Tracking User Actions for the
Web-Based Front End of ExplorViz

Bachelor’s Thesis

Maria Kosche

September 28, 2013

KierL UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
SOFTWARE ENGINEERING (GROUP

Advised by: Prof. Dr. Wilhelm Hasselbring
M.Sc. Florian Fittkau

Abstract

User tracking is a useful method for locating usability problems. The topic of this thesis is
the tracking of user actions in the web-based front end of ExplorViz, a visualisation tool
for software landscapes. It is written with the Google Web Toolkit and its architecture is
the client-server model. Evaluated tools such as Google Analytics and Piwik require the
usage of JavaScript and are therefore not directly compatible with GWT. Evaluated instru-
mentation frameworks such as Tiny AOP and GIN lack actuality and are not compatible
with current versions of GWT.

To develop a tracking method for ExplorViz a simple but working method was used.
Tracking functions were integrated directly into the code and the GWT remote procedure
call technique was used for passing tracking records from the client to the server. The
tracking records are stored in a CSV formatted file for further processing. The evalu-
ation shows that the developed tracking method covers all requirements. Future work
includes the auto-generated visualisation of the tracking records and the development of
an instrumentation framework for GWT.

1ii

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Goals e 1

121 GI1: Identify Existing Tracking Tools and Methods 1
122 G2: Evaluation of Identified Tracking Tools and Methods 2
123 G3: Implementation of a New or Existing Tracking Method 2
1.3 Document Structure L L 2

2 Foundations and Technologies 3

21 Visualisation L 3
211 MarkovChains Lo 3
212 WebGraphs 4

2.2 Aspect-Oriented Programming 4

23 WebGL e 6

24 GWT . 7
241 Remote ProcedureCall 7

25 Xtend 8

3 Dynamic Analysis 9
31 Tracking 9
32 Monitoring 9

321 Kieker 10

33 ExplorViz. 10

34 Experiments 12
341 Threatsto Validity 12

4 Evaluation of Existing Tracking Tools and Methods 15
41 AssessmentCriteria. o 15
42 Google Analytics 16
43 Piwik . ..o 17
44 Instrumentation Frameworks 18

441 GWTENTandTiny AOP 18
442 GIN. ... 18
443 Spring 19
45 Direct e 19
46 OverallResults 20

Contents

5 Development of a Tracking Method in ExplorViz

51 Goalsof Tracking
52 Approach.
53 Activities e e e e

6 Evaluation of the Developed Tracking Tool

6.1 Completeness Evaluation
6.1.1 Quality Criteria
6.1.2 SCenarios. e e e e e e e e e
6.1.3 Results e
6.1.4 DiscusSsSion e e e e
6.1.5 Threatsto Validity
7 Conclusions and Future Work
7.1 Related Work e
72 Conclusions e e e e e
7.3 Future Work e e
Bibliography

A ExplorViz DVD

vi

21
21
21
25

27
27
27
28
29
32
32

35
35
35
36

37

41

2.1
2.2

2.3

3.1
3.2
3.3

34

4.1

51
52
53
54

6.1
6.2
6.3
6.4

List of Figures

Simple Markov chain example 4
Web graph layers (taken from Chenetal. 2004) 5
a Vertex size is proportional to number of visitors 5
b Edge thickness gives information about amount of link usage 5
c Vertex colour stands for access time per pages 5
d Edge colour represents access probability of links 5
RPC architecture (taken from GWTProject 2013) 8
Overview of Kieker (taken from Kieker 2013) 10
Landscape viewer in ExplorViz 11
System viewer in ExplorViz (taken from Fittkau et al. 2013) 11
a System viewer with closed service package 11
b System viewer with opened service package. 11
Code viewer in ExplorViz, 12
Google Analytics dashboard (taken from Google 2013) 16
Overview of the important packages 22
Class diagram of user tracking records 23
RPC class structure for the user tracking 24
Sequence for double clicking anodegroup 26
Activity diagram for scenario S1 in the landscape level view 28
Activity diagram for scenario S2 in the system level view 29
Activity diagram for scenario S3 in the code viewer 29
Possible Markov chain for the landscape viewer 30

vii

Chapter 1

Introduction

1.1 Motivation

Usability tests are a necessity in the development of applications. They help to increase
the competitive capability. Developers often have difficulties thinking like the users of the
software in development. Since they are intensively employed with their software, it is
hard for them to imagine what problems inexperienced users can have. Therefor, it is very
important to understand the user’s position. Tracking technologies are a useful method for
this purpose. They investigate the user’s behaviour by recording user actions, especially
the user’s mouse and keyboard interaction on desktop systems. They can also be used for
logging the time it takes to perform certain tasks. The information can be used for locating
usability problems. Subsequently, it is possible to optimise the structure and functionality
of an application based on tracking data.

This raises the question what tracking methods and tools already exist, how they work,
to what degree they are compatible with existing software, and how to integrate a new or
existing tracking method or tool into a given application.

The concern of this thesis will be answering these questions using the example of
tracking user actions in the web-based front end of ExplorViz.

1.2 Goals

The main objective is an extension for the web application ExplorViz. User actions shall be
tracked and therefor, we define the following goals:

1.2.1 G1: Identify Existing Tracking Tools and Methods

First of all a survey of tracking tools and methods is required. This is useful for an
orientation and it is of course not recommended to implement a completely new tracking
method if there already exist some valuable solutions.

1. Introduction

1.2.2 G2: Evaluation of Identified Tracking Tools and Methods

It is not sufficient to only identify existing tracking tools and methods. In a next step they
are evaluated in terms of a possible adaption for ExplorViz. Even if there is no appropriate
tracking tool or method, the evaluation is a facility for imagining possible features and
methods.

1.2.3 G3: Implementation of a New or Existing Tracking Method

The final step is the implementation of a tracking method in ExplorViz. Obviously, the
development depends on the results of the preceding evaluation. The goal is a functioning
implementation for tracking the user mouse actions in the landscape, system, and code
viewers of ExplorViz, which are described in Section 3.3.

1.3 Document Structure

Chapter 2 describes the technologies which are used and investigated for the thesis. There-
after, Chapter 3 attends to the main topics like tracking, monitoring, and the experimental
aspect of tracking. Afterwards, Chapter 4 provides an overview of the existing technologies
and contains the evaluation of the investigated tools and methods. Chapter 5 shows how
the development proceeded and which steps were made. In Chapter 6 the evaluation of
the implemented tracking method is conducted and finally, future work is described and
conclusions are drawn in Chapter 7.

Chapter 2

Foundations and Technologies

This chapter gives an overview of foundations and technologies which are used in the
thesis.

2.1 Visualisation

For analysing tracking and monitoring data, it is recommended to use an appropriate
visualisation. Therefor, two possibilities will be introduced. First, Markov chains are useful
for visualising states. They concentrate only on the probabilities of moving from one state
to another, but have many use cases, because defining states is flexible and can adapt to
the purpose. Furthermore, they are defined mathematically and can be easily examined,
analysed, and processed. Second, web graphs are created directly for web applications and
can present a bigger amount of information. But they are also more abstract and therefore,
more complex.

2.1.1 Markov Chains

Markov chains are stochastic processes often visualised by diagrams. There are two types
of Markov chains: discrete-time and continuous-time ones. Since we only deal with web
applications with a finite number of pages respectively states, we will only investigate
discrete-time Markov chains. The purpose of Markov chains is to give probabilities of
events occurring. The particularity is that they retain no memory, meaning that prognoses
made by Markov chains only depend on the current state and not on the past. This way
there is no need for recording the history for calculating the probability of a next state.

