
Investigating the Use of Graph
Databases for Large Model

Repositories

Master’s Thesis

Benjamin Kiel

June 3, 2013

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring
M.Sc. Sören Frey
Dipl.-Inform. Reiner Jung
Dipl.-Inform. André van Hoorn (Stuttgart University)
Thomas Stahl (b+m Informatik AG)

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Kiel,

ii

Abstract

In the context of model-driven reverse engineering and model-driven analysis of
software systems, models can become very large. Up to a certain point, these
models fit into memory, but often the available memory is not sufficient. Model
repositories like the Connected Data Objects model repository (CDO) in the context
of the Eclipse Modeling Framework (EMF) provide support for storing models and
allow to work with multiple concurrent users on these models. In general, models
are represented as object graphs. This leads to the assumption that graph databases
could be applicable for storing models. This thesis investigates the usage of graph
databases in the context of model-driven engineering. It provides a survey of
available model repository technologies in the context of EMF. The survey is based
on requirements for the MAMBA (Measurement Architecture for Model-Based
Analysis) framework for model-based analysis. We introduce our implemented
graph database backend for CDO. Furthermore, this thesis proposes a benchmark
that can be used to examine the performance for CDO stores with respect to the
required times for storing, loading, and querying models. Finally, we evaluate
available CDO stores as well as our implementation with the help of this benchmark.
We show that a graph database backend does not provide any advantage compared
with a relational database backend in the context of CDO with respect to execution
times.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 3
1.3 Summary of Results . 4
1.4 Document Structure . 4

2 Foundations and Technologies 7
2.1 Model-Driven Engineering (MDE) . 7
2.2 Eclipse Modeling Project (EMP) . 8
2.3 Model Repositories . 9
2.4 NoSQL Databases . 10
2.5 Neo4j Graph Database . 11
2.6 Data Persistence Technologies for Large-Scale Models 13

3 Evaluation of Model Repository Technologies 17
3.1 Requirements . 17
3.2 EMF’s Default Persistence Mechanism 19
3.3 Investigated Model Repository Technologies 20
3.4 Summary . 25

4 Connected Data Objects (CDO) 27
4.1 Features . 27
4.2 CDO Client and Server Architecture 29
4.3 CDO Model Repository Internals . 31
4.4 Existing CDO Stores . 35
4.5 Developing a Custom CDO Store . 35

5 A CDO Store with Graph Database Backend 37
5.1 Supported Features . 37
5.2 General Design Desicions . 38
5.3 General Overview of the Repository Schema 39
5.4 Persisting Meta-Models . 41

v

Contents

5.5 Persisting CDO Revisions . 41

6 Evaluation 51
6.1 Statistical Foundations . 51
6.2 Execution Environment . 58
6.3 Benchmark for CDO . 58

7 Conclusion 73
7.1 Summary and Discussion . 73
7.2 Future Work . 74

Bibliography 75

vi

List of Figures

2.1 Architecture of a Model Repository 10
2.2 Example for a State of a Neo4j Database 11

4.1 General CDO Architecture . 30
4.2 CDO Client Architecture . 30
4.3 CDO Server Architecture . 31
4.4 Consistency between CDO clients . 33
4.5 Object States in the Context of CDO [Stepper 2010] 34
4.6 Overview of the high level class structure 36

5.1 Overview of the database schema . 40
5.2 A meta-model stored in the database 42
5.3 Mapping between object graph and neo4j store representation 43
5.4 Three model elements with different versions 43
5.5 Database state before changes . 45
5.6 Database state after write revision . 47
5.7 Database state after commit . 49

6.1 Structure of a Box-and-Whisker-plot 52
6.2 How to choose the appropriate statistical test method? 54
6.3 Used Meta-Model for Evaluation . 59
6.4 Box-and-Whisker plots for the "model import" benchmark 61
6.5 "Model import" scenario results for model size XS 63
6.6 "Model import" scenario results for model size S 64
6.7 "Model import" scenario results for model size M 65
6.8 "Model import" scenario results for model size L 65
6.9 "Model import" scenario results for model size XL 66
6.10 "Model import" scenario results for model size XXL 67
6.11 Box-and-Whisker plots for the "model export" benchmark 69
6.12 Box-and-Whisker plots for the "small query" benchmark 69
6.13 Box-and-Whisker plots for the "large query" scenario 71

vii

List of Tables

2.1 Types of NoSQL database systems . 11
2.2 Model insertion results based on [Barmpis and Kolovos 2012] 14
2.3 Query results based on [Barmpis and Kolovos 2012] 15

3.1 Summary for the investigated model repository technologies 26

4.1 Supported features of the different CDO stores, default values un-
derlined . 35

6.1 Models considered in the benchmark 60
6.2 Test statistics for the "model import" scenario 62
6.3 CDO stores comparison for model size XS 63
6.4 CDO stores comparison for model size S 63
6.5 CDO stores comparison for model size M 64
6.6 CDO stores comparison for model size L 65
6.7 CDO stores comparison for model size XL 66
6.8 CDO stores comparison for model size XXL 66
6.9 "Model export" performance comparison 68
6.10 "Small query" performance comparison 70
6.11 "Large query" performance comparison 72

ix

Listings

2.1 Neo4j Traversal Framework example 12
2.2 Neo4j Core API example . 13
2.3 Cypher example . 13
3.1 XMI: Persist a model . 20
3.2 XMI: Retrieve a model . 20
3.3 MongoEMF: Persist a model . 21
3.4 MongoEMF: Retrieve a model . 21
3.5 EMF Triple: Persist a model . 22
3.6 EMF Triple: Retrieve a model . 22
3.7 Morsa: Persist a model . 23
3.8 Morsa: Retrieve a model . 23
3.9 CDO: Persist a model . 24
3.10 CDO: Retrieve a model . 25
5.1 Write revisions . 46
5.2 Revision commit . 48
5.3 Revision rollback . 48

xi

Chapter 1

Introduction

1.1 Motivation

In the past, models were mostly used for high-level design and to communicate
with other developers or, more importantly, with other stakeholders like managers
[Mohagheghi and Aagedal 2007]. With the introduction of Model-Driven Engineer-
ing (MDE), models became primary software artifacts [Mohagheghi 2008].

In the last decade, MDE matured and increasing industry purposes were discov-
ered because of the advantages in productivity, quality, and reuse [Espinazo-Pagán
et al. 2011]. Especially in the area of reverse engineering and dynamic analysis
of software systems, model sizes increased rapidly. Up to a certain point, these
models fit into memory, but often the available memory is not sufficient.

For example, the Measurement Architecture for Model-Based Analysis (MAMBA)
framework [Frey et al. 2011] is based on the Structured Metrics Meta-Model v1.0
(SMM), defined by the Object Management Group (OMG).1 SMM is used for rep-
resenting measures and measurements. A common use case for MAMBA is the
transformation of raw monitoring data into SMM measurements in order to apply
measures such as average response time per method on the measurements. Software
systems can be monitored at different levels of granularity, e. g., component level
or method level. The finer the granularity is, the more monitoring records will be
created. Providing larger hardware (more memory) cannot face the problem since
the amount of monitored data can always be increased.

Another example for large models is related to the Knowledge Discovery Meta-Model
v1.3 (KDM), also defined by the OMG. KDM was defined in order to represent
complete software systems out of different view points. Hence, a common use case

1http://www.omg.org (last visit: June 3, 2013)

1

http://www.omg.org

1. Introduction

is the transformation from source code into a KDM model. A popular transforma-
tion tool is MoDisco,2 that is specialized on the transformation of Java source code
to KDM models. MoDisco is limited by the resulting model size. For example the
enterprise resource planning application, Apache OfBiz,3 which has approximately
1.3 million lines of code, cannot be transformed on a computer with 6 GB RAM.
Lübbe [2012] showed that reducing the detail level (e. g., removing all statements)
will enable successful transformations.

There are different options to solve the problem of insufficient memory. The
monolithic meta-models can be split into several smaller meta-models. So, the mod-
els can be stored in several files and only relevant files must be loaded. However,
the problem of finding good separations can occur [Espinazo-Pagán et al. 2011],
e. g., a model can be tightly interconnected. Another option is the use of model
repositories. A model repository can be considered to be a database for models.
In the context of the Eclipse Modeling Framework (EMF) [Steinberg et al. 2009]
the most popular implementation is the Connected Data Objects (CDO) model
repository.4

Another advantage of model repositories is the possibility to work collaboratively
on models. It allows that models are kept consistent despite concurrent access to
the models. Hence, the model repository clients can focus on the business logic
(separation of concerns).

However, our pre-tests showed, that CDO does not work properly for large models
(more than 200,000 objects). The tests committed chunks of 2,000 objects per trans-
action. The required time increased exponentially, i. e., the objects 6,001 to 8,000
could be committed faster than the objects 106,001 to 108,000. Obviously, the used
data stores in combination with CDO do not scale for large models.

There is a justified assumption, that graph databases can solve this problem,
since models are represented as object graphs. It seems to be very intuitve to map
these graphs directly to a graph database. Furthermore, graph databases facilitate
fast access to connected data [Robinson et al. 2013]. World’s leading companies

2http://www.eclipse.org/MoDisco (last visit: June 3, 2013)
3http://ofbiz.apache.org/ (last visit: June 3, 2013)
4http://www.eclipse.org/cdo (last visit: June 3, 2013)

2

http://www.eclipse.org/MoDisco
http://ofbiz.apache.org/
http://www.eclipse.org/cdo

1.2. Goals

like Facebook 5 or Twitter 6 process and query mass of data and use their own
proprietary graph databases to arrange it.

1.2 Goals

The core question of this thesis is whether graph databases can bring any advan-
tages associated with model repositories. Models are represented as object graphs
in memory. So, it seems that the mapping from models to graph databases is
intuitive. We want to investigate, if graph databases bring any advantages with
respect to scalability and performance. In order to answer this question, we defined
three goals G1-G3.

G1: Classification of Existing Model Repository Technologies

The first goal is to classify existing model repository technologies. At the beginning,
requirements for the work with a model repository will be defined. Afterwards,
the different model repository technologies will be investigated regarding these
requirements. The result is an overview of existing model repositories in the context
of EMF that allows to reason the selection of CDO.

G2: Development of CDO Store with Graph Database Backend

The core of the thesis is the implementation of a CDO store which uses a graph
database for storing the data. The thesis provides an overview of the necessary
steps in order to implement a custom CDO store. Furthermore, we provide an
implementation based on Neo4j.7

G3: Benchmark for CDO Stores

The intention of this goal is to provide a benchmark that can be used to measure and
compare the performance of different CDO stores. Therefore, different use cases
will be investigated, like storing and loading complete models into respectively
from the database. Another use case is considering the performance for different
queries that are executed on models stored in CDO.

5http://www.facebook.com (last visit: June 3, 2013
6http://www.twitter.com (last visit: June 3, 2013
7http://www.neo4j.org (last visit: June 3, 2013)

3

http://www.facebook.com
http://www.twitter.com
http://www.neo4j.org

1. Introduction

1.3 Summary of Results

Based on these goals, a classification of existing model repository technologies
in the context of CDO has been created. A set of requirements has been defined
and it has been examined which model repository technology can fullfill these
requirements.

A CDO store based on the graph database Neo4j was implemented. This store is
named Neo4jStore. A discussion of problems that arises due to the use of Neo4j
as well as the use of CDO followed.

Furthermore, the thesis provides a benchmark for CDO stores. It covers different
use cases like importing and exporting models from respectively to the default
persistence mechanism or querying models in the repository.

The benchmark has been applied to existing CDO stores as well as to the Neo4jStore.
The results do not argue for the use of Neo4j in combination with CDO. As men-
tioned in the previous section, models are represented as object graphs that allow
to define a direct mapping to a graph database. This thesis will show, that this
assumption is not helpful when using CDO since CDO decouples the object graph
and encapsulates model objects in a CDO-internal representation.

1.4 Document Structure

This thesis is structured as follows.

Ź Chapter 2 introduces foundations like model-driven engineering and graph
databases.

Ź Chapter 3 deals with the requirements on model repositories. Furthermore, this
chapter investigates several model repository technologies and classifies them
based on the requirements. Finally, an explanation is given why the use of graph
databases for large model repositories will be investigated based on CDO.

Ź Chapter 4 presents a detailed view on the CDO model repository. It starts with
an overview of the architecture, followed by an explanation of how models are
managed in the model repository. The last part of this chapter deals with CDO
stores which provide the persistence layer for the model repository.

