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Abstract

With growing software systems appropriate monitoring concepts become more and more
important. For large-scale software systems this becomes a problem, simply because of the
overwhelming size and complexity these systems can reach. Performance data is of special
interest in this context, since it is related to factors such as the confidence and satisfaction
customers have in the offered services.

In many cases, performance issues manifest themselves in so-called anomalies, that do not
fit to the normal behavior of the software system. ΘPADx, an approach and a correspond-
ing implementation, that is developed in the process of this thesis, is able to recognize such
anomalies. In contrast to often used offline analysis approaches, the ΘPADx approach is
able to process performance data online, which makes fast reactions to the anomalies and
the correlated issues possible.

ΘPADx is based on an approach called ΘPAD, that was presented by Bielefeld in 2012. An
analysis of ΘPAD reveals weaknesses of the approach, whenever anomalies are occurring
over a long time period. Based on this analysis, extensions are developed and implemented
to improve the approach. With the help of the implementation, the extended approach,
then named ΘPADx, is evaluated on past and actual data of the social network Xing. Xing
serves as case study environment for the actual thesis and also for the work of Bielefeld,
which makes the results comparable. It turns out, that the extensions lead to improved
anomaly detection results and an enhanced usability of the approach.
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Chapter 1

Introduction

1.1 Motivation

Over the past ten years the Internet and its possibilities developed rapidly. Between 2010
and today, the user count grew by more than 550%, as can be seen at the Internet World
Stats Website [Miniwatts 2013]. Since the Web 2.0 is arising, services like social networks,
blogs or photo-sharing-networks became popular. As an example, Facebook stands out
with an increase from one million users in 2004 to more than one billion users in 2012
[Facebook 2013]. Backed up by an increasing amount of fast Internet connections and
mobile devices, a huge number of users are "all time" connected to the Internet. Therefore,
services that are available via Internet and are hosted on distant data centers became the
solution of choice for many companies [Limam 2010]. Such services are summarized under
the term Software as a Service (SaaS). There are several advantages of the SaaS approach. For
example, the software is easily distributed via Internet and maintenance-free at the user
side [Limam 2010; Ju 2010]. With the distributed architecture used by SaaS however, some
disadvantages arise as well. One key factor for the customer satisfaction is the performance
of the used software. The performance is one of three factors, which are summarized under
the term Quality of Service (QoS). As defined by Becker [Becker et al. 2006] for example,
QoS consists of the factors availability, reliability, and performance.

The factors of QoS can be affected by different circumstances. The huge amount of
users in the Internet or the fact, that trends or phenomena are propagated quickly through
the web due to the popularity of social networking, can lead to huge workloads and huge
variations in workloads. The hardware resources behind services are often bounded or
can not been allocated in time. The factors of QoS can also be affected by attacks against
applications or by hardware problems. Faulty behavior, slow response times, or even the
outage of the service might be the consequences. These situations can bring up several
problems for the software provider. Customers might switch to competitors’ products or the
company might get involved in costly law suits, caused by violated Service-Level-Agreements
(SLAs). Therefore, a continuous observation of the application and its underlying system
is important. The possibility of detecting abnormal behavior of a system with the help of
these kinds of observations called monitoring, is a key issue that is considered in this thesis.

1



1. Introduction

Anomalies are patterns in data that are not conform to the majority of the containing
data set. The detection of such patterns is a problem that is addressed in many different
research areas. The analysis of network traffic or the detection of credit card fraud are just
a few examples [Chandula et al. 2009]. Beside more generic methods, special detection
methods were often invented for certain research domains [Chandula et al. 2009]. One
possibility to find anomalies relies on the so-called time series analysis. The data of an
observed variable can be transformed to a time series and processed with algorithms like
exponential smoothing or “averaging methods”. The result is a new time series that can be
compared to the original one.

The Online Performance Anomaly Detection (ΘPAD) [Bielefeld 2012a] approach uses time
series analysis based methods for its anomaly detection. ΘPAD is a concept and a corre-
sponding implementation introduced by Tillmann Carlos Bielefeld in 2012 [Bielefeld 2012a].
This approach is able to achieve automatic detection of performance anomalies. As a case
study, ΘPAD was integrated and evaluated at the social network system Xing1, where it
reached results of good quality. However, some disadvantages arose with a special kind of
anomaly [Bielefeld, p.94] and the usage of ΘPAD for systems that offer performance data
from multiple sources. While the detection of short term anomalies with ΘPAD is reliable,
anomalies that occur over a longer time period caused additional alerts whenever the
system returns to its normal behavior. Since the approach supposes an abnormal behavior
while the system runs normal, these are false alerts. Because of this fact, the practical usage
of the ΘPAD approach is disturbed.

This thesis aims to investigate a solution for these disadvantages by extending the anomaly
detection algorithm of ΘPAD. Xing is chosen as case study environment to reach a high
comparability within the evaluation. Since ΘPAD was developed, some changes to the
environment of Xing were made. The main application of the Xing network got split in
several smaller, interdependent applications. While ΘPAD was able to run an analysis for
a single application, an analysis process must now be able to handle the input of several
applications. The approach and the corresponding implementation, which are the result
of this thesis, therefore also extend the ΘPAD approach to support the anomaly detection
on performance data of multiple sources. With respect to the extensions that will arise
throughout this thesis, the resulting approach will be called Extended Online Performance
Anomaly Detection (ΘPADx).

1.2 Xing - Overview

Xing is a social network system hosted by Xing AG. Since the company was founded in
2003 under the name openBC, the user base of the social network grew fast. In 2006 the

1Xing Website: http://www.xing.com
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company was renamed to Xing. Nowadays, over 13 million members worldwide and about
6.5 million users in German-speaking countries are registered on Xing. This makes Xing
Europe’s most important network aiming on business contacts [Xing AG 2009]. Users
are able to share their profiles, create groups, or organize events via Xing to search and
find expert knowledge, jobs, employees, or ideas [Xing AG 2012]. Additional features are
available for members who possess a payed premium membership. With currently over
800,000 premium members, this builds the company’s most important source of revenue
[Xing AG 2013a].

The member base, steadily growing since 2003, leads to a continuous progression of
the platforms software. With the enhanced requirements due to the growing amount of
users, the software evolved during the years. In 2003 the software was written in Perl and
was hosted on only a few servers. Today, the platform consists of multiple applications
written in Perl and Ruby on Rails (see Section 2.4.3) hosted on hundreds of physical servers
in two data centers. To obtain the platform’s performance even under the growing amount
of processed data, new technologies, as for example eventual consistency [Gustavsson and
Andler 2002] or data base sharding [Chodorow 2011], are established over the time.

While the platform becomes more and more complex, an appropriate performance moni-
toring solution is necessary. Xing already uses the performance monitoring tool Logjam
(see Section 2.4.3), which is able to store and visualize a wide range of performance data.
However, it is still a hard task to recognize performance issues in time, due to the huge
amount of components and applications the software system contains of. OPADx aims to
solve this problem more reliably than OPAD, while using a similar, but improved automatic
detection approach.

1.3 Goals

The motivation of this thesis already sketched what kind of extensions are necessary for
the ΘPAD approach. Therefore, the goals derived from the motivation section and are
presented in a more detailed manner. For a better over all structure the thesis is oriented
according to the Goal Question Metric Paradigm developed by Basili and Caldiera [Basili et
al. 1994]. This paradigm is also briefly introduced within this section.

1.3.1 Goal Question Metric Paradigm

The Goal Question Metric Paradigm (GQM) was originally developed to improve processes
in the software engineering domain. Most of the time the quality of processes and the
corresponding results are measured with metrics that are easy to collect, for example
the number of code lines in a software project or the number of pages of a thesis. But
these metrics are hard to interpret without a corresponding context. Therefore, the GQM

3



1. Introduction

approach follows a more top-down oriented structure. First, goals are defined. Then a set
of questions is created for every goal to gain a more detailed characterization of it. With
the context given by the goals and questions, a fitting metric can be derived eventually.
Following the Goal Question Metric Paradigm, such a metric is way more meaningful than
metrics that are not correlated with the given context. These three parts form a hierarchical
structure visualized in Figure 1.1, the so-called GQM model.

Goal

In the first step the goals are defined. The GQM model defines two different kinds of
goals in general. The goals on the organisational level represent the needs and interests
of the organization or person that will develop the covered process. These can be for
example “we need to put more effort in the customer service” or “we need to improve our
overall productivity”. For this thesis an example might be “i need to improve the anomaly
detection approach”.
The second kind of goals are the conceptual goals, defined to split up and solve the
overall goals. A conceptual goal is set for a specific object and addresses an issue and a
corresponding purpose related to the object. The complete goal is defined under a certain
viewpoint. This means that different stakeholders may have different expectations regarding
the goal. An example in the context of the improvement of the anomaly detection approach
can then look as followed: “find a good configuration setup of ΘPADx for the evaluation
environment”. Where the purpose is to find the configuration, the issue is the configuration
itself, the object is ΘPADx and the viewpoint is the case study environment.

Question

For a more detailed specification of the way to achieve a result for a defined conceptual
goal, so-called questions are used within the GQM approach. Every question aims on a
certain quality issue of the measured object under a certain viewpoint. With the help of the
questions the respective issue can be divided into its main components. In order to be able
to answer the questions in a quantitative way, a set of data is associated with every question.
Following the example, a question could be “What is the best forecasting method to chose?”

Metric

Each question is refined in different metrics. A metric can either be objective or subjective.
While an objective metric depends only on the object itself, a subjective metric depends
on the object and the viewpoint. For example the lines of code are an objective metric,
while the readability of the code is a subjective metric. This is because the readability
depends also on the person who reads the code. An example metric to assess the quality of
a detection approach is the F-measure, that will be introduced in the foundations chapter.

4



1.3. Goals

Figure 1.1. Overview of the GQM process. (Image based on [Basili et al. 1994])

1.3.2 Organizational Goals

Within this section the goals are defined as described by the GQM approach. The points
mentioned here are the goals for the entire thesis. This will correspond to the goals on
the organisational level in the GQM domain. In the evaluation process (Chapter 5) the
conceptional goals will take up the goals again and divide them into the main components
with the help of evaluation questions. This offers the opportunity to derive fitting metrics.
Better interpretable research results are expected with this approach.

� G1: Improvement of the ΘPAD anomaly detection approach

Develop a way to improve the anomaly detection approach of ΘPAD. To accomplish
this, a hybrid method of two kinds of forecasters is used. Furthermore, the parameters
of the algorithms and the anomaly detection have to be readjusted to match the new
approach. Additionally, the anomaly detection will be designed to work on multiple
applications and metrics (see G3.1 and G3.2).

� G2: Implementation of the ΘPADx approach

The Kieker plugin architecture has been reworked since ΘPAD was developed. An
implementation of the extensions to the ΘPAD approach – still based on Kieker and also
matching the new architecture – should be created. Furthermore, the implementation
should take the additional forecasting method, used for the improvement, into account.
Therefore, it must be able to import and process information from a long-term data set
and combine it with the forecasts to achieve an improved anomaly detection.

� G3: Integration of the extended approach in the redefined Xing environment

Since the ΘPAD approach has been introduced, the environment at Xing changed.
This leads to the following extension of ΘPAD:

5



1. Introduction

� G3.1: A new transport layer is introduced. Instead of AMQP now the brokerless
ZeroMQ is chosen. To be able to process the data from the messaging queue, the
adapter has to be adjusted to support ZeroMQ.

Additionally, two conceptional changes are necessary:

� G3.2: The application monitored with ΘPAD is divided into several individual and
inter-dependent applications. A way to read and separate the data from the incoming
messages of multiple applications has to be implemented to adapt to the architectural
changes.

� G3.3: Finally, the applications now give information about a huge number of metrics
like response time, cpu load or concurrent users. Therefore, the implementation has to
support the multiple metrics mentioned in Chapter 2. This leads to the implementation
of corresponding new Monitoring Records to process these kinds of data within the
Kieker Framework.

� G4: Evaluation

The ΘPADx approach can still underlie variations in terms of accuracy and precision
[Salfner et al. 2010]. A long-term test will be made to assess the results of the extensions
in respect to accuracy, precision and other metrics (see Section 2.2.1). To ensure the
comparability of the approaches, the evaluation is additionally going to involve the
same long term data set used in the evaluation of ΘPAD. Finally, it will be determined
if the ΘPADx approach is going to produce results of higher quality than ΘPAD.

1.4 Document Structure

After a short introduction and the presentation of the thesis goals in this first chapter, the
foundations of the research topic and the used technologies are presented in Chapter 2. In
Chapter 3 the approach, chosen to accomplish the formulated goals, is presented. After
that, the details of the corresponding implementation are covered in Chapter 4. With the
help of the implementation an evaluation takes place, that is described in Chapter 5. In
Chapter 6 a comparison with related works is executed. Finally, in Chapter 7 the thesis is
summed up and a conclusion is given.

6



Chapter 2

Foundations

The ΘPADx approach is based on several terms, concepts, and technologies to achieve
an automatic anomaly detection, which are introduced within this chapter. The chapter
starts with an introduction to time series and the most important forecasting algorithms in
Section 2.1. After this a definition of anomalies and an explanation of the chosen approach
of anomaly detection is given. Since ΘPADx is an approach focused on performance
data, also the performance metrics that are considered are introduced (see Section 2.3).
Within this thesis an implementation of the ΘPADx approach is developed as well. The
technologies and concepts used for this implementation are therefore presented in Section
2.4. For evaluation purposes, the developed ΘPADx implementation is used within the
case study environment at Xing. For this purpose, an introduction to the Xing architecture
and the corresponding technologies is given in Section 2.4.3. Finally the ΘPAD approach is
presented in Section 2.5, which is required to understand the extensions that are made to
the approach and presented in the next chapters.

2.1 Time Series Analysis

Time series data typically arise when a variable is observed over a period of time. The
assumption is made, that the points gathered during the observation process may have an
internal structure. Therefore, every point is dependent on the current situation and the
previous values of the observation. The intention of time series analysis is to discover this
internal structure.

2.1.1 Basic Definitions

A monitoring tool mainly observes system variables over a duration of time. Measurements
of a variable taken at regular temporal intervals lead to the formal definition of discrete time
series as described by Mitsa [Mitsa 2009]:

A time series X = {x1, x2, ..., xn} for t = t1, t2, ..., tn is a discrete function, chronologi-
cal ordered with value x1 for time t1, value x2 for time t2, and so on. Whenever the term
time series is used within this thesis, a discrete time series is intended. A measurement
that is already part of a time series is called time series point.

7
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Figure 2.1. Barplot of the time series X with step size ∆X and a time series window W.

With the given time index t, the duration D of a time series can be defined as the dis-
tance between the first and the last time series point:

DX = tn � t1

Furthermore, the distance between two consecutive time series points ti and ti+1 is called
step size. For discrete time series the step size is always constant and can be calculated by:

∆X = ti+1 � ti

Finally, a time series can be univariate or multivariate. While a univariate time series is
created by one underlying variable, the amount of variables for multivariate time series is
greater than one.

In the context of forecasting methods often only a part of a times series is taken into
account. For this thesis such a part of a time series X = {x1, x2, ..., xn} is called time series
window W = {w1, w2, ..., wm}. Therefore, the following constraints must hold:

� W � X

� the step size of X must equal the step size of W

� the values in the time window W must be equal to the corresponding values in X

Dh P N,@i P 1, ..., m : xh+i = wi

A simple way to visualize time series can be achieved by X-Y-Plots. An example visualisa-
tion of the fictitious time series X = {2, 5, 4, 4, 3, 5, 4} with ∆X = 1 is given in Figure 2.1.

According to [Verbesselt et al. 2010; Box and Jenkins 1990; Shumway 2011] time se-
ries data can be decomposed in three different components: trend, season and remainder.

8



2.1. Time Series Analysis

Figure 2.2. The time series (data) is decomposed in the trend, season and remainder components.
This decomposition was presented in [Verbesselt et al. 2010].

A model that is composed of these components is called a component model. The trend
component can be seen as long-term variation and can be described by a monotonically
increasing or decreasing function as stated by [Herbst et al. 2013]. The seasonal component
includes patterns that influence the time series in regular time intervals and in similar
extends. For example the workload of a website is lower at night while most users are
asleep. This pattern is reoccurring every day. Similar patterns can occur for different time
units, for example weekly or monthly. Finally, the remainder component is interpreted as a
random value for each time series point. This component treats the deviations of the time
series that can not be explained by the trend and seasonal component. Figure 2.2 shows a
decomposition of a time series (data) in the three components.

2.1.2 Data Discretization

The forecasting methods that are used within the ΘPADx approach and are presented later
on in this chapter, all rely on time series as input. As seen in the definition of time series,
the measurements are taken in regular time intervals. With other words, the forecasting
algorithms require discrete data. However, for real system measurements we can assume
that measurements arrive at these discrete time points but it can never be guaranteed. For
the context of this thesis, a measurement that is not guaranteed to be discrete is called a
raw measurement. A sequence of n raw measurements {r1, ..., rn} within one step size from
beginning at tstart and end tend can then be defined by:

EStstart ,tend ,M = {ri = (ti, M, mi|0 ¤ in  , tstart ¤ ti   tend}

9
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Within the ΘPADx approach and the corresponding implementation the discretization is
achieved with various aggregation methods. The sequence of raw measurements is then
aggregated by the chosen aggregation method. This process is illustrated in Figure 2.3.
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Figure 2.3. The raw measurements are aggregated with the mean function. The result is a discrete
time series, that can be processed by the used forecasting methods.