Figure 2.1 shows a simple Markov chain diagram. The edge labels describe the proba-
bility of the next state. Starting from state sy there is one path to s, with probability 1. State
s1 leads either to sy or to s, with equal probability 1/2. Finally, the last path moves from
state sy to s; with probability 1/3. Since the total probability of all transitions leaving a
given state must equal 1, we can infer that we stay in s, with probability 2/3, even though
this transition is not explicitly drawn in the diagram. Imagining each state represents a
view, a website, or the state of several objects, tracking data can be visualised using Markov
chains to illustrate the behaviour of users using a web application. [Norris 1998]

2. Foundations and Technologies

1/2 1

O~ll=-O

13

Figure 2.1. Simple Markov chain example

2.1.2 Web Graphs

Another possibility for visualising the behaviour of users on web applications are web
graphs. A tree structure is used to represent a whole website. Figure 2.2 shows an example
of the different layers used in a web graph. These layers are also called web images. Nodes
represent pages and edges symbolise hyperlinks between them. Figure 2.2a emphasises
the number of visitors per page by varying the vertex size accordingly. Figure 2.2b stresses
the edge thickness which is interpreted as the link usage. Figure 2.2c displays the layer of
vertex colours which correspond to the access time per page. Figure 2.2d finally completes
the layers with edge colours indicating the access probability of links. [Chen et al. 2004]

2.2 Aspect-Oriented Programming

Aspect-oriented programming (AOP) is used for separating certain functionality from
the business logic code. Code can be of core level concern. This is functionality of code
which can be easily modularised in several classes and functions. System level concern
or crosscutting concern, however, concerns the whole system or must be implemented
in functions which actually do something else. Logging is an example of a system level
concern. It would be implemented in several functions, although it has nothing directly to
do with the functions. In this case aspects are appropriate.

For marking points in the code where some functionality like logging should be added,
so-called join points are defined. These are often just annotations which are added to
functions. Pointcuts are now implemented for matching the relevant join point to the right
aspect. The aspect contains advices describing what to do when a pointcut has matched a
join point. For example, it is possible to execute some logging code before continuing with
the execution of the program. Very popular for aspect-oriented programming in Java is
Aspect].

Listing 2.1 shows a small example of a method which shall be logged. The logging
code is directly implemented in testMethod. Now aspect-oriented programming will

2.2. Aspect-Oriented Programming

(a) Vertex size is proportional to number (b) Edge thickness gives information
of visitors about amount of link usage

i 1
il

(c) Vertex colour stands for access time (d) Edge colour represents access proba-
per pages bility of links

Figure 2.2. Web graph layers (taken from Chen et al. 2004)

NCT WD =

O XIS UTL = WN-

2. Foundations and Technologies

public void testMethod() {
logger.trace("Entering testMethod");

// executing method
System.out.println("Hello World!");

Listing 2.1. Logging a method without aspect-oriented programming

@LogMethod

public void testMethod() {
// executing method
System.out.println("Hello World!");

@Aspect
public class LoggingAspect {

@Before("annotation(test.package.LogMethod)")
public void logBefore(JoinPoint joinPoint) {

logger.trace("Entering " + joinPoint.getSignature().getName());

Listing 2.2. Logging a method with aspect-oriented programming

be used for separating the functionality. A custom annotation LogMethod is declared
which marks the join point as shown in Listing 2.2. The class LoggingAspect is the aspect
containing the pointcuts and the advices. In this case the advice @Before is used to
execute the logging code before the execution of testMethod. The pointcut is defined
as annotation(test.package.LogMethod) meaning that every method with our LogMethod
annotation will be matched. For example, valid pointcuts could also match every method
in a specific class.

2.3 WebGL

WebGL stands for Web Graphics Library and is a JavaScript API used to display 3D
graphics in a web browser. It uses the OpenGL shading language GLSL and is based on
OpenGL ES 2.0 (ES stands for Embedded Systems) which is the OpenGL specification

24. GWT

version targeted at handheld and embedded devices such as cell phones, PDAs, consoles,
and vehicles. In general, OpenGL is a cross-platform standard 3D API for advanced 3D
graphics. It is widely accepted and is used by games such as Half-Life, GLTron, Portal,
Minecraft, StarCraft II, and World of Goo. Furthermore, applications such as Blender or
Google Earth include an OpenGL renderer. [Munshi et al. 2008; Shreiner et al. 2009]

As it became important to provide web-based and real-time rendering, WebGL was
specified and it opened up possibilities for web-based 3D environments in web browsers
without any plug-in components. According to the distribution of browsers, web-based 3D
applications are also available for smart phones, tablets etc. WebGL also offers an integra-
tion with HTML content, so that, for instance, the interaction with other HTML elements
and the use of standard HTML event handling mechanisms are available. Furthermore, it
is possible to use WebGL for 2D graphics as well. [WebGL 2013; Cantor 2012; Anttonen
and Salminen 2011; Seidelin 2011]

24 GWT

GWT stands for Google Web Toolkit and is a toolkit for developing web applications. It
enables the development and implementation of AJAX applications. Its characteristic is a
Java to JavaScript compiler which allows developers to create complex JavaScript front end
applications in Java.

AJAX is an acronym for “Asynchronous JavaScript and XML"” and describes a concept
for transmitting data between client and server asynchronously. In this way it is possible to
submit HTTP requests and change an HTML site without reloading it. AJAX is platform
independent and can be used by every browser which supports JavaScript. Besides, there
is no need for installing a plug-in for using AJAX applications.

GWT allows the developer to leverage his knowledge of Java and to use approved
development environments such as Eclipse. Furthermore, GWT comes with different panel
layouts and many widgets which can be combined into a graphical user interface. Creating
an user interface is thus similar to creating it with Swing or SWT, and the application
becomes more desktop-like. [Chaganti 2007; Wargolet 2011]

2.4.1 Remote Procedure Call

The GWT remote procedure call (RPC) is a technique for simplifying the exchange of Java
objects over HTTP between client and server components. A service on the server-side
is invoked from the client, an auto-generated proxy class is used for the communication
between server and client, and the serialisation of the Java objects is handled by GWT.
Therefor, the interface Serializable (Java) respectively IsSerializable (GWT) must be im-
plemented by the object classes. Figure 2.3 shows an overview of the RPC architecture. The
service proxy class (shown in green) is the core of the communication between client and
server. Calls from the client are passed to the correct class on the server-side by the proxy

2. Foundations and Technologies

RemoteService
(interface)

ServiceDefTarget
(interface)

StockPriceServiceAsync [T, StockPriceService ; StockPriceServicelmpl
(interface) (interface) (class)

related

Bl Imoorted framework classes
B witten by you

stockPricesSve = GWT.create .
implement: (StockPriceSenvice.class); I Genemted automatically

(service proxy class)

Translatable Java code Standard Java code
(runs as JavaScript on client) (runs as bytecode on server)

Figure 2.3. RPC architecture (taken from GWTProject 2013)

class. It is automatically generated with the creation of the StockPriceService. This is an
interface realised by the Service on the server-side. The related StockPriceServiceAsync en-
ables catching the return value of the server-side service. [tutorialspoint 2013; GWTProject
2013]

2.5 Xtend

Xtend is a programming language whose syntax is similar to Java but provides more
advanced language elements such as closures. It compiles into Java source code and is still
object-oriented and imperative, but also integrates some features known from functional
programming languages. For example, Xtend supports lambda expressions which can
be used for implementing anonymous classes. Programmers who are already familiar
with Java are able to leverage their knowledge and are able to quickly learn Xtend. Some
syntactical simplifications are made such as unmatched type inference and leaving out
semicolons and empty parentheses. Finally, Xtend is completely compatible to Java while
being more readable and expressive. [Eclipse 2013; Liibbe 2012]

Chapter 3

Dynamic Analysis

In the following, we describe the foundations of tracking and monitoring. ExplorViz will
be introduced in Section 3.3 while Section 3.4 describes the threats to validity concerning
web tracking.

3.1 Tracking

Tracking and especially web tracking is used to collect, store, and connect user behaviour
records. Tracking is often associated with advertisement companies, which actively collect
information such as age, sex, and place of residence about users and accumulate it in
user profiles. These profiles are used to show users individualised advertisements instead
of random ones. Apart from this, tracking is also used for law enforcement. Tracking
technologies enable spying on individuals and solving crimes such as identity theft and
credit card fraud. Moreover, a further major motivation for tracking are usability tests
of applications. “By observing the steps an individual performs while trying to solve a
certain task [...], usability problems can be discovered and fixed.” [Schmiicker 2011, p.1]
It is possible to capture detailed records of user mouse and keyboard input. Recording
cursor movement paths can be helpful for identifying problems when locating or using
certain functionality. Furthermore, this data can be extended with a time component so that
tracking can be used to analyse how long certain tasks take, which tasks cause the main
problems, and in which order the user proceeds. In addition “web analytics, a related field,
focusses less on the individual user, but more on the performance of a website as a whole”
[Schmiicker 2011, p.1]. Tracking can help improve the structure of a website by listing, for
example, the number of visitors over time, the time visitors spend on one site, and which
pages they look at. [Schmiicker 2011, section I. - IIL.] The most popular tools used for web
tracking are Google Analytics and Piwik (Open Source). They are investigated in more
detail and evaluated in Chapter 4. [Schmiicker 2011]

3.2 Monitoring

Tracking is usually used for observing and recording user actions and user behaviour.
Monitoring, on the other hand, is used for measuring the performance of an application.