4

1.4. Document Structure

Ź Chapter 5 deals with the concrete Neo4j-based CDO store developed in this
thesis. A description of design decisions and discussion of alternative imple-
mentation possibilities will be presented.

Ź Chapter 6 deals with the benchmarks that were developed and applied to the
different CDO stores.

Ź Chapter 7 summarizes and discusses our findings and gives an overview of
future work and possible improvements.

5

Chapter 2

Foundations and Technologies

This chapter outlines important topics for the thesis. In Section 2.1, an overview of
MDE practices and their advantages compared to traditional software development
are given. After a short introduction of the Eclipse Modeling Project in Section 2.2,
a definition of "Model Repository" in Section 2.3 is given. Section 2.4 deals with
NoSQL database management systems. Section 2.5 gives an overview of the graph
database Neo4j. Finally, Section 2.6 summarizes the results from the study of
persistence technologies for EMF-based models.

2.1 Model-Driven Engineering (MDE)

In this section, a summary of the different practices in MDE and the resulting
advantages are given. It is based upon the results by Mohagheghi [2008]. The
author identified four practices that are associated with MDE:

1. Models everywhere
In MDE, models are first class entities in nearly all stages of the development
process (e. g., business models or requirements). Staron [2006] proposed the
model-centric approach as an ambitious goal for model-driven development
respectively model-driven engineering.

2. Multiple abstraction levels and seperation of concerns
Different models are created in order to reduce complexity. Each model refers
to a separate view point, hence there are not not many information within one
model.

3. Metamodels and metamodeling
Metamodeling provides the possibility to define relations between different
models. This is a basis for the next practice.

7

2. Foundations and Technologies

4. Generation of artifacts from models
This is a key concept in order to reduce manual repetitive work. Generation
involves two types of transformations: M2M (Model-to-Model) and M2T (Model-
to-Text). During the generation process, models can be enriched by external
information (e. g., platform-dependent information).

These practices cause several improvements compared to traditional software
development. They facilitate the communication between developers themselves
but also between domain and IT experts. One reason is a higher abstraction, that
makes the design available for more people [MacDonald et al. 2005]. Another
important improvement is the increasing software quality. Detailed models can
be used for model-driven analysis and model-driven testing. Moreover, design
patterns can be integrated in the generation process. A more detailed discussion of
MDE can be found in [Mohagheghi 2008].

2.2 Eclipse Modeling Project (EMP)

Eclipse1 is an open source software project that is managed by the Eclipse Foun-
dation. Its purpose is to provide an integrated development environment (IDE) and
a programming platform. It is organized into different top-level projects: The
Modeling Project, the Tools Project, the Technology Project, and other projects. For
this thesis only the Modeling Project is important. Its core ist the Eclipse Modeling
Framework (EMF) that provides the basic framework for modeling [Steinberg et al.
2009].

The Ecore meta-model is used to represent models in EMF. An overview of the ele-
ments of Ecore can be found in [Steinberg et al. 2009]. Ecore can be considered as a
meta-meta-model, i. e., instances of Ecore are meta-models themselves.EMF enables
the definition and instantiation of these meta-models. It provides a graphical editor
(like a class diagram editor) that supports the definition of meta-models.

Furthermore, EMF facilitates the generation of Java source code that can be used in
the Eclipse Rich Client Platform (RCP) or in standalone applications.

Since the context of this thesis is Ecore-based modeling languages the brief form
"modeling language" is used if the context is clear.

1http://www.eclipse.org (last visit: June 3, 2013)

8

http://www.eclipse.org

2.3. Model Repositories

2.3 Model Repositories

Model repositories can be seen as database management systems for models. Fea-
tures that can be identified for model repositories are persistence, versioning,
querying large models, partial loading, and collaboration (consistence and dis-
tributed working).

Persistence differs from file serialization to DBMS. Versioning means that changes
are tracked and can be assigned to users. Furthermore, old revisions can be restored.
Model repositories often allow to query large models in a faster way. The queries
will be mapped on DBMS-specific query languages that cause faster executions.
Partial loading denotes the ability to load only parts of the model that are required
by the clients. Hence, there is less memory consumption. At last, collaboration
means a parallel work on the same model.

A distinction between offline and online collaboration can be made. Offline col-
laboration can be regarded as the classical process for source code versioning. A
model can be shared and checked out afterwards. Then changes can be made and
committed. These changes can be updated and if conflicts arise the changes will
be merged through the user. On the other hand, online collaboration means that
changes on the model will be immediately promoted to the server. So it is similar
transactional behavior as known from DMBS. Before a resource is changed, the
resource will be locked first. Then the changes will be commited and the lock will
be released. In the context of EMF, there are implementations for both. An existing
example for the former is the EmfStore, while CDO is an implementation for the
latter.

Figure 2.1 shows common components of model repositories. The persistence
component is responsible for the mapping between model entities and the existing
data store. The cache enables faster access to model entities. The transaction
component controls concurrent access to models. The versioning component
observes and tracks changes on models. The queries component translates queries
to a native query language (regarding the data store) that can execute the queries
in a faster way. At last, the views component deals with views on models (similar
to views in relational databases).

9

2. Foundations and Technologies

Figure 2.1. Architecture of a Model Repository

2.4 NoSQL Databases

The term "NoSQL" was introduced by Carlo Strozzi in 1998 [Edlich et al. 2010].
However, the underlying data model was still relational. NoSQL databases became
popular with the beginning of the Web 2.0. It was necessary to work with mass of
data (terabytes or even petabytes) by then. The relational databases were not able
to cope with this new development.

The following list shows some properties that can be found by most of the
NoSQL database systems [Edlich et al. 2010]:

• Distributed and horizontal scalability by default

• Easy data replication

• Data model is not relational

• No schema or weaker schema restrictions

• Simple API

• Other consistency model: Eventual consistency instead ACID

Table 2.1 shows four different types of NoSQL database systems. The most obvious
difference is the underlying data model [Edlich et al. 2010].

10

2.5. Neo4j Graph Database

Table 2.1. Types of NoSQL database systems

Type Example
Key/Value systems Amazon’s Dynamo (http://aws.amazon.com/dynamodb)
Tabular stores Hbase (http://hbase.apache.org/)
Document stores MongoDB (http://www.mongodb.org)
Graph databases Neo4j (http://www.neo4j.org)

Node[1]

Name='Jordi'
Age='26'

Gender='male'

Node[2]

Name='Chris'
Age='19'

friend

Node[3]

Name='Mary'
Gender='female'

friend

friend

Node[4]

Name='Michael'

friend

Node[5]

Name='Burger King'

likes

likes

Node[7]

Name='KFC'

likes

friend

likes

Node[6]

Name='McDonalds'

likes

Figure 2.2. Example for a State of a Neo4j Database

2.5 Neo4j Graph Database

This master’s thesis focusses on the Neo4j graph database. Its underlying data
structure conforms to the property graph model [Robinson et al. 2013]. A property
graph contains of nodes and named relationships. Nodes and relationships can
contain properties which are key-value pairs. Relationships exist between two
nodes and have a direction. Figure 2.2 shows an example graph of a Neo4j DB,
which comprises different attributes. Obviously, some nodes represent persons

11

2. Foundations and Technologies

while other nodes represent fast food restaurants. Furthermore, there are two
different kinds of relationships. Firstly, persons can be friends among themselves.
Secondly, persons are able to like fast food restaurants.

The main advantage of graph databases compared to relational databases and
other NoSQL databases is the good performance when working with tightly con-
nected data [Robinson et al. 2013]. Relational databases split the data into multiple
database tables. Even simple queries like "friends-of-friends" relationship require
expensive "join" operations. Most NoSQL databases (regardless of whether key-
value, document-, or column-oriented stores) use disconnected data structures
(values, documents, columns). The relationships must be managed on application
level by using aggregation identifiers. In contrast to the relational and the consid-
ered NoSQL which use implicit connections, graph databases uses the connections
explicitly. These connections forms paths on the graph that must be followed for
querying the graph database. The graph database is independent from the number
of stored elements because only the parts of the data that are necessary will be
considered.

Neo4j provides three ways to query the data: Cypher, Traversal Framework,
or Core API [Robinson et al. 2013]. The Traversal Framework is a declarative Java
API. It is similar to the Criteria API known from the Java Persistence API (JPA)
[Goncalves 2010]. The programer specifies which relationships are allowed to be
traversed, the type of the search (depth-first, breadt-first). An example is given
in Listing 2.1. The Core API is an imperative Java API which works with the
primitives nodes, relationships, and properties. The queries are lazily evaluated,
i. e., relationships will not be evaluated until the relationship is accessed. Listing 2.2
shows a query with the Core API. The last way is the Cypher query language
which is equals to SQL. An example is provided in Listing 2.3. Robinson et al.
[2013] states that the Core API is the fastest possibility to query the graph database.
Followed by the Traversal Framework. The slowest possibility in Cypher.

Listing 2.1. Neo4j Traversal Framework example
1 Traversa l . d e s c r i p t i o n ()
2 . r e l a t i o n s h i p s (FRIEND , D i r e c t i o n .OUTCOMING)
3 . b r e a d t h F i r s t () ;

12

2.6. Data Persistence Technologies for Large-Scale Models

Listing 2.2. Neo4j Core API example
1 Node marc = findByName (" Marc ") ;
2 I t e r a b l e <Relat ionship > r e l a t i o n s h i p s = marc . g e t R e l a t i o n s h i p s (
3 D i r e c t i o n .OUTGOING, FRIEND) ;
4 for (Re la t ionsh ip r e l : r e l a t i o n s h i p s) {
5 Node f r i e n d = r e l . getEndNode () ;
6 System . out . p r i n t l n (f r i e n d . getProperty ("name") ;
7 }

Listing 2.3. Cypher example
1 START marc=node : names (name= ’ Marc ’)
2 MATCH marc ´[:FRIEND]´>(f r i e n d)
3 RETURN f r i e n d . name

2.6 Data Persistence Technologies for Large-Scale Models

Barmpis and Kolovos [2012] investigated persistence technology is the most appro-
priate for EMF-based models throughout a comparison of five technologies.

Ź XMI Serialization, this is the default persistence mechanism provided by EMF.
The models will be written to XMI files.

Ź Teneo/Hibernate is an object-relational mapper that stores models in nearly arbi-
trary relational databases by using the Hibernate framework.

Ź Morsa [Espinazo-Pagán et al. 2011] stores models in the document store Mon-
goDB.

Ź A Neo4j prototype was contributed by the authors

Ź A OrientDB prototype was also contributed by the authors. It stores th models
into an hybrid database (document and graph)

The study focussed on memory consumption and response time for model
insertion and model querying. They took five different models which vary in size
from 8.75 MB to 645.53 MB.

2.6.1 Storing Models

Table 2.2 shows the results for model insertion. For the "insertion" case, the authors
did not consider the XMI serialization, hence there are no results for this issue.
Moreover, there are no results for the Morsa implementation available as well. The

13

2. Foundations and Technologies

Table 2.2. Model insertion results based on [Barmpis and Kolovos 2012]

Persistence Mechanism (Time in s)
Model Size (MB) XMI Teneo/Hibernate Morsa Neo4J OrientDB

Set0 8.75 n/a 58.67 - 12.43 19.58
Set1 26.59 n/a 218.20 - 32.52 57.10
Set2 270.12 n/a - - 499.09 589.80
Set3 597.67 n/a - - 2210.17 2245.45
Set4 645.53 n/a - - 2432.16 2396.88

Teneo implementation did not pass all tests. It was only possible to store rather
small models. Unfortunately there is a large gap between the second and the
third model. Hence, the size limit can not be determined exactly. Both NoSQL
implementations could handle even large models. Except the last model, Neo4j
required less time than OrientDB. It would be interesting to investigate whether
OrientDB would be the better solution for models larger than 645.53 MB.

2.6.2 Querying Models

Table 2.3 shows the results for the queries on the same models as before. Teneo
could be considered for the first two models only since other models were not
created. Notably, Neo4j offers the best performance regarding response time and
memory consumption. The larger the models gets, the better is the performance of
Neo4j. Hence, the authors conclude that graph databases in general and especially
the Neo4J implementation are adequate to persist even large models. Since model
storage is not the only aspect of interest for this thesis but also other features of
model repositories, this study can only be an indication for our thesis. Nevertheless,
the results are promising.