After the execution of the aggregation method a single value is gained from the sequence
of raw measurements. The aggregation method can then be described as a function:

f : ES ÝÑ R

For the aggregation purposes several functions can be used. Simple examples are the sum,
min or max function. A full list of all aggregation methods that are considered in the
ΘPADx implementation can be found in Table 3.2 of Chapter 3. The most used aggregation
function within this thesis is the mean function:

fmean(ES) =

∑
ri=(ti ,M,mi)PES

mi

n
If for example the mean value of all raw measurements within a minute is used for a graph,
this can give a good overview of the nature of the underlying data without smoothing out
to much details of the raw data.

2.1.3 Forecasting Methods

The forecasting of a time series value in the future is a common task in a wide range of
working fields, for example stock or climate forecasting. Over the time, various forecasting
approaches were developed, often highly adapted to the environment they are used in.
Examples are forecasting through Clustering [Kedia et al. 2005] or with Neural Networks
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[Zhang et al. 1998]. The forecasting algorithms considered for ΘPADx are working on
time series. They are chosen because they rely only on data that can easily be collected
from a monitored system. Their calculation is mainly based on the past time series points.
Furthermore, all of them are available in the forecasting package of R and therefore
ready for use. This section first introduces basic terms and afterwards presents common
forecasting methods of the time series forecasting domain.

Basic Terms

For the forecasting methods a time series is needed as input. In an online anomaly detection
approach, new data is continuously streaming in. Caused by this fact, the processed time
series is growing. For every incoming value, the forecast is processed on the growing time
series. However, at some point the time series may be too large to process in time or the
older time series points are not meant to influence the forecast value any longer. For this
purpose the concept of the sliding window is introduced [Frank et al. 2001; Shasha and Zhu
2004]. Let W = {w1, ..., wm} of length DW = m be a sliding window of a time series X. The
sliding window has the same step size ∆W = ∆X and is of the same length or smaller than
X DW ¤ DX . In the context of this thesis, a sliding window always holds the most recent m
values. This means, if the sliding window already holds m values, and a new value comes
in, the oldest value is removed from the sliding window and the actual is added.
The result of a forecasting algorithm is a time series F = { f1, ..., fl}. Each value of this time
series is a predicted value of the future, calculated for the same step size that the input
sliding window offers. The length DF = l is called lead time [Box and Jenkins 1990] and
corresponds to the period of time, predictions should be calculated for.

Moving Average

The moving average method is a simple way to achieve a forecast. Imagine a sliding
window W = {w1, ..., w2} of a time series. The statistical mean function can be used over
all values of W. The result of this calculation is the prediction one step size ahead of the
last value in W. This process is shown in Figure 2.4. As already mentioned in Section
2.1.2 the applying of the mean function smooths a time series, which may potentially hide
outliers. Therefore, the selection of the window size must be chosen with attention.

ARIMA

This forecasting method is based on the selection of a model out of a group of so-called
ARIMA models. These models were developed by Box and Jenkins [Box and Jenkins 1990]
and consist of three parts:

� AR (Autoregression): Regression operator used for the forecast. This factor influences the
weighting of a past time series value for the process of forecasting (see also exponential
smoothing).
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Figure 2.4. Forecasting with the moving average. The predicted value is calculated by the statistical
mean function over the sliding window ∆W . (Figure based on [Bielefeld 2012a])

� I (Integration): Integration of the underlying time series to gain a stationary time series.

� MA (Moving Average): Calculating the average of a sliding window (see Moving
Average) of forecast errors. This part covers the assumption, that the values of the time
series are interconnected with its forecast errors. Therefore, the forecast errors of past
predictions are integrated in the forecasting process.

A time series can be stationary or non-stationary. With respect to the component model (see
Section 2.1.1) a stationary time series has no trend component, while a non-stationary has
one. If a prediction for a non-stationary time series is targeted, the time series needs to
be differenced to gain a stationary version. Then the AR and MA parts are applied to
this time series. Thereafter, the results of the forecast need to be integrated to deal with
the non-stationary characteristic. If a forecast for a stationary time series is targeted, the
integration part of ARIMA is rejected. Such a model is then called ARMA model.
For forecasts of good quality an ARIMA(p,d,q) model needs to be fitted to a time series.
Therefore, p denotes the order of the AR part, q denotes the order of the MA part and d
denotes how often the differentiation / integration needs to be processed.

Single Exponential Smoothing (SES)

The single exponential smoothing method sums up weighted values of time series to
calculate a future step. The weighting is controlled by a parameter called smoothing constant.
Let X = {x1, ..., xn} be a time series, 0   α   1 the smoothing constant and ft be the
forecast for the discrete time point t. This leads to the following formal definition:

ft = α � xt + (1� α) � ft�1

With the recursion broken down, this can be written as:

fn+1 = αxt + α(1� α)2xt�1 + α(1� α)3xt�2 + ...

12



2.1. Time Series Analysis

Within this equation the weighting of the time series points with the help of the smoothing
constant α can be seen easily. The youngest time series points have a huge impact on
the forecast, while older time series points have lesser impact cause of the exponential
scaling of α. In Figure 2.5 the forecasting process is visualized. SES is applied to the sliding
window W = {4, 4, 3, 5} with a smoothing constant of α = 0, 5. SES can also be seen as a
special case of ARIMA. Only the Integration and the Moving Average parts of an ARIMA
model are used (ARIMA(0,1,1)).
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weighting of xt

Figure 2.5. Calculating a prediction with single exponential smoothing. Every xt is weighted by an
increasing factor up to α = 0, 5, visualized by the blue circles. (Figure based on [Bielefeld
2012a])

2.1.4 Anomaly Detection

Anomaly detection is focused on detecting patterns in the data of a system, that do not
fit the normal system behavior [Chandula et al. 2009; Steinwart et al. 2005; Lazarevic et
al. 2003; Yao 2010]. To achieve this, a so-called reference model is built, that represents
the normal behavior of the system. If actual observations significantly deviate from the
reference model they can be detected [Yao 2010; Sharma et al. 2003]. These abnormal
observations are also called anomalies or outliers.
Within this section the definitions of anomalies and the reference model are given first.
To interpret the deviation of an observation from the reference model, a suiting metric
and some kind of border between normal and abnormal behavior is needed. The anomaly
score and the anomaly threshold, as defined by Bielefeld [Bielefeld 2012a], are used for this
purposes and hence introduced.

Basic Terms

Anomalies are patterns in the data of a system that do not fit to the systems normal behavior.
These pattern can have different characteristics, for example they may vary in length or
magnitude. Chandola et al. define three different types of anomalies [Chandula et al. 2009].
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A point anomaly is an individual data point that can be considered abnormal. If a pattern
of data can be determined as abnormal in a specific context, but not otherwise, these are
called contextual anomalies. Finally, if a pattern of related data do not fit the characteristics
of the entire data set, these are referred as collective anomalies. Figure 2.6 illustrates the three
different types of anomalies for time series.

5 10 15

5

10

point 
anomaly

contextual
anomaly

collective
anomaly

Figure 2.6. Illustration of the three different types of anomalies.

As mentioned, a reference model represents the normal behavior of a system. Actual
observations are compared to this model to determine if a deviation between them exists.
Since this is a fact that strongly influences the quality of the anomaly detection, the search
for a fitting reference model is a key challenge. As an example, a modern software system
is considered. These are for example often composed of different components or libraries,
deployed on different hardware or underlying different workload characteristics. Such
parameters influence the behavior of the systems and therefore also the reference model.
As a consequence the process of reference model building can not be generalized, but is a
highly individual task. The following list shows two common thoughts that form a base
for reference model building:

� Many applications have seasonal patterns repeating in regular time periods (see seasonal
component in Section 2.1.1). With this knowledge it is possible to get a reference model
by expanding the usual appearance of the pattern into the future.

� For most applications the following assumption can be made. Actual monitoring values
measured, for example response times or database connections, may not differ much
from the last measured values. For example, the introduced forecasting algorithms are
based on this assumption, since they all use the past time series values to calculate a
prediction.
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Anomaly Score and Anomaly Threshold

An anomaly score should be able to express the difference between the expected value from
the reference model and the actual measured value. May X be the time series of incoming
measurements from a monitored system and Y the time series of the corresponding
reference model. As base of the anomaly score the euclidean distance of two time series
points xi and yi of X and Y at time i can be calculated by:

Deuclid(xi, yi) =
√
(xi � yi)2

This results in a value that represents the distance between the two time series points. A
normalization is applied to gain a value that is easy to interpret and comparable to values
that are generated by other time series:

A(xi, yi) =

∣∣∣∣D(xi, yi)

xi + yi

∣∣∣∣ P [0, 1]

The result of the normalization is the so-called anomaly score, which offers values between
0 and 1. ΘPADx is able to process anomaly detection for multiple applications at the
same time. With the defined anomaly score, it is possible to compare all received anomaly
detection results. This will help to find the cause of an anomaly within a complex software
system, as will be shown in the evaluation (see Chapter 5).
It is now possible to define a value θ P [0, 1], called anomaly threshold. Whenever the
anomaly score exceeds this value, the corresponding measurement is classified as anomaly.

2.2 Anomaly Detection Quality Metrics

There can be different scenarios for anomaly detection approaches. For example, an
anomaly can be detected if an anomaly occurs. This would be a correct warning. But it is
also possible to detect an anomaly even if none exists, which would be a false warning.
There are two more cases, a missing warning and correctly detected occurrence of no
anomaly. As pointed out by Salfner et al. [Salfner et al. 2010] this results in four different
cases, that are summed up in Table 2.1. According to Salfner et al. [Salfner et al. 2010] these
cases lead to important metrics, that are used to compare the quality of detection results.
In addition to these metrics, ROC curves are introduced. These are used to visualize the
quality of detection results.

2.2.1 Detection Comparison Metrics

In this section the metrics true positive rate, false positive rate, precision, accuracy and the
F-measure are introduced. They are all derived from the mentioned four cases that are
shown in Table 2.1.
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True Positive Rate (TPR)

If an anomaly occurs and an algorithm is detecting it correctly, this is called a true positive
(TP). It could also be the case, that an anomaly occurs but the algorithm signals a normal
value, a so-called false negative (FN). The sum of those two values represents the number of
all occurred anomalies. If this is set in relation to the true positives, the resulting value is
called true positive rate (TPR):

true positive rate =
TP

TP + FN
=

TP
F

False Positive Rate (FPR)

An anomaly detection algorithm can also assume that an anomaly occurred, even if the
actual behavior is normal. This case is called a false positive (FP). For the false positive rate
(FPR) these false warnings are related to the false positives and true negatives (TN). Where
a true negative is the case when the actual behavior is normal and the anomaly detection
also assumes a normal behavior. This is basically the ratio between false warnings and all
measures that were no anomalies:

f alse positive rate =
FP

FP + TN
=

FP
NF

Precision

After a detection exists a number of detected anomalies (POS). The precision is the ratio
between the correct detected anomalies (TP) and all detected anomalies:

precision =
TP

TP + FP
=

TP
POS

Accuracy

The accuracy is the ratio of all correct detections to the number of all detections carried out:

accuracy =
TP + TN

N
=

TP + TN
TP + FP + FN + TN

F-Measure

If the precision of an approach is increased, it is often accompanied by the true positive
rate getting worse. To deal with this trade-off, Rijsbergen [Rijsbergen 1979] introduced the
F-measure as combination of precision and true positive rate:

F�measure =
2 � precision � TPR
precision + TPR

P [0, 1]

The higher the quality of an approach is, the higher is the result of the F-measure [Salfner
et al. 2010].
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Table 2.1. This table shows all possible cases for the outcome of a detection. (Based on [Salfner et al.
2010])

Detection Contingency Table
True Failure True Non-failure Sum

Prediction:
Failure

true positive (TP)
(correct warning)

false positive (FP)
(false warning)

positives
(POS)

Prediction:
No failure

false negative (FN)
(missing warning)

true negative (TN)
(correctly no warning)

negatives
(NEG)

Sum failures (F) non-failures (NF) total (N)

In Chapter 5 these metrics are used to compare the different configurations of the ΘPADx
approach and to assess the quality of the anomaly detection results. Therefore a large set of
data is collected. This set is revisited in form of a manual anomaly detection. The intervals
within anomalies occurred are marked. It is then possible to compare the marked intervals
with the results of the ΘPADx approach and to derive the four different cases showed in
Table 2.1. Finally the detection comparison metrics can then be calculated and used for
comparison.

2.2.2 ROC Curves

Receiver operating characteristic (ROC) curves are a common way to visualize the performance
of detection approaches [Maxion and Roberts 2004]. As already mentioned in the context
of the F-measure, the true positive rate and the false positive rate are changing in relation
to each other, depending on a varying threshold. A ROC curve is a two-dimensional graph
that depicts these two values of a detection approach against each other and is therefore able
to visualize this tradeoff [Maxion and Roberts 2004; Fawcett 2006]. Figure 2.7 shows two
ROC curves, illustrating curves for high and low accuracy and the dependence to varying
thresholds. The ROC curves will help to compare the results of the ΘPADx approach under
certain configurations against each other. This is necessary for the evaluation, for example
to find the best possible configuration of ΘPADx for a given time series.

2.3 Performance Metrics

Measurements can be made under certain points of view called metrics [Rezagholi 2004].
For example, the number of function calls, the execution time of a function, or the memory
consumption can be measured. The monitoring tools used by Xing are able to measure
various metrics for the running applications. Hence the used metrics are listed:

� Response Time The response time, interpreted as the time between the user finished the
request until the system completes the response, as for example introduced in [Koziolek
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Figure 2.7. (a) shows several curves from low to high accuracy. A perfect detection approach is
located in the upper left corner while a random guess approach lies on the diagonal at
the center. (b) illustrates the dependency between the outcome of a detection approach
and the used threshold. (Figure from [Maxion and Roberts 2004])

2008]. Within the Xing monitoring environment, the response time is called total time
and concludes request times, which are needed for requesting other components, for
example the database or the memcache.

� Requests The amount of requests to the system in a given time span. For example the
amount of requests to a database per second.

� Database Time and Database Calls The average response time for the database calls
per request is named database time and the amount of requests to the database in a given
time span is called database calls.

� Search Time and Search Calls The average response time for the search calls per request
is named search time. The amount of calls to the search API is named search calls.

� Memcache Time and Memcache Calls Xing is using a memcache, that stores often used
data or data that must be retrieved from a database or an API. This can increase the
performance, since database or API calls can be expensive in case of performance. The
average response time for the memcache calls per request is named memcache time. The
corresponding amount of calls to the memcache is named memcache calls.

� Rest Time and Rest Calls The average response time for a call to the rest API per
request is named rest time, while the corresponding amount of calls to the rest API in a
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given time is named rest calls.

� Gearman Time and Gearman Calls Xing uses the job server Gearman1. With Gearman,
it is possible to source out certain jobs to other machines or processes. Therefore, it can
be used to work in parallel or for load balancing purposes. The average response time
for a gearman call per request is named gearman time. The amount of gearman calls is in
a given time span is named gearman calls.

� Other Time At Xing, the other time contains everything that is not covered by the
database, search, memcache or gearman time, but still influences the total time.

2.4 Tools and Technologies

The following chapter lists the most important tools and technologies that are used for the
implementation of the ΘPADx approach or are part of the evaluation environment. Since
all tools and technologies are based on several protocols and concepts, these are introduced
in a first step, followed by the tools and technologies itself. ΘPADx is evaluated in the
Xing environment, therefore the presentation is separated into two parts. The first part
describes Kieker, R and MongoDB, which are used for the implementation of ΘPADx. The
second part introduces the most important tools and technologies used within the Xing
monitoring infrastructure.

2.4.1 Protocols and Concepts

ΘPADx is able to communicate with its environment, for example to gather data from a
monitored system or to submit its results to an alert-facility. Over the last years some new
approaches for communication purposes evolved, still using the common protocol stack
of the internet. The focus lies on new data formats, that are readable for machines and
humans. Corresponding protocols and concepts are presented in the following.

JSON

The JavaScript Object Notation (JSON) is a text-based data interchange format and therefore
used for the serialization of structured data. It is able to represent four primitive types
(strings, numbers, booleans and null). Additionally, two structured types can be represented
(objects and arrays). Data can be nested arbitrarily. In difference to, e.g., XML, JSON is
more lightweight and has a smaller syntactical overhead, which ensures a better human
readability.

1http://www.gearman.org

19



2. Foundations

BSON

Binary JSON2 (BSON) is a binary-encoded serialization of simple documents, in particular
JSON documents. Since it has small storage overhead and can be traversed easily, it is used
for data representation within MongoDB, a noSQL data base that will be described later on
in this chapter.

NoSQL-Databases

Within the last years a new kind of databases, the so-called NoSQL databases are gaining
more and more attention. These break the long term dominance of databases that pursues
the relational approach. Relational databases are organized and structured with respect to a
relational model, containing for example tables and relations between them. The NoSQL
style is more focused on high scalability and flexibility, but provides less functionality.
Therefore, these kinds of databases are predestined for storing huge quantities of data while
offering fast access times for simple retrieval concerns. A subgroup of NoSQL databases is
formed by the so-called document store databases. Here, the stored data is text-based and
relies on standard formats like the prior mentioned JSON. Such documents are organized
and grouped in different ways. They can be hold in collections or can be identified via tags
for example.

2.4.2 Tools and Technologies of the ΘPADx implementation

The ΘPADx implementation uses several tools and technologies to gain useful structural
properties or functionality. These are introduced within this section.