3. Dynamic Analysis

Kieker.Monitoring - ie.g., trace information, workload, response: \ Kieker.Analysis
i B es, resource utilization, loop counts

i i e.g., architecture reconstruction,

< \ performance evaluation, online

Monitoring £ ™ - adaptation control, failure diagnosis
Probe) ‘ \ :

0 = : -
Monitoring g o :
Controller Monitoring
Record

Plugin
O

Analysis g
Controller

= -
Monitoring 3] H Monitoring =]
Writer | | e e ¢ / Reader

itoring Log/Stream

Figure 3.1. Overview of Kieker (taken from Kieker 2013)

3.2.1 Kieker

Kieker is a Java-based tool which provides Application Performance Monitoring (APM).
It therefor collects and analyses monitoring data. It focuses on the application’s run-time
behaviour. On the application and service level the operation response times, the user
sessions, and traces are investigated. On the system level the collected data can include
the CPU utilisation, memory usage etc. [van Hoorn et al. 2012; 2009; Rohr et al. 2008]
Figure 3.1 gives an overview of the features of Kieker. It shows the Kieker monitoring
component which uses, for example, AOP-based method call interception. Monitoring
records are created and can be analysed by the Kieker analysis component.

3.3 ExplorViz

ExplorViz is an online trace visualisation for large software landscapes which can arise
from the high number of software systems a company uses. It is intended as a support for
software engineers trying to comprehend software systems, for example, when creating
new features. Therefor, it provides the functionality to disclose details such as the commu-
nication between programs and the control flow in an application. Using an adequate and
comprehensible abstraction for its visualisations, ExplorViz allows to structure the relevant
information. For this purpose there are different views to examine the software structure
with.

The landscape level view, which is the main view, contains a graph with nodes, node
groups, and edges representing the structure of the software system. Figure 3.2 shows
an exemplary landscape level view. Nodes contain several applications. These can be
investigated in more detail by double clicking. This opens a new three-dimensional view,
the system level view, which is related to the model of code cities and is shown in Figure 3.3.
Figure 3.3a shows the initial view while Figure 3.3b shows the same view after opening the
service package via double click. The system level view uses WebGL for the visualisation
and a navigation with moving and zooming is possible. By right clicking on components
both in the landscape and the system level view, a popup menu is opened which provides

10

3.3. ExplorViz

+ Cache & ypersq

* ‘N J'BP.{“' Prcvenarce:gt

10.0.0.8

¥IJIRA

10.0.04

10.0.0.7

10008

Figure 3.2. Landscape viewer in ExplorViz

(a) System viewer with closed service (b) System viewer with opened service
package package

Figure 3.3. System viewer in ExplorViz (taken from Fittkau et al. 2013)

access to the code viewer. The code viewer, shown in Figure 3.4, provides a tree diagram
which corresponds to the package and class structure of a project. Files of the project can
be opened directly.

Besides, performance is an important aspect, so the user experience is not degraded
while processing a huge amount of traces.

The technologies described in Section 2.3 through Section 2.5, namely, WebGL, GWT,
and Xtend, are used for the development of the ExplorViz web application. [Fittkau et al.
2013]

11

3. Dynamic Analysis

3 exploriz
= JPetStore Order java
. .
ZF com
|Z ibatis
L_i]pgstnm) package com.ibatis.jpetstore.domain;
= domain
= Account.java va.io.Serializable;
. 18y ath.BigDecimal;
= Cart java va.util.Arraylist;
e va.util.Date;
i Cartltem.]g\;a ra.util.Iterator;
= Category.java va.util.list;
> ltem.java
- Unenewuaya 233 Order implements Serializable |
= Order java
= Product.java

shipkddressl;
shiplddress2;
shiplity:
shipState;
shipZip;
shipCountry;
billZddressl;
killlddress2;
billCity:
hil118tatas

= Seguence java
3 persistence
3 presentation
3 senice

Figure 3.4. Code viewer in ExplorViz

3.4 Experiments

Tracking user actions can be seen as a measurement method for experiments. There are
different modalities like explanation of functionality or even the mood of the user. One has
to deal with experiments for analysing the results of tracking.

An experiment is “a test under controlled conditions made to either demonstrate a
known truth, examine the validity of a hypothesis, or determine the efficacy of something
previously untried.” [Shadish et al. 2002, p.1] Crucial here is the relationship between cause
and effect, called causal relationship. The cause is “the producer of an effect, result, or
consequence.” [Shadish et al. 2002, p.1] The effect is the difference between what happened
under the experimental condition as opposed to what would have happened without the
experimental condition (called counterfactual). However, the counterfactual cannot be
observed, because it is not possible for a given subject to both receive and not receive a
treatment. [Shadish et al. 2002]

3.4.1 Threats to Validity

Researchers aspire to attain generalised causal knowledge, but causal generalisation con-
flicts with the fact that experiments have a very specific context. Each experiment consists
of subjects, of the treatments themselves, of observations made on the subjects, and of the
settings in which the experiment is conducted. Shadish defines 4 validity types, namely,
internal validity, statistical conclusion validity, external validity, and construct validity.

12

3.4. Experiments

Internal validity is closely related to statistical conclusion validity. Both focus on
the relationship between treatment and conclusion. But since we are more interested in
investigating causal-reasoning errors than in statistical inferences, statistical conclusion
validity is not described further. External validity and construct validity are related as well,
since they are both generalisations. Construct validity, however, focuses on questions about
the definition of constructs to be measured, or about the units of measurement. These will
already be answered by the identification and evaluation of tracking methods and tools.
Therefor, only external validity will be described in more detail. [Shadish et al. 2002]

Internal Validity

Internal validity refers to the degree to which a causal conclusion is warranted [Johnson
1997]. Below some reasons are given for questioning the internal validity that are connected
to web tracking.

Ambiguous temporal precedence There is uncertainty which variable is the cause and which
is the effect.

Selection Differences between subject groups which may interact with the observed effect.

History A third variable may have influence on the observed effect.

Testing Repeatedly testing may influence the results, because practise and familiarity are
relevant mechanisms.

External Validity

External validity refers to the degree to which experiments respectively their results are
generalisable.

Interaction of the Causal Relationship with Subjects Subjects may have properties that interact
with variables to analyse.

Interaction of the Causal Relationship Over Treatment Variations Different treatments may cause
different effects.

Interaction of the Causal Relationship with Settings Environmental factors such as time, loca-
tion etc. may affect the results.

Context-Dependent Mediation If the explanation differs from time to time, the results may
also differ.

13

Chapter 4

Evaluation of Existing
Tracking Tools and Methods

Google Piwik Tiny GWT Guice/ Spring Direct

Analytics AOP ENT GIN
Completeness v - v 4 v v 4
Adaptability - - v 4 v v v
Usability v v X X - - v
Actuality v v X X X X 4
Development v v X X v - v
Activity

Legend: v/ given - partially given X not given

Table 4.1. Overview of evaluation results

Table 4.1 summarises the evaluation of the different tracking tools and methods. The
criteria are described and explained in Section 4.1. Afterwards, the different tools and
methods are introduced and analysed in terms of these criteria in Section 4.2 to 4.5. Finally,
the results of the evaluation are summarised in Section 4.6.

4.1 Assessment Criteria

The criteria for the evaluation of existing tracking tools and methods are inspired by the
Consortium for IT Software Quality. In a regular time interval, specifications for software
quality measures are published. [Consortium for IT Software Quality 2012]

The criteria “Adaptability”, “Usability”, and “Actuality” are borrowed from these
specifications. Here, they are specified and described for the exact purpose of using them
for ExplorViz. Also, we add the criteria “Completeness” and “Development Activity”.