14

2.6. Data Persistence Technologies for Large-Scale Models

Table 2.3. Query results based on [Barmpis and Kolovos 2012]

Persistence Mechanism
Model Size (MB) Metric XMI Teneo/Hibernate Morsa Neo4J OrientDB

Set0 8.75
Time 1.20 4.53 0.71 0.11 0.43

Mem(Max) 42 248 - 15 10
Mem(Avg) 19 117 5 11 10

Set1 26.59
Time 2.28 7.34 0.99 0.62 1.18

Mem(Max) 111 323 - 18 27
Mem(Avg) 48 176 8 13 17

Set2 270.12
Time 16.51 - 9.72 3.10 9.83

Mem(Max) 813 - - 401 742
Mem(Avg) 432 - 168 195 255

Set3 597.67
Time 84.91 - 26.76 6.71 24.41

Mem(Max) 1750 - - 960 2229
Mem(Avg) 844 - 205 620 881

Set4 645.53
Time 145.67 - 29.34 7.16 29.65

Mem(Max) 1850 - - 1070 2463
Mem(Avg) 939 - 254 866 1314

15

Chapter 3

Evaluation of Model Repository
Technologies

This chapter gives an overview of the existing model repository technologies in
the context of EMF. Section 3.1 deals with requirements that we impose on model
repositories. Section 3.2 shows the EMF default persistence mechanism based on
XML serialization and considers its drawbacks. Section 3.3 considers different
model repositories. Each model repository will be examined with regard to the
imposed requirements. Furthermore, it will be shown how to persist and load
models from the respective model repository. Section 3.4 summarizes the findings
and compare the model repositories. Moreover, it will be explained why we decided
to use CDO as base technology for further investigations.

3.1 Requirements

Section 2.3 gives an overview of the features of model repositories. In order to find
an adequate model repository, we defined the following eight requirements that
must be met.

EMF Support

As mentioned above, the context of the thesis are EMF-based modeling. Hence the
model repository must be able to work with models that conform to EMF-based
modeling languages. It is important that the model repository does not depend on
the modeling language itself but rather on the EMF language facilities.

Standalone mode

It is required that the model repository works without the Eclipse IDE. Sometimes
tools, e. g., MAMBA, are used in an environment that does not support graphical
user interfaces. However it is allowed to use the Eclipse platform.

17

3. Evaluation of Model Repository Technologies

Transactions

One of the drawbacks of the standard XMI-based model storage is lack of multi-
user support. Only one user can access the model at the same time. In business
applications often multiple users access business models at the same time. So, we
need the ability to answer multiple requests simultaneously. This means especially
the concurrent read/write access.

Queries

This requirement deals with the question whether the model repository provides
querying facilities. EMF conform models can be surely queried by OCL. But maybe
it is also possible that a model repository supports native queries which could be
quite faster.

Cache

Models can get large and changes on models often involve only small parts of the
models. But these parts are often requested multiple times. If there is a cache
available, the response time can be reduced immensely.

Partial Loading

This point have two advantages. The first advantage is the faster access of models
similar to "Cache". Only the parts that are required will be loaded. The second
advantage is the ability to work with large models i. e., models that do not fit in
the memory.

Versioning

Versioning means the ability to track changes on models as we know it from source
code management systems like Git or Subversion. Furthermore, it means the ability
to restore old versions.

Invasivity

This requirement deals with the question how complex the usage of the respective
model repository actually is. This can vary from small changes only to the client
applications to invasive changes in the meta-models.

18

3.2. EMF’s Default Persistence Mechanism

3.2 EMF’s Default Persistence Mechanism

The default persistence mechanism stores the models in an XMI format in the
file system. Stepper [2010] presents several drawbacks of this approach when
the models become too large. EMF certainly allows to partition models, so they
can be stored in several files. This causes various problems. The decision about
partitioning is required at design time. Often, suitable partitions cannot be figured
out at this time. Another problem is that the storage into files is not transactional
safe. Assume, there is a model partioned into three files. Now, changes are made to
the model, that affect all three files. If an error occurs after the first file was saved
and the procedure is cancelled, the model is inconsistent. In order to avoid this, a
manager, that provides transactional access, is needed. This could be a source code
management system that allows to store different versions of the files in order to
move back to earlier versions. But this causes another problem. If conflicts arise,
they must be resolved in text form. Often, this can be inconvenient and impossible
also there are tools like EMFCompare. So, notifications would be reasonable when
other clients did changes on the model. This can only be done on the file level,
i. e., it can be identified which file was changed but not which actual object was
concerned. Another issue is that it is still impossible to load single objects. The
granularity of demand loading is on the resource level. So, if you have to load an
object, you do not need to load all files but the complete file that contains the object.
In addition to that, it is not possible to do a garbage collection of objects that are
not needed anymore. So, Stepper [2010] concludes, that the default persistence
mechanism can cause many problems and does not scale very well for large models.

Now, we will consider how to persist and load models in order to compare this
procedure with the investigated model repositories. Lets start with the persistence
case. Listing 3.1 shows the required steps in oder to write a EMF-based model to
an XMI file. A more detailed view can be found in Steinberg et al. [2009].

First, a ResourceSet will be created (line 1). Then, it will be told that it has to
use the XMI format to save the model, this is only needed for stand-alone (lines
2–5). Then, the model will be created (lines 6–8). Due to simplicity, the models
in this chapter will consist of only one object. Then, a Resource with the location
of the file will be created (line 9–10). Afterwards, the model will be added to the
Resource (line 11) and, finally, the Resource will be stored in the file system (line
12).

19

3. Evaluation of Model Repository Technologies

Listing 3.1. XMI: Persist a model
1 ResourceSet r eso ur ce Se t = new ResourceSetImpl () ;
2 r eso ur ceS e t . getResourceFactoryRegis t ry ()
3 . getExtensionToFactoryMap ()
4 . put (Resource . Factory . Reg is t ry . DEFAULT_EXTENSION,
5 new XMIResourceFactoryImpl ()) ;

6 User user = ModelFactory . eINSTANCE . createUser () ;
7 user . setName (" Test User ") ;
8 user . setEmail (" test@example . org ") ;

9 Resource resource = r eso ur ce Se t . createResource (
10 URI . createURI ("/tmp/ f i l e . xmi ")) ;

11 resource . getContents () . add (user) ;
12 resource . save (C o l l e c t i o n s .EMPTY_MAP) ;

Listing 3.2. XMI: Retrieve a model
1 ResourceSet r eso ur ce Se t = new ResourceSetImpl () ;
2 r eso ur ceS e t . getResourceFactoryRegis t ry ()
3 . getExtensionToFactoryMap ()
4 . put (Resource . Factory . Reg is t ry . DEFAULT_EXTENSION,
5 new XMIResourceFactoryImpl ()) ;

6 r eso ur ceS e t . getPackageRegistry () . put (ModelPackage . eNS_URI ,
7 ModelPackage . eINSTANCE) ;

8 Resource resource = r eso ur ce Se t . getResource (
9 URI . createURI ("/tmp/ f i l e . xmi ") , t rue) ;

10 User user = (User) resource . getContents () . get (0) ;

Listing 3.2 shows how to load models from XMI files into the memory. Like
for persisting, first a ResourceSet must be created and it must be informed, that
it must handle XMI files (lines 1–5). Then the package must be registered. If this
was not done, EMF cannot know how to convert the XMI representation into real
objects (lines 6–7). Then, the file will be actually loaded (lines 8–9). Finally, the
model can be retrieved and the first object in the list will be taken.

3.3 Investigated Model Repository Technologies

The following list shows the model repository technologies which will be consid-
ered in this section:

Ź MongoEMF (https://github.com/BryanHunt/mongo-emf)

Ź emftriple (http://code.google.com/a/eclipselabs.org/p/emftriple)

Ź Morsa (http://modelum.es/trac/morsa)

20

3.3. Investigated Model Repository Technologies

Ź EMFStore (http://eclipse.org/emfstore)

Ź CDO (http://www.eclipse.org/cdo)

3.3.1 MongoEMF

MongoEMF allows to persist EMF-based models in the NoSQL database MongoDB.
Its advantage lies in the small amount of additional code that is necessary to use it.
It is possible to use this model repository without the Eclipse IDE. The usage is
very similar to the XMI facility. Hence, the features Transactions, Queries, Cache,
and Versioning are not supported. Listing 3.3 and Listing 3.4 show the usage of
MongoEMF.

Listing 3.3. MongoEMF: Persist a model
1 ResourceSet r eso ur ce Se t = r eso urc eS e tF ac t or y . c rea teResourceSet () ;

2 User user = ModelFactory . eINSTANCE . createUser () ;
3 user . setName (" Test User ") ;
4 user . setEmail (" test@example . org ") ;

5 Resource resource = r es our ce Se t . createResource (
6 URI . createURI ("mongodb:// l o c a l h o s t /db/users/")) ;
7 resource . getContents () . add (user) ;

8 t r y {
9 user . eResource () . save (null) ;

10 } catch (IOException e) {
11 e . p r i n t S t a c k T r a c e () ;
12 }

Listing 3.4. MongoEMF: Retrieve a model
1 ResourceSet r eso ur ce Se t = r eso urc eS e tF ac t or y . c rea teResourceSet () ;
2 Resource resource = r es our ce Se t . getResource (URI . createURI (
3 "mongodb:// l o c a l h o s t /app/users /4d6dc268b03b0db29961472c ") , t rue) ;

4 User user = (User) resource . getContents () . get (0) ;

3.3.2 emftriple

This model repository can be used in different ways. The first way is very simlar to
the previous model repository. But the second way uses an EntityManager which
supports transactions an queries. emftriple can also be used in a standalone context.
It provides more feature than MongoEMF, but there are still some features missing
like caching or versioning.

21

3. Evaluation of Model Repository Technologies

Listing 3.5 and Listing 3.6 show the usage of emftriple without the entity
manager.

Listing 3.5. EMF Triple: Persist a model
1 ResourceSet r eso ur ce Se t = r eso urc eS e tF ac t or y . c rea teResourceSet () ;

2 User user = ModelFactory . eINSTANCE . createUser () ;
3 user . setName (" Test User ") ;
4 user . setEmail (" test@example . org ") ;

5 Resource resource = r eso ur ce Se t . createResource (
6 URI . createURI (" e m f t r i p l e :// data ? graph=http :// graph ")) ;

7 resource . getContents () . add (person) ;
8 resource . save (null) ;

Listing 3.6. EMF Triple: Retrieve a model
1 Resource resource = r eso ur ce Se t . createResource (
2 URI . createURI (
3 " e m f t r i p l e :// data ? graph=http :// graph ")) ;
4 resource . load (null) ;

5 Person obj = (Person) EcoreUt i l . getObjectByType (
6 resource . getContents () ,
7 ModelPackage . eINSTANCE . getPerson ()) ;

3.3.3 Morsa

Morsa is also a model repository that is based on MongoDB. It can be used in
standalone mode and supports transactions, queries, and cache. On the other hand,
it does not support versioning and partial loading. The biggest feature is that it
requires only small changes in the application client code. Compared with CDO,
Morsa seems to be faster [Espinazo-Pagán et al. 2011].

Listing 3.7 and Listing 3.8 shows the usage of the Morsa model repository.

3.3.4 EMFStore

In contrast to the previous model repositories, EMFStore supports features like
versioning and cache besides the features that are also supported by the previous
model repositories. EMFStore is based on the commit-update-merge pardigm that
is known from source code management (scm) tools like Subversion. When a
user commits a change on the model, than another user that changed the same

22

3.3. Investigated Model Repository Technologies

Listing 3.7. Morsa: Persist a model
1 ResourceSet r s = new ResourceSetImpl () ;
2 r s . getResourceFactoryRegis t ry () . getExtensionToFactoryMap ()
3 . put (" ecore " , new EcoreResourceFactoryImpl ()) ;
4 r s . getResourceFactoryRegis t ry () . getProtocolToFactoryMap ()
5 . put (" morsa " , new MorsaResourceFactoryImpl (
6 new MongoDBMorsaBackendFactory ())) ;

7 Resource mmr = r s . getResource (
8 URI . c r e a t e F i l e U R I (" model . ecore ") , t rue) ;
9 for (EObject o : mmr. getContents ()) {

10 r e g i s t e r P a c k a g e s ((EPackage) o) ;
11 }

12 User user = ModelFactory . eINSTANCE . createUser () ;
13 user . setName (" Test User ") ;
14 user . setEmail (" test@example . org ") ;

15 Resource morsaResource = r s . createResource (URI . createURI (morsaURI)) ;
16 morsaResource . getContents () . add (user) ;

17 t r y {
18 Map options = new HashMap () ;
19 // Set opt ions . . .
20 morsaResource . save (opt ions) ;
21 } catch (IOException e) {
22 e . p r i n t S t a c k T r a c e () ;
23 }

Listing 3.8. Morsa: Retrieve a model
1 Resource morsaResource = r s . createResource (URI . createURI (morsaURI)) ;
2 t r y {
3 Map options = new HashMap () ;
4 opt ions . put (MorsaResource . OPTION_SERVER_URI , backendURI) ;
5 opt ions . put (MorsaResource . OPTION_PRINT_TRACE, pr in tTrace) ;
6 opt ions . put (MorsaResource .OPTION_DEMAND_LOAD, f a l s e) ;

opt ions . put (MorsaResource .OPTION_READ_ONLY_MODE, t rue) ;

7 morsaResource . load (opt ions) ;

8 User user = (User) morsaResource . getContents () . get (0) ;
9 } catch (Exception e) {

10 e . p r i n t S t a c k T r a c e () ;
11 }

23

3. Evaluation of Model Repository Technologies

element on the model must update his local working copy from the repository. If
no conflicts occur, the scm tool can merge both changes automatically. Otherwise,
the user has to solve the conflict manually.