Kieker Monitoring Framework

The Software Engineering Group at Kiel University developed Kieker 3, a flexible framework
for monitoring and analyzing purposes. It is able to work on concurrent or distributed
software systems. Through its architecture, Kieker produces only a small amount of over-
head even in high scalable systems [van Hoorn et al. 2009]. As seen in Figure 2.8, Kieker
provides a Monitoring Component, that includes so-called Monitoring Probes. After being
injected into the monitored system, these probes are able to collect measurements, which
are stored and communicated to the Analysis Component as Monitoring Records. Within
the Analysis Component, the needed records are read and passed to Analysis Plugins,
that are connected in pipes-and-filters style. This architecture makes the analysis solution
highly flexible and configurable. It is possible to use the supplied Kieker Analysis Plugins
or to easily write your own plugins. Because of the pipes-and-filters pattern, it is easy to
exchange filters or add additional filters to the analyzing process [van Hoorn et al. 2012].

2http://bsonspec.org
3Official web site of the Kieker framework: http://kieker-monitoring.net/
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Figure 2.8. Architecture of the Kieker Framework [Kieker Project 2013]

Kieker is the base of the upcoming implementation, favored due to its extensibility and
flexibility. Because of the refactoring of the ΘPAD approach to a pipes-and-filters structure,
the extended approach can be achieved by adding new self-written filters to the ΘPAD
analysis configuration or by modification of already available ΘPAD filters. The compo-
nents of ΘPAD that are reused in ΘPADx, the new filters and the modifications to existing
filters are presented in detail in Chapter 4.

The R Project

R [R] is a programming language specially designed for statistical computing and graphics.
It is based on the S language, which was developed to handle the growing amount of
statistical computing at the Bell Laboratories (formerly AT&T, now Lucent Technologies)
[Bell 1994]. Unlike S, R is an open source project under GPL license. It is flexible and
extensible, whereby it supports a wide variety of statistical methods. Important for this
thesis is the forecast package [Hyndman 2013], which is available over the CRAN4 package
repository. This package includes all the forecasting algorithms, that are used in the here
presented process of anomaly detection, e.g. ARIMA or Exponential Smoothing.

MongoDB

For the ΘPADx approach, the storage of huge data sets is necessary. Time series points
representing data from different applications, under different metrics and over a long
time period must be stored. Given these facts, the NoSQL concept provides the solution
of choice for ΘPADx. MongoDB is chosen in particular because it is the leading NoSQL
database. Furthermore, it is open source and offers a well documented API. MongoDB
also has an easy to use Java driver, which simplifies the connection to ΘPADx, that will be

4http://cran.r-project.org/web/packages/forecast/
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developed in the Java5 programming language. Besides this, several MongoDB instances
are already in use at Xing. This brings existing technical knowledge and low integration
barriers with it.

2.4.3 Xing - Case Study Environment

Xing is a social network system hosted by the Xing AG. It is Europe’s most important
network aiming on business contacts6. Xing originally started under the brand name
openBC in 2003. Its fast growing user base leads to a rework of the used architecture and to
renaming it Xing in 2006. Users are able to share their profiles, create groups, or organize
events via Xing to search and find expert knowledge, jobs, employees, or ideas [Xing AG
2012].

To handle the high amount of users, currently about 13 million users world wide [Xing
AG 2013b], Xing owns hundreds of servers. To store the users and their content, several
SQL servers are running. The majority of the servers is used to run the applications, which
together build the Xing Network. Most of them are written in Ruby on Rails and Perl. In
Table 2.2 the here considered applications and their communication behavior can be seen.
Given the huge amount of servers and users, a strong communication tier exists. While
HTTP REST is used for synchronous communication, the asynchronous communication is
achieved with ZeroMQ. Several monitoring tools are listening on the communication tier
to collect the needed data and to keep watch on the behavior of the system. Besides tools
like Munin7, Nagios8, or Omniture9, two self-written applications are in use: Logjam and
Graylog2.

Ruby on Rails

Ruby on Rails [Rails] is an open source Web Application Framework written in Ruby.
It was presented for the first time in July 2004. Rails is made for a fast development
process and has a large supporting community. The core of Rails follows the MVC pattern.
Communication is achieved via REST.

Perl

Perl [Perl] was developed in 1987 and is therefore a long established scripting language.
It is feature-rich, runs on a huge amount of platforms, and offers a huge amount of third
party modules. In addition to its flexibility, Perl is especially known for its powerful text
processing and manipulation facilities.

5http://www.java.com
6http://corporate.xing.com/index.php?id=108&L=0&tx_ttnews[tt_news]=774
7http://munin-monitoring.org/
8http://www.nagios.org/
9http://www.omniture.com/
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Table 2.2. This table shows how the considered applications are calling each other. This can help to
correlate the anomaly detection results of applications that are interconnected.

Caller Callee Caller Callee
bestoffers perlrest perlyaml companies
bestoffers perlyaml perlyaml events

perlyaml jobs
communities perlrest perlyaml perlrest

perlyaml profiles
companies jobs perlyaml riaktivities
companies perlrest
companies perlyaml profiles events
companies riaktivities profiles perlrest
companies triton

publicsearch perlrest
events companies publicsearch triton
events perlrest
events perlyaml riaktivities companies
events triton riaktivities events

riaktivities jobs
ipad jobs riaktivities perlrest
ipad perlrest
ipad riaktivities perlapp companies
ipad triton perlapp events

perlapp jobs
jobs companies perlapp perlrest
jobs perlrest perlapp perlyaml
jobs triton perlapp riaktivities

perlapp triton
messages perlrest

perlapp companies
perlapp events
perlapp jobs
perlapp perlrest
perlapp profiles
perlapp riaktivities
perlapp triton

perlrest companies
perlrest events
perlrest jobs
perlrest perlrest
perlrest profiles
perlrest riaktivities
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ZeroMQ

ZeroMQ [ZeroMQ] is an asynchronous messaging library, designed for use in distributed
or concurrent applications. It supports more than 30 languages and common operating
systems. Unlike other messaging middlewares, ZeroMQ can run without a dedicated
message broker. It provides a socket-like API, used to build a message queue with certain
supported patterns, e.g. Request-Reply, Publish-Subscribe, or Fan-in / Fan-out.

Logjam

The logs and data produced by several applications and servers at the Xing environment
are written in the message queue powered by ZeroMQ. The information is aggregated and
stored in a database by a server, the so-called Importer. This information is corresponding to
the already mentioned metrics and can be used for debugging and monitoring purposes. To
support these processes, a web front-end was developed by Dr. Stefan Kaes for the import
of the stored information and its visualization as tables and graphs. Logjam [Kaes 2013] is
able to show a live view of the incoming data, but is also able to browse the historical data,
as demonstrated by Bielefeld [Bielefeld 2012a]. Figure 2.9 shows an overview of the here
described process of monitoring at Xing.

Graylog2

Graylog2 [GrayLog2] is an open source log management tool. It has a server written
in Java, that accepts log messages via certain messaging protocols and stores them into
ElasticSearch10. Finally, the collected data is presented and can be managed by a web
interface.

Figure 2.9. An overview of the Xing monitoring architecture. (Image based on [Bielefeld 2012a])

10http://www.elasticsearch.org/
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Figure 2.10. High-level Architecture of the ΘPAD approach with the Consume step marked [Bielefeld
2012a].

2.5 The ΘPAD Approach

The Online Performance Anomaly Detection (ΘPAD) approach is a concept developed by
Tillmann Carlos Bielefeld [Bielefeld 2012a]. The ΘPAD approach is introduced because
the ΘPADx approach is based on it. With this introduction it is easier to identify and
understand the extensions that are presented in the upcoming Chapters 3 and 4. ΘPAD
uses forecasting algorithms on time series to create a reference model, based on the data
of a monitored system. This model is compared to real time measurements of the system.
The distance between the values of the reference model and the real measurements are
normalized and interpreted. If they exceed a given threshold, an anomaly is detected.
The process of anomaly detection in the ΘPAD approach can be divided in several steps,
as depicted in Figures 2.10 and 2.11. A brief introduction to each step is given in the
remainder of this section:

1. Consume
The monitored system passes its information for example to a provided AMQP11 based
messaging queue. For ΘPAD the information of interest are the response times of a single
application. The Kieker Monitoring Component is used to consume the data from the
queue and transform the data into Monitoring Records. The records are eventually passed
to the Kieker Analysis Component.

2. Reader
The Kieker Analysis Component is able to read the records with a so-called Monitoring
Reader. The information is passed to the ΘPAD plugin, that is also placed in the Kieker
Analysis Component.

11http://www.amqp.org
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Figure 2.11. The several steps of ΘPAD restructured to fit the new Kieker pipes-and-filters architec-
ture [Bielefeld 2012b].

3. Time Series Extraction
The plugin continuously consumes measurements of the monitored system. The measure-
ments mostly arrive in different time intervals and are therefore needed to be discretized.
The incoming data is aggregated over a configurable time span with the mean function as
aggregation method. The result of this step is a time series as defined in Chapter 2, ready
to be passed on to the next step.

4. Time Series Forecasting
In this step, the next value of the time series is forecasted with one of the presented
forecasting algorithms (see Chapter 2). The calculations are based on the previous values
of the time series within a configurable window size. This process builds the reference
model, as defined in Chapter 2.

5. Anomaly Score Calculation
The forecasted value is compared to its actual measurement as soon as it arrives. With
the metric presented in Chapter 2, a distance between these points can be calculated. The
calculated distance is normalized to a value between 0 and 1, the result is the anomaly
score (see Section 2.1.4).

6. Anomaly Detection
To detect an anomaly a configurable threshold value is used, the anomaly threshold (see
Section 2.1.4). This value acts like a border between the normal system behavior and an
anomaly. If the calculated anomaly score exceeds the threshold, an anomaly is detected by
the ΘPAD approach. As you can see, a decent configuration of the threshold is necessary
to achieve a useful anomaly detection.

7. Alerting
If an anomaly is detected, an alert is reported to the connected alerting queue.

26



Chapter 3

The ΘPADx Approach

In this chapter, the process of anomaly detection with ΘPADx is discussed in a more
abstract manner before the implementation details are described in the next chapter. All
the activities, that together build up the anomaly detection process, are discussed and
the interaction between them is shown. To achieve this, an overview of all activities is
given first, followed by a detailed look on each activity on its own. Some of the activities
are similar to the steps of the ΘPAD approach as shown in the last chapter. For those
only a short summary of their known functionality is given and the focus remains on the
differences.

3.1 ΘPADx Approach Overview

ΘPADx stands for Extended Online Performance Anomaly Detection. As the name indi-
cates, ΘPADx is designed to detect anomalies in performance data, for example response
times or workload intensities of a monitored software system. Since ΘPADx is an approach
to process anomaly detection online, it must be able to process data that continuously
streams in at runtime. This is a huge difference in contrast to offline approaches, because
in the case of offline anomaly detection, the complete set of data to process is already
known. ΘPADx is based on ΘPAD that was developed by Tillmann Bielefeld in 2012
[Bielefeld 2012a] and briefly introduced in the last chapter. It produces anomaly detection
results of good quality especially for contextual anomalies. The approach however is still
facing problems with collective anomalies, which negatively affects the precision of the
anomaly detection. Also, an ΘPAD instance is only able to process performance data of
a specific performance metric from a single application. To gain a better coverage of a
software system in case of anomaly detection, the possibility to process multiple metrics of
multiple applications per instance is necessary. Several extensions and changes to ΘPAD
are made to deal with these issues. These are explained in the detailed presentation of the
corresponding activities.

Figure 3.1 shows all activities, which are necessary to set up and process the ΘPADx
approach. They are divided in two major parts, offline and online activities. There is only
one offline activity, the configuration (A1). Since ΘPADx uses for example forecasting
algorithms and discretization, suitable methods and corresponding parameters must be
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chosen to gain results of high quality. The configuration is also accountable for the selection
of the applications and corresponding metrics for which an anomaly detection should
be processed. In addition, there are three online activities that are executed for every
incoming measurement. As a first activity, the data extraction (B1) takes place, where the
incoming measurements are parsed to time series points. With the help of the forecasting
algorithms, which can now process the time series data, the anomaly score is calculated
and interpreted (B2). This activity equals the approach, which was chosen by Bielefeld
within ΘPAD as most important part of the anomaly detection. For ΘPADx this activity
offers the most extensive changes in contrast to ΘPAD. The forecasting process is adjusted
and an additional forecaster is introduced, the so-called pattern checking. This forecaster
makes use of a long-term collection of time series data to improve the anomaly detection
in case of the appearance of collective anomalies. The last activity is the send and store
activity (B3). Since it is the last activity in the process, it is responsible for the storage of the
detection results and the forwarding of the results to connected alarm facilities. An activity
can contain sub-activities, which are called steps within this thesis.

User Input Configuration

Data Extraction Forecasting-Based Send and Store

Offline

Online

Start Anomaly Detection

Incoming

Measurement

A1

B1 B2 B3

Anomaly Detection

Figure 3.1. Activities of the ΘPADx approach. After the Configuration (A1), the anomaly detection
can be started. First the incoming measurements are transformed to time series data (B1),
then the anomaly score is calculated and interpreted (B2). Finally the results are stored
and sent to connected facilities (B3).

The activities forecasting-based anomaly detection and the additional forecaster pattern checking
are considered the core of the anomaly detection process. Within ΘPAD the configured
forecasting method is used in every situation. For ΘPADx this behavior is changed:
Whenever the approach faces a collective anomaly, the pattern checking forecasting method
is preferred. Instead of a one part approach, now a hybrid approach of two forecasting
methods is chosen. Since the adjusted forecasting and the pattern checking is the main
extension to ΘPAD, a huge part of the next section will be used to explain this activity in
detail.
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3.2. ΘPADx Approach Activities

3.2 ΘPADx Approach Activities

3.2.1 Configuration (A1)

Bielefeld [Bielefeld 2012a] introduced the concept of aspects within his thesis. An aspect
is a separated unit of measure and analysis. It holds all the needed parameters for an
anomaly detection. But with one aspect, only one metric of an application can be processed.
In a large software system often multiple applications exist. These applications can offer
a huge load of information. For example the response times, the amount of database
connections, the amount of current users, or other metrics, as defined in Chapter 2.3. There-
fore, it is necessary to start more and more instances of ΘPAD with configured aspects
for a growing amount of applications and metrics that should be processed with ΘPAD.
This leads to an unnecessary overhead, that should be avoided within the ΘPADx approach.

ΘPADx is capable of handling multiple applications with multiple metrics in a single
instance. The name of an application and a metric are building an identifier. Every online
activity of ΘPADx is then able to separate the incoming data based on the identifiers. This
keeps the anomaly detection of several applications and metrics uninfluenced by each other.
For this chapter, the assumption is made, that all activities and steps are able to process
this separation. How the separation is accomplished in the implementation, is then shown
in the next chapter. With this opportunity only a single instance of ΘPADx is necessary to
process the anomaly detection for multiple applications and metrics. ΘPADx accepts a list
of application-metric pairs as parameters, an example list is given in Table 3.1. The details
of the implementation changes to apply the identifier concept and the correct separation of
the different identifiers are discussed in Chapter 4.

Within the configuration activity, also parameters for the discretization (see Section
2.1.2) can be chosen. This includes an aggregation method and the time span over which
the aggregation will appear. This time span corresponds to the step size that the resulting
discrete time series will have.

ΘPADx supports different forecasting algorithms to calculate a reference model. Within the
configuration process, one of these algorithms can be chosen. The forecasting algorithms
are working on time series. ΘPADx is developed to achieve anomaly detection on the
performance data of software systems. Depending on different factors like workload or
underlying hardware, these time series can have different characteristics. As for example
stated by Chan and Mahoney [Chan and Mahoney 2005], it is necessary to select a fore-
casting algorithm that fits the characteristics of the time series produced by the software
system. Otherwise, the results of the forecasting and therefore also the results of the
anomaly detection can be of poor quality. It follows, that a deeper knowledge of the
targeted software system and the available forecasting algorithms is a prerequisite for the
practical usage of ΘPADx.
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Table 3.1. This table shows all parameters that can be configured for ΘPADx.

ΘPADx Configuration Parameters

Identifier Parameters
Name Example
Application-Metric List {mainApplication.db_time,

backgroundProcess.total_time}

Aggregation Parameters
Name Example
Aggregation Time Span 5 minutes, 30 seconds
Aggregation Method SUM, MAX, MEAN

Time Series Analysis Parameters
Name Example
Forecasting Algorithm ARIMA101, MEAN
Forecasting Time Window Capacity 10, 60, 100

Extended Approach Parameters
Name Example
Pattern Checking active true, false
Consecutive Anomalies Threshold 2, 5, 10
Distance 1 Day, 1 Week, 12 Hours
Iteration 1, 2, 10

Anomaly Interpretation Parameters
Name Example
Threshold 0.5, 0.23, 0.9

As already mentioned, the appearance of collective anomalies affect the quality of the
anomaly detection negatively. With ΘPADx an additional forecaster can be used within the
anomaly score calculation activity to deal with this issue. It is only applied, if a configurable
number of consecutive anomalies is already detected, which indicates a collective anomaly.
This step is called Pattern Checking and will be presented in detail in Section 3.2.3. Due to
the structure of Kieker plugins, it can easily be activated or deactivated. Of course this
option is also part of the configuration. If activated, some additional parameters for this
step are necessary. The pattern check forecaster compares the actual time series window
with a time series window in the past that matches an corresponding seasonal pattern, as
introduced in the component model (see Section 2.1.1). For this purpose, a distance can be
given as parameter, that represents the length of a seasonal pattern. It is also possible to go
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not only one seasonal interval in the past, but to iterate over several intervals that match
the seasonal pattern. Therefore, also a parameter can be chosen to determine how often
this repetition should occur.