15

4. Evaluation of Existing Tracking Tools and Methods

I # Home Standard Reporting Custom Reporting <
My Dashboard
Daily Visits Traffic Types Time on Site by Country
Avg.
Country/ Territory Visits Time on
Site
B 25.70% feed United States 67445 00:01:54
24.90% organic United Kingdam 18,948 000137
M 23.05% referral
India 8,882 00:00:58
14.85% direct
7.35% amail Canada 6,371 00:01:02
R Germany 5,645 00:00:32
v
Jan 1 Jan 8 Jan1s Jan22 France 5243 00:0038

Figure 4.1. Google Analytics dashboard (taken from Google 2013)

Completeness The requirements of tracking user mouse actions in landscape viewer, system
viewer, and code viewer should be covered. This includes the tracking of WebGL
components.

Adaptability The way of integrating the functionality should be compatible to the existing
software structure and configuration.

Usability The documentation is part of this criterion. The tracking method should be
documented sufficiently well for understanding and implementing it.

Actuality This criterion describes the actuality of the tools and illustrates whether current
or only old versions are supported. It also describes the functioning and stability of the
tools and methods.

Development Activity The development activity allows a forecast for the future support and
the improvement of the tool and therefore it is important for the sustainability of the
criteria above.

4.2 Google Analytics

Google Analytics is a tool for analysing websites. It comes with features like real-time
reporting, in-page analysis, visualisation of user paths, and event tracking. A dashboard of
Google Analytics could look like the one displayed in Figure 4.1.

The analysis tool measures the number of users visiting a site, offers the opportunity to
visualise the paths users take through the application, and provides in-page analysis, that
is information about the probability of each link on a page to be clicked. The visualisations
generated by Google Analytics are easy to understand and several tools are specialised on
finding very particular data among all the recorded data. [Google 2013]

16

4.3. Piwik

Completeness The event tracking feature provides support for tracking any Flash-driven
element such as a flash website or a flash movie player, and embedded AJAX page ele-
ments. Since GWT is used for developing AJAX applications as mentioned in Section 2.4,
Google Analytics could be used for tracking these elements. Thus, completeness is
given.

Adaptability In order to use the functionality of Google Analytics, a registration is needed.
Then, code snippets together with an account ID are inserted in the existing code to
connect and send usage data to the personal account. The setup and configuration is
performed through the account website.

Due to that, Google Analytics is not an appropriate solution for tracking user actions in
ExplorViz. Since ExplorViz is developed with GWT and thus in Java, it is cumbersome
to place JavaScript snippets in the existing implementation. Furthermore, it is undesir-
able to store the tracking data at an external service due to data protection concerns.
This makes it neither impossible nor recommendable to adapt Google Analytics for
ExplorViz.

Usability, Actuality, Development Activity Nevertheless, Google Analytics has a big commu-
nity and offers considerable support. The tool is up-to-date and actively developed for
improving features, compatibility, and usability.

4.3 Piwik

Like Google Analytics, Piwik is a multifunctional tool for tracking and analysing websites.
It concentrates on information about the visitors such as how long do they visit the website,
from which country they come, and which browser they use. Besides, Piwik offers the
possibility to integrate code snippets and event listeners in existing JavaScript code to track
several functions.

Completeness Although Piwik provides similar features, its support for asynchronous
tracking is not as technically mature as the support provided by Google Analytics. Even
so, it covers the completeness requirements, if barely.

Adaptability Piwik provides a GWT wrapper, but for the moment it only supports a subset
of the Piwik functionality. Unfortunately, these functions are insufficient and other
alternatives involve the integration of JavaScript code. Therefore, the adaptability is
rated on par with Google Analytics.

Usability and Actuality Piwik is open-source and lively exchange exists between community

and developers. This enables flexibility, quick support, and updates. So the usability
and actuality can be rated as given.

17

4. Evaluation of Existing Tracking Tools and Methods

Development Activity Further development is planned for the mentioned GWT wrapper.
If it gains more features in the future, Piwik will become a good solution for tracking
user actions in GWT.

4.4 Instrumentation Frameworks

For the evaluation we investigate instrumentation frameworks for GWT. Since logging is of
crosscutting concern, it is recommended to separate it from the core level concern.

441 GWT ENT and Tiny AOP

First of all we investigate two frameworks for aspect-oriented programming. Since they are
very similar, GWT ENT and Tiny AOP are combined in this subsection.

Completeness Both frameworks are used directly in the code and therefore, the logging
functionality can be placed wherever necessary. This means all requirements for
completeness are covered. GWT ENT provides even more functionality, for example,
reflection and data binding, but these features are irrelevant to the tracking of user
actions in ExplorViz.

Adaptability Since the frameworks are designed for GWT it is not time-consuming to
integrate GWT ENT and Tiny AOP in GWT.

Usability A disadvantage is the usability of the frameworks. They are hardly documented
and the documentation mainly consists of example applications which lack further
explanations and more specific use cases.

Actuality Unfortunately, the frameworks are outdated and not compatible with the latest
GWT version, which is also used in ExplorViz.

Development Activity The latest updates go back to the year 2010 for Tiny AOP and 2011
for GWT ENT. This means that it is unrealistic that these frameworks will be updated
in the near future. In summary, it seems as if there is no current development on
aspect-oriented programming for GWT at all.

44.2 GIN

GIN stands for GWT Injection and is a framework based on Guice, a Google framework
for injection. It provides method injections and is therefore similar to aspect-oriented
programming.

Completeness Like GWT ENT and Tiny AOP, GIN is used directly in the code. It can thus
be flexibly used and hence covers all requirements for this criterion.

18

4.5. Direct

Adaptability GIN is an extended version of Guice for GWT. Therefor, the integration in
ExplorViz is possible by implication.

Usability Documentation for GIN is not very extensive, but there is an active platform for
the exchange between users and developers. Anyhow, the documentation for Guice is
more informative and overall the documentation for the GWT adaption is hardly worth
mentioning.

Actuality There still exist some issues with using method injection for aspect-oriented
programming. There is no release that works for this use case.

Development Activity Although there is no current stable version for the latest GWT versions,
the development is still in progress and it is possible that a version supporting aspect-
oriented programming in GWT will soon be released.

4.4.3 Spring

Along with the frameworks for GWT, there exists Spring, a well known framework for Java.
It provides, besides many other features, aspect-oriented programming.

Completeness Like with the GWT AOP frameworks, the functionality is implemented
directly in the code and therefore covers all requirements.

Adaptability ExplorViz is written in Java and for this reason it is possible to integrate Spring
with it after adding the dependencies.

Usability Although Spring has a big community, it is rarely used in combination with
GWT. The missing documentation and missing support for this purpose makes an
implementation impractical.

Actuality Due to the lack of documentation, it seems impossible to combine Spring with
ExplorViz and its requirements on user tracking.

Development Activity Spring shows much development activity, but the integration of
aspect-oriented programming in GWT received no priority so far.

4.5 Direct

The “direct” method implements the tracking methods directly in the code. It is not the
most elegant method, because the logging functionality is not separated from the business
logic code, but it is simple and functional.

Completeness Since the mechanism is very similar, there is no big difference to the instru-
mentation frameworks when considering the completeness.

19

4. Evaluation of Existing Tracking Tools and Methods

Adaptability No additional dependencies are needed and the tracking functions can be
directly implemented in Java for integrating them in ExplorViz.

Usability Using basic GWT techniques, there is no need of further documentation. The
existing documentation of the GWT project is sufficient for implementing the required
features.

Actuality and Development Activity The actuality and development activity refers to the
development of GWT itself. Therefore, the technique of direct tracking cannot become
outdated and is always on the same level as GWT.

4.6 Overall Results

The investigated existing tools and methods were not appropriate for the purpose of
logging user actions in ExplorViz. Therefore, the decision was made to simply track the
user actions with the “direct” method. With the information given at the specific code
points, records will be created which shall contain the relevant tracking information. Using
these records the implementation can be easily exchanged in case an instrumentation
framework meets the requirements in the future. Finally, the records shall be passed to the
server, which will be done with the GWT RPC technique. The explicit implementation will
be described in more detail in the next section.