A big drawback is that EMFStore only works within the Eclipse IDE. Hence,
EMFStore is completely uninteresting and we abstain from giving a source code
example.

3.3.5 CDO

CDO is one of the most matured model repositories in the area of EMF. It encapsu-
lates the model repository facilities from the actual data store. This allows to use
arbitrary data stores. Hence, numerous data stores are shipped with CDO. There is
already support for relational databases due to the DBStore or the HibernateStore.
Furthermore, there is a MEMStore which provides an in-memory solution. The
MongoDBStore provides a NoSQL-database backend based on MongoDB. The
Db4oStore enables CDO to persist models in an object-oriented database. Finally,
there are proprietary data stores like ObjectivityStore. It integrates very well in
the Eclipse IDE but also provides a standalone mode. Furthermore, it provides
all facilities that can be expected. Write access must always be done within a
transaction. Furthermore, it provides query possibilities e. g., query langugage for
the respective data store.

Listing 3.9. CDO: Persist a model
1 s e s s i o n = c r e a t e S e s s i o n () ;
2 CDOTransaction t r a n s a c t i o n = s e s s i o n . openTransaction () ;
3 t r y {
4 CDOResource resource = t r a n s a c t i o n
5 . getOrCreateResource ("/users ") ;

6 User user = ModelFactory . eINSTANCE . createUser () ;
7 user . setName (" Test User ") ;
8 user . setEmail (" test@example . org ") ;

9 resource . getContents () . add (user) ;
10 t r a n s a c t i o n . commit () ;
11 } catch (CommitException e) {
12 e . p r i n t S t a c k T r a c e () ;
13 t r a n s a c t i o n . r o l l b a c k () ;
14 } f i n a l l y {
15 cleanup () ;
16 }

Listing 3.9 shows the usage of CDO in order to persist a model. Before the
CDO server can be used, a connection as well as a session must be established
(line 1). After a transaction is started (line 2), a resource will be requested. If the

24

3.4. Summary

resource does not exist, it will be created (line 4). After the user was created (lines
6–8) the user object will be added to the retrieved resource (line 9). Afterwards, the
transaction can be committed (line 10). This can lead to a CommitException that
must be caught and makes it necessary to rollback the transaction (lines 11–13).
Finally, some cleanup work must be done e. g., closing the session (line15).

Listing 3.10. CDO: Retrieve a model
1 s e s s i o n = c r e a t e S e s s i o n () ;

2 CDOView view = s e s s i o n . openView () ;
3 CDOResource resource = view . getResource ("/company " , t rue) ;

4 User user = (User) resource . getAl lContents () . next () ;

Listing 3.10 shows how to retrieve a model from the CDO server. The first
step is to establish a connection and a session like for the persist case (line 1). As
opposed to the persistence, now a cdo view will be created (line 2). This allows
only read access to the CDO server. Then, the resource will be retrieved and then
the first object will be taken (lines 3–4).

3.4 Summary

This section summarizes the previous sections. Based on that, we explain why we
decided to develop an extension to the CDO server.

Table 3.1 shows a summary of the las section. All investigated model reposi-
tories provide EMF support and all except EMFStore provide a standalone mode.
MongoEMF and EMFStore support less than the half of the requirements, emftriple
supports exactly the half of the requirements, Morsa provides three fourth, and
CDO supports all except one. Invasivity is not a key requirement. Hence, we
decided to use CDO for further investigations because it provides a good basis and
we do not need to reinvent the wheel. The next chapter gives a detailed view on
CDO.

25

3. Evaluation of Model Repository Technologies

Table
3.1.Sum

m
ary

for
the

investigated
m

odelrepository
technologies

Technology
EM

F
Support

Standalone
m

ode
Transactions

Q
ueries

C
ache

Partial
loading

V
ersioning

Invasivity

M
ongoEM

F
++

++
–

–
–

–
–

++

em
ftriple

++
++

++
++

–
–

–
–

M
orsa

++
++

++
++

++
–

++

EM
FStore

++
–

++
–

–
++

–

C
D

O
++

++
++

++
++

++
++

–

26

Chapter 4

Connected Data Objects (CDO)

In the last chapter, we got a first impression of the features that are supported
by CDO. This chapter presents a detailed view on CDO will be presented. It
is based on the documentation of CDO, available on the Internet [CDO Model
Repository Overview]. Section 4.1 presents a detailed view on the features of CDO.
Section 4.2 deals with a general overview of the architecture. Section 4.3 deals with
the transformation from EMF-based models in a representation that can be handled
by CDO. Section 4.4 reveals CDO stores that are already shipped with CDO since
these stores are our comparison level in the evaluation section. The Section 4.5
describes the classes in order to create an own CDO store.

4.1 Features

Now, the features of the CDO model repository will be regarded in more detail.
This section is based on Stepper [CDO Model Repository Documentation].

4.1.1 Multi User Access

Different repository sessions allow a multi user access to the models. To ensure the
secure authentication of users, model repositories can be configured in a particular
way. Therefore, different authorization policies can be used.

4.1.2 Transactional Access

Transactional access to the models is possible through optimistic and/or pessimistic
locking on a per object granule. Multiple savepoints are used to provide the
opportunity to roll back to changes. All kinds of locks can be used in form of
long lasting locks that outlast repository restarts. Modifications of models with
respect to transactions in multiple repositories can be made through XA transaction
notions with a two phase commit protocol.

27

4. Connected Data Objects (CDO)

4.1.3 Transparent Temporality

Audit views provide a transparent temporality, since they are special read only
transactions that ensure a consistent model object graph. This graph has the same
state than in the past. The storage of the audit data can lead to increased database
sizes in time. Repositories can be configured to solve this problem.

4.1.4 Parallel Evolution

Parallel evolution of the object graph stored in a repository can be observed, i.e. the
concept of branches similar to source code management systems like Subversion.
There are different possibilities to compare branch points, f.e. sophisticated APIs
or reconstruction of committed change sets.

4.1.5 Scalability

Scalability means the ability to store and access models of any random size. That
is possible through loading single objects on demand and caching them in the
application.Therefore, objects that are no longer needed have to be garbage collected
automatically. There are various attendants concerning lazy loading, such as
monitoring of the object graph’s usage and the calculation of optimal fetch rules.

4.1.6 Thread Safety

Thread safety manages the synchronization of multiple threads of the application,
so that the object graph is accessable all time. It ensures that multiple transactions
can be opened and that all transactions share the same object data.

4.1.7 Collaboration

If an application agrees on being notified about remote changes to the graph,
collaboration on models with CDO can be very simple. The graph transparently
changes by configurating the local object, when it has changed remotely.

4.1.8 Data Integrity

Several checks can be used to ensure data integrity, f.e. referential integrity checks,
containment cycle checks or custom checks.

28

4.2. CDO Client and Server Architecture

4.1.9 Fault Tolerance

Fault tolerance on multiple levels, such as fail-over clusters or special session types
like reconnecting sessions ensure that applications are able to hold a copy of the
object graph. That is possible even when the repository connection is broken.

4.1.10 Offline Work

Two possible mechanisms provide the opportunity to work offline with the models:
Firstly, the whole repository including all history of the branches can be cloned.
The clone will be synchronized with its master constantly and it can be applied
as an embedded repository for single applications or as a server for multiple
clients. Secondly, it is possible to check out a single version of the graph from a
special branch point into a local CDO workspace. This workspace acts like a local
repository, branching or history information is not needed. Multiple concurrent
transactions and remote functionality are supported by this method.

4.2 CDO Client and Server Architecture

Most applications that use CDO conform to a classical three-tier architecture as
shown in Figure 4.6. Client applications can access the model repository through
the network. The CDO server itself accesses a CDO store in form of different
database management systems as well as web services or file systems [Kloos et al.
2012]. Several CDO stores are already shipped with the distribution as we will
describe in Section 4.4.

Figure 4.2 shows the components of a CDO client. In general, all components
are implmented as Open Services Gateway Initiative (OSGi1) bundles. OSGi is
a dynamic module system for Java. However, the client does not need to use
OSGi in order to work proper. At the top, there is the actual application that uses
CDO. Between these layers there is a layer that combines EMF and the CDO model
repository. On the one side there are components that deal with the transport of
the data across the network. The transport is based on Net4j2. On the other side
there are components for the EMF support. Both sides are connected through the
CDO client component.

1http://www.osgi.org
2http://wiki.eclipse.org/Net4j

29

http://www.osgi.org
http://wiki.eclipse.org/Net4j

4. Connected Data Objects (CDO)

EMF Application

EMF Application

EMF Application

Network CDO Repository

ODB

NoSQL

RDB

Figure 4.1. General CDO Architecture [cdo_documentation; Kloos et al. 2012]

Application

Repository

Models Protocol Transport

EMF CDO Client Net4jCore

OSGi (optional)

Figure 4.2. CDO Client Architecture [cdo_documentation; Kloos et al. 2012]

30

4.3. CDO Model Repository Internals

Respository

OSGi (optional)

DB

Clients

CDO Store OCL Protocol Transport

CDO Server Core Net4jCore

Figure 4.3. CDO Server Architecture [cdo_documentation; Kloos et al. 2012]

Figure 4.3 shows the architecture of the CDO server respectively the CDO
model repository. The components of the model repository are also implemented
as OSGi bundles. Moreover, the model repository also consists of the components
that handle the transport to the clients. The CDO server core consists of the
major components, e. g., cache or session manager. These components provide the
services that the model repository offers. The CDO store component represents the
persistence backend. Finally, it is remarkable that the CDO model repository does
not have any dependency on EMF although it stores EMF-based models. That is
because

4.3 CDO Model Repository Internals

After the brief architectural overview of the CDO model repository, this section
deals with the general processing of model objects. The transition from model

31

4. Connected Data Objects (CDO)

objects to CDO revisions will be presented first, followed by the properties of
revisions.

4.3.1 Converting from Revisions to Objects

The CDO server encapsulates the model object in an own representation and
replaces references through CDOID objects. So, the object graph is flattened down
into a list of object elements and references are represented as id objects. CDO
does not work with model objects but rather with revisions. A revision consists
of CDO-specific data like the related EClass, an internal ID which is generated by
the model repository. It is globally unique and does never change. This ensures
moving objects in the containing hierarchy without changing the ID. Furthermore,
it belongs to a specific branch, has got a specific version, and an interval during that
this revision was the latest. On the other side, the revision contains EMF-specific
data like the ID of the inherent resource, the id of the containing object, and of
course the values of the model object.

The main challenge is to suspend strong Java references between model objects.
Assume a class Company with an association to the class Address. As long as the
company object exists, there is a reference on the address object and hence, the
address object cannot be garbage collected although it is not needed. CDO solves
this problem by cutting out all generated fields, i. e., not only references to other
objects, but also primitives. Therefore, CDO uses the generator pattern Reflective
Feature Delegation. So the generator does not create instance variables to store values
of the features. The feature accessors rather invoke the reflective eSet() and eGet()
methods [Steinberg et al. 2009]. Reflective Delegation and RootsExtendsClass

CDO introduces a three-dimensional view on model objects. The first dimension
consists of the object itself. The second dimension is formed by the time, i. e., the
different existing versions of an object. The third dimension is given through
parallel branches of object versions.