For the interpretation of the calculated anomaly scores, an anomaly threshold is used, as
introduced in Section 2.1.4. This threshold can also be configured within the configuration
activity.

All mentioned parameters are summarized in Table 3.1 to grant a complete overview
of an ΘPADx configuration. The configuration is a key activity to gain anomaly detection
results of high quality. As already stated, knowledge and experience of the underlying
system and the forecasting algorithms are helpful to determine suitable parameters. This is
a common fact that can often be found in the literature. For example Oliner and Stearley
[Oliner and Stearley 2007] investigated the logs of super computers. They were facing a
huge amount of data, in their case millions of log files. A key observation was that the
interpretation of the data is highly interrelated with so-called operational context. Among
other factors, this also includes expert knowledge of the underlying system.

3.2.2 Time Series Extraction (B1)

The time series extraction is the first activity that is processed online. It creates a time series
as defined in Section 2.1.1 from a stream of Kieker Monitoring Records. This is achieved by
executing two consecutive steps, the data extraction and the discretization. Figure 3.2 gives
an overview of the time series extraction activity and the containing steps in the process of
anomaly detection. In the following the steps of the time series extraction are explained.

Time Series Extraction

Data Extraction Discretization

Incoming
Measurement

Online

...

B1

B1.1 B1.2

B2
Forecasting-Based
Anomaly Detection

Figure 3.2. Overview of the Time Series Extraction activity (B1). It contains two steps: Data Extraction
(B1.1) and Discretization (B1.2).

Data Extraction (B1.1)

A Kieker Monitoring Record represents the incoming measurements and contains infor-
mation like an identifier, a timestamp, and a measured value. It is created as soon as the
raw data arrives. The record is sent to the ΘPADx Analysis component. The details of the
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Table 3.2. All supported aggregation methods of ΘPADx.

Aggregation Methods

Aggregation Method ΘPADx Parameter
Geometric Mean GEOMETRIC_MEAN
Maximum MAX
Mean MEAN
Minimum MIN
Percentile PERCENTILE90 or PERCENTILE95
Product PRODUCT
Sum SUM
Sum of the Squares SUMSQ
Sum of natural Logs SUMLOG
Variance VARIANCE

sending process are explained in the next chapter. First, the record is processed by the data
extraction. The mentioned information is extracted from the record and forms a time series
point. Within ΘPADx a time series point is also a record that can be further processed
by the other activities. A measurement however, and therefore also a record, can arrive
at any time. A combination of the extracted time series points would then obviously not
build a discrete time series. To accomplish this, the discretization is processed after the
data extraction.

Discretization (B1.2)

In this step, the discretization, as introduced in Section 2.1.2, is applied. The incoming time
series points are collected over a configurable time span (see Table 3.1) that correspond to
the step size ∆X of the resulting discrete time series X. The timestamp of the first incoming
time series point sets the start time point tstart. The end time point tend is then calculated
by:

tend = tstart + ∆X

The following incoming time series points are collected. Whenever a time series point,
whose timestamp exceeds tend, is received, the collection is closed and an aggregation
method is applied. ΘPADx offers different aggregation methods that can be selected within
A1 and are shown in Table 3.2. For example the mean or the maximal value of all collected
values can be calculated. The result of the aggregation process is one time series point per
aggregation time span. More of these time series points build up to a discrete time series.
As already explained, discrete time series are a prerequisite for the usage of the forecasting
algorithms.
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3.2.3 Forecasting-Based Anomaly Detection (B2)

This activity describes the main part to accomplish the anomaly detection of the approach
that was already used by Bielefeld within ΘPAD and is now extended. The main idea is to
compare a reference model generated by forecasting methods with actual measurements.
The derivation between them is used to calculate an anomaly score, that describes the
level of abnormality. Finally, the anomaly score is interpreted with the help of an anomaly
threshold. However, the results of Bielefeld [Bielefeld 2012a] reveal, that the performance
of the used forecasting methods is not as good as desired. This behavior is analyzed in the
following and the corresponding improvements are introduced. After that, it is shown how
the improvements are included in the forecasting-based anomaly detection activity. A first
overview over the activity is given in Figure 3.3.

Time Series
Extraction

Online

...
...

Forecasting

Unite

Anomaly Score
Calculation

Anomaly Score
Interpretation

Send and Store ...

Forecasting-Based
Anomaly

B1

B2

B3
B2.1

B2.2

B2.3

B2.4

Detection

Figure 3.3. Overview of the forecasting-based anomaly detection activity (B2). First a forecasting
appears (B2.1) the results are used as reference model. The forecasts are united with the
corresponding actual time series point (B2.2). Then the anomaly score is calculated (B2.3)
and finally interpreted (B2.4).

ΘPAD Anomaly Detection Quality Analysis

The pattern checking forecaster is an extension to the original ΘPAD approach. It is based
on the fact, that time series have a seasonal pattern, as defined by the component model
(see Section 2.1.1). These pattern are used to define an alternative reference model. Based
on the alternative reference model, an additional anomaly detection can be performed.
This section will show why this additional activity is necessary to improve the quality of
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the anomaly detection results of the original ΘPAD approach.

Bielefeld executed an extensive evaluation phase within his thesis [Bielefeld 2012a]. With
the best found configuration of ΘPAD, the approach reached an accuracy of 0.97 and
a precision of 0.13. The high accuracy implies that, if ΘPAD signals an anomaly, the
probability that this actually is an anomaly is high [Bielefeld 2012a, p. 86]. However, the
quality of the anomaly detection is negatively influenced by the low precision value. It
implies that it is likely, that the approach ignores occurring real anomalies.

Within the evaluation process of Bielefeld, the mean forecaster was the best fit on the
evaluation data and was used in the best found configuration. Time series analysis based
forecasting methods, like the mean forecaster, have several advantages. They are easy to
use, easy to understand, fast and only need a small amount of data to calculate a forecast.
However, as stated by Sharma et al. [Sharma et al. 2003], these methods are a good choice
for point anomalies, but are not suited for collective anomalies. This fact also matches
the results of Bielefelds further analysis of his evaluation data. Figure 3.4 demonstrates
this problem with the help of example time series. The grey bar graph shows the time
series of the measurements, including an collective anomaly. The green graph shows the
corresponding forecasts accomplished by the mean forecaster and the red graph shows
the calculated anomaly score over the time. As soon as the collective anomaly starts,
the anomaly detection shows an increased anomaly score (1). The start of the collective
anomaly is detected properly. But when the anomaly continues over a longer time period,
the sliding window of the underlying mean forecaster is filled with the now abnormal
values. As soon as the collective anomaly is over, the measured values and the anomaly
score return to the normal level (2). Now there is again a deviation between the values
of the sliding window and the actual measurements. This again results in an increasing
anomaly score (3) and, if high enough, in a second detected anomaly, even if there was
just one collective anomaly. This behavior also explains the low precision of the approach.
The values at (3) may exceed the configured anomaly threshold and therefore cause false
positives. Since the false positives are used to calculate the precision (see Section 2.2.1), this
lowers the result.

Since the introduced problem appears only if a collective anomaly is processed, the
pattern checking is only needed in this case. Therefore, the consecutive anomalies detected
must be counted. If they exceed a configurable threshold, it is assumed that the approach
faces a collective anomaly.

Pattern Checking Forecaster

In the previous section, it was shown why the ΘPAD approach produces additional false
positives. Within this section, the pattern checking forecaster is introduced, which aims at
preventing this behavior. The pattern checking forecaster creates an alternative reference
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21 3

collective anomaly

Figure 3.4. This figure shows the cause of the low precision of the ΘPAD approach with the help of
an example. The approach first detects the starting collective anomaly correctly (1). It
then adapts to the abnormal measurements and interprets them as normal (2). As soon
as the measurements return to a normal level, again high anomaly scores are produced
(3). (based on [Bielefeld 2012a])

model, because the reference model of the common forecasting methods is not working
properly in the case of collective anomalies. The goal is to prevent the sliding window of
the forecasting method to be filled with abnormal values over the duration of a collective
anomaly. To be able to still produce an anomaly score, at this point the alternative reference
model is used.

ΘPADx stores all anomaly detection results in a database. This will be shown in de-
tail in section 3.2.4. The data can be stored over a long time period, for example over weeks
or month. This offers the opportunity to identify seasonal patterns even if they have a long
period.

Figure 3.5. Overview of the perlapp over a duration of 16 days.
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Figure 3.5 shows an example time series of the historic data of the Xing application perlapp.
The shown measurements are total times in milliseconds. It can be seen that the workdays
have a similar characteristic. In the morning hours the total time raises from around 100ms
until it reaches circa 240ms. In the afternoon the values slowly go back down to 100ms.
However, the weekend days show a different behavior. The measured values are way more
constant during the day. They are around 160ms and only swing down to circa 100ms
over the night. Due to this fact, a time point on Friday for example should not be used
as reference for a time point on Saturday. Therefore, it would be appropriate to select a
pattern with a weekly period. For each time series point a matching time series point, one
or more weeks in the past, can be found with the help of this pattern. For this example,
this is the base of the alternative pattern. Whenever a matching time series point in the
past is found, a time series window is established at this point. This procedure is shown
in Figure 3.6. A collective anomaly occurs, and the corresponding time points one and
two weeks in the past are shown. A time series window of the same size as the original
sliding window of the forecasting method is created. The found matching time point is
the last value of this new time series window. A configurable aggregation strategy is then
applied to the time series window and the resulting value is used as reference. Depending
on how much values of the past are stored as historic data, matching time series points two
weeks or even later may be found as well. These can be used if the first new created time
series window also contains an anomaly, because if this is the case, it does not represent
the normal system behavior.
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actual anomaly

time point one week in the past

time point two weeks in the past

sliding window of the 
forecasting method

time series window 
used for the alternative 
reference model

time series window 
used for the alternative 
reference model

Figure 3.6. Matching time series points in the past are found and the corresponding sliding widows
are created.
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Forecasting (B2.1)

It is now known, how the pattern checking forecaster works. Since the forecasting step is
responsible for the predictions, this is the step where the pattern checking forecaster is
called, if appropriate. From the time series extraction activity (B1) discrete time series points
are send to the forecasting step. This happens whenever the aggregation is completed, as
described in Section 3.2.2. As soon as a new time series point arrives, a new prediction is
calculated with the help of one of the presented forecasting methods (see Section 2.1.3) or,
if a collective anomaly occurs, with the pattern checking forecaster. To decide whether to
use the common forecasting methods or the pattern checking forecaster, the consecutive
appearing anomalies are counted. Whenever this counter exceeds a configurable threshold,
the forecasting step decides to use the pattern checking forecaster.

Since all used forecasting methods work on time series and not on single time series
points, they need an opportunity to store the time series points. For this reason a sliding
window of a configurable capacity is used. The sliding window stores the most recent
time series points. Whenever the capacity of the sliding window is reached the oldest
value is rejected. Since the value of the capacity is configurable, this is a further way to
keep ΘPADx flexible. Besides this, it is also an opportunity to control the runtime of the
forecasting methods, since this is basically the only input for them.

After the time series extraction activity a single discrete time series point is available
for comparison. This also implies only the need of a single prediction, which implies the
lead time l = 1 for the usage of all forecasting methods in the ΘPADx approach.

Unite Forecasting and Time Series Point (B2.2)

After the forecasting a single prediction that is based on the last received time series points
is available. Since this is a prediction with lead time l = 1, its time index is one step in the
future. This implies that we need to wait for the corresponding actual time series point.
This simple task is realized in the unite forecasting and time series point step. It stores the
forecast until the actual time series point is available and afterwards it unites both values
in a record called ForecastTimeSeriesPointPair (FMP) of the form:

FMP = (xact, fcor),

Where xact is the actual time series point and fcor is the corresponding prediction. Whenever
a FMP is completed, it is given to the anomaly score calculation step.

Anomaly Score Calculation (B2.3)

There are different approaches to calculate an anomaly score. As we will see in Chapter 4
the anomaly score calculation is implemented in a single filter. Due to the plugin structure
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of Kieker, such filters can be exchanged easily. To use an alternative approach to calculate
an anomaly score, simply a corresponding filter is needed. For the ΘPADx implementation
the following way that was also introduced in Section 2.1.4, is used. In the past steps, the
actual measurement was gained from raw data and is now available as a time series point.
The reference model was gained in form of a one step ahead prediction. This means, that it
is now possible to execute the comparison, which will result in the anomaly score. From
the FMP xact and fcor are taken and used as input for the euclidean distance measurement
as described in Section 2.1.4. This leads to the following calculation:

Deuclid(xact, fcor) =
√
(xact � fcor)2

Now the normalization, that was also presented in Section 2.1.4, is applied to finally gain
the anomaly score A:

A(xact, fcor) =

∣∣∣∣D(xact, fcor)

xact + fcor

∣∣∣∣ P [0, 1]

As soon as an anomaly score is calculated, it is given to the last step of this activity, the
anomaly score interpretation.

Anomaly Score Interpretation (B2.4)

The anomaly score was already calculated in the previous step and forwarded to the final
step of activity B2, the anomaly score interpretation. Here the score is compared to the
anomaly threshold (see Section 2.1.4). If the anomaly score exceeds the anomaly threshold,
it is classified as an anomaly, if not it is classified as normal. At this point the idea of
anomaly detection pursued with ΘPADx is completed.

3.2.4 Send and Store Results (B3)

In this step the anomaly detection is already completed. The results can now be send to a
connected facility and stored in a database. With the help of this activity, the results of the
anomaly detection approach are sent to connected facilities. Several facilities are thinkable,
for example a mail server that sends out an e-mail if an anomaly appears or a monitoring
tool, that visualizes the anomaly detection results. For the case study environment at Xing,
the results are send back to Logjam via ZeroMQ. The results sent contain the identifier, the
anomaly score and a boolean value for the classification if anomaly or not. In Logjam the
anomaly score is matched to the corresponding graph with the help of the identifier. The
anomaly score is then shown right next to the graph. If the classifier indicates an anomaly,
the score is rendered in red to gather the attention of an admin (see Figure 3.7).
After the data is sent, it is also stored in a data base. This data is then stated as historic
data and can be used for example in the pattern checking forecaster (see Section 3.2.3).
The stored data contains the actual time series point (discretizised), the identifier, the
timestamp, the prediction or the pattern matched value, the anomaly score and a boolean

39



3. The ΘPADx Approach

value for the classification if anomaly or not. The implementation details of the storage
and send process are shown in the next chapter.

Figure 3.7. A graph of Logjam that shows the actual behavior of the selected application. The
corresponding anomaly score is displayed live, right next to it.
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Chapter 4

Implementation

This chapter will introduce the implementation of ΘPADx, which corresponds to the
previous presented approach. This implementation is based on a refactored version of
ΘPAD which fits to the pipes-and-filters plugin structure of Kieker. First, the goals of the
implementation are presented. Then an overview of the most important components and
the communication between them is given. After this, a more detailed look on all these
components, including the adapter, the ΘPADx Kieker plugins and the storage is given.

4.1 Goals of the Implementation

The implementation of ΘPADx is based on the implementation of ΘPAD by Bielefeld [Biele-
feld 2012a]. Therefore, it already fulfills several functional and non-functional requirements
[Bielefeld 2012a, p. 47-49]. For the upcoming implementation, four additional functional
requirements are necessary. These can be derived from the organizational goals of this
thesis:

� FR1: An improved anomaly detection approach
The ΘPADx approach, presented in Chapter 3, describes an improvement of the original
ΘPAD approach. This improvement, that aims to fulfill G1 of the organizational goals,
should now be included in the corresponding implementation.

� FR2: Communication with the environment via ZeroMQ
This requirement corresponds to G3.1 and can, as will be shown later on in this chapter,
be fulfilled by the development of an adjusted adapter.

� FR3: Support for multiple applications per ΘPADx instance
A single instance of ΘPADx should be able to process the data of several applications as
required in G3.2. This way a better system coverage is possible in contrast to process
only the data of a single application as possible with ΘPAD. Also a more detailed look
on certain parts of the software system can be achieved with the help of this feature.

� FR4: Support for multiple metrics per application
This last additional requirement is derived from G3.3. ΘPAD is only capable to process
a single metric of the selected application. The implementation of ΘPADx should be
able to process several metrics per application.
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Figure 4.1. Overview of the ΘPADx architecture.

4.2 Implementation Overview

The ΘPADx implementation consists of three main components: the adapter, the ΘPADx
Kieker plugins, and the storage. Figure 4.1 gives an overview of the components and
how they work together to form the ΘPADx implementation. To make use of Kieker and
ΘPADx simply a Kieker.jar file, that also contains the ΘPADx Kieker plugins, must be
available within the corresponding classpath of the adapter.

The adapter is able to receive data from the environment. In this case the data is sent
via ZeroMQ. Within the adapter the gathered data is transformed to a kind of so-called
Monitoring Records. These records are provided by the Kieker Monitoring component and
can be further processed by Kieker plugins. More details about the records are given in
Section 4.3. In this implementation an in-memory pipe, provided by Kieker, is used to pass
the records from the Monitoring component to the ΘPADx plugins. Kieker also provides
further methods for this purpose [Kieker Project 2013].

The ΘPADx Kieker plugins execute the actual anomaly detection. The plugins are con-
nected according to the pipes-and-filters pattern: it consists of several filters that are
connected via pipes. The filters correspond to the activities presented in Chapter 3.