20

Chapter 5

Development of a
Tracking Method in ExplorViz

This chapter describes the goals of and the approach for the development. Furthermore,
the developed tracking method is introduced in detail. All of the classes and packages
mentioned in this chapter are included on the DVD in Appendix A for easy reference.

5.1 Goals of Tracking

The tracking of user actions in ExplorViz includes the collection of interaction information
with the landscape viewer, system viewer, and code viewer. The interaction in the landscape
level view will be tracked for each element, including right click and double click actions.
The same holds for the system level view. For the code viewer information about opened
files will be tracked.

5.2 Approach

A package overview of the implementation is provided in Figure 5.1. On the client-side is
the explorviz.visualization package. The explorviz.visualization.engine.usertracking
package contains the functionality of tracking several methods for the two other packages,
explorviz.visualization.codeviewer and explorviz.visualization.engine.interaction. It
generates a record for each event. The different record types are defined in the package
explorviz.shared.records which is shared with the server-side. The client invokes a service
on the server-side, which is shown by the connection to the explorviz.server.usertracking
package.

The service invocation is conducted with the GWT remote procedure call technique
as introduced in Section 2.4.1. It is used for transferring the records from client to server.
Afterwards, the records can be written to a CSV file which will be the log file for the tracking
data. Therefor, each record implements a method csvSerialize which formats the data for
writing it to the log file. Each line in the file contains a time stamp in milliseconds at the first
position and the simple class name of the created record at the second position. The name
of the record, such as “NodeGroupOpenRecord” or “ApplicationOpenPopupMenuRecord”,

21

5. Development of a Tracking Method in ExplorViz

[]
1]

explorviz.visualization.codeviewer

explorviz.visualization

I
|
1 <<usage>>
|

ﬁ —| \%
- - <<usage>> TS - -
explorviz.server.usertracking < explorviz.visualization.engine.usertracking
- R — —_—

1 1
1 1
1 1

1 1 /If\
1 1

o | <<usage>>

1 1

<<usage>> | !
\V4 l

<<usage>>
\%
explorviz.visualization.engine.interaction
explorviz.shared.usertracking.records

Figure 5.1. Overview of the important packages

provides information about the performed action. Afterwards, the properties of the object
which was interacted with are logged.

The records used for the tracking are listed in Figure 5.2. Records that describe the
general objects, such as NodeGroupRecord or ApplicationRecord, extend the abstract class
UsertrackingRecord. They contain general properties for their particular type of record.
The subclasses of these records add information about the type of interaction, for example
NodeGroupOpenRecord or NodeGroupCloseRecord. The csvSerialize method of the super class
returns a string with the general properties of the record in CSV format using ";" as delimiter.
The subclasses add the specific description to the CSV string. The result is then used for

the log file.

Due to the remote procedure call technique of GWT, the records are serialised by
GWT. Therefor, the abstract class UsertrackingRecord implements the GWT interface
IsSerializable. Other requirements for user defined classes to be serialisable include
a default constructor and the fact that every non-final field is itself serialisable. By default
all the primitive types, their wrapper objects, and arrays of serialisable types are serialisable.

To describe the RPC methodology further, Figure 5.3 shows the implemented or
modified classes in addition to the RPC overview in Section 2.4.1. The Usertracking
class triggers the tracking process by creating the service proxy class and executing the

22

<<Interface>>

A

|UsertrackingRecord

Hong
+String csvSerialize()
+long getTimestamp()

N

5.2. Approach

-int id -List nodelps
-String name [#NodeGroupRecord()
#ApplicationRecord() lientSide

icati lientSide app)

rd

-ApplicationOpenPopupMenuRecord() -NodeGroupOpenRecord()

icati lientSide app) lientSide
[+String csvSerialize() +String csvSerialize()
-ApplicationOpenSystemLevelRecod() -NodeGroupCloseRecord()

icat (ApplicationClientSide app) lientSide
|+String csvSerialize() +String csvSerialize()

+CodeviewerOpenfFileRecord(String project, String filepath, String filename)
+String csvSerialize()

i

C cord CommunicationClazzRecord ComponentRecord
|-String project +CommunicationClazzRecord() -String name
|-String filepath +String csvSerialize() #ComponentRecord()
|-String filename +Co lientSide compo)
#CodeviewerRecord()
+CodeviewerRecord(String project, String filepath, String filename)
+String csvSerialize() CommunicationClazzClickRecord
+CommunicationClazzClickRecord()
+String csvSerialize() S
CodeviewerOpenFileRecord -ComponentOpenRecord()
I-CodeviewerOpenFileRecord() +C

lientSide compo)

+String csvSerialize()

©

rd

-ComponentCloseRecord()
1+Ci

+String csvSerialize()

lientSide compo)

ClazzRecord NodeRecord
|-String name -String ipAddress C
#ClazzRecord() -List appStrs -ComponentOpenPopupMenuRecord()
+ClazzRecord(ClazzClientSide clazz) #NodeRecord() +C lientSide compo)

ClazzOpenPopupMenuRecord
-ClazzOpenPopupMenuRecord()
+ClazzO

+String csvSerialize()

lazzClientSide clazz)

+String csvSerialize()

+NodeRecord(NodeClientSide node)

+String csvSerialize()

NodeClickRecord

-NodeClickRecord()
[+NodeClickRecord(NodeClientSide node)
+String csvSerialize()

Figure 5.2. Class diagram of user tracking records

23

5. Development of a Tracking Method in ExplorViz

RemoteServiceServlet

UsertrackingRecordServicelmpl

<I———|+String getUsertrackingRecord(IUsertrackingRecord record)
+writeCsvTolLogFile(String csv)

24

v

<<Interface>>
RemoteService

<<Interface>>
UsertrackingRecordService

+String getUsertrackingRecord(IUsertrackingRecord record)

i
i
| related
1
.

<<Interface>>
ServiceDefTarget

<<Interface>>
UsertrackingRecordServiceAsync

+getUsertrackingRecord(lUsertrackingRecord record, AsyncCallback callback)

2

<<Service Proxy Class>>
usertrackingRecordSvc

<<instantiate>>
GWT.create

<<Interface>>
AsyncCallback

<<instantiate>>

+onFailure()
+onSuccess()

A

UsertrackingRecordCallback

<<static>>
Usertracking

-UsertrackingRecordServiceAsync usertrackingRecordSvc
-UsertrackingRecordCallback callback

+trackApplicationDoubleClick()
+trackApplicationRightClick()
+trackClazzRightClick()
+trackCodeviewerCode()

+trackCommunicationClick()
+trackComponentDoubleClick()
+trackComponentRightClick()
+trackNodeGroupDoubleClick()

<<import>>

—

explorviz.shared.usertracking.records A

Figure 5.3. RPC class structure for the user tracking

5.3. Activities

getUsertrackingRecord method. To that end, an AsyncCallback field is instantiated. The
UsertrackingRecordCallback<String> class realises the AsyncCallback<T> interface and de-
fines the behaviour depending on the return value of the remote procedure call. Since the
return value is not important to us, it is only used for exception handling. Furthermore, the
records are created by the Usertracking class and then serialised by GWT for passing them
to the server. In the UsertrackingRecordServiceImpl class implemented on the server-side,
the deserialised records are collected and serialised for the log file using the csvSerialize
method implemented by each record class. The rest of the classes are required for the RPC
mechanism as described in Section 2.4.1.

5.3 Activities

For a better understanding of the ongoing process a sequence diagram is shown in
Figure 5.4. It depicts the sequence of double clicking a node group. To simplify the
diagram the user action at the beginning directly calls the LandscapeInteraction class. In
fact, there are several steps before this call, but these are not relevant to the process. In the
LandscapeInteraction several methods of the Usertracking class are called. In this specific
case it is the trackNodeGroupDoubleClick method. In other cases the calls are made from
the ApplicationInteraction class and for other mouse actions different methods are called,
but these are only minor changes and the process stays basically the same. The several
methods in the Usertracking class first execute the init method, in which the proxy class
and the callback are instantiated. The proxy class is used for the communication between
client and server. Due to the asynchronism of the RPC technique, the callback is used
for passing the return value to the client-side. Then the record is created, in this case the
NodeGroupOpenRecord is instantiated. Afterwards, the client passes the method call to the
proxy class which passes the method call to the correct class on the server-side. This class,
the UsertrackingServiceImpl, now serialises the record and writes it to the user tracking
log file as already described. Finally, the return value which is actually only relevant in
the case of failure, is sent back to the proxy class, which then calls the onSuccess or the
onFailure method as appropriate.