4.3.2 Distributed Shared Models

Now, the CDO work with revisions shall be considered. If a revision is loaded by a
client, this revision is connected with the model repository all the time. This allows
the model repository to notify clients about changes on certain revisions. The
sequence diagram in Figure 4.4 shows what happens if multiple clients access the
same object. We can see two clients A and B that connect to the model repository

32

4.3. CDO Model Repository Internals

Client B : CDOClientClient A : CDOClient : ModelRepository

9.1: return obj1

5.1: return obj1

1: connect()

5: load(obj1)

9: load(obj1)
8: access(obj1)

7: setAsProxy(obj1)
6.1: invalidate(obj1)

6: commit(obj1)

3.1: return obj1

3: load(obj1)

4: modify(obj1)

2: connect()

Figure 4.4. Consistency between CDO clients (based on [Stepper 2010])

and load the object obj1. After that, client A elicits some changes on the object and
commits the changed object afterwards. This prevails the model repository to send
invalidate messages to all other clients that set the modified object in proxy status.
The garbage collector is now able to remove this object. If client B wants to access
the object in proxy status, the object will be loaded transparently. This approach
assures that the user always accesses the latest version of model objects without
taking care of possible changes that have been made.

4.3.3 States of Objects

Figure 4.5 shows the different states that an object in the context of a CDO client can
attain. When the object was created by the corresponding factory, it is "transient".

33

4. Connected Data Objects (CDO)

NEW

TRANSIENT

CLEAN

PROXY CONFLICT

commit commit

write

remove
invalidate

remove
invalidate

read

attach to transaction

P E R S I S T E N T

detach from transaction

rollback

DIRTY

Figure 4.5. Object States in the Context of CDO [Stepper 2010]

After attaching it to a transaction it moves to the state "new". When the transaction
was committed, the object becomes "clean". When objects in the "clean" state will be
udpated they move to the "dirty" state. After a commit of the modifying transaction,
the object becomes "clean" again. When another client has changed an object, this
object moves to the "proxy" state for this client. When the client accesses the object
in this state, the object will be loaded from the server again and becomes "clean".
If a dirty object is changed by another client, a conflict arises and the transaction
must be rolled back in order to solve this conflict.

4.3.4 Resources and Resource Folder

CDO uses the design pattern Composite to organize the models in resources and
resource folders. Figure ?? shows the structure of the pattern. A resource folder
can contain other resource folders or resources. This is not accidentally similar to
a filesystem. A resource corresponds to an XMI file that we know from ordinary
EMF persistence technology.

34

4.4. Existing CDO Stores

Table 4.1. Supported features of the different CDO stores, default values underlined

Audits Branches
DBStore true/false true/false
MEMStore true/false true/false
Db4OStore true/false true/false
MongoDBStore true/false true/false
HibernateStore false false

4.4 Existing CDO Stores

CDO is already shipped with six different CDO stores. The stores mainly differ
in the used database backends. There are two different stores that use relational
databases like MySQL, PostgreSQL, H2, etc. The HibernateStore uses Hibernate3

as object-relational mapper (OR-mapper) while the DBStore implements its own
OR-mapper, for good support of the CDO framework. Furthermore, there is the
MongoDBStore that uses the NoSQL database MongoDB. You can also find a
memory-based store called MemStore. The advantage seems to be obvious. Since
it is not necessary to access the harddisk, this store is very fast. But on the other
hand, the data gets lost when the server shuts down. Another CDO store is the
DB4OStore which uses the object-oriented database DB4O4. All these CDO stores
use open-source software. At last, there is an ObjectivityStore which is based on
the proprietary object-oriented datbase Objectivity5. The latter store will not be
further investigated since it is not based on open-source software.

Table 4.1 shows the supported features of the different CDO stores. The Hiber-
nateStore does not support either audits or branches. All other CDO stores support
both but the default values can differ. The DBStore and the MEMStore support
audits and branches per default while the DB4OStore and the MongoDBStore must
be configured first.

4.5 Developing a Custom CDO Store

Figure 4.6 gives an overview of the class structure used by the CDO server. The
IRepositoryFactory creates a IRepository that is represented by its name. A reposi-

3http://www.hibernate.org
4http://www.db4o.com
5http://www.objectivity.com

35

http://www.hibernate.org
http://www.db4o.com
http://www.objectivity.com

4. Connected Data Objects (CDO)

IStore

IStoreAccessor

IStoreFactory

IStoreChunkReader IStoreChunkReader.Chunk

IRepositoryIRepositoryFactory

CDORevision
Manager

CDOPackage
Registry

CDOBranch
Manager

CDOCommitInfo
Handler

<<creates>>

<<reads>><<creates>>

<<creates>>

<creates>>

Figure 4.6. Overview of the high level class structure

tory combines several components like a CDOCommitInfoHandler, a CDOPackageRegistry,
a CDOBranchManager, a CDORevisionManager, and CDO IStore that is created by a
IStoreFactory. A configuration file can be specified by containing store specific set-
tings e. g., the location of the database. The read/write access to the backend is pro-
vided by a IStoreAccessor. The store accessor will create a IStoreChunkReader if the
CDO store supports partial collection loading. This means that only IStoreChunkReader.Chunks
are read.

In order to develop a custom CDO store, three of these interfaces must be
implemented.

36

Chapter 5

A CDO Store with Graph Database
Backend

This chapter deals with the development of a CDO store based on a graph database
backend, concretely Neo4j. Section 5.1 briefly describes the features that are
supported respectively not supported by the our Neo4jStore. Then Section 5.2
discusses general design decisions, e. g., the mapping from the CDO revisions
to nodes and relationships in the graph database. After that, Section 5.3 gives a
top-level overview of the repository schema. Finally, this chapter deals with the
concrete storage of meta-models in Section 5.4 and revisions in Section 5.5.

5.1 Supported Features

As depicted in the previous chapter, some features of the CDO model repository
must be provided by the CDO store.

ChangeFormat

The suggested Neo4jStore only supports the REVISION format since this increases
the performance for read operations. As explained below, the complete state of
a revision is stored within one node, so the Neo4jStore must only read one node
from the database in order to restore the values of a requested revision. If the
Neo4jStore accepted revision deltas, the treatment would be more complex. By
using the REVISION format, the Neo4jStore can transform the revision directly into
a database node. So only one write operation is executed. If the DELTAS format
was used, the Neo4jStore reads the unchanged parts of the revision from the last
stored version in the database. Besides the write operation, an additional read
operation is required.

37

5. A CDO Store with Graph Database Backend

The disadvantage of the chosen approach is the higher load on the network,
which is accepted since the considered use cases do not involve many update
operations.

Audits

As proposed earlier, versioning is an important capability of model repositories.
The proposed Neo4jStore supports multiple versions despite the more complex
treatment. If versioning was not supported, the old values of the revision can
simply be overwritten with new values. But if versioning is supported, the access
to different versions must be maintained. Furthermore, the latest version should be
fast accessible since it is the most requested version.

Branches

The considered use cases do not require branches. Hence, the proposed Neo4jStore
will not support branches. Nevertheless, this can be future work. Hence, the
chapter ?? proposes extensions to the current implementation in oder to support
branches.

Chunk Reader

This feature is essential in order to make queries faster. So, the Neo4jStore supports
it. The implementation of the DBStore was adopted.

5.2 General Design Desicions

As mentioned before, models are represented as object graphs. So, it would be
intuitive to map this graph directly to the database, such that a model object
is represented as a node and a reference is represented as a relationship. This
approach will not be suitable for a CDO store since CDO pursues the strategy of
decoupled revisions. The object graph is flattened down into a list of revisions
and references are represented as ID objects. Nevertheless, it would be possible to
reconstruct the object graph, but creating new model objects or accessing existing
ones would result in many read queries before the requested operation can be
executed. On top of this, the CDO server requests only one model element
simultaneously. This request is based on the CDO internal ID of the model

38

5.3. General Overview of the Repository Schema

element. So there is no advantage of reconstructing the object graph, although the
CDO server supports a cache which allows to store the children (in the sense of
containment references) preventively. The creation of model objects is an expensive
operation which makes it necessary to trade off model creation against read
performance.

So, a CDO store requires another approach. The revisions must be fast retriev-
able. Many database managements systems already provides such a facility which
are called indices. All CDO internal IDs will be stored in an index. If many model
objects would be stored, a global index could become very large and the retrieval
of the revisions could be slowed down. In order to mitigate this, the fact that each
model element belongs to exactly one resource will be exploited. Each resource
gets its own index on the IDs for its containing revisions. So, small resources can
be treated faster than larger resources. Assumed that a user who works with large
models would excuse more easily slower model access than users who work with
small models.

Another important design issue concerns the access to graph database. There is
a trade-off between the readability of the database queries and the performance.
Since the normal API is faster than Cypher and the traversal API, it was made
heavy use of the normal API despite its worse readability. We paid attention to the
enclosure of the database access which allows to change the database access API.

A last minor decision concerns the storage of utility class objects like java.util.Date

or java.util.List. Neo4j is only able to store primitive data types e. g., Boolean, In-
teger, or String. So, the utility class objects must be transformed into representations
based on primitives. An object of type java.util.Date will be transformed into the
long value of milliseconds since 01.01.1970 and a java.util.List is transformed
into its string representation "[val1, val2, ...]".

5.3 General Overview of the Repository Schema

Although NoSQL databases do not need to rely on a schema like relational
databases, a structure is necessary in order to work with the data. Figure 5.1
shows the six top-level nodes of the database. The node properties references a set
of persistent properties that belong to the repository. Each persistent property is
stored as a node with two values. The first value is the key of the property and the
second is its actual value. In the case of the Neo4jStore, the only stored property

39

5. A CDO Store with Graph Database Backend

Node[0]
(root)

'properties' 'commitInfos' 'transactions' 'packageUnits' 'revisions' 'resources'

Figure 5.1. Overview of the database schema

is the creation time of the repository. If a property is requested, the neo4j store
searches for the suitable key and returns its value.
The children of the node commitInfos represent meta information for each executed
commit. It persists a comment, the user ID, and two timestamps. The first times-
tamp informs when the commit was executed, and the second timestamp indicates
when the previous commit was executed.
The children of the next node transactions represent incomplete transactions. Each
child references one or more nodes that were created within the corresponding
transaction. More details are given in Section 5.5.
The node packageUnits references all persisted meta-models. By default, three
meta-models will be created: the Ecore meta-model and two meta-models required
by CDO. If a model element is persisted that conforms to a currently unknown
meta-model, a new node for the meta-model will be created. A more detailed view
will be given in Section 5.4.
The children fo the last two nodes represent the CDO internal revisions. The
Neo4jStore distinguishes between revisions that represent resources respectively
resource folders and revisions that represent model objects. The former are refer-
enced by the node resources while the latter are referenced by the node revisions.
The distinction is not inevitably necessary but it can be useful since the resources
need also be retrievable through its name, while the revisions are only identified
by its ids. So, for the resources only the path underneath the resources node must
be considered in order to find the matching resource.

40

5.4. Persisting Meta-Models

5.4 Persisting Meta-Models

The meta-models must be persisted in order to recover model elements from graph
database nodes, because a node itself do not contain any information about its type.
As already mentioned, the node packageUnits references all persisted meta-models.
Each meta-model gets its own node which contains a set of properties. The first
property is a unique id needed by CDO. The second property is the original type
of the meta-model. The most important property is the package data property. It
is used to store the ecore file as byte array. This byte array can be used to create
a model object after the CDO server was shut down and the package registry is
empty as mentioned in the previous chapter. Meta-models are organized into one
or more packages which are represented by their packageURIs. Each package
contains a list of classes. A class is represented by its name. The combination of the
class name and the packageURI ensures that each class can be uniquely identified.
A model element belongs to exactly one class, moreover, we can say it is an instance
of exactly one class. Each revision node references exactly one meta-class.

Figure 5.2 shows the structure of the schema in the graph database. It contains
references to three meta-models. The first meta-model contains two packages
which contain meta classes. As shown in Figure 5.3, each revision has got a
INSTANCE_OF relationship to a meta class. Section ?? discusses how this can be
used in order to restore model objects.

5.5 Persisting CDO Revisions

5.5.1 General Approach

Model objects are represented as CDO revisions. A CDO revision consists on the
one hand of meta information, like its CDO internal id and on the other hand
of its properties. Figure 5.3 shows two objects and their related nodes in the
database. Both, the meta information and the properties are stored in the same
node. Another approach would be to create an additional node that conains the
properties. This would result in more human-readable graphs but decreases the
performance since more nodes must be created and commited and on the other side,
more nodes must be read for retrieving the object. Associations between objects
are represented by their CDO internal id which will be converted into a value of
type long. Hence, the nodes do not have a direct relationship that indicates the
association. A revision node itself does not know which kind of class it represents.

