MPI-M REMO ECHAM5
SMHI RCA BCM
SMHI RCA ECHAM5
SMHI RCA HadCM3Q3

national authorities operating on different spatial scales. Yet
the smaller the scale, the larger the influence of internal
variability (Räisänen 2001). Therefore it is vital to understand
the time of emergence (TOE) as a function of scale. (3)
Changes in heavy precipitation often have more adverse
impacts than changes in mean precipitation, but the TOE of
heavy precipitation trends has to my knowledge not yet been
studied.

In the following I will investigate these issues for the
example of Europe. Key to the analysis is a redefinition of
the TOE. Instead of defining the TOE for the emergence
from the combined uncertainty of model errors and internal
variability as in Giorgi and Bi (2009), I separate these two
sources of uncertainty and define the TOE for the emergence
from internal variability only. The spread in the TOE due to
imperfect numerical models is considered as the uncertainty
of the TOE for a given climate change scenario. Conceptually
the TOE then becomes a fundamental limiting timescale that
would limit the usability of climate projections even if a
hypothetical perfect model could be utilized.

In section 2 the data used in the study are presented and
the concept is laid out; mathematical detail on the applied
methods can be found in the appendix. Spatial TOE patterns
and the dependence on spatial scale are presented in section 3,
followed by a discussion in the last section.

2. Data and concept

The analysis is based on simulations from 1971 to
2100 of 13 combinations of globally coupled atmosphere
ocean general circulation models (GCMs) and regional
climate models (RCMs), publicly available from the
ENSEMBLES project (van der Linden and Mitchell 2009,
http://ensemblesrt3.dmi.dk) see table 1. All simulations are
forced according to the A1B emissions scenario and have a
common horizontal grid with a resolution of approx. 25 km.

I estimate the TOE for seasonal total precipitation,
assumed to follow a normal distribution, and seasonal maxima
of daily precipitation, assumed to follow a generalized
extreme value (GEV) distribution. In contrast to Giorgi and Bi
(2009) I consider a parametric trend model, calibrated to each
climate model simulation individually (see, e.g., Hawkins

Figure 1. Winter (DJF) maxima of daily precipitation in the Berlin
grid box. Grey lines: time series of all models normalized to the
year 2000 multi-model mean; bold dark green line: predicted mean
for the year 2000; green shading: range of the internal variability
defined as 68% of the mass of the distribution, plotted
symmetrically around the mean; light blue lines: trends of the mean
of the distribution for each model; bold dark blue line: multi-model
mean trend.

and Sutton 2009). This allows me to approximately separate
the forced signal from the internal climate variability and
consequently to define the TOE as emergence from internal
climate variability only. The uncertainty of the TOE due to
model deficiencies can then be measured by the spread of
the individual model trends. I assume linear forced trends
and measure the internal climate variability by the residual
standard deviation (or a corresponding measure for heavy
precipitation), i.e., inter-annual variability is considered. As
precipitation trends are in general small relative to the
inter-annual variability, the assumption of linear trends is
reasonable. For seasonal total precipitation, a trend only in
the mean has been assumed. As for heavy precipitation also
the width of the distribution appeared to change in time,
linear trends in the location and scale parameters of the GEV
distribution have been assumed. The TOE is defined as the
year, when the multi-model mean trend exceeds a chosen
fraction of the inter-annual variability in a reference year, here
chosen to be the year 2000. For details, see the appendix.

Figure 1 exemplifies the approach for heavy precipitation
in the grid box corresponding to Berlin. The grey time series
show the winter maxima of the 13 ensemble members. The
light blue lines represent the corresponding trends in the
mean of the GEV, representing the typical magnitude of the
largest daily precipitation event within a season. The dark
blue line depicts the multi-model mean trend, and the dark
green line the multi-model mean in the reference year 2000.
Year-to-year internal variability for the year 2000 is indicated
by green shading. The TOE of a certain fraction of the
inter-annual variability is defined as the intersection of the
multi-model mean trend and the corresponding fraction of the
green shading.