Now we have an implementation fulfilling the requirements for tracking user actions in
ExplorViz. The next step will be the evaluation which is the topic of the next chapter.

25

5. Development of a Tracking Method in ExplorViz

5

i i ! i
| “ _ 1
M | | [
I | ! 1
i | I | ¥ ss800nSU0 L L'L ||
! |
m i ! ! _
.U U B |
! _ Bums ro L | " > !
i i | [[
| piooa) papewsoy || _ _ _
i ASOSWM €O || _ i _
“ _A||||||||.|.|.|4| “ “
_ _ BUlS T9 1 _ !
i I ! I
| | | |
“ | ENCHETE “ !
| " ! | |
i ! i ! 9L ||
I | ! I |
I | ! I |
| I | | _
| “ ! I T
I | ! I |
| | ! I |
I | ! I 1
) ! | ! _
|
“ ! _) _
i i piooeyuadodnoinapoN T o T """ ‘picoayusdodnoinapoN meu g7k
I 1 | |
| | | |
“ | _ |
I ! sjoeq|ienpiodsybupioeIesn T o |_
i 1
“ ! |
i i SUASYS0INIaSPI008yBUBOBINSS
I “ <<sseo Axoid>>
|
“ |
| |
| |
H 1
ETEy :
piooayBuUINORIES |dwiaoiAlegpI0oayBuUORILES

91810 IMO T L L

'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
1

Bupjoepesn ;

uonoesRjuladesspue _

™~ ~sdesspuei -]
ajepdn :z'L
¥l0°(anog I
dnoieponyoes i) _A dnoub apou
I P sgnog L | |
_ 198

$

Figure 5.4. Sequence for double clicking a node group

26

Chapter 6

Evaluation of the
Developed Tracking Tool

First, we will describe the quality criteria used for the evaluation of the developed tracking
method. Afterwards, we will take a look at some scenarios and their resulting log files in
Section 6.1.2 and Section 6.1.3. The concluding discussion on the results is conducted in
Section 6.1.4.

6.1 Completeness Evaluation

6.1.1 Quality Criteria

The assessment criteria extend the criteria from Section 4.1. The criteria “Completeness”,
“Usability”, and “Adaptability” are derived directly. “Correctness”, “Standards”, and
“Analysability” are criteria for completing the evaluation and are again inspired by the
CISQ. [Consortium for IT Software Quality 2012]

Completeness and Correctness The purpose of these criteria is to verify whether the imple-
mentation completely covers the requirements for tracking user actions in ExplorViz.
The requirements include every action performed with the mouse. The landscape
viewer and the system viewer also provide zooming actions with the mouse, but these
actions shall not be tracked. Obviously, the resulting tracking data should be correct.
This includes correct content and representation.

Usability This describes the usability from the user’s view. In the best case the user
experience is not influenced by the developed tracking method.

Adaptability After implementing the tracking method it is important that it is adaptable
and expandable. It has to be possible to quickly add and change specific records or
tracking methods.

Standards Resulting tracking data should be saved in a convenient format which should be
highly compatible.

Analysability This criterion is important for further analysing and processing the tracking
data and is connected to the chosen file format of the tracking data.

27

6. Evaluation of the Developed Tracking Tool

Open node group
— 5| withnodes [10.0.0.1, 10.0.0.2]
(double click)

(Click node 10.0.0.4)

with nodes [10.0.0.1, 10.0.0.2]

Open popup menu for Workflow
(double click)

Close node group
(right click)]

(Click node 10.0.0.1)7 [Open system level view for Provenance]

(double click)

:

Figure 6.1. Activity diagram for scenario S1 in the landscape level view

For evaluating the completeness and correctness it is useful to investigate test cases.
Comprehensive test cases were executed many times during and after the implementation.
Three sample scenarios are outlined in the following. They can be easily reenacted with
the project on the attached DVD in Appendix A.

6.1.2 Scenarios

The first scenario visualised in Figure 6.1 concentrates on actions in the landscape viewer.
At the beginning, a click on the node with the IP 10.0.0.4 is performed. Through a right
click, the popup menu of the application named “Workflow” is opened. After clicking
another node with IP 10.0.0.1, a node group is opened by double clicking on it. The node
group contains the nodes with IPs 10.0.0.1 and 10.0.0.2. Afterwards, the node group is
closed again and an application named “Provenance” is double clicked. This leads to the
system level view.

Figure 6.2 shows the scenario S2 for the system viewer. The system viewer contains
different objects, but the actions performed do not differ from the actions in the landscape
viewer. The first action is a right click on the component “jpetstore”. This action opens
a popup menu. Afterwards, the component is closed and opened again. Subsequently,
the component “persistence” is opened, then the component “sqlmapdao” is opened and
finally, the popup menu for the class “AccountSqlMapDao” is opened. This popup menu
shows the option for viewing the source code of the class which leads to the code viewer.

28

6.1. Completeness Evaluation

(Open popup menu for "jpetstore") %{Open component "persistence")

CCIose component "jpetstore") COpen component "sqlmapdao")

COpen component "jpetstore")7 [Open popup menu for j
c

lass "AccountSqlMapDao"

:

Figure 6.2. Activity diagram for scenario S2 in the system level view

(Open file "AccountSqlMapDao.java")

(Open file "CategorySqlMapDao.java")

(Open file "DaoConfig.java")

®

Figure 6.3. Activity diagram for scenario S3 in the code viewer

The last scenario S3 in Figure 6.3 concerns the code viewer. Although the user can
perform expanding and folding actions on the tree hierarchy, only information about
opened files are tracked in this view. Therefor, only three files are opened one after another
during the scenario.

6.1.3 Results

When we now take a look at the resulting user tracking log file in Listing 6.1, the performed
actions from scenario S1 can be recognised. At the beginning of each line is a time stamp
which specifies the time in milliseconds. Following that, the class name of the created

29

6. Evaluation of the Developed Tracking Tool

1379514290635 ;NodeClickRecord;10.0.0.4; [Workflow-3,Provenance-4]
1379514316821;ApplicationOpenPopupMenuRecord;Workflow;3
1379514328773 ;NodeClickRecord;10.0.0.1;[Jira-0]

1379514333587 ;NodeGroupOpenRecord; [10.0.0.1,10.0.0.2]
1379514356923 ;NodeGroupCloseRecord; [10.0.0.1,10.0.0.2]
1379514383642;ApplicationOpenSystemLevelRecord;Provenance;4

Listing 6.1. Resulting log file after execution of scenario S1 in Figure 6.1

NodeGroupCloseRecord;[10.0.0.4,10.0.0.5,10.0.0.6,10.0.0.7] NodeGroupCloseRecord;[10.0.0.1,10.0.0.2]

> s
NodeGroupCloseRecord;[10.0.0.1,10.0.0.2] \3/ NodeGroupCloseRecord;[10.0.0.4,10.0.0.5,10.0.0.6,10.0.0.7

Figure 6.4. Possible Markov chain for the landscape viewer

record is displayed. This name encodes information about the type of the clicked object and
exactly what action was performed. After this the properties of the record are given. In the
first line a node with the IP 10.0.0.4 was clicked. Additionally we get the information which
applications the node contains, namely “Workflow” with ID 3 and “Provenance” with ID
4. The application “Workflow” with ID 3 is the subject for the next action which opens
a popup menu for it. The following lines reproduce the activity diagram in Figure 6.1
as expected. The last line describes the action of opening the system level view for the
application with name “Provenance” and ID 4.