41

5. A CDO Store with Graph Database Backend

'packageUnits'

id='...'
original_type='...'
package_data='...'
timestamp='...'

PACKAGE_UNIT

...

PACKAGE_UNIT

...

PACKAGE_UNIT

packageURI='...'

PACKAGE_INFO

...

PACKAGE_INFO

name='...'

ECLASS

name='...'

ECLASS

Figure 5.2. A meta-model stored in the database

This is ensured by assigning a meta class to the revision node. This is represented
by the INSTANCE_OF relationship between the meta class node and the id node.

Updates on model objects implicate that multiple versions of the object exists.
Since CDO allows the access to older versions, these information must be stored
in the database. Nevertheless, the latest version must be faster accessible than
older versions. The versioning in the Neo4jStore is implemented as follows. Each
revision is represented by an id node. This node contains the CDO internal id
and, furthermore, it contains a VERSION relationship to its latest version. If older
versions exists, then, the latest version will contain another VERSION relationship
to its predecessor verion. If this version also has earlier versions it also contains
a VERSION relationship to that. Figure 5.4 shows three different revisions. De-
pending on how often the revisions were updated, they have different numbers of
versions.

42

5.5. Persisting CDO Revisions

name='revisions'

id=3REVISION

id=4
REVISION

$$container=0
$$containingFeatureID=0
$$created_at=1367165713234
$$resource=2
$$revised=0
$$version=1

name='Kiel University'
street='Olshausenstr. 40'
city='Kiel'

suppliers='[OID4]'VERSION

$$container=3
$$containingFeatureID=-5
$$created_at=1367165713234
$$resource=0
$$revised=0
$$version=1

name='Printing Service'
street='Bahnhofstr. 1'
city='Kiel'

VERSION

name = "Kiel University"
street = "Olshausenstr. 40"
city = "Kiel"

: Company

name = "Printer Service"
street = "Bahnhofstr. 1"
city = "Kiel"
preferred = "true"

: Supplier

supplier

Figure 5.3. Mapping between object graph and neo4j store representation

Node[0]
(root)

name='revisions'
REVISIONS

id='1'REVISION

id='2'
REVISION

id='3'

REVISION

V3
VERSION

V1V2
VERSIONVERSION

V1
VERSION

V2
VERSION

V1
VERSION

Figure 5.4. Three model elements with different versions

At this point, we want to talk about the evolution of meta-models. Normal
CDO does not support the evolution because this would cause some problems
since some cdo stores can support it e. g., the DBStore uses tables that represent the
meta-model. If the meta class changes, the table must be changed. This would not
work. Nevertheless, the Neo4jStore could support meta-model evolution. As you
can see, the id node has got the relationship to the meta class. This relationship
must be deleted and instead, each version node must get its own relationship to
the meta class.

5.5.2 Consistency

After the general overview of the repository schema, this section discusses how
the consistency of the models can be maintained. Two different approaches are
possible. The first approach relies on the transaction management that is provided
by Neo4j. This means that a CDO transaction is mapped to a Neo4j transaction.
The Neo4j transaction will be committed when the CDO transaction is committed.
This approach works well only for small models since Neo4j is not designed for
large data insertion within one transaction as mentioned before. Hence, we propose

43

5. A CDO Store with Graph Database Backend

another approach that will be discussed now. First, the approach be described in
detail and after that its correctness will be discussed.

The solution for large transactions it to cut the large transaction in small
chunks of a few thousand revisions. Each chunk will be commited within its own
transaction. This can lead to inconsistencies as the following example will show.
Lets consider two chunks. The first chunk was committed correctly but during
the second chunk, an error occurs and the transaction must be rolled back. The
first chunk remained unaffected by the roll back. So, we have got an inconsistent
database state. In order to maintain consistency, this approach must be extended.
The small transactions must be glued to one large transaction in the graph database.
The Neo4jStore creates a transaction node in the graph database which maps to the
CDO transaction. Each revision that is created or updated in the transaction gets a
relationship to the transaction node. This allows the Neo4jStore to commit or roll
back the CDO transaction.

In order to get a clearer understanding, the procedure of the storage and update
of revisions will be shown in detail. We assume that there is a Neo4jStore with a
given database state shown in Figure 5.5. Only one revision is currently stored.
Furthermore, there is only one version for this revision. Now, a CDO transaction is
committed. Within this transaction, the revision with id=1 will be updated, i. e., a
version 2 will be added and a new revision with id=" will be created.

writeRevisions

When CDO calls the writeRevisions method, the Neo4jStore creates a transaction
node. Each revision that will be created within the global CDO transaction will
get a relationship to this node. Two cases must be distinguished. The first case
considers a new created revision. Remember that each CDO revision belongs to
one id node and its corresponding version nodes. So, if we received a new revision,
two nodes will be created. Both nodes get a relationship to the transaction node.
The type of the relationship differ since in the case of a roll back, the id nodes must
also be removed from the index. The second case considers revisions that are only
updated. This means, that there already exists an id node and a corresponding
version node. The target is now to insert the new version node between the id
node and the, so far, latest version node in order to maintain the order of the
versions proposed in the last section. Therefore, we create a new version node with
a relationship to the transaction node. Furthermore, we create two relationships
starting from the new version node. The first relationship models the order of

44

5.5. Persisting CDO Revisions

Node[0]
(root)

REVISIONS

name='transactions'

TRANSACTIONS

name='revisions'

id='1'

REVISION

V1

VERSION

Figure 5.5. Database state before changes

versions for the model element. The second relationship goes to the id node. This
allows to get the id node in a further step.

Figure 5.6 shows the state of the database after the writeRevisions method
finished its work.

doCommit

When CDO invokes the doCommit method, the transaction node must be marked
as committed first. Then, all outgoing relationships will be considered. If the node
is a version node, then the pointer for the corresponding id node will be redirected.
If the new revision is not the first version, then the VERSION relationship will
be removed from the id node and after that the ID_NODE relationship will be
reversed and the type changes to VERSION. Then the relationship to the transaction
node will be removed. If the outgoing relationship points to an id node, then only
the relationship will be removed an no further action is necessary. Finally the
transaction node will be removed. This inticates the Neo4jStore that the transaction
is completed.

45

5. A CDO Store with Graph Database Backend

Listing 5.1. Write revisions

1 CREATE node tx WITH tx.id = generateID();

2 FOR EACH chunk c FROM "committed chunks" DO

3 BEGIN Neo4j TRANSACTION;

4 FOR EACH revision r FROM c DO

5 CREATE version_node WITH version_node.values = r.values;

6 CREATE <TX_NODE>-relationship FROM tx TO version_node;

7 IF r IS NEW IN REPOSITORY THEN

8 CREATE id_node WITH id_node.id = r.id;

9 ADD id_node TO INDEX;

10 CREATE <TX_ID>-relationship FROM tx TO id_node;

11 ELSE

12 LET id_node = findNode(r.id);

13 LET last_v_node = findLastVersion(id);

14 CREATE <VERSION>-relationship FROM version_node TO last_v_node;

15 END

16 CREATE <ID_NODE>-relationship FROM version_node TO id_node;

17 END

18 COMMIT Neo4j TRANSACTION;

19 END

Figure 5.7 shows the database state after the doCommit method finished its
work. The transaction node is not present anymore. Furthermore, a new revision
with id=2 exists and the revision with id=1 has got a new version.

doRollback

After the case of a successful transaction, we will consider now what must happen
if a transaction is aborted. When the CDO server calls the doRollBack method,
first, the transaction node must be marked as rolled back. Then all outgoing
relationships will be considered. If the relationship points to an id node, then this
node must be removed from the index. For all referenced nodes, the outgoing
relationship must be removed and after that the node itself will be removed. Finally,
the transaction node will be removed. That indicates the Neo4jStore, that the
transaction is committed as before.

46

5.5. Persisting CDO Revisions

Node[0]
(root)

name='revisions'

REVISIONS

name='transactions'

TRANSACTIONS

id='1'

REVISION

id='2'

REVISION

id='256'

TRANSACTION

V1

VERSION

V2

ID_NODE

VERSION

V1

ID_NODE

TX

TX_ID

TX

Figure 5.6. Database state after write revision

After the method finished its work, the database has got the same state as before
the CDO transaction was started which is the intended behavior.

5.5.3 Correctness

After the procedure was explained, it remains the question whether this procedure
behaves correct also in the case of system failures and concurrent access to the
revisions.

Crash Tolerance

First, let us investigate what happens if the CDO server and the embedded graph
datbase crashes? If the server crashes while the writeRevisions method is called,
the problem will arise that maybe some chunks are committed and others are not.
Since all new versions and object elements are marked by a relationship to the
transaction node, the server can handle the crash after a restart. The transaction

47

5. A CDO Store with Graph Database Backend

Listing 5.2. Revision commit

1 LET tx = "transaction node";

2 MARKS tx AS "committed";

3 FOR EACH relationship r FROM tx DO

4 LET node = r.EndNode;

5 LET id = "corresponding id node for ’node’";

6 IF node IS OF TYPE "version node" THEN

7 IF node.version != 1 THEN

8 REMOVE <VERSION>-relationship FROM id;

9 END

10 CREATE <VERSION>-relationship FROM idNode to node;

11 REMOVE <ID_NODE>-relationship FROM node;

12 END

13 REMOVE r FROM tx;

14 END

15 REMOVE tx;

Listing 5.3. Revision rollback

1 LET tx = "transaction node";

2 FOR EACH relationship r FROM tx DO

3 LET node = r.EndNode;

4 IF node IS OF TYPE "id node" THEN

5 REMOVE node FROM INDEX;

6 END

7 REMOVE ALL relationships from node;

8 REMOVE node;

9 END

10 REMOVE tx;

node was not marked as committed or rolled back. So all nodes adjacent to the
transaction node will be deleted as seen for the doRollback method. If the server
crashes during the doRollback method was called, the server can handle the crash
after restart. Since the transaction node was already marked as rolled back, the
Neo4jStore knows that all adjacent nodes must be treated as in the doRollback
method. If the server crashes during the doCommit method is called, the server

48

5.5. Persisting CDO Revisions

Node[0]
(root)

REVISIONS

name='transactions'

TRANSACTIONS

REVISION

name='revisions'

REVISION

id='1'

V2

VERSION

V1

VERSION

id='2'

V1

VERSION

Figure 5.7. Database state after commit

can also handle the crash after restart. Since the transaction node was marked as
committed, the Neo4jStore knows that maybe some nodes were already definitely
committed and the relationships were removed. All nodes that still are adjacent to
the transaction node can also be committed. So, the database state will be the same
as the doCommit method was normally executed.

Concurrent Access to Revisions

Another threat is the concurrent access of revisions that are not finally committed.
Lets assume that there exists a revision with one version. Now, transaction t1

makes an update on this revision and adds the version V2. Before the doCommit
method is called for this transaction, another transaction also tries to add a new
version V2 to this element. This situation leads to lost updates known from database
theory. This means that it is non-deterministic how the database state looks like
after all transactions have finished. In order to avoid this problem, the Neo4jStore
implements pessimistic locking. This means that no other transaction can modify a
revision unless As Neo4j maintains the ACID properties, we can assume, that the
new version and the relationship from the new version to the id node exist at the
same time. Hence, before a new version will be created, we first check if there is

49

5. A CDO Store with Graph Database Backend

already a replacing version. If so, the server must be rolled back and the global
CDO transaction is aborted.

5.5.4 Summary

As explained, the use of transaction nodes allows the Neo4jStore to cut large
transactions into small chunks of transactions. This speeds up the Neo4jStore and
allows more throughput. The last section comments on problems that could appear
because of system failures or concurrent access. It was argued why the given
procedure works correct regarding the consistency.

50

Chapter 6

Evaluation

This chapter describes the evaluation of our Neo4jStore. Section 6.1 deals with the
statistical foundations. Section 6.2 deals with the machines on which the benchmark
were executed. Finally, Section 6.3 presents the benchmarks used for evaluation.

6.1 Statistical Foundations

When benchmarks are applied to software systems, there are various sources of
non-determinism, e. g., thread scheduling or garbage collection [Georges et al. 2007].
This means that if an experiment is repeated, the results will likely differ. Hence,
it is not useful to take the first result but in the contrary, it is necessary to repeat
experiments multiple times. Researcher work with samples from the population
of possible results. When comparing alternative software sytems in relation to
their performance, the samples must be compared. The question that arises is
how to derive the actual performance of the system under test, with respect to a
certain confidence? Some researchers answer this question by choosing the best or
the second best result from the sample. Other researchers compute the mean of
the sample. Georges et al. [2007] show that these approaches can lead to wrong
interpretations. Firstly, Section 6.1.1 introduces a graphical representation of a
sample which gives the opportunity to get a first impression of the distribution
of the underlying population. Afterwards, they propose a statistical rigorous
performance evaluation, which will be discussed in Section 6.1.2.