In the last filter the results of the anomaly detection are stored to a MongoDB instance.
Therefore, this storage contains the results of every anomaly detection done. This includes
not only the anomaly score, but also additional data. A detailed look on the stored data is
given in Section 4.5.
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4.3 Adapter

This section introduces the advantages of the adapter concept in general. After that, the
implementation of the adapter used at the case study environment is presented.

4.3.1 The Adapter Concept

In programming the adapter concept can be found for example in the field of design
patterns [Gamma et al. 1995]. The so-called adapter pattern has the intention to "let classes
work together that couldn’t otherwise because of incompatible interfaces" [Gamma et al.
1995]. Here the concept is used to let the data of a software system work together with
Kieker and the ΘPADx Kieker plugins. In this case, data can be send with a common
communication technology and is transformed into Kieker Monitoring Records that are
processed by the ΘPADx plugins.

The adapter concept leads to a higher flexibility for the usage of the implementation.
If an alternative communication technology is used, simply a corresponding adapter needs
to be developed. This can be achieved without touching the core implementation of the
anomaly detection approach itself. Overall, this leads to a clear separation between the
logic of the anomaly detection approach and the adapter, that is responsible to collect the
data from the environment.

4.3.2 Adapter for the Case Study Environment

As seen in Section 2.4.3, the monitoring data of Xing is communicated via ZeroMQ. The
adapter of the ΘPADx implementation is used to gather data from a software system of
interest. For the case study environment at Xing an adapter was developed that is able to
receive data via ZeroMQ. All the available monitoring data, especially the performance
data, can therefore easily be communicated to ΘPADx. With the help of this adapter FR2
can be accomplished.

ZeroMQ offers built-in support for several communication patterns (see Section 2.4.3).
One of these patterns is the Publish-Subscribe pattern. A subscriber can register itself to
a publisher, if it is interested in its data. The publisher sends out data to all registered
subscribers. The Xing monitoring architecture already contains a publisher that sends out
all available monitoring data. If only a subset of this data is needed, a subscriber can define
so-called filters to receive only the data that matches to this filters.

With this prerequisites the adapter can be implemented as subscriber with certain fil-
ters to be able to receive the desired performance data. The following listing shows a part
of an example message received by the adapter via ZeroMQ.
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1 perlapp-production,all_pages

2 {

3 "count":880.0,

4 "other_time":64415.4899731293,

5 "other_time_sq":16864373.3219688,

6 "memcache_time":22147.961,

7 "memcache_time_sq":2589201.320141,

8 "rest_time":61713.078,

9 "rest_time_sq":31111680.995692,

10 "db_time":42402.8990268707,

11 "db_time_sq":12164506.6471881,

12 "total_time":191525.086,

13 ...

14 }

Figure 4.2. A part of a JSON message received by the adapter.

The filter this message corresponds to is mentioned in the first line. The incoming
messages are encoded as JSON strings. The values needed can therefore be extracted easily
with the help of a Java JSON library1.

As mentioned, the ΘPADx implementation supports the anomaly detection for several ap-
plications with only one instance. Therefore, a unique identifier per application is needed, to
be able to separate the incoming data. For this implementation the name of the application
is used as identifier. Optionally, the name of an application in combination with a desired
metric can form an identifier. The performance data of the here considered applications and
metrics can be interpreted as double value. This leads to the implementation of a special
kind of Monitoring Records, the so-called NamedDoubleRecords. This kind of record extends
the AbstractMonitoringRecord class and implements the IMonitoringRecord interface as
determined by the Kieker Framework. Overall, these records wrap an extracted value and
the name of the application the value is assigned to. These records are then deserialized
and a Java in-memory pipe is used by the Kieker Monitoring component to forward them to
the ΘPADx plugins. In detail, a so-called PipeWriter puts the messages into the pipe. This
type of communication can be activated within the kieker.monitoring.properties file, that
is responsible for the properties of the Kieker Monitoring component. The corresponding
entry to the file is shown in Listing 4.3.

The Kieker Analysis component, in which the Kieker plugins are located and therefore also
1For this implementation, the following JSON library was used: http://www.json.org/java/
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the ΘPADx plugins, is then able to read from this pipe. In Section 4.4.2 the configuration
of the reader for the "opad-pipe" is presented.

1 kieker.monitoring.writer=kieker.monitoring.writer.namedRecordPipe.PipeWriter

2 kieker.monitoring.writer.namedRecordPipe.PipeWriter.pipeName=opad-pipe

Figure 4.3. Configuration of the writer of the Kieker Monitoring component. The PipeWriter is
selected and the name of the pipe is set to "opad-pipe".

4.4 ΘPADx Kieker Plugins

In this section the implementation of the ΘPADx Kieker plugins is presented in detail. The
plugins contain the core implementation of the approach presented in Chapter 3. First the
prerequisites for the implementation of a Kieker plugin are shown. After that, the structure
of the ΘPADx plugins and their most important features are described.

4.4.1 Kieker Plugin Prerequisites

As mentioned, the core of the ΘPADx approach is implemented as Kieker plugins. Ev-
ery Kieker plugin is located in the Kieker Analysis component. Kieker plugins can be
categorized in readers, filters, and repositories and can be connected according to the
pipes-and-filters architecture. To develop for example a custom filter, the corresponding
abstract class AbstractFilterPlugin must be extended as determined by Kieker. A filter
has a name, output ports, and several configuration properties. All these values can be
defined comfortably with annotations. Listing 4.4 shows a part of the ExtractionFilter,
that is used within ΘPADx. The extension from the AbstractFilterPlugin can be seen, as
well as the used annotations.

The following steps are necessary to start an analysis with developed plugins. First
an instance of the AnalysisController class, provided by Kieker, is created. Then the
readers, filters and repositories are created. These are now configured with the help of the
properties, defined through the @Plugin annotation. If no configuration is made, default
values are chosen instead. The created and configured readers, filters and repositories are
then connected with each other. In a final step the analysis is started.

4.4.2 ΘPADx Plugins - Structure and Features

The previous section showed, that Kieker plugins are readers, filters or repositories, that
can be combined to a pipes-and-filters architecture. The ΘPADx Kieker plugins also follow
this structure. For the implementation of ΘPADx a reader and several filters were used. In
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1 @Plugin(

2 name = "Extraction Filter",

3 outputPorts = {

4 @OutputPort(name = ExtractionFilter.OUTPUT_PORT_NAME_VALUE,

5 eventTypes = { NamedDoubleTimeSeriesPoint.class }) },

6 configuration = {

7 @Property(name = ExtractionFilter.CONFIG_PROPERTY_NAME_TIMEUNIT,

8 defaultValue = "NANOSECONDS")

9 })

10
11 public class ExtractionFilter extends AbstractFilterPlugin {

12 ...

Figure 4.4. A part of the ExtractionFilter of the ΘPADx implementation. The class extends the
AbstractFilterPlugin and defines a name, an output port and a configuration property
with the help of annotations.

the following sections, the architecture of the implementation is presented and the most
important details of the reader and the different filters are shown.

Data Flow

In Section 2.5, the pipes-and-filters architecture of the refactored ΘPAD implementation
was briefly introduced. It can be seen in Figure 4.6 that the architecture of the ΘPADx
plugins is quite similar to this. Hence, the goals of the implementation are not achieved by
changes to the overall structure of the plugins. Instead they are achieved by changes to the
already available filters themselves and the usage of an additional forecaster.

The pipes-and-filters architecture of the ΘPADx plugins starts with a reader. This PipeReader
is necessary to read from the in-memory pipe, that was also used in the Adapter com-
ponent. The reader is configured as shown in Listing 4.5. With the help of the name of
the corresponding pipe, in this case the "opad-pipe", the connection between the adapter
and the ΘPADx plugins is achieved. The data is then forwarded to the first filter. Every

1 final Configuration pipeConfig = new Configuration();

2 pipeConfig.setProperty(PipeReader.CONFIG_PROPERTY_NAME_PIPENAME, "opad-pipe");

3 final PipeReader reader = new PipeReader(pipeConfig, controller);

Figure 4.5. Configuration of the PipeReader. With the help of the pipe’s name, the data sent by the
adapter can be assigned.
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<< Filter >>

ExtractionFilter

<< Filter >>

AggregationFilter
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Extended
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<< Filter >>

AnomalyScore
CalculationFilter

<< Filter >>

Anomaly
DetectionFilter
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Figure 4.6. The data flow of the ΘPADx plugins. The filters manipulate the data and the data is
forwarded with the help of pipes. The ExtendedForcastingFilter uses R via Rserve for
the forecastings or optionally the pattern checking forecaster, implemented in Java.

filter corresponds to an activity or a step presented in the approach chapter and offers the
described functionality. This way the data is manipulated by each filter and forwarded
with the help of the pipes.

TSLib Component

While the data is forwarded from filter to filter, it is manipulated. For example, if
the data enters the extraction filter, it is transformed from a NamedDoubleRecord to a
NamedDoubleTimeSeriesPoint. Another example is the forecasting filter. Whenever this
filter is passed, the data is enriched by the forecasting result. For all these purposes special
data structures are necessary. Therefore, Bielefeld bundled basic time series related data
structures in a library called TSLib, that in the meantime is maintained as part of the Kieker
framework. The provided classes can be seen in Figure 4.7. This way, all the needed data
structures can be derived by the basic data structures of the TSLib.

Beside this, the TSLib contains interfaces for the used forecasting methods and provides
support for a connection to R. This way, computation-heavy forecasting methods can be
calculated in a separate R instance. A detailed look on this connection is given in Section
4.4.2.
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Figure 4.7. Classes provided by the TSLib, depicted as UML class diagram. (Image by [Bielefeld
2012a])

Separation of Applications and Metrics

It was already mentioned, that the data sent to the ΘPADx plugins provides an identifier.
The filters use this identifier to separate the data of the different applications and, if needed,
of the different metrics per application. This behavior of the implementation was also
demanded in FR3 and FR4

To fulfill these requirements some of the filters need an additional way to store data,
which depends on the actual processed identifier. For example, the AggregationFilter

needs to store the values, that were already collected within a aggregation timespan. When-
ever two consecutive incoming values do not belong to the same identifier, these values are
not allowed to be mixed. Another example is the ExtendedForecastingFilter, where the
sliding windows of the different identifiers are not allowed to be mixed, because otherwise
the forecasting result would become useless.

For this purpose, the filters of ΘPADx store the above mentioned data in a ConcurrentHashMap.
Since the identifiers are unique, they can be used directly as keys to store or request a value
to or from the ConcurrentHashMap. In Listing 4.8 a part of the ExtendedForecastingFilter is
shown as example for the implementation of the separation. The function inputEvent() is
called whenever a value enters the filter. First, it is checked if data already exist for the ac-
tual identifier (line 4). If data already exist, the input can be processed (line 5), if not, a new
entry must be created within the ConcurrentHashMap named applicationForecastingWindow
(lines 7-11).
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1 @InputPort(eventTypes = { NamedDoubleTimeSeriesPoint.class },

2 name = VariateForecastingFilter.INPUT_PORT_NAME_TSPOINT)

3 public void inputEvent(final NamedDoubleTimeSeriesPoint input) {

4 if (this.checkInitialization(input.getIdentifier())) {

5 this.processInput(input, input.getTime(), input.getIdentifier());

6 } else {

7 // Initialization of a sliding window for a new application

8 this.applicationForecastingWindow.put(input.getIdentifier(),

9 new TimeSeries<Double>(System.currentTimeMillis(), this.deltat,

10 this.tunit, this.timeSeriesWindowCapacity));

11 this.processInput(input, input.getTime(), input.getIdentifier());

12 }

13 }

14
15 private boolean checkInitialization(final String name) {

16 return this.applicationForecastingWindow.containsKey(name);

17 }

Figure 4.8. A part of the ExtendedForecastingFilter, which shows how the data is separated with
the help of identifiers and ConcurrentHashMaps.

Extended Forecasting Filter and Pattern Checking

The main extensions of ΘPADx are located in the ExtendedForecastingFilter and the
pattern checking forecasting method. These extensions aim to improve the anomaly
detection results of the approach and therefore address FR1. In Chapter 3 the pattern
checking was presented. This forecasting method only takes place if a collective anomaly
occurs, since this is the case in which the ΘPAD approach produces an amount of un-
necessary false positives. Therefore, the ExtendedForecastingFilter was created. This
Filter is able to use the pattern checking forecasting method and can also decide when
this method is used over the other forecasting methods. In the following the working
method of the ExtendedForecastingFilter and the corresponding forecasting methods is
shown. The activity diagram in Figure 4.9 gives a first overview of the processes in the filter.

When a value enters the ExtendedForecastingFilter, first the actual sliding window
for the corresponding identifier is loaded, as shown in the previous section. To decide
if a collective anomaly is present or not, a counter that stores the amount of consecutive
occurring anomalies is used. This information is also stored separately for every identifier
within the ExtendedForecastingFilter.

Based on a configurable threshold and the counter of consecutive anomalies, the Extended-

ForecastingFilter chooses between the configured forecasting method and the pattern
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configured
forecast

pattern checking
forecast

Consecutive threshold
exceeded?

Yes No

incoming value

deliver forecasting result

Figure 4.9. This activity diagram depicts the decision between the pattern checking forecaster and the
configured forecasting method in dependence on the amount of consecutive anomalies.

checking forecasting method (see Section 3.2.3).

The pattern checking forecaster is implemented in Java, as a class called PatternChecking-

Forecaster. As mentioned, the TSLib provides interfaces for the usage of forecasters.
The implementation of the PatternCheckingForecaster therefore extends the Abstract-

Forecaster<T> class, that is provided by the TSLib. This enables the ExtendedForecasting-

Filter to make use of this forecaster. The forecasting method of the PatternChecking-

Forecaster is called with parameters that are used to determine the pattern. These pa-
rameters can be set in the configuration of the ExtendedForecastingFilter. With the help
of the parameters, a query to the storage is sent, that returns a time series window that
corresponds to the configured pattern, as was also described in Section 3.2.3. If this is
successful, the result of the PatternCheckingForecaster is used.

If no consecutive anomaly is detected, the configured forecasting method is used. These
forecasting methods are already implemented in the forecasting package of R. For the con-
nection to R, Rserve2 is used. The library JRClient3 Wraps this connection and additionally
deals with the transformation of Java data structures to R data structures. With JRClient
it is then possible to directly call R methods from a Java application. To simplify the
development of additional forecasters, Bielefeld created an interface for the communication
of forecasters with R and added it to the TSLib. A forecaster that implements this interface,
called IForecaster, is able to use the corresponding method of the R forecasting package

2http://www.rforge.net/Rserve/
3http://stats.math.uni-augsburg.de/rserve/dist/JRclient/JavaDoc/
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and can also be used from the ExtendedForecastingFilter.

4.5 Storage and Send

For every finished anomaly detection process, the results are stored in a MongoDB instance
(see Section 2.4.2). The stored data has two key tasks within the ΘPADx implementation.
First of all, the stored results of the anomaly detection can be used for example to do offline
analysis or create visualizations. However, in contrast to ΘPAD, the storage of ΘPADx is
also used for forecasts with the pattern checking forecaster, as shown in 4.4.2.

The storage of only a small set of data per anomaly detection result is necessary to
be able to accomplish the mentioned two tasks:

� Identifier
The identifier is stored to be able to assign the rest of the result to an application and
optionally a metric.

� Value
In this part of the result, the value of the incoming measurements after the aggregation
is stored. This value is needed if the time series of original values should be recreated at
a later stage, e.g. for an offline analysis.

� Timestamp
Here the timestamp that is generated right after the aggregation, is stored. With this
timestamp it is possible to order the values chronological. On this way, it is possible to
recreate the original time series from the results data.

� Forecast
In addition to the values also the corresponding forecasts are stored. This allows for
example to compare the values with the forecasts in an offline analysis.

� Score
In addition to the values and the forecasts, also the calculated score is stored. This is
especially interesting to compare different configurations of ΘPADx with each other.

� Anomaly
This part of the result contains a boolean value, that is set to true if the stored result was
interpreted as anomaly and false if not. This value is used for the database queries of
the pattern checking forecaster and the interpretation and graphical visualization of the
result in logjam (red font color if true, black if false).

The following listing shows example MongoDB entries, that consist of the mentioned parts:

51



4. Implementation

1 ...

2 {

3 "_id" : ObjectId("5226f9500364de301c55f7ab"),

4 "identifier" : "companies-production,corporatepages",

5 "value" : 133.41654450094734,

6 "timestamp" : NumberLong("1378285901848"),

7 "forecast" : 133.41654450094734,

8 "score" : 0.02113034255302418,

9 "anomaly" : false

10 }

11
12 {

13 "_id" : ObjectId("5226f98b0364de301c55f7b9"),

14 "identifier" : "messages-production,all_pages",

15 "value" : 202.70827268562502,

16 "timestamp" : NumberLong("1378285962046"),

17 "forecast" : 222.48932688551184,

18 "score" : 0.04652202698189832,

19 "anomaly" : false

20 }

21 ...

Figure 4.10. The listing shows sample results of the ΘPADx anomaly detection, as they are stored in
a MongoDB instance. Based on the identifiers it can be seen that the two entries belong
to two different applications.

For the case study environment at Xing the results are sent back to Logjam for monitoring
purposes. Therefore, the identifier, the score and the anomaly flag of the result are
combined to a JSONObject and sent via ZeroMQ as shown in Listing 4.11. In Logjam the
anomaly detection result can be assigned to the corresponding application with the help of
the identifier.