For investigating the scenarios, it may be of interest to connect the information of the
performed actions. After collecting tracking data of multiple processes, it makes sense to
visualise the data with a Markov chain. An example of a Markov chain for the landscape
level view is given in Figure 6.4. It summarises the probabilities of changing the view by

30

6.1. Completeness Evaluation

1379514408153 ; ComponentOpenPopupMenuRecord; jpetstore
1379514466288 ; ComponentCloseRecord; jpetstore
1379514471539; ComponentOpenRecord; jpetstore
1379514488909; ComponentOpenRecord;persistence
1379514493043 ; ComponentOpenRecord; sqlmapdao
1379514515202; Clazz0penPopupMenuRecord;AccountSqlMapDao

Listing 6.2. Resulting log file after execution of scenario S2 in Figure 6.2

1379514567194 ; CodeviewerOpenFileRecord;explorviz;JPetStore/com/ibatis/jpetstore/
persistence/sqlmapdao/;AccountSqlMapDao.java

1379514612819; CodeviewerOpenFileRecord;explorviz;JPetStore/com/ibatis/jpetstore/
persistence/sqlmapdao/;CategorySqlMapDao. java

1379523908729; CodeviewerOpenFileRecord;explorviz;JPetStore/com/ibatis/jpetstore/
persistence/;DaoConfig.java

Listing 6.3. Resulting log file after execution of scenario S3 in Figure 6.3

either opening or closing node groups or by moving to a view of a different level. Other
actions performed by the user have no influence on the number of executable actions,
therefore they do not cause a transition to another state. The start state s; represents the
initial landscape level view in which every node group is closed. There are two node
groups which can be opened from here. This is done with the given probabilities in the
graph and the state moves to sp or s3. Continuing, the node group which is still closed can
be opened as well or the already opened node group can be closed again. In the first case
the transition moves forward to s4, in the second case back to s;. From here, we can close
one of the node groups to move back to sy or s3. It is possible to move to state s5 from
every state. It generalises the transition to the system level view which can be performed
by double clicking any application. In fact, there should be a transition to a new state
for every double clicked application. Self transitions caused by simple clicks on nodes or
opening popup menus with a right click are not explicitly drawn as there is no need of
drawing them as explained in Section 2.1.1.

Now we check the resulting log file in Listing 6.2. Beginning each line with a time
stamp, the log file contains every performed action as expected and the correct record types
are used for the different actions. At the end the ClazzOpenPopupMenuRecord represents
the right click action performed on the class with name “AccountSqlMapDao”. Since the
opened popup menu provides an option for displaying the source code of the class, we use
it for a transition from system viewer to code viewer.

31

6. Evaluation of the Developed Tracking Tool

The same actions as in the activity diagram of scenario S3 are presented in the log file
given in Listing 6.3. Among the time stamp and the description of the record, information
about project name, file path, and file name are contained.

6.1.4 Discussion

Completeness and Correctness The test cases of the last section verify completeness and
correctness of the implementation. As expansion the navigation through the tree
structure in the code viewer could be tracked.

Usability For the reason that tracking is only executed in the background, there is no impact
on the usability for users. Plus, the log file can be accessed through a file explorer.

Adaptability The records can be easily complemented. The abstract class which has to
be implemented by each record provides a time stamp and ensures that every record
implements the csvSerialize method. A problem can be seen with the integration
of tracking functions into core level concerning code. If tracking methods need to be
added or changed, it takes more time to execute these changes than with aspect-oriented
programming.

Standards The collected tracking data should be available in a format which is easy to read
and also compatible to applications used for further analysis. The CSV format covers
these requirements. It is an simple text format and is therefore highly compatible with
many file viewers. Besides, the related tool Kieker uses the same format.

Analysability The CSV format is easily readable without dedicated analysis tools. Therefore,
isolated information can be directly taken from the log file. For connecting information
and providing a comprehensive analysis, however, the data has to be processed further.
Markov chains or web graphs, which are described in Section 2.1, make the resulting
data more analysable in terms of the probabilities of certain events. This aspect was
already mentioned in Section 6.1.3.

6.1.5 Threats to Validity

For rating the degree of validity reached by the evaluation, we take a look at the possible
sources of error. First of all, the depth of coverage is limited. Since the number of paths
resulting from performing possible actions in different orders is infinite, not every path
could be tested. However, the logging is stateless. This means, generating the records and
writing them to the CSV file does not depend on the tracked actions before or afterwards.

Furthermore, the evaluation of the adaptability can only be seen as an estimate. Since
we cannot foresee whether and to what degree the structure of ExplorViz will change, the
dimensions of necessary adaptations are unpredictable. Nevertheless, the user tracking
functionality is as modular as possible. The new classes are packaged in usertracking

32

6.1. Completeness Evaluation

packages both on the server and the client. Hence, potential changes concentrate on few
packages and classes. Finally, if an instrumentation framework can be implemented instead
of directly integrating tracking method calls into the business logic code, the interface
between user tracking and core level concern will be defined more accurately.

The last point concerns the analysability. The processing of the tracking data is done
manually so far. The goal of auto-generated visualisations will make it necessary to reeval-
uate the analysability of the tracking records, but the records are constructed following a
pattern which can be easily parsed. As Kieker shows, the further processing and analysing
is possible with the CSV format.

33

Chapter 7

Conclusions and Future Work

This last chapter concludes with related work in Section 7.1, an overall summary in
Section 7.2, and future work in Section 7.3.

7.1 Related Work

Other tracking related tools are Google Analytics and Piwik, which are already described in
Section 4.2 and Section 4.3. Compared to these tools the developed tracking method of this
thesis is limited to the requirements of ExplorViz. It does not collect needless information
such as location and software used by the users. There is also no need for an account and
the tracking data is directly saved on the sever-side instead in an external application. One
of the main differences is the coding language used. While Google Analytics and Piwik
require using JavaScript, the implemented method in this thesis is written in Java for GWT.

Kieker is another related tool and was already introduced in Section 3.2.1. It provides
many features and is therefore more complex than the implemented tracking method.
Contrary to the method developed in this thesis, however, it employs method interception
and provides further analysis for the tracked data.

7.2 Conclusions

The initial goal was the development of a tracking method for the web-based front end
of ExplorViz. To that end, different tools and methods were evaluated in Chapter 4. The
findings of this evaluation showed that current tools and methods are not fit to be used with
GWT. Mostly they lack good documentation and are not compatible with current versions
of GWT. As a consequence, the user tracking for ExplorViz was implemented with a manual
tracking method combined with the GWT remote procedure call technique as described
in Chapter 5. That way we have implemented a simple but working method. Besides,
the logging method can be easily exchanged if an instrumentation framework provides
support for the used technologies and the configuration of ExplorViz. The evaluation in
Chapter 6 shows that the implemented tracking method meets the requirements.

35

7. Conclusions and Future Work

7.3 Future Work

Future work includes an auto-generated visualisation of the logging data. The implementa-
tion developed in this thesis only produces log files, but Section 6.1.3 already shows the
possibility of using Markov chains. This would make the information more readable and
easier to understand. Furthermore, if looking for a very specific piece of information, a
visualisation would be helpful for its quick retrieval. As introduced in Section 2.1.2 web
graphs are another alternative for visualising the tracking data.

The rest of the future work lies in extending or improving the current implementation.
The logging methods are written directly in the business logic code so far. This makes
changes and extensions circuitous. Thus, the development of a working instrumentation
framework would be useful. Some frameworks were already evaluated in Chapter 4. Either
one of these frameworks could be extended and improved or a new method could be
developed. Besides, frameworks with active development could offer a new release with
more support for GWT in the future.

Finally, the user tracking itself could be extended. It is possible to navigate and zoom
through landscape viewer and system viewer with keyboard and mouse. Moreover, the
tree hierarchy can be expanded and folded. The hitherto existing tracking records are
self-contained and provide a complete overview of the user’s behaviour. Nevertheless, the
navigation through the landscape viewer, the system viewer, and the tree hierarchy in the
code viewer would complement the tracking data.