In a detection context, either considering the observed
record (e.g. Zhang et al 2007, Min et al 2011) or possible
future trends (e.g. Hegerl et al 2004, Fowler et al 2010),
one assesses the significance of trends. Yet for adaptation
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planning, the question when a trend becomes relevant might
not necessarily be a matter of statistical significance, but
might depend on the cost of adaptation and the life span of
the measure to be implemented (for other issues regarding
significance in a projection context, see von Storch and Zwiers
2012). Therefore, I consider the TOE for a range of thresholds
ranging from 10% to 50% of the internal variability (TOE10 to
TOE50). Accordingly, the TOE is calculated for each grid box
of the European domain. To study the influence of scale on
internal variability, the analysis is carried out for precipitation
averaged over spatial scales up to 525 km, centred on the
analysed grid box.

3. Results

In the following the results for winter (DJF) and summer (JJA)
will be presented. Please find the according figures for spring
(MAM) and autumn (SON) in the supplementary information
(available at stacks.iop.org/ERL/8/014004/mmedia).

3.1. Spatial patterns of the time of emergence

The results for TOE20 are depicted in figure 2. The top
two rows show TOE20 of mean precipitation in winter
and summer, the bottom rows the corresponding results for
seasonal maxima. The columns show results for no spatial
averaging, 225 and 525 km spatial averaging. For multi-model
mean trends compatible with zero the TOE is plotted in pale
colours. Where the number of rainfall events in a season
is so low that the GEV distribution failed to describe the
data, the grid box is coded in grey (characterized by a
failure of the GEV calibration or unrealistic shape parameter
estimates beyond 0.5). The TOE follows the known trend
pattern of precipitation: the north/south gradient, the seasonal
shift, as well as the central European regions, where summer
precipitation extremes might increase in spite of decreasing
mean precipitation (Christensen et al 2007, Christensen and
Christensen 2003, Beniston et al 2007). Regions where the
signal emerges only towards the end of the 21st century
or later are large for precipitation on the 25 km scale; in
particular for extreme precipitation these regions are not
limited to the transition zone between positive and negative
trends. For higher emergence thresholds, the TOE is shifted
further into the future (not shown). Spatial averaging reduces
the small-scale internal variability; hence away from the
transition zones trends emerge earlier the larger the scale
considered (see also Raisanen and Joelsson 2001, Kendon
et al 2008).

3.2. Scale dependence and uncertainty of the time of
emergence

Figure 3 and 4 exemplify the TOE for different thresholds
as function of averaging scale for 16 European regions.
Because the spatial patterns are quite noisy, trends have
been averaged across 5 × 5 grid boxes. For most locations,
clear trends in seasonal precipitation sums are limited to

either summer or winter. In northern Europe the winter
TOE is early accompanied by a good inter-model agreement,
whereas summer trends emerge late and are afflicted with high
model uncertainty. For the Mediterranean the situation is vice
versa: negative summer trends emerge early with relatively
low uncertainty, whereas the winter signal is much weaker,
accompanied by high uncertainties. Only in a narrow band
covering London, Paris, Vienna and Kiev, do trends emerge
relatively early in summer as well as winter. Notable are
the central Norwegian west coast (no clear winter trends)
and Greece (clear drying trends in summer and winter). The
results for seasonal maximum precipitation are similar, but
with notable differences: in northern Europe, positive summer
trends in heavy precipitation are much clearer than those in
mean precipitation, whereas they are much less clear in central
Europe. In southern Europe positive winter trends are weak
compared to central and northern Europe, but much more clear
than in mean precipitation. In general, the TOE depends more
strongly on scale for small-scale convective than for stratiform
precipitation: the scale dependence is stronger for heavy than
for mean precipitation, and for summer than for winter. In
transition regions with strong meteorological divides, such as
the Alps, the TOE scale dependence should be interpreted
carefully. Here positive and negative trends might cancel out,
resulting in unrealistically high TOEs for large scales.