1 final JSONObject obj = new JSONObject();

2 final String key = detectionData.getIdentifier();

3 obj.put("score", detectionData.getScore());

4 obj.put("anomaly", true);

5 this.publisher.send(key, ZMQ.SNDMORE);

6 this.publisher.send(obj.toString(), 0);

Figure 4.11. The implementation of the send process if an anomaly was detected (anomaly flag set to
true).
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Evaluation

In this chapter, the evaluation of the introduced anomaly detection approach and the
corresponding implementation is presented. This contains the definition of conceptual
goals and metrics according to GQM. Additionally, the set-up and execution of a back-to-
back test and a long-term test in the evaluation environment is shown. Finally, an analysis
of the received anomaly detection results with respect to the defined goals is made.

5.1 GQM Evaluation Plan

As mentioned in the introduction this thesis follows the GQM approach. In Chapter 1
the organisational goals (G1 – G4) of this thesis were defined. As the organisational goals
are known, the evaluation aims to find conceptual goals (CG). These are defined to split
up G1 – G4 into sub-goals that are of finer granularity. According to GQM, questions
are found for every conceptual goal to associate it with a set of data. With the context
given by the organisational and conceptual goals and the questions, fitting metrics will be
derived. The evaluation chapter of Bielefeld [Bielefeld 2012a] was also structured according
to the GQM approach. He already stated that the following conceptual goals have to be
fulfilled by the evaluation of an online anomaly detection approach and the corresponding
implementation:

� CG1: Determine a configuration of ΘPADx (activated / deactivated extension) for the
case study environment

� CG2: Evaluate the practicality of ΘPADx

� CG3: Carry out an anomaly causality research

The ΘPADx approach is based on ΘPAD, but as shown in the previous two chapters, the
approach and also the corresponding implementation are extended. Given this fact, the
mentioned conceptional goals will be a part of the evaluation process to show that ΘPADx
is still usable in a production environment. Since without the activated extension ΘPADx is
basically ΘPAD for multiple applications a back-to-back test will be performed on the data
gathered by Bielefeld [Bielefeld 2012a]. This will ensure that ΘPADx still works as intended
for the single application use case. One goal defined in Chapter 1, is the improvement of
the anomaly detection results. As mentioned in Chapter 4, it is possible to use or not to
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use the extended anomaly detection approach of ΘPADx because of the flexible Kieker
pipes-and-filters plugin structure. Due to the extension a comparative evaluation between
ΘPADx with and without activated extension can be performed. For the final assessment
of the two approaches a comparison on an actual collected data set and the data set used
by Bielefeld is made. Therefore, this additional conceptual goal is defined:

� CG4: Assess the extensions made to the anomaly detection process

According to the GQM paradigm questions are assigned to the conceptual goals. To decide
whether these goals are fulfilled or not, measurable metrics must be defined as well.

5.2 Conceptional Goals

In this section conceptual goals are defined in detail. They all refer to an object, that is
assessed, and cover several corresponding questions. For this evaluation the objects are the
ΘPADx approach, the pair of ΘPAD and ΘPADx and finally the case study environment.
To be able to assess the goals, every question within a goal needs corresponding metrics.
The metrics used here are introduced by Bielefeld [Bielefeld 2012a], because of the close
relation between ΘPAD and ΘPADx these metrics are also fitting to this evaluation process.
These metrics are introduced after the definition of the conceptual goals.

CG1: Determine a configuration of ΘPADx (activated / deactivated extension) for the case
study environment

The process of anomaly detection used by ΘPADx relies on several parameters (see Chapter
3). If this goal is fulfilled, a combination of the parameters is found that allows to run
ΘPADx in the context of the case study environment.
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Conceptional Goal 1 (CG1)
Purpose Find a good
Issue configuration setup of
Object ΘPADx
Viewpoint for the case study environment

Question Q1.1 Which algorithms to use?
Q1.2 Which threshold detects good?
Q1.3 Which aggregation span is good?
Q1.4 Which sliding window length is good?

Metrics M3 True positive rate (TPR)
M4 False positive rate (FPR)
M8 F-measure

Question Q1.5 Which performance attributes matter?
Metrics M11 Anomaly and attribute correlation

M12 Cause of an anomaly
M13 Anomaly duration
M14 Anomaly classes

CG2: Evaluate the Practicality of ΘPADx

ΘPADx is designed to perform online anomaly detection. This goal is created to see
if the approach is able to achieve its main use case in a general manner.

Conceptional Goal 2 (CG2)
Purpose Assess
Issue the practicability of
Object extended performance anomaly detection
Viewpoint on an online, automatic basis

Question Q2.1 Is the ΘPADx server stable?
Metrics M1 Server uptime

M2 CPU utilization

Questions Q2.2 How precise is the detection?
Q2.3 How accurate is the detection?
Q2.4 How good is the overall quality of the detection results?

Metrics M6 Precision
M7 Accuracy
M8 F-Measure

55



5. Evaluation

CG3: Anomaly causality research

ΘPADx is able to collect a huge amount of data from large-scale software systems. To
be able to identify occurred anomalies it is necessary to determine which factors cause
anomalies in such systems.

Conceptional Goal 3 (CG3)
Purpose Learn which
Issue anomalies occur within
Object software systems
Viewpoint of large-scale architectures

Question Q3.1 Which types of real anomalies occurred?
Metrics M12 Cause of an anomaly

M13 Anomaly duration
M14 Anomaly classes

CG4: Assess the extensions made to the anomaly detection process

ΘPADx brings several extensions to the ΘPAD approach. While the opportunity of
processing analysis for multiple applications and metrics is more of a conceptional feature,
ΘPADx also extends the anomaly detection approach. Thus, this goal is defined to assess
these two kinds of extensions.

Conceptional Goal 4 (CG4)
Purpose Assess
Issue the differences of
Object the ΘPAD and ΘPADx approach
Viewpoint for the use in practice

Question Q4.1 Are the additional conceptual features useful?
Metrics M15 Usability of the ΘPADx approach

Question Q4.2 How differs the quality of the detection results?
Metrics M5 Number of actual anomalies

M9 Number of true negatives
M10 Number of false positives
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5.3 Metrics

To be able to evaluate the results that correspond to the conceptional goals, measurable
values are required. The following metrics are defined to give the opportunity to compare
and assess the results of the evaluation. In the following, the metrics are divided into two
groups, objective metrics and subjective metrics, as defined in Section 1.3.1.

5.3.1 Objective Metrics

� M1 - Server Uptime
The time is measured, in which the processes, that are part of the ΘPADx implementa-
tion, were running and available.

� M2 - CPU Utilization
The CPU utilzation is measured with the Unix top command. The utilization is observed
during the aggregation span, when the amount of calculations is low, and during
the time with an higher amount of calculations directly after the aggregation span is
completed. Therefore, a range is used for the CPU utilization results.

� M3 - True Positive Rate
The true positive rate was already defined in Section 2.2.1.

� M4 - False Positive Rate
The false positive rate was already defined in Section 2.2.1.

� M5 - Number of Actual Anomalies
The number of actual identified anomalies during the evaluation interview.

� M6 - Precision
The precision was already defined in Section 2.2.1.

� M7 - Accuracy
The accuracy was already defined in Section 2.2.1.

� M8 - F-Measure
The F-measure was already defined in Section 2.2.1.

� M9 - Number of True Negatives
The amount of true negatives, interpreted by the ΘPADx approach.

� M10 - Number of False Positives
The amount of false positives, interpreted by the ΘPADx approach.
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5.3.2 Subjective Metrics

� M11 - Anomaly and Attribute Correlation
Attributes, that can be used to find correlations between anomalies.

� M12 - Cause of an Anomaly
A factor that can be determined as cause of an anomaly.

� M13 - Anomaly Duration
The duration of an anomaly in a timely manner. The duration of the identified anomalies
is determined with the help of graphs by system experts, for example in the evaluation
interview. Because of this, the duration is here classified as subjective.

� M14 - Anomaly Classes
The anomalies are clustered in different often appearing classes during the evaluation
process.

� M15 - ΘPADx Usability
The usability of the ΘPADx implementation, that is mainly determined by interviewing
the administrators using the implementation and the interpretation of the resulting
visualizations.

5.4 Evaluation Process

The evaluation process consists of several steps. First a back-to-back test on the data
gathered by Bielefeld will be done. After this, ΘPADx is set up and started to collect actual
data of the case study environment over a given time. For the evaluation, this enables the
opportunity to run offline analysis on the same data set as often as needed. Besides this, an
evaluation interview is held to identify possible anomalies that occurred within the time
period of the data collection. With the results of the evaluation interview the quality of the
anomaly detection can be determined. With several replays of the analysis, an optimized
configuration will be found that fits to the case study environment. This is achieved by
a comparison of the anomaly detection results of all runs with the help of the detection
comparison metrics (see Section 2.2.1). The quality of the anomaly detection of ΘPADx,
under the best configuration found, can then finally be compared to the results of ΘPAD.

5.4.1 Back-to-Back Test

Within this section a back-to-back test of ΘPADx and ΘPAD, on the data that was gathered
by Bielefeld, is presented. First ΘPADx will run on this data set with the best found
configuration by Bielefeld. Since ΘPADx is based on ΘPAD, this should result in equal
results as found by Bielefeld. After this, ΘPADx is configured to run with the active
extension. The different results can then be compared to see if the extension is influencing
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Table 5.1. The manually identified anomalies of the data set gathered by Bielefeld.

Back-to-Back Test Anomaly Intervals

Start End Duration Attribute
19.12. 14:05 19.12. 14:46 00:41 count
21.12. 13:47 21.12. 15:09 01:22 db_time
21.12. 23:08 21.12. 23:20 00:12 count
22.12. 09:33 22.12. 09:35 00:02 db_time
23.12. 13:04 23.12. 13:06 00:02 view_time
27.12. 09:45 27.12. 10:15 00:30 count
29.12. 15:08 29.12. 15:31 00:23 api_time
30.12. 01:48 30.12. 02:09 00:21 db+api_time

Table 5.2. The best found parameters found by Bielefeld for this data set.

Back-to-Back Test Parameters

Forecasting algorithm Mean
Aggregation time 1 minute
Forecasting time window 1 hour
Threshold 0.23

the anomaly detection results. As mentioned, Bielefeld gathered the data of a single
application. Therefore, this back-to-back test covers the use case of a single application
anomaly detection.

Data Set and Configuration

The data by Bielefeld [Bielefeld 2012a] was collected over 12 days from 18.12.2011 to
30.12.2011. There were 8 anomalies detected manually in the process of an evaluation
interview. The intervals in which the anomalies appear are presented in Table 5.1. As
can be seen from the duration of the anomaly intervals, the major part were collective
anomalies. These were found to be the cause of additional false positives as described in
Section 3.2.3. For a more detailed description of the anomalies the evaluation chapter of
Bielefeld [Bielefeld 2012a] can be consulted.
The configuration that is presented in Table 5.2 was found to be the best on this data set.
The chosen forecaster is the mean forecaster with a sliding window of 1 hour. The incoming
raw data was aggregated over one minute, while the anomaly threshold was set to 0.23. In
an additional anomaly detection run now also the pattern checking is activated.
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Observations

With the configuration as shown in Table 5.2 Bielefeld got the following results. A precision
of PREC = 0.14 while the accuracy reached a value of ACC = 0.97. The anomaly detection
with ΘPADx without extension provides the exact same results for this use case (B1).
Additionally, an F-measure of 0.15 was calculated.

During the process of the back-to-back test a problem with the anomaly intervals was
found. The timestamps of the anomalies in the data did not correspond to the timestamps
of the manually identified anomalies. Since the timestamps were shifted by exactly one
hour, the best possible explanation for this is a problem with the time zones in the process
of generating the timestamps. Therefore, the back-to-back test was repeated with corrected
timestamps (B2). Finally, ΘPADx was configured to run with activated pattern checking on
the data set with corrected anomaly intervals (B3). Therefore a pattern parameter of the
anomaly detection was set to 24 hours. The results of all runs are discussed in detail in
Section 5.5, together with the results of the evaluation on the actual data collection.

5.4.2 Actual Data Collection

An implementation of the ΘPADx approach is presented in Chapter 4. While and after the
process of development, several testing phases were carried out to ensure the stability of
the implementation. However, the data collection exceeded the runtime of all previous
stability tests. Therefore, it was used to finally confirm the stability of the implementation.
While collecting the data, ΘPADx was running with a configuration that is similar to the
configuration that reached the best results in the evaluation of Bielefeld [Bielefeld 2012a].
This configuration is executing the anomaly detection constantly and additionally ensures
that ΘPADx is collecting the incoming raw data. In this way the collection phase emulates
the usage of ΘPADx in production environment over its runtime. The most important
parameters chosen for the data collection are shown in Table 5.3. However, the main goal
of the data collection was to gather the raw data of incoming values from the Xing envi-
ronment that solves as case study. With this sample set of data, it is possible to rerun the
anomaly detection in offline mode as often as needed. This is used during the evaluation to
compare the results of the analysis with different configurations, activated or deactivated
extensions and ΘPAD. Since ΘPADx is able to process data of several applications, it was
set up to gather raw data from 14 different applications. For some of the applications
different pages are considered as well. An exact list of all selected application and page
combinations is shown in Table 5.4.

For the data collection ΘPADx was deployed on a server within the Xing cluster
(Debian, CPU, RAM). The server runs Java 1.6, which is the programming language ΘPADx
is written in. As mentioned in Chapter 2.4.3 ΘPADx uses ZeroMQ to connect to the
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Table 5.3. This table shows the most important parameters of ΘPADx used for the data collection.

ΘPADx Data Collection Parameters

Time
Start date 15.07.2013
End date 02.08.2013

ΘPADx Parameters
Forecasting algorithm JavaMean
Aggregation time 1 minute
Forecasting time window 1 hour
Threshold 0.23

Data
Raw data storage active
Analysis result storage active

Server
OS Debian
CPU Changing (virtually)
Memory Changing (virtually)

logging queue. Via this logging queue the raw data of the Xing environment is collected.
Therefore ZeroMQ is installed on the server. To store the raw data, a database connection
is established in the adapter (see Chapter 4). When a raw measurement arrives in the
adapter, a copy is stored to a separate collection of the MongoDB that is also used to store
the anomaly detection results. Due to this location, no aggregation or other manipulation
of the incoming raw data happened until this point. An installation of MongoDB on the
server was therefore also required. The following Table 5.3 sums up the most important
parameters of the ΘPADx instance that runs during the data collection phase.

5.4.3 Evaluation Interview

After the data collection phase an evaluation interview was scheduled for a manual analysis
of the data that was collected. To gain the best possible results from the interview, it was
held with Dr. Stefan Kaes, who is the head of the architecture team at Xing and worked
with the underlying system for many years. Therefore, he has profound knowledge of the
case study environment, its behavior and the data it produces.

The corresponding data from Monday the 15.07.2013 to Friday the 02.08.2013 was re-
visited in logjam. For a more detailed look on some intervals, plots with R were used.
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Table 5.4. This table shows all application and page combinations that were selected during the data
collection phase to gather data from.

Applications and Pages

Application Pages
companies-production corporatepages, rest
events-production events, rest
ipad-production ipad
jobs-production jobs, rest
messages-production all_pages
perlapp-production all_pages
perlrest-production all_pages
perlyaml-production all_pages
profiles-production profiles
publicsearch-production all_pages
recommenders-production all_pages
riaktivities-production rest
triton-production webservice
xws-production webservice, xws

The interview focused the data of the perlapp application under the all_pages selector.
Despite the fact that Xing’s main application got split up, the perlapp application is still
the most important application and, therefore, the most important indicator for the health
of the Xing platform. The amount of time for the interview and the rest of the evaluation
process expanded to all selected applications and pages would be to high. However, the
gathered data of the other applications will be partly investigated during the evaluation.
This is necessary to identify the advantages of the new architecture at Xing. As already
mentioned, the platform is now composed of several applications instead of one main
application. The discussion in the interview leads to the assumption that the process of
identifying the source of erroneous behavior might be positively affected by the additional
conceptual features of ΘPADx. For example a correlation between two applications could
be recognized if the anomaly score for both increases within a short period of time.

Manually Found Anomalies
In the Figures 5.1 – 5.9 the corresponding graphs of all manually found anomalies (MA)
are shown. Within the graphs they are marked with red circles. If multiple anomalies are
shown in one graph, the anomalies are numbered for a better identification. If possible, a
reason for the occurrence of each anomaly is presented as determined in the evaluation
interview. The graphs show several non-marked outliers. These were considered as not
important enough during the interview. Overall 12 anomalies (M1 - M12) were found. The
majority of this set are point anomalies.
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MA1 MA2

Figure 5.1. (MA1 – MA2) 16.07.2013 09:42 - 09:45 and 13:06 - 13:08
An inefficient database call leads to an increased database time (MA1). A slow Gearman
job caused the high gearman time (MA2).

MA3

Figure 5.2. (MA3) 17.07.2013 22:30 - 22:32
A slow call to the rest API lead to an increased rest time.
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MA4

Figure 5.3. (MA4) 18.07.2013 07:27 - 07:28
Again a slow Gearman job is the cause of this anomaly.

MA5

Figure 5.4. (MA5) 19.07.2013 06:56 - 06:58
This anomaly seems to be caused by the same Gearman job as in MA4. This is assumed
because of the similar time of appearance.
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MA6

MA7

Figure 5.5. (MA6 – MA7) 21.07.2013 and 28.07.2013 02:53 - 04:45
These anomalies are shown in one figure because of their similarity. They are caused by
the intrusion detection of the Xing platform that is scheduled for Sundays in the shown
time period. This detection sends lot of requests that can be processed very fast. Thus,
the total time per request is lower than for usual requests.
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MA8

Figure 5.6. (MA8) 24.07.2013 13:54 - 13:55
The reason for this anomaly could not be determined.