36

Bibliography

[Anttonen and Salminen 2011] M. Anttonen and A. Salminen. Building 3D WebGL
Applications. Technical report 16. Tampere University of Technology Department of
Software Systems, 2011. (Cited on page 7)

[Cantor 2012] D. Cantor. WebGL Beginner’s Guide. Edited by A. Sheikh. Packt Publishing,
2012. (Cited on page 7)

[Chaganti 2007] P. Chaganti. Google Web Toolkit - GWT Java Ajax Programming: A
Practical Guide to Google Web Toolkit for Creating AJAX Applications with Java.
Edited by D. Chittar. Packt Publishing, 2007. (Cited on page 7)

[Chen et al. 2004] J. Chen, L. Sun, O. R. Zaiane, and R. Goebel. Visualizing and discovering
web navigational patterns. In: Proceedings of the Seventh International Workshop on the Web
and Databases. June 2004, pages 13-18. (Cited on pages 4, 5)

[Consortium for IT Software Quality 2012] Consortium for IT Software Quality. CISQ
Specifications for Automated Quality Characteristic Measures. 2012. URL: http://it-
cisq.org/wp - content/uploads /2012 /09/CISQ- Specification - for - Automated - Quality - Characteristic -

Measures.pdf (visited on 09/24/2013). (Cited on pages 15 and 27)
[Eclipse 2013] Eclipse. Xtend - Modernized Java: Documentation. 2013. URL: http:
//www.eclipse.org/xtend/documentation.html (visited on 09/09/2013). (Cited on page 8)

[Fittkau et al. 2013] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring. Live trace visualization
for comprehending large software landscapes: the explorviz approach. In: 1st IEEE
International Working Conference on Software Visualization (VISSOFT 2013). Sept. 2013.
(Cited on page 11)

[Google 2013] Google. Google Analytics. 2013. URL: http://www.google.con/analytics/ (Visited
on 09/24/2013). (Cited on page 16)

[GWTProject 2013] GWTProject. GWT RPC Tutorial. 2013. URL: http://www.gwtproject.org/doc/
latest/tutorial/RPC.htmt (visited on 09/09/2013). (Cited on page 8)

[Johnson 1997] R. B. Johnson. Examining the validity structure of qualitative research.
Education 118.2 (1997), pages 282-292. (Cited on page 13)

[Kieker 2013] Kieker. Official Website. 2013. URL: http://kieker-monitoring.net/ (Visited on
09/27/2013). (Cited on page 10)

[Libbe 2012] K. Y. Liibbe. Improving a Transformation of Java Models to KDM. Bachelor’s
Thesis. Kiel University, Sept. 2012. (Cited on page 8)

[Munshi et al. 2008] A. Munshi, D. Ginsburg, and D. Shreiner. OpenGL ES 2.0 programmin
g P prog &
guide. Pearson Education, 2008. (Cited on page 7)

37

http://it-cisq.org/wp-content/uploads/2012/09/CISQ-Specification-for-Automated-Quality-Characteristic-Measures.pdf
http://it-cisq.org/wp-content/uploads/2012/09/CISQ-Specification-for-Automated-Quality-Characteristic-Measures.pdf
http://it-cisq.org/wp-content/uploads/2012/09/CISQ-Specification-for-Automated-Quality-Characteristic-Measures.pdf
http://www.eclipse.org/xtend/documentation.html
http://www.eclipse.org/xtend/documentation.html
http://www.google.com/analytics/
http://www.gwtproject.org/doc/latest/tutorial/RPC.html
http://www.gwtproject.org/doc/latest/tutorial/RPC.html
http://kieker-monitoring.net/

Bibliography

[Norris 1998] J. R. Norris. Markov Chains. Cambridge University Press, July 1998, pages 1-
9. (Cited on page 3)

[Rohr et al. 2008] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer, L. Stoever, S. Giesecke,
and W. Hasselbring. Kieker: continuous monitoring and on demand visualization of
java software behavior. In: Proceedings of the IASTED International Conference on Software
Engineering 2008 (SE'08). Edited by C. Pahl. Anaheim, CA, USA: ACTA Press, Feb. 2008,
pages 80-85. (Cited on page 10)

[Schmticker 2011] N. Schmiicker. Web tracking. SNET2 Seminar Paper. Berlin University
of Technology. 2011. URL: http://www.snet.tu-berlin.de/fileadmin/fg220/courses/SS11/snet -
project/web-tracking_schmuecker.pdf. (Cited on page 9)

[Seidelin 2011] J. Seidelin. HTML5 Games: Creating Fun with HTML5, CSS3, and WebGL.
John Wiley and Sons, 2011. (Cited on page 7)

[Shadish et al. 2002] W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimental and
Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflon
Company, 2002. Chapter 1, 14. (Cited on pages 12, 13)

[Shreiner et al. 2009] D. Shreiner et al. OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Versions 3.0 and 3.1. 7th edition. Addison-Wesley Professional,
2009. (Cited on page 7)

[tutorialspoint 2013] tutorialspoint. GWT - RPC Communication. 2013. URL: http://www.
tutorialspoint.com/gwt/gwt_rpc_communication.htm (ViSited on 09/09/2013). (Cited on page 8)

[Van Hoorn et al. 2009] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S.
Frey, and D. Kieselhorst. Continuous Monitoring of Software Services: Design and
Application of the Kieker Framework. Technical report TR-0921. Kiel University, Nov.
2009. (Cited on page 10)

[Van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: a framework
for application performance monitoring and dynamic software analysis. In: Proceedings
of the 3rd joint ACM/SPEC International Conference on Performance Engineering (ICPE 2012).
ACM, Apr. 2012, pages 247-248. (Cited on page 10)

[Wargolet 2011] S. Wargolet. Google Web Toolkit. Technical report 12. University of
Wisconsin - Platterville Department of Computer Science and Software Engineering,
2011. (Cited on page 7)

[WebGL 2013] WebGL. WebGL puplic wiki. 2013. URL: http://waw.khronos.org/webgl/wiki/Main_
Page (visited on 09/09/2013). (Cited on page 7)

38

http://www.snet.tu-berlin.de/fileadmin/fg220/courses/SS11/snet-project/web-tracking_schmuecker.pdf
http://www.snet.tu-berlin.de/fileadmin/fg220/courses/SS11/snet-project/web-tracking_schmuecker.pdf
http://www.tutorialspoint.com/gwt/gwt_rpc_communication.htm
http://www.tutorialspoint.com/gwt/gwt_rpc_communication.htm
http://www.khronos.org/webgl/wiki/Main_Page
http://www.khronos.org/webgl/wiki/Main_Page

Appendix

39

Appendix A

ExplorViz DVD

Contents
/ The root directory contains this bachelor’s thesis as pdf file.
/project_files/ Contains the project “ExplorViz” and every project depen-

dency. The included readme file contains instructions on
how to execute ExplorViz with the IDE Eclipse.

/project_files/ExplorViz/ Besides the packages and the class files edited for this thesis,
this directory contains the user tracking file at war/User-
trackingLogFile.csv.

Eidesstattliche Erklirung

Hiermit erklére ich an Eides statt, dass ich die vorliegende Arbeit selbststandig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

43

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.2.1 G1: Identify Existing Tracking Tools and Methods
	1.2.2 G2: Evaluation of Identified Tracking Tools and Methods
	1.2.3 G3: Implementation of a New or Existing Tracking Method

	1.3 Document Structure

	2 Foundations and Technologies
	2.1 Visualisation
	2.1.1 Markov Chains
	2.1.2 Web Graphs

	2.2 Aspect-Oriented Programming
	2.3 WebGL
	2.4 GWT
	2.4.1 Remote Procedure Call

	2.5 Xtend

	3 Dynamic Analysis
	3.1 Tracking
	3.2 Monitoring
	3.2.1 Kieker

	3.3 ExplorViz
	3.4 Experiments
	3.4.1 Threats to Validity
	Internal Validity
	External Validity

	4 Evaluation of Existing Tracking Tools and Methods
	4.1 Assessment Criteria
	4.2 Google Analytics
	4.3 Piwik
	4.4 Instrumentation Frameworks
	4.4.1 GWT ENT and Tiny AOP
	4.4.2 GIN
	4.4.3 Spring

	4.5 Direct
	4.6 Overall Results

	5 Development of a Tracking Method in ExplorViz
	5.1 Goals of Tracking
	5.2 Approach
	5.3 Activities

	6 Evaluation of the Developed Tracking Tool
	6.1 Completeness Evaluation
	6.1.1 Quality Criteria
	6.1.2 Scenarios
	6.1.3 Results
	6.1.4 Discussion
	6.1.5 Threats to Validity

	7 Conclusions and Future Work
	7.1 Related Work
	7.2 Conclusions
	7.3 Future Work

	Bibliography
	A ExplorViz DVD