4. Discussion and conclusions

This study provides the TOE from a suitably chosen
emergence threshold on a spatial scale of interest, and
therefore a fundamental minimum timescale for adaptation
measures. Even if a perfect climate model were available—if
the life span of a climate change adaptation measure were
smaller than the relevant TOE—its implementation could be
improvident. As relevance in this context is not necessarily
equivalent to statistical significance and may even depend on
the concerned end user, I investigated the TOE with respect to
a range of thresholds.

For a desired signal-to-noise ratio, the minimum
timescale translates into a minimum possible spatial scale on
which robust conclusions can be drawn about precipitation
trends. On smaller scales the actual real future trend might
vanish or even reverse due to internal variability (see also
Mahajan et al 2012). Thereby, the results also define minimum
spatial scales for adaptation. Whereas a change in local-scale
precipitation might be too small compared to internal climate
variability to justify a certain measure, changes on larger
scales might suggest that measures be implemented in a
coordinated manner to distribute costs and risks. For instance,
whereas it might not be worth for an individual wine-grower
to plant a new variety of grapes, because the relevant local
TOE might be of similar length than the life time of a
vine (typically 30–50 years), it might be useful to invest
in this new variety as a larger cooperative. For individual
wine-growers this could still be a mis-investment, but for
the cooperative as a whole the investment would pay out.
Similarly, the results help to address changes in flood risk as
a function of scale. Even where trends in small catchments
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Figure 2. Multi-model mean time of emergence in space. Year, when a linear trend in precipitation exceeds 20% of the internal variability
(for exact definitions see the appendix). From top to bottom: mean DJF, mean JJA, maximum DJF, maximum JJA; from left to right:
averaging on a 25, 225 and 525 km scale. Brown colours indicate negative trends, green colours positive trends, pale colours indicate
compatibility of the multi-model mean trend with zero. Grey shading: missing values, because of spatial averaging at the domain boundaries
or a low goodness of fit of the GEV. The red dots indicate the centres of the regions considered in figure 3 and 4.

are negligible, the integrating effect of large catchments might
cause relevant trends in flood risk. Nevertheless, the presented
figures should not be taken at face value. The chosen climate
models represent an ensemble of opportunity (Tebaldi and
Knutti 2007) that, in particular on regional scales, might
substantially deviate from real climate.

The results for heavy precipitation have to be interpreted
carefully. The TOE quantifies sensible changes in a
distribution. Yet a slight shift in the extreme value distribution

not causing any sensible change in heavy rainfall might
still lead to a considerably changing occurrence rate of
very rare events. Therefore, the TOE is meaningful for
heavy precipitation events causing recurring damage, e.g., in
agriculture, but not for the calculation of design values
(typically based on the 100 year return level).

By giving a minimum spatial scale for useful trend
assessments, very high-resolution climate change scenarios
are put into perspective. High model resolutions are

4
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Figure 3. Multi-model mean time of emergence for mean precipitation for 16 European regions. Year, when a linear trend in seasonal mean
precipitation exceeds a certain percentage of the internal variability (for exact definitions see text) as function of averaging scale for selected
regions. Blue: DJF, red: JJA; upper triangles: wetting, lower triangles: drying. Lines of identical colour denote (in ascending order) 10%,
20%, 30%, 40% and 50% of the internal variability. The shading depicts 95% confidence intervals around the multi-model mean for 20% of
internal variability.

important to improve the representation of spatial–temporal
characteristics and in particular to resolve the mechanisms
leading to extreme events. Yet single such simulations are
of limited use to assess regional changes in precipitation,
because the signal on scales below a certain threshold—
though still well above the model resolution—will reflect
internal climate variability rather than any robust trend. The
thus defined minimum spatial scale therefore also defines a
lower bound for the minimum skillful scale (e.g. Grotch and
MacCracken 1991) of any model to reproduce an observed
trend.