MA9

Figure 5.7. (MA9) 25.07.2013 19:15 - 19:29
The reason for this anomaly was a faulty deployment, that caused the performance to
decrease. It was reverted after circa 15 minutes.
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MA10

Figure 5.8. (MA10) 26.07.2013 01:30 - 07:20
During the morning hours of this day, the other time keeps to increase from time to time.
The reason for this behaviour could not be identified.

MA11 MA12

Figure 5.9. (MA11 – MA12) 31.07.2013 14:08 - 14:11 and 17:10 - 17:11
These two anomalies were caused by slow rest calls.

5.4.4 Determine the Configuration

After the data collection is finished a huge sample data set exists. This set offers the
opportunity to replay the anomaly detection as often as needed. For the evaluation it is
necessary that ΘPADx runs with a configuration that fits the case study system as good
as possible, to gain anomaly detection results of high quality. Bielefeld [Bielefeld 2012a]
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Table 5.5. This table shows all chosen cases to determine optimized parameters. All cases have to be
executed for an increasing value of the threshold. And the complete procedure has to be
repeated for ΘPADx with activated pattern checking.

Cases of the ΘPADx Evaluation Configuration

Case Forecasting Algorithm Aggregation Span TS Window
C1 Mean 30sec 1h
C2 Mean 1min 30min
C3 Mean 1min 1h
C4 Mean 1min 2h

C5 ETS 30sec 1h
C6 ETS 1min 1h
C7 ETS 1min 2h

C8 Arima101 30sec 1h
C9 Arima101 1min 1h
C10 Arima101 1min 2h

C11 SES 1min 1h
C12 SES 1min 2h

already derived the optimal parameters for ΘPAD in the Xing environment. His results
will be used as a first indication for the search of a good configuration for ΘPADx with
deactivated pattern checking. ΘPADx for example uses different forecasting algorithms and
aggregation methods. This results in different combinations of configuration parameters
that need to be tested. All cases taken into account are shown in Table 5.5. They are
selected because of the following reasons.

First of all, the evaluation should contain all currently available forecasting methods
of ΘPADx. Some of the methods have a long runtime. For these, a smaller amount of cases
is considered. The used forecasting methods weight past values. Values that are too far in
the past only have a small influence on the result. Thus, a too long sliding window is not
useful. For the cases, a maximum of 2 hours for the sliding windows is considered. If the
aggregation span is set to a value that is too long, the resulting time series is smoothed a
lot. This means, that also anomalies may be masked in the resulting time series. That is
why the aggregation span of the different cases is settled around one minute.

To detect an anomaly a threshold is used. To find an optimized threshold, the anomaly
detection runs several times for all cases. Every time the case is executed, an increased
value is used for the threshold. Starting from 0 and increase the threshold up to 1, in 0.01
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steps. For every execution all metrics presented in Section 2.2.1 are calculated. At the
end of this process an optimized configuration can be found by utilizing the calculated
detection comparison metrics.

ΘPADx offers an extension to the anomaly detection approach. Therefore, a compar-
ative evaluation of the results with and without activated extension is targeted. To achieve
this, the process of searching the optimal parameters has to be repeated for ΘPADx with
activated extension.

5.5 Analysis of the Evaluation Results

In this section the results of the previously presented process of evaluation are analysed.
In Section 5.2 the conceptional goals (CG1 - CG4) were defined. We will now step through
all goals and see to which extend they are fulfilled.

5.5.1 Determine a Configuration of ΘPADx (CG1)

To determine a good configuration for the case study environment, the opportunity to
rerun the anomaly detection on the gathered data is used. A Java application was written
that can run the anomaly detection with ΘPADx under a certain configuration on a data
set. Whenever the anomaly detection is finished, the results are stored in a database as
shown in Section 4.5. The Java application then analysis the anomaly detection result with
an increasing value for the anomaly threshold. On this way a good anomaly threshold can
be discovered. Table 5.6 shows the calculated detection comparison metrics (see Section
2.2.1) for every previously defined case.

All cases were repeated with activated pattern checking, what led to the same or worse
results for all cases. This was expected, because the actual gathered data set contains no
collective anomalies that were recognized. The pattern checking is especially designed to
improve the anomaly detection results for the appearance of such collective anomalies (see
Section 3.2.3) and will here not lead to an improvement. If the pattern checking is able
to improve the anomaly detection result in case of collective anomalies, will therefore be
clarified in the analysis of CG4.

It can be seen, that the first four cases (C1 – C4) in Table 5.6 all used the MEAN forecaster.
The table is sorted by the value of the F-measure. Since this value is used to assess the
overall quality of the anomaly detection results, this is a first indicator for the MEAN fore-
caster to be the best of the available forecasters for the data of the case study environment.
To confirm this indication, ROC curves were created for the best cases of the different
forecasters. With their help the trade off between the TPR and FPR can be analyzed.
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The best cases per forecaster of Table 5.6 are selected and visualized as ROC curves
in Figure 5.10. In the left graph, the blue curve shows the best trade off between TPR and
FPR. This curve belongs to the best configuration using the SES forecaster. Since the illus-
trated curves in the left graph are based on configurations that use different aggregation
spans, the trade off between TPR and FPR seems not to be a good indicator to select the
best configuration. This is because a lower aggregation span leads to way more anomaly
detection results than a higher aggregation span: For example, if the aggregation span is
set to 30 seconds, every 30 seconds an anomaly detection is processed. If it is set to 60
seconds, every 60 seconds an anomaly detection is processed and we get only half as much
results as we would with a 30 seconds aggregation span. This can lead to different ratios
for the TPR and the FPR. However, in the right graph the F-Measures are shown, that were
reached by the configurations for every threshold. The best performance is shown by the
red curve. Since this curve corresponds to the MEAN forecaster this graph confirms the
MEAN forecaster as the best forecaster for this data set.
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Figure 5.10. ROC curves containing the best found cases per forecast method.

Since the best found configuration is now known, the following questions of CG1 can be
answered as follows:

� Which algorithms to use?
The MEAN forecaster shows the best performance.

� Which threshold detects good?
The best found threshold was θ = 0.19.
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Table 5.6. The calculated metrics of every case with the best found threshold. The configuration of
every case is given in a short form (Forecaster.AggregationSpan.TSWindow). The results
are ordered by the F-measure.

Case Configuration Best TH TPR FPR Precision Accuracy F-measure
C4 MEAN.A1min.W2h 0.19 0.30 0.00 0.46 0.99 0.37
C2 MEAN.A1min.W30min 0.13 0.39 0.01 0.33 0.99 0.36
C1 MEAN.A30sec.W1h 0.15 0.39 0.01 0.31 0.99 0.34
C3 MEAN.1min.W1h 0.17 0.32 0.00 0.37 0.99 0.34
C8 ARIMA101.A30sec.W1h 0.10 0.33 0.00 0.29 0.99 0.31
C5 ETS.A30sec.W1h 0.10 0.28 0.00 0.28 0.99 0.28
C9 ARIMA101.A1min.W1h 0.07 0.31 0.01 0.25 0.99 0.28
C11 SES.A1min.W1h 0.07 0.35 0.01 0.24 0.99 0.28
C7 ETS.A1min.W2h 0.08 0.24 0.00 0.30 0.99 0.27
C12 SES.A1min.W2h 0.08 0.29 0.01 0.25 0.99 0.27
C10 ARIMA101.A1min.W2h 0.07 0.29 0.01 0.24 0.99 0.26
C6 ETS.A1min.W1h 0.07 0.27 0.01 0.21 0.99 0.24

� Which aggregation span is good?
The aggregations span was set to 1 minute.

� Which sliding window length is good?
The length of the sliding window was set to 2 hours.

� Which performance attributes matter?
For an overview of the performance the total_time attribute of the application perlapp is
still the most important performance attribute. An advantage of ΘPADx over ΘPAD is
that multiple applications can be processed per instance. Given this opportunity, it is
possible to recognize correlations between different applications and therefore between
different performance attributes. This involves other performance attributes a lot more
than in the single application use case. In Figure 5.11 an example is shown, that was
found within the evaluation process. In the perlapp applications two anomalies were
detected. These anomalies were also identified manually as anomalies, as can be seen in
Figure 5.9. Slow rest calls were determined as cause of these anomalies. Therefore, the
corresponding application perlrest was investigated at the corresponding time points.
Since this application shows anomalies that match those of the perlapp application,
a clear correlation between the two applications is found. In a common scenario an
administrator might see that the anomaly scores of these two applications are high.
Since the perlapp application relies on the perlrest application for its rest calls, the
cause of the problem can be determined more easily than with data of only a single
application.
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Figure 5.11. Correlation between the perlapp application and the perlrest application.

5.5.2 The Practicality of ΘPADx (CG2)

Since the approach is designed to find anomalies in live data of software systems, it is
necessary that ΘPADx itself is running reliable to constantly processing data. Beside this it
is important to clarify, how good the results of ΘPADx are for the use in practice. For this
purpose the questions of CG2 are answered with respect to their metrics:

� Is the ΘPADx server stable?
The ΘPADx implementation ran stable over two weeks of data collection. In this phase
ΘPADx was configured to process the anomaly detection on live data and additionally
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to store the raw data. Based on this, the ΘPADx implementation can be stated as stable
for the present. However, further observation of the stability of ΘPADx during the use
in practice over a longer duration should be planned. During the data collection phase
the three most important processes java, mongod and Rserv-bin.so reached constantly
low values for the CPU utilization. Only the java process got peaks every time the
aggregation span is over. At this time the aggregation and forecasting methods are
processed, which leads to more calculation effort.

� java: idle 0.5%� 3.5%, peaks up to 20%

� mongod: 0.5%� 5%

� Rserv-bin.so: 0.0%� 0.5%

ΘPADx starts with a low memory usage around 26mb and then consumes more memory.
This is caused by the empty sliding windows in the beginning, that get filled in the first
period of the run time. As soon as the sliding windows are filled, the memory usage
is about to be constant. For the data collection phase, ΘPADx consumes around 73mb
of memory. In this case ΘPADx was configured to work on the data of 14 different
applications. The memory consumption should be smaller for a lesser amount of
applications. Since the memory consumption is about to be constant, no memory leaks
were found that may influence the stability of the implementation during a long term
execution.

� How precise is the detection?
Under the best selected configuration the anomaly detection of ΘPADx reached a value
of PREC = 0.46. This means that there are slightly more false warnings given than
correct detected actual anomalies.

� How accurate is the detection?
For the same configuration a accuracy of ACC = 0.99 was reached. This value indicates
that the ratio between the correct detections to all made detections is high. Based on
this fact, an anomaly detected by ΘPADx is likely to be an actual anomaly.

� How good is the overall quality of the detection results?
The approach reached a value of F�measure = 0.37. Since the F-measure is a value that
describes the over all quality of a detection approach, this seems like a fairly bad result
for the ΘPADx approach.

However, these metrics do not cover the following points. Some anomalies just oc-
cur for a few seconds, while others appear over more than an hour. There can also
be variations in the interval of an anomaly, where the measures toggle from abnormal
values to normal values from time to time. But these intervals will overall still be marked
as anomaly. Additionally, the manually found anomalies were defined in intervals of a
one minute granularity. This means that anomalies may extend over the edges of these
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intervals, which is hard to interpret for the evaluation script. For the approach, to reach
high precision, accuracy or F-measure values, every time point in an interval needs to
exactly fit to the manually determined anomaly intervals.

For the usage of ΘPADx in practice, the following fact is more important. The ap-
proach should at least recognize an anomaly for one time and as soon as possible. This
will for example offer the opportunity to alert an admin, who can pull out a quick
reaction on the anomaly. For this practical scenario it is not necessary to detect all values
of the anomaly interval correctly. From the analysis of different anomaly detection
graphs, that were sighted during the evaluation phase, this scenario can be found to be
fulfilled by ΘPADx.

5.5.3 Anomaly Causality Research (CG3)

Anomalies can be caused by many different factors. Within the evaluation several reasons
for appearing anomalies in the actual data collection were identified within the evaluation
interview. In the following the found causes are presented and a brief comparison to the
causes found by Bielefeld [Bielefeld 2012a] is made.

� Which types of real anomalies occurred?
For the actual data collection these kinds of anomalies occurred:

� Slow database call (MA1)

� Slow Gearman job (MA2, MA4, MA5)

� Slow call to the REST API (MA3, MA11, MA12)

� Intrusion Detection (MA6, MA7)

� Faulty deployment (MA9)

� Could not be determined (MA8, MA10)

Over all, five different causes of anomalies were found. For two anomalies no exact reason
could be determined. The actually found causes lead to point anomalies in the most cases.
Slow calls to the REST API or the database for example only affect a few users and also only
under certain circumstances. In the data set collected by Bielefeld some factors were found
that have a stronger influence on the system. For example the complete disconnections of
the logjam servers or server faults. Since it takes more time to fix such issues this leads to
more collective anomalies.

5.5.4 Assess the Extensions (CG4)

� Are the additional conceptual features useful?
The goals G3.2 and G3.3 describe two conceptional extensions of the ΘPAD approach.
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Table 5.7. All calculated metrics for the runs of the back-to-back test. (B1 = original configuration of
Bielefeld, B2 = corrected anomaly intervals, B3 = corrected anomaly intervals and activated
pattern checking)

Run TP FP FN TN TPR FPR PREC ACC F-M
B1 38 239 183 16815 0.17 0.01 0.14 0.97 0.15
B2 81 196 140 16858 0.37 0.01 0.29 0.98 0.32
B3 81 142 140 16912 0.36 0.01 0.31 0.98 0.36

As discussed in the Chapters 3 and 4, the corresponding features are realized within
ΘPADx. Therefore, ΘPADx is now able to process the data of different applications and
for different metrics as well.

In the analysis of CG1 (see Section 5.5.1) a useful use case for these features was
already found. A correlation between the data of two interrelated applications was
identified. This led to a faster identification of the cause of an appeared anomaly. Since
it is possible to use such correlations in practice to make it more easy to find the cause
of an anomaly, these features are classified to be useful.

Beside this, the conceptual extensions offer an additional advantage. Usual software sys-
tems consist of several applications. This is also the case for the case study environment
at Xing. With ΘPAD it is only possible to collect the data of a single application out of
these. With ΘPADx now the anomaly detection can be processed for all applications
or, at least, for the most important applications. This leads to a better system coverage
and more useful data for visualizations or alerts, for example in the case of a system
dashboard.

� How differs the quality of the detection results?
The main extension to the ΘPAD approach is the pattern checking (see Section 3.2.3).
This extension aims to reduce the number of false positives that were produced by
ΘPAD in connection with collective anomalies. Since the actual data collection did not
contain collective anomalies, the data collection of Bielefeld [Bielefeld 2012a] is used to
assess the pattern checking extension.

In Section 5.4.1, that describes the back-to-back test, three different runs of the test
(B1, B2, B3) were already mentioned. B1 equals the configuration of Bielefeld, B2 takes
corrections of the time stamps in consideration and B3 additionally used the pattern
checking extension. The calculated comparison metrics of these runs are shown in Table
5.7. As expected, the run of B1 offered the same results which were found within the
evaluation phase of Bielefeld [Bielefeld 2012a]. It can be seen, that with the correction of
the time stamps (B2), the TPR, the PREC and the F-Measure reached results that were
more than twice as good as the results of B1. This means, that the ΘPAD approach is
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not as bad as described by Bielefeld. However, the activation of the pattern checking
should still show better results, because the time stamp correction is not correlated with
the mentioned problem of additional false positives.

The results of B3 seem to have just small deviations from the results of B2. The F-
measure of B3 for example is about 0.04 higher than the F-measure of B2. However, the
most important value for this extension is the amount of false positives (FP). As can
be seen, a reduction of 54 FP from 196 FP for B2 down to 142 FP for B3 was possible
without negative influence on the values of TP and FN. This result is supported by
Figure 5.12. At the top, the results for B2 can be seen, while the graphs below show
the results for B3. The blue line marks the measures, the green line marks the forecasts
and the red line marks the anomaly scores. In the results of B2 it can be seen, that the
forecasts stay high, even if the anomaly is already over (1). This is caused by a problem
with the sliding window, that is filled with abnormal values during the time period of
the anomaly, as described in Section 3.2.3. These high forecast values deviate strongly
from the measurements, that return to the normal level after the anomaly is over. This
results in high anomaly scores (2). In the graphs of B3 it can be seen, that the forecasts
are falling way faster after the end of the anomaly (3). As conclusion, the amount of
detected anomalies after the end of the actual anomaly is lower. This is were the pattern
checking is reducing the amount of FP in difference to the ΘPAD approach. For the
use in practice, this results in lesser fail alerts, that would else waste the time of an
administrator.
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Figure 5.12. These graphs show the difference between the anomaly detection approach with and
without activated pattern checking in case of the occurrence of an collective anomaly.
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Chapter 6

Related Work

Anomaly detection is a problem that is applicable to many domains. Due to this fact, a
multitude of works can be found that cover anomaly detection for a specific research field.
In this chapter a list of tools and research is presented that is related to the problem field
of ΘPADx, the forecasting and anomaly detection on performance data. Every mentioned
product or approach is briefly introduced and compared to ΘPADx.

6.1 Combining Time Series Models for Forecasting

Often statistical models, as for example ARIMA models, are used to predict future values
on time series data. A certain model must be selected that fits to the time series, that is
going to be processed. However, over the duration of a time series, the selected model
may not always fit the actual behavior. Therefore, Zoua and Yangb [Zou and Yang 2004]
developed an algorithm, called AFTER, that is able to combine several models.