6.1.1 Box-And-Whisker Plots

Let x1, ..., xn be a sample taken from a repeated experiment and let x(1) ď ... ď x(n)
the sample with ascending order such that x(1) is the minimum of the sample and
x(n) is the maximum. There are three values called quartiles which separates the
sample into four equal parts [Hedderich and Sachs 2012]. The first quartile Q1

means that 25% of the values are smaller than Q1. The second quartile Q2, also

51

6. Evaluation

(*) (O) (O) (*)

Quartiles: Q1 Q2 Q3

Median

Smallest value within
1.5 of the interquartile
range

Largest value within
1.5 of the interquartile
range

Figure 6.1. Structure of a Box-and-Whisker plot [Kähler 2010]

called median, separates the sample in two halfs, i. e., 50% are larger and 50% are
smaller than this value. The third quartile Q3 separates the sample such that 25%
are larger than Q3. The values can be computed as follows [Hedderich and Sachs
2012]:

1. Q1 = x(k) with k = b(n + 1) ¨ 0.25c

2. Q2 = x(l) with l = b(n + 1) ¨ 0.50c

3. Q3 = x(m) with m = b(n + 1) ¨ 0.75c

The difference of the third and the first quartile is called the interquartile range
(IQR). It consists of the centralized 50% of the sample.

Box-and-Whisker plots represent these values graphically and and offer a first
opportunity to decide whether a sample could be normally distributed. Figure
6.1 shows the structure of a Box-and-Whisker plot. The first and third quartiles
will be drawn as a rectangle. The median is represented as a line within the
rectangle. The smallest value x(i) ě Q1 ´ 1.5 ¨ IQR respectively the largest value
x(j) ď Q3 + 1.5 ¨ IQR are marked with so-called whiskers. All values which are
smaller than x(i) respectively larger than x(j) are so-called outliers which are marked
with (o). Extreme outliers (3.0 ¨ IQR instead of 1.5 ¨ IQR) will be marked with (*).

Normal distributions result in symmetric B-n-W plots, but they can also be
caused by other symmetric data-sets/samples.

52

6.1. Statistical Foundations

6.1.2 Choosing an Appropriate Statistical Test Method

Georges et al. [2007] propose statistics theory as a rigorous data analysis approach
in order to tackle non-determinism. They propose two approaches depending on
the number of alternatives that will be compared. If there are only two alternatives
it will be sufficient to compare the confidence intervals. This method will be
discussed in Section 6.1.3. In the case of more than two alternatives, they propose
to use the Analysis of Variance test (ANOVA). However, ANOVA is a parametric
test which means that there are two preconditions that must be satisfied that the
test can be applied. The first condition for ANOVA is that the samples must be
normally distributed. The second condition is that the variance of the samples
must be equal.

Figure 6.2 shows the tests that must be executed in order to receive a statistical
rigorous performance evaluation. At the beginning, it must be decided how many
alternatives will be compared as mentioned before. If more than two alternatives
will be compared, a test for normal distribution, such as a Shaprio-Wilk Test (see
Section 1.1.4), must be applied. If the samples for all alternatives are normally
distributed, they must be examined concerning the equality of variance. There are
several tests that deal with this question. In this thesis, the Bartlett Test was chosen
since it is a non-sensitive test for the equality of the variance. It will be considered
in Section 6.1.5. If the Bartlett test confirms the equality of variances, the ANOVA
can be applied to the alternatives in order to discover performance differences.
However, this test can only confirm that differences exist but it is usually interesting
which alternatives differ concerning the ranking. In the case of differences, the
Tukey Test helps to find performance differences between alternatives.

The ANOVA is ineligible for the benchmark evaluations in this thesis because
the preconditions were not fulfilled, hence the ANOVA as well as the Tukey test
will not be considered in detail.

If one of the preconditions is not valid only a non-parametric test can be applied.
A common test is the Kruskal and Wallis Test. It has got the same hypothesis as
ANOVA but since it is a non-parametric test, it is not as robust as the ANOVA.
Nevertheless, it has got an asymptotic efficiency of 95% [Hedderich and Sachs
2012]. Section 6.1.6 considers the test in detail. The Kruskal and Wallis Test can
only determine whether there are differences between the alternatives or not, but it
cannot determine which alternatives differ. Therefore, the average ranks will be
compared pairwise shown in Section 6.1.7.

53

6. Evaluation

Shapiro-Wilk
Test

Kruskal-Wallis
Test

Barlett
Test

Analysis of
Variance

Tukey
Test

Comparison of the
average ranks

Compare confidence
intervals

[more than two
alternatives]

[two alternatives]

[decline H0]

[accept H0]

[accept H0]

[decline H0]

[not equal]

[equal]

[normally distributed]

[not normally distributed]

Figure 6.2. How to choose the appropriate statistical test method? (based on [Hedderich
and Sachs 2012] and [Georges et al. 2007])

54

6.1. Statistical Foundations

6.1.3 Overlapping Confidence Intervals

This section is based on [Georges et al. 2007]. A 95% confidence interval for a
sample is an interval in which the actual distribution mean of the underlying
population is contained with a probability of 95%. The size of the confidence
interval grows with the given probability. This means that a 99% confidence
interval is larger than the 95% confidence interval. Georges et al. [2007] emphasize
that the underlying distribution does not have to be normally distributed because
of the central limit theorem. Hence, it is not necessary to apply a test of normality
like for the ANOVA.

In order to compare two alternatives, their confidence intervals will be com-
pared. Consider two alternatives with n1 respectively n2 measurements. The first
step is to compute the means x1 and x2 for both samples:

xi =
∑ni

j=1 xj

ni
, i P {1, 2}

After that, the difference of the means x can be computed:

x = |x1 ´ x2|

The next step is to determine the standard deviations s1, s2 for the two samples:

si =

√
∑ni

j=1(xj ´ x)2

ni ´ 1
, i P {1, 2}

Then, the standard deviation sx of the difference of the means can be computed:

sx =

√
s2

1
n1

+
s2

2
n2

Finally, the confidence interval for the difference of the means can be computed:

c1 = x´ z1´α/2sx
c2 = x + z1´α/2sx

The value for z1´α/2 is taken from the table of the standard normal distribution,
e. g., from [Fahrmeir et al. 2009]. So, with α = 0.05 we get z1´α/2 = 1.96. Finally, it
can be concluded that there is not any statistical significant difference if 0 P [c1, c2].
The means that the performance for both alternatives must be considered to be the
same. If 0 R [c1, c2], then it can be assumed that one alternative has got a better
performance due to the statistic difference.

55

6. Evaluation

6.1.4 Shapiro-Wilk Test

In order to decide whether a sample x1, ..., xn is normally distributed, the Shapiro-
Wilk Test can be applied. The null hypothesis for the test states that the underlying
population is normally distributed, while the alternative hypothesis states that
the underlying population is not normally distributed. The test statistic can be
computed as follows.

Ŵ =

(
∑n

i=1 aix(i)
)2

∑n
i=1(xi ´ x)2

x(i) are the measurements in ascending order and ai are constant values taken from
a table of a normally distributed variable with sample size n. The null hypothesis
must be declined if Ŵ ă Wcritical which can be taken from corresponding tables,
for example in [Pearson and Hartley 1976].

6.1.5 Bartlett Test

This test checks whether the variances of k samples are equal. The null hypothesis
states homogeneity of the variances and the alternative hypothesis states that at
least two variance are different. The test statistic is computed as follows [Georges
et al. 2007]:

χ̂2 =
1
c

(
2.3026(ν ¨ lg(s2)´

k

∑
i=1

νi ¨ lg(s2
i))

)
with

ν = n´ k, overall degree of freedom

s2 = ∑k
i=1 νis2

i
ν , estimation of the weighted variance

νi = ni ´ 1, degree of freedom for the i-th sample
s2

i , estimation of the variance for the i-th sample

For "large" νi, it can be assumed that c = 1 and hence, it must only be computed
if χ̂ is expected to be statistically significant. Then

c =
∑k

i=1
1
νi
´ 1

ν

3(k´ 1)
+ 1

The null hypothesis is declined when χ̂ ą χ2
ν;α whereby χ2

ν;α is taken from the
χ2-distribution.

56

6.1. Statistical Foundations

6.1.6 Kruskal-Wallis Test

This test will be applied in order to decide whether k ě 3 samples are derived from
the same population. So, the null hypothesis is that the k distribution functions are
equal and the alternative hypothesis states that at least two distribution functions
are different. Assuming that each sample i consists of ni measurements xi1, ..., xini ,
there are altogether n = ∑k

i=1 ni measurements. It can now be assumed that ni = nj
for all i, j P {1, ..., k}. These measurements will be sorted in ascending order so
that each measurement can be ranked. Then, the ranks will be added up for each
sample. Let Ri the sum for the i-th sample. The test statistic can be computed as
follows:

Ĥ =

(
12k

n2(n + 1)

)(k

∑
i=1

R2
i

)
´ 3(n + 1)

As stated in [Hedderich and Sachs 2012], if ni ě 5 and k ě 4 then Ĥ is χ2-distributed
with k´ 1 degree of freedom, i. e., H0 is declined when Ĥ ą χ2

k´1;α. This value can
be taken from a table of the χ2 distribution [Hedderich and Sachs 2012].

6.1.7 Multiple Pairwise Comparison of Average Ranks

The Kruskal-Wallis-Test can only determine whether there are differences between
the populations. For this purpose the average ranks will be compared. The average
rank for a sample i is defined as Ri = Ri/ni. The null hypothesis for this test
states that the samples i, j are derived from the same population and the alternative
hypothesis states that the underlying populations are different. The null hypothesis
will be declined when

|Ri ´ Rj| ą

√
d ¨ χ2

k´1;α ¨

(
n(n + 1)

12

)(
1
ni

+
1
nj

)
In the context of the thesis, it can be assumed that d = 1, since there are not many
repetitions of the same measurements.

57

6. Evaluation

6.2 Execution Environment

All tests were performed under repeatable and controlled conditions. The "Software
Performance Engineering Lab" (SPEL) 1 has been used to assure these conditions.
The tests were executed with the following hardware and software:

1. 2x Intel Xeon E5540 (2.53 GHz; 4 cores)

2. 24 GB RAM

3. Debian 6.0.7

4. OpenJDK Runtime Environment (IcedTea6 1.8.13)

For all benchmarks, the CDO model repositories receive 8GB RAM and the
clients receive 4GB RAM.

6.3 Benchmark for CDO

6.3.1 The Models

The benchmarks are based on a meta-model that is shipped with the CDO sources.
Models that relate to the meta-model describe a company and its relationships to
suppliers and customers. Figure 6.3 shows the meta-model in detail. The root of a
model is the Company. The company is Addressable and can have several suppliers
and customers. Supplier and Customer are also Addressable. A company offers
different products that are organized in different categories. So, each Category can
contain further categories or products. Each Product has got several properties and
can be bought from suppliers or sold to customers. The company has two types of
orders, purchase orders and sales orders. Both are a specializations of an Order. A
PurchaseOrder belongs to a supplier and a SalesOrder belongs to a customer. An
Order can be comprised of order details. Each OrderDetail belongs to a product of
the company.

6.3.2 Benchmark Design

We defined the following four scenarios for the benchmark: "model import", "model
export", "small query", and "large query". Each category considers another use case

1http://se.informatik.uni-kiel.de/research/spel/ (last visit: June 3, 2013)

58

http://se.informatik.uni-kiel.de/research/spel/

6.3. Benchmark for CDO

-name : EString
-street : EString
-city : EString

Addressable

-preferred : EBoolean

Supplier Company Customer

suppliers

0..* customers

-date : EDate

PurchaseOrder

supplier 1

0..* purchaseOrders

purchaseOrders 0..*

-id : EInt

SalesOrder

0..*

customer
1

salesOrders
salesOrders

0..*

0..*
Order

-price : EFloat

OrderDetail

-name : EString
-vat : VAT
-description : EString
-price : EFloat

Product

orderDetails

0..1product

0..*

Category

order1

orderDetails 0..*

0..* products

categories 0..*

0..*
categories

<<Constant>> -vat0
<<Constant>> -vat7
<<Constant>> -vat15

<<enumeration>>
VAT

Figure 6.3. Used Meta-Model for Evaluation

of the model repository. "Model import" deals with the performance when storing
models within one transaction. This means that XMI files will be loaded from the
file system and stored into the model repository. "Model export" considers the
performance when loading large models from the model repository and writing
it to a XMI file on the file system. The category "Small query" considers the
performance when models are queried and only small parts of the model are

59

6. Evaluation

Table 6.1. Models considered in the benchmark

XS S M L XL XXL
Categories 1 3 7 14 27 54
Products 5 44 219 614 2058 4675
Suppliers 7 15 29 37 67 98
Customers 9 14 29 47 63 81
Sales orders (SO) 99 200 665 1443 2929 3627
SO details 1056 2875 14,769 42,723 130,365 161,328
Purchase orders (PO) 250 812 2135 3041 5911 8532
PO details 9373 45,257 158,884 244,375 514,469 741,972
Overall size 10,800 49,220 176,737 292,294 665,889 920,367

affected. On the other side, "large query" considers the performance when nearly
the complete model is affected.