One aim of current climate research is to provide
seamless predictions ranging from seasonal to centennial

lead times (for a critical discussion, see Palmer et al
2008). On scales up to decades, when trends are still
small compared to internal variability, initializing climate
simulations with the observed ocean state might provide some
predictive power (Meehl et al 2009). On long timescales,
when anthropogenic trends are large compared to internal
variability, climate change projections provide valuable
information. These two time horizons overlap, e.g., for
large-scale temperature. For regional-scale precipitation,
however, a predictability gap of several decades might exist.
In regions with a long predictability gap, anthropogenic
precipitation trends are less important and internal variability
has to be accounted for as the dominant source of uncertainty.

5
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Figure 4. As figure 3, but for seasonal maximum precipitation.
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Appendix. Methods

For the calculation of trends the time period from 1971 to
2099 is considered, starting in the decade when the climate
change signal for global temperature clearly emerges from
internal variability (Hegerl et al 2007). The trends in seasonal
precipitation totals are modelled by linear regression, i.e., for
a year ti, i = 1 . . .N, and a model j = 1 . . .M, seasonal total
precipitation is described as

yij ∼ N (µij, σj) with µij = aj + bjti. (A.1)

To account for different mean climates across the ensemble
members, the simulated precipitation for each model is
normalized1 with the predicted multi-model mean of the
year 2000, µ̄2000 =

1
M

∑M
j=1µ̂2000,j. Hence, the normalized

multi-model mean trend is given as

b̄ =
1
M

M∑
j=1

b̂j
µ̄2000

µ̂2000,j
. (A.2)

As a measure of the normalized year-to-year internal
variability sj of model j I choose the normalized residual
standard deviation,

s2
j =

(
µ̄2000

µ̂2000,j

)2 1
N − 1

N∑
j=1

(yij − µ̂ij)
2. (A.3)

1 For precipitation relative deviations have to be considered; therefore the
different models are rescaled to a common reference (Widmann et al 2003).
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The internal variability sint of the multi-model ensemble is
then defined as s2

int = 1/M
∑M

j=1s2
j . Finally the TOE from a

fraction x of the internal variability, relative to the year 2000,
results as

TOEx = 2000+ x ·

∣∣∣∣ sint

b̄

∣∣∣∣ . (A.4)

The uncertainty of the TOE estimate due to climate model
uncertainty is quantified by (strongly asymmetric) 95%
confidence intervals, calculated by Monte Carlo simulations
of 10,000 trends following a normal distribution around the
multi-model mean trend with a width given by the standard
error of the multi-model mean trend.

Heavy precipitation is described with a similar approach.
The seasonal maxima, separately for the four seasons,
are modelled by the generalized extreme value (GEV)
distribution (Coles 2001),

yij ∼ GEV(µij, σij, ξj). (A.5)

For the GEV, the mean Eij is given as

Eij = µij −
σij

ξj
+
σij

ξj
· 0(1− ξj). (A.6)

The trend in seasonal maxima turned out to be not restricted to
the location of the distribution, but in general also causes the
distribution to broaden. Therefore, linear trends are assumed
in both the location and scale parameter:

µij = aµj + bµj · ti,

σij = aσ j + bσ j · ti.
(A.7)

Disregarding the trend in the scale parameter would
underestimate the overall resulting trend and lead to
misleadingly high emergence times. Note that the bσ were
so small that no link function had to be considered to ensure
positive values of the scale parameter. From equations (A.6)
and (A.7), one can easily derive the trend of the GEV-mean
Eij as

bGEV = bµj −
bσ j

ξj
+

bσ j

ξj
0(1− ξj). (A.8)

Equivalent to the seasonal total case, trends are normalized
to the multi-model mean of E2000,j. For heavy precipitation,
I define the year-to-year internal variability as half the
normalized 68% interval (from the 16th to 84th percentile)
of the predicted distribution in the starting year 2000, which
corresponds to one standard deviation in case of a normal
distribution and thus is equivalent to the measure used for
seasonal precipitation totals:

sj =
1
2

(
Ē2000,j

E2000,j

)2

(q0.84,2000,j − q0.16,2000,j), (A.9)

where qα,2000,j denotes the α-quantile of the GEV distribution
of model j for the year 2000, GEV(µ2000,j, σ2000,j, ξj). All

parameters are estimated using the maximum likelihood
approach.
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