In situations where it is hard to identify one best-fitting statistical model, the AFTER
approach reached better results than a static model selection approach.

For the ΘPADx approach this can be used to improve the prediction performance for
environments, where the ARIMA forecaster is part of the best configuration. Overall,
this approach shows that the combination of several models or methods may increase the
quality of the corresponding forecasting results, just as similarly executed by ΘPADx.

6.2 Modeling Multiple Time Series for Anomaly Detection

The approach, introduced by Chan and Mahoney [Chan and Mahoney 2005] is able to
generate a reference model of a system with the help of multiple corresponding training
time series. Three algorithms were developed, that combine the information of the training
time series in a so-called box model. This box model can then be used as reference model
for predictions of the system’s data.

The approach was evaluated on a data set of the NASA that contains sensor data of
several valves. It was found that the approach performed better than two common box
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modeling approaches.

The working method of this approach is similar to ΘPADx: a reference model is gen-
erated and deviations between the model and the actual behavior are calculated. In
difference to ΘPADx, the approach of Chan and Mahoney needs training sets to be able to
work. A certain amount of time must therefore be scheduled, before the anomaly detection
could start.

6.3 Workload Aware System Monitoring Using Performance
Predictions Applied to a Large-Scale E-mail System

For the most anomaly detection approaches a fixed threshold is used to determine whether
a system is in a normal or abnormal state. It is known, that the performance data of a
system is highly related to the actual workload. Fixed thresholds are often configured
to work in the case of workload peaks. This may lead to slow recognition times of an
abnormal system behavior, especially in low workload situations. Therefore, Rathfelder et
al. [Rathfelder et al. 2012] developed an approach, that dynamically adjust the threshold
for the anomaly detection in relation to the actual workload. For the reference model
generation the software system is modeled with the help of the Palladio Component Model
(PCM), and performance simulations on this model are used as predictions.

The approach was tested on the e-mail system of a large e-mail provider from Germany
and reached an error rate of mostly less than 10% for the prediction of the systems resource
utilization.

ΘPADx is working with fixed anomaly thresholds as well. For the anomaly detection with
ΘPADx, especially on systems in which the performance data underlies huge workload
variations, this methods seems to be an appropriate way to improve the quality of the
anomaly detection.

6.4 Workload Classification and Forecasting

Herbst [Herbst 2012] presented an approach, called WorkloadClassificationAndForecasting
(WCF), that is able to use the actual workload intensity behavior to improve its forecasting
results. A forecasting method is selected, that is known to offer results of high quality
under the actual workload intensity pattern. To select an appropriate forecasting method,
the accuracy of several forecasting strategies is evaluated and incorporated into a decision
tree. The decision tree considers forecasting objectives to finally select the best fitting
forecasting method.
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The WCF approach was applied to real world data and the relative error metric was
used to compare the approach with the static application of the extended exponential
smoothing method. The approach of Herbst reached a 63% reduced relative error. In
further case studies it was found that the WCF approach is able to prevent between 52%
and 70% of the violations of a given service level agreement.

The WCF approach selects different forecasting methods in relation to the actual pro-
cessed data, a similarity to ΘPADx. While the WCF approach uses the workload intensity
behavior to choose a forecaster, the ΘPADx approach considers the type of an anomaly for
the decision to use or not to use the pattern checking forecaster. However, the WCF ap-
proach can be used to improve the forecasting results in general and is therefore considered
to be integrated into ΘPADx.

6.5 Online System Problem Detection by Mining Patterns
of Console Logs

Xu et al. [Xu et al. 2009] developed a system for the online problem detection of software
systems with console logs as input. In a first stage the approach is frequently mining
pattern of the console logs. The pattern are valued related to the pattern distribution. The
most dominant pattern, which are pattern that appear often, are valued as normal. In a
second stage, less dominant pattern are analyzed based on principal component analysis
(PCA) methods.

The approach was evaluated with the help 24 million lines of log messages from a large-
scale real world application. It was shown, that the approach matches or outperforms even
the most common offline analysis methods.

The approach of Xu et al. shows the strongest similarities to ΘPADx. Although their
approach operates on console logs, they are still offering online analysis and are using two
different phases to increase the accuracy of the approach.

6.6 An Automated Approach to Forecasting QoS Attributes
Based on Linear and Non-linear Time Series Modeling

A common method to predict future values, in the case of Amin et al. [Amin et al. 2012b]
Quality of Service attributes, is provided by ARIMA models (see Section 2.1.3). Such
data is often assumed to be linear and therefore a linear ARIMA model is selected for the
predictions. Amin et al. analyzed real world QoS data sets and found that the data often
shows non-linear behavior and is therefore hard to predict with existing ARIMA models.
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Because of this, they developed an approach that automatically adjusts the underlying
ARIMA model through integration to improve the predictions.

The approach was evaluated on several real world data sets and reached a forecasting
accuracy increased by an average of 35.4% in comparison to common ARIMA models.

ΘPADx can be configured to use the ARIMA101 forecaster, which is one of the com-
mon ARIMA models. For non-linear data sets this approach could be considered as a
further improvement for the prediction accuracy of ΘPADx.

6.7 Statistical Detection of QoS Violations Based on CUSUM
Control Charts

This approach, called Automated Detection of QoS Attributes Violations (AuDeQAV) and also
developed by Amin et al. [Amin et al. 2012a], detects QoS violations based on descriptive
statistical methods. First, QoS-related statistics are collected at system runtime to describe
the systems normal behavior. The statistics are used to build a CUSUM control chart. For
each new QoS observation the CUSUM control chart is updated and checked for QoS
violations.

In an evaluation phase it was found that AuDeQAV is able to outperform simple threshold
based approaches.

In difference to ΘPADx, AuDeQAV uses descriptive statistical methods instead of forecast-
ing methods to generate a reference model.

6.8 Anomaly Detective

The Anomaly Detective1 tool, developed by prelert, provides anomaly detection based on
machine learning algorithms. It is used as plugin for the monitoring and analysis software
Splunk2. Due to the usage of machine learning, prelert promises that the tool is 100%
self-learning and therefore releases the user from configuration work. The only prerequisite
is the connection to the data sources. Similar to ΘPADx, the tool works online and is able to
work on different data sources and metrics. Additionally, it provides an extensive amount
of visualizations for the analysis results by using the visualization interface of Splunk. A
free version is available that supports 0.5GB indexed data per day and does not contain
the real-time feature. The full feature premium version is priced according to the daily
indexed data volume.

1http://www.prelert.com/products/anomaly-detective.html
2http://www.splunk.com
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6.9 STATISTICA Advanced

STATISTICA Advanced3 from the manufacturer StatSoft is a tool that contains a set of
data analytic features. In the advanced version the tool contains a module for time series
forecastings based on the common forecasting methods that are also used by ΘPADx. The
tool offers the opportunity for several analyses and transformations of the time series data,
for example component model decomposition, smoothing methods or cross correlation
analysis. Additionally, the time series can be stored for later usage and a log of all made
transformations on the time series is maintained by the tool. For visualization purposes the
tool offers a wide range of different plots. The pricing for the tool is handled individually
per request.

6.10 New Relic

New Relic4 offers a monitoring service for web and mobile applications. In contrast to
the already mentioned anomaly detection tools, the services of New Relic are offered
as SaaS. The tool is able to analyze performance data for example real-time browser
performance data, transaction performance data, database related performance data and
server performance data like CPU or RAM utilization. Besides the monitoring, alerting
is supported as well. The alerting is realized via configurable thresholds, as known from
ΘPADx. New Relic takes 24$ per month and server for the standard version and 149$ per
month and server for the pro version.

3http://www.statsoft.com/products/statistica/advanced/
4http://newrelic.com
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Chapter 7

Conclusion

This chapter will cover a brief summary of this thesis in Section 7.1. In the beginning of this
document the organizational goals were formulated. In Section 7.2 these goals are revisited
and a closing assessment, whether the goals are reached or not, takes place. Finally, ideas
for further improvements of the approach and additional planned features for the ΘPADx
implementation are presented.

7.1 Summary

The introduction pointed out that monitoring, especially performance monitoring, is be-
coming more and more important. This is caused by the complexity large-scale software
systems can reach, what makes it hard to keep track of the systems health. Whenever issues
are affecting the systems behavior, these issues may manifest themselves as anomalies in
the systems performance data. Despite the size and the complexity the underlying software
system may have, a fast reaction to these anomalies is necessary to prevent slow response
times or even the unavailability of the system. This is why an online performance anomaly
detection (ΘPAD) approach was developed by Bielefeld [Bielefeld 2012a]. However, the
results of ΘPAD were negatively influenced whenever anomalies occur over a long time
period and usability improvements were necessary for the corresponding implementation.
Due to this facts, an approach called ΘPADx, that is based on ΘPAD but extends the
existing approach, was motivated.

The ΘPADx approach is based on several mathematical definitions, concepts and technolo-
gies. Therefore, Chapter 2 introduced the mathematical foundations of time series analysis
and defined the most important terms in the domain of anomaly detection. Also the key
technologies used for the implementation, the case study environment and the working
method of ΘPADx were presented.

With the knowledge about the working method of ΘPAD an analysis of the approaches
weaknesses was made. It turned out, that the used forecasting methods, which are part of
the anomaly detection process of ΘPAD, offer results of poor quality, whenever a long term
anomaly, also called collective anomaly, occurs. Based on this analysis the ΘPAD approach
was extended and now called ΘPADx. ΘPADx uses an additional forecasting method called
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pattern checking, whenever an collective anomaly is detected. This forecasting method
makes use of data from a long term storage of performance data and takes advantage of
existing seasonal pattern.

In the following, a corresponding implementation of ΘPADx was developed. This imple-
mentation includes the extension and several conceptual changes of the approach. ΘPADx
is now capable to process anomaly detection for several applications and metrics per
instance, what was not the case for ΘPAD.

To assess the extension of the approach, the implementation was evaluated. Xing, a
social network platform focused on business contacts, served as case study environment.
The implementation was tested over a period of two weeks and the results were analyzed
and compared to the performance of ΘPAD. The results showed an improved quality of the
anomaly detection results and the conceptual changes were found to increase the usability
of the approach and to be helpful for a faster determination of anomaly sources.

7.2 Goals Revisited

In Chapter 1 four organizational goals were defined. In the following, these goals are
revisited and a final assessment is given, whether the goals are fulfilled or not.

7.2.1 G1: Improvement of the ΘPAD anomaly detection approach

The most important goal was to improve the anomaly detection approach. Improvements
can be made in certain ways. G3 for example aims on several conceptional changes of the
approach and the corresponding implementation. Since ΘPAD and ΘPADx are delivering
anomaly detection results, these results can be of a varying quality. This goal (G1), was
primarily defined to address a quality increase of the anomaly detection results.

Due to the extensive evaluation phase Bielefeld [Bielefeld 2012a] executed in his the-
sis, it was possible to compare ΘPAD with ΘPADx. The comparison metrics offered an
improved anomaly detection quality. While the F-Measure only increased from 0.32 to 0.36,
the improvement reduced the amount of false positives from 196 to 142. These are more
than 50 false alarms that were eliminated on the test data Bielefeld collected during his
evaluation. This helps to make the approach more useful in practice, since false alerts may
cause an unnecessary action by an administrator. A F-Measure of 0.36 seems to point out
a weak anomaly detection approach. But during the evaluation it was found that several
factors have negative influence on the comparison values. A detailed view on these issues
was given in Section 5.5.

For the actual data collection presented in Section 5.4.2, the ΘPADx approach reached an
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F-Measure of 0.37, which is similar to the results on the data of Bielefeld [Bielefeld 2012a].
The evaluation revealed that the improvements are not applicable to the data of the actual
data collection, because it did not include collective anomalies. Overall, ΘPADx gives at
least one alert for 11 out of 12 anomaly intervals determined for the actual data collection.
Since in practice it is not needed to recognize an anomaly over the complete duration, this
qualifies the approach for the usage in production.

7.2.2 G2: Implementation of the ΘPADx approach

For the use of the approach in practice an implementation, containing all developed ex-
tensions, was necessary. The implementation is based on a reworked version of ΘPAD,
following the pipes-and-filters plugin structure of the Kieker framework. The developed
extensions were integrated in the implementation in the form of additional and reworked fil-
ters, an additional forecasting method, a new adapter and new record types (see Chapter 4).

During the evaluation phase performance data of Xing was collected over a duration
of more than two weeks. For the ΘPADx implementation, as well as for all related pro-
cesses and libraries, neither a downtime nor errors were recognized. The measures for
CPU utilization and memory consumption showed constant values as well, what indicates
no memory leaks or similar common problems. Due to these facts the implementation is
considered to be stable and ready for use in practice.

7.2.3 G3: Integration of the extended approach in the redefined Xing
environment

Several conceptional changes were related with this goal. First of all, Xing used a differ-
ent messaging technology to deliver the performance data, called ZeroMQ (see Section
2.4.3). An adapter was developed, that enables ΘPADx to gather the performance data via
ZeroMQ and to deliver the data to the ΘPADx Kieker plugins. This proved the adapter
concept, already chosen by Bielefeld [Bielefeld 2012a], to be flexible and to enable the usage
of ΘPADx in a variety of environments.

Beside this, Xing decides to split the main application, that was processed by ΘPAD,
into several interrelated applications. Therefore, ΘPADx now must be able to process
the data of several applications. Additionally, it should be possible to optionally process
multiple metrics per application (see Section 2.3), while ΘPAD was developed to process
only the total time. To achieve this, the filters of ΘPAD are extended to be able to load
and store data according to an unique identifier, as described in Section 4.4.2. With the
help of this feature, ΘPADx was able to process the anomaly detection for 14 different
Xing applications during the data collection phase. Since software systems often consist of
several applications and several performance data is monitored, these features of ΘPADx
can be used to reach a better system coverage and to find correlations in the performance
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data of the applications.

Summing up the mentioned advantages, the conceptual changes are found to increase the
usability of ΘPADx.

7.2.4 G4: Evaluation

The last defined goal was to execute an evaluation, to be able to assess the quality of
the anomaly detection results of ΘPADx and to compare them with the results ΘPAD
reached. The already mentioned implementation of the ΘPADx approach was the most
important prerequisite for the evaluation. With the help of an actual data collection and
the data collected by Bielefed [Bielefeld 2012a], an assessment of the ΘPADx approach
and a comparison with ΘPAD was successfully executed. The assessment was supported
by an evaluation script. It was used to determine configurations that fit to the gathered
performance data and to calculate the detection comparison metrics (see 2.2.1). Additionally,
the visualization with R helped to find crucial parts in the performance data and in the
anomaly detection results.

7.3 Future Work

During the development of ΘPADx several ideas and additional features were considered
to be useful. Because of time limitations, some of these are not included in the current state
of the implementation. In this section these ideas and features are briefly presented. They
are considered for future implementation upgrades or following theses.

7.3.1 Improved Configuration

The possibility to process anomaly detection for multiple applications is a goal that is
realized with the implementation of ΘPADx. ΘPADx now allows to define a range of
identifiers, for example the names of the applications. For every identifier, the data is
processed without messing it up with the data assigned to an other identifier. While
this is a clear separation of the applications performance data, they currently still share
the same configuration. To be able, to generate more accurate results for all observed
applications, a separation of the configuration is necessary as well. This would improve
the anomaly detection results per application and would also make correlations between
different applications more accurate.

The current application filters already load data in dependence on a particular identi-
fier, as described in Section 4.4.2. For a future implementation it might be thinkable to
additionally load a configuration file, that stores the configuration for the actual identifier.
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7.3.2 Automatic Correlation Detection

As already mentioned in the last section, it is possible to process performance data for
multiple applications. This was used during the evaluation of the ΘPADx approach, where
the data of 14 different applications was processed. With the help of visualizations of the
evaluation results, correlations were found between different applications. An example
for this was presented in Figure 5.11, where the perlapp application showed abnormal
behavior in the same time intervals as the perlrest application. With knowledge of the
underlying system, the perlrest application was identified as the source of the abnormal
behavior, since the perlapp application was calling the perlrest application right in these
intervals.

However, to find such correlations in the current state of the implementation, the continuous
observation of the visualized anomaly detection results, for example by an admin, would
be necessary. For further improvements of the implementation, therefore an automatic
correlation detection approach could be chosen. A possible example for the calculation of
an correlation score is given by Ide et al. [Ide et al. 2007], where the correlation between
the data of several car sensors is calculated with the help of stochastic nearest neighbors.

7.3.3 Automatic Pattern Recognition

As an additional forecasting algorithm, the pattern checking forecaster was introduced. To
achieve high quality results with this forecaster, a proper configuration is necessary. For
the pattern checking forecaster, this includes knowledge about the seasonal component,
that influences the performance data of the selected software systems. For example at Xing,
the performance data had a similar behavior in intervals of one week. This seasonal pattern
was easily determined by observing the performance data over several weeks.

An automatic approach, that is able to recognize such seasonal pattern, offers several
advantages. At first, it lowers the configuration needs for the forecasting method and
therefore also the amount of knowledge the user needs of the selected software systems.
Beside this, an automatic approach enables the opportunity to readjust the seasonal pattern
automatically. This can be interesting for time spans, in which the usual workload of the
system differs. As an example, we could take the weeks right before Christmas, when
the most online shops have an increasing amount of orders. An automatic readjustment
could help in such situations to prevent the quality of the pattern checking results from
decreasing. Since a connection to R is used already, a starting point for the implementation
of an automatic pattern recognition could be the decompose function of R.
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