All scenarios are applied to six different models which are shown in Table 6.1.
These models were created randomly and hence the underlying model tree is not
balanced. The smallest model consists of only 10,800 objects while the largest
model consists of 920,367 objects.

The "model import" scenario compares our Neo4jStore with the MEMStore,
DBStore, DB4OStore, and the MongoDBStore. The "model export", "small query"
and "large query" scenarios compare only the Neo4jStore with the DBStore. It
is not useful to take the other CDO stores into account since the results are not
meaningful. The MEMStore loads the model from the cache while the other CDO
stores must perform I/O-operations. The DB4OStore has got a bug which makes it
impossible to load models after a restart of the CDO server. The MongoDBStore was
not compared since it can not handle large models which is the core of this thesis.
It has not got the ability to handle models larger than the defined size "m". The
reason is that the store writes one transaction to one document. A document has
got a maximum size of 16MB, but this size will be exceeded for large transactions.

6.3.3 Benchmark Results

Scenario 1: Model Import

Figure 6.4 gives a general overview of the distributions for all model sizes. The box-
and-whisker plots are grouped by the CDO stores. For each store, the distribution
on the left side relates to the model XS and then, they are ordered by model size

60

6.3. Benchmark for CDO

Execution time in s

M
EM

DB
DB4O

Neo4j
M

ongoDB

0 50 100 150 200 250 300 350 400 450

M
EM

DB
DB4O

Neo4j
M

ongoDB

Figure 6.4. Box-and-Whisker plots for the "model import" benchmark 61

6. Evaluation

Table 6.2. Test statistics for the "model import" scenario

XS S M L XL XXL
MEM 0.9601 0.9100 0.9818 0.9832 0.9806 0.9838
DB 0.9642 0.9710 0.9027 0.9500 0.9698 0.9718
DB4O 0.9630 0.6044 0.9679 0.9844 0.9790 0.9832
Neo4j 0.9811 0.9716 0.9778 0.9724 0.9766 0.9762
MongoDB 0.9370 0.9626 0.9753 - - -
Normally distributed? X X X

√ √ √

Bartlett Test - - - - 163.24 380.13
Kruskal-Wallis Test 227.11 225.88 227.39 186.57 186.57 186.57

Table 6.3. CDO stores comparison for model size XS

MEM DB DB4O Neo4j MongoDB Ranking
MEM -

√ √ √
o (1)

DB - -
√ √

- (3)
DB4O - - -

√
- (4)

Neo4j - - - - - (5)
MongoDB o

√ √ √
- (1)

such that the distribution on the right side relates to the model XXL. All CDO
stores have exponential behavior. While the MEMStore and the MongoDB grow
moderately, the other stores grow fast. Now, we will consider the performances
of the CDO stores per model. Table 6.2 shows the test statistics for the "model
import" scenario. The values were computed as explained in Section 6.1. The values
in the rows with the CDO store names represent the results of the Shapiro-Wilk
test on normality. If all CDO stores are normally distributed for a particular model
size, then this model size is marked with

√
. In this case the Bartlett test on equality

of variance was executed. This concerns the model sized L-XXL. All Bartlett test
results indicate that the particular variances are not equal. So, we can conclude
that the Kruskal-Wallis test must be applied for all model sizes. Finally this test
indicates that there are considerable differences between the CDO stores. The
average ranks must be compared for each model size.

Table 6.3 shows the results of the compared average ranks for the model size
XS. It reveals a uniquer order of the achieved performances of the CDO stores. The

62

6.3. Benchmark for CDO

MEM DB DB4O Neo4j MongoDB

E
xe

cu
tio

n
tim

e
in

s

3
5

7
9

Figure 6.5. "Model import" scenario results for model size XS

Table 6.4. CDO stores comparison for model size S

MEM DB DB4O Neo4j MongoDB Ranking
MEM -

√ √ √
o (1)

DB - -
√ √

- (3)
DB4O - - -

√
- (4)

Neo4j - - - - - (5)
MongoDB o

√ √ √
- (1)

best performances were given by the MEMStore and the MongoDBStore. This is
not surprising for the MEMStore. The good performance of the MongoDBStore
could be arised from the fact, that the MongoDB is started in a separate process.
So, the combination of CDO server and MongoDBStore could use more memory
than the other combinations. can be considered as equal. The third best CDO store
is the DBStore followed by the DB4OStore and the Neo4jStore. Figure 6.5 shows
the distributions for the model XS. The order that was computed by the statistical
tests can be graphically confirmed.

Table 6.4 shows the results of the compared average ranks for the model size S.
It is the same result as for the smaller model XS. Also the gap between the CDO
stores are equal as depicted in Figure 6.6.

Table 6.5 shows the results of the compared average ranks for the model size M.
The MEMStore and the MongoDBStore still provides the sam performance. Both
stores are followed by the DBStore. At this point there is a change compared to the
smaller models. the Neo4jStore has got a better performance than the DB4OStore.

63

6. Evaluation

MEM DB DB4O Neo4j MongoDB

E
xe

cu
tio

n
tim

e
in

s

5
10

15
20

25

Figure 6.6. "Model import" scenario results for model size S

Table 6.5. CDO stores comparison for model size M

MEM DB DB4O Neo4j MongoDB Ranking
MEM -

√ √ √
o (1)

DB - -
√ √

- (3)
DB4O - - - - - (5)
Neo4j - -

√
- - (4)

MongoDB o
√ √ √

- (1)

MEM DB DB4O Neo4j MongoDB

E
xe

cu
tio

n
tim

e
in

s

20
40

60
80

Figure 6.7. "Model import" scenario results for model size M

64

6.3. Benchmark for CDO

Table 6.6. CDO stores comparison for model size L

MEM DB DB4O Neo4j Ranking
MEM -

√ √ √
(1)

DB - -
√ √

(2)
DB4O - - - - (4)
Neo4j - -

√
- (3)

MEM DB DB4O Neo4j MongoDB

E
xe

cu
tio

n
tim

e
in

s

25
50

75
10

0
12

5

Figure 6.8. "Model import" scenario results for model size L

This is also the result of the graphical representation depicted in Figure 6.7. It seems
that the performances of the DBStore and the Neo4jStore move closer together.

Table 6.6 shows the results of the compared average ranks for the model size L.
As mentioned before, the MongoDBStore is not able to handle models of this size.
Hence, the MEMStore has got the best performance. The rest of the ranking is the
same as for the model size M which can also be graphically proved in Figure 6.8.

Table 6.7. CDO stores comparison for model size XL

MEM DB DB4O Neo4j Ranking
MEM -

√ √ √
(1)

DB - -
√ √

(2)
DB4O - - - - (4)
Neo4j - -

√
- (3)

65

6. Evaluation

MEM DB DB4O Neo4j MongoDB

E
xe

cu
tio

n
tim

e
in

s

50
15

0
25

0

Figure 6.9. "Model import" scenario results for model size XL

Table 6.8. CDO stores comparison for model size XXL

MEM DB DB4O Neo4j Ranking
MEM -

√ √ √
(1)

DB - -
√ √

(2)
DB4O - - - - (4)
Neo4j - -

√
- (3)

MEM DB DB4O Neo4j MongoDB

E
xe

cu
tio

n
tim

e
in

s

10
0

20
0

30
0

40
0

Figure 6.10. "Model import" scenario results for model size XXL

66

6.3. Benchmark for CDO

E
xe

cu
tio

n
tim

e
in

s

DB Neo4j

0
20

0
40

0
60

0

Figure 6.11. Box-and-Whisker plots for the "model export" benchmark

This rankings are the same for the model size XL and XXl as described in
Table 6.7 and Table 6.8. There is only a variation of the gaps between the CDO
stores as depicted in Figure 6.9 and Figure 6.10.

For the "model import" scenario we can conclude that the model size has not
large influence on the ranking of the CDO stores. It is not surprising that the MEM-
Store has got the best performance. The good performance of the MongoDBStore
can be explained by the additional process for the database that allocates more
memory than the other CDO stores. The DBStore has always a better performance
compared with the Neo4jStore.

Scenario 2: Model Export

For this scenario, only the DBStore and the Neo4jStore will be considered as
explained in Section 6.3.2. Hence, we can compare the confidence intervals in
order to get a ranking for both CDO stores. Figure 6.11 shows an overview of
the distributions for the different models. Compared to the previous scenario,
the ranking can not be directly taken from the box-and-whisker-plot. Table 6.9
shows the results for the confidence intervals. These results show that the DBStore
performs better than the Neo4jStore in general. For smaller models (S and M) there
are not statistically significant differences between these store since the confidence
intervals contain the 0. It seems that the model size has got influence on the
performance. The gap between the means of the CDO stores grows with the model
size.

67

6. Evaluation

Table
6.9."M

odelexport"
perform

ance
com

parison

X
S

S
M

L
X

L
X

X
L

M
ean

SD
M

ean
SD

M
ean

SD
M

ean
SD

M
ean

SD
M

ean
SD

D
B

14111
1167

34078
7155

92537
21170

134399
30716

274582
53049

384079
82120

N
eo4j

15235
1133

35543
4772

87854
21796

148660
32410

308522
56853

453240
80744

C
onfidence

[673,1575]
[´

918,3850]
[´

3739,13106]
[1884,26639]

[12147,55732]
[37239,101084]

interval

68

6.3. Benchmark for CDO

14
00

18
00

22
00

E
xe

cu
tio

n
tim

e
in

m
s

DB Neo4j

Figure 6.12. Box-and-Whisker plots for the "small query" benchmark

Scenario 3: Small Query

This scenario only compares the DBStore and the Neo4jStore which allows us to
compare their intervals as statistical test. Figure 6.12 shows the distributions for
the different model sizes. It is obvious that the DBStore provides a much better
performance than the Neo4jStore. Nevertheless, a statistical analysis was done
and the results a presented in Table 6.10. The confidence intervals confirm the
obseravation since they do not contain 0.

Scenario 4: Large Query

This scenario also compares the DBStore and the Neo4jStore. The results, depicted
in Figure 6.13, promise that the performance of the stores are closer than for the
"small query"scenario. This can be confirmed by the statistical test. Its result is
presented in Table 6.11. The results are very similar to the results of the "model
export" scenario. This is not very surprising since the underlying use cases are very
similar.

69

6. Evaluation

Table
6.10."Sm

allquery"
perform

ance
com

parison

X
S

S
M

L
X

L
X

X
L

M
ean

SD
M

ean
SD

M
ean

SD
M

ean
SD

M
ean

SD
M

ean
SD

D
B

1437
19

1445
22

1480
18

1522
21

1556
32

1600
24

N
eo4j

1832
20

1898
23

2031
18

2049
21

2276
19

2315
60

C
onfidence

[387,402]
[445,463]

[544,558]
[519,536]

[710,731]
[696,732]

interval

70

6.3. Benchmark for CDO

Table
6.11."Large

query"
perform

ance
com

parison

X
S

S
M

L
X

L
X

X
L

M
ean

SD
M

ean
SD

M
ean

SD
M

ean
SD

M
ean

SD
M

ean
SD

D
B

12680
1310

32305
740

78534
16406

128559
33086

252016
59397

312254
65248

N
eo4j

14082
1134

33489
6485

84157
20111

142194
34506

300085
72360

364067
74021

C
onfidence

[924,1881]
[´

1543,3912]
[´

1571,12817]
[384,26886]

[21856,74282]
[24613,79012]

interval

71

6. Evaluation

E
xe

cu
tio

n
tim

e
in

 s

DB Neo4j

0
10

0
20

0
30

0
40

0
50

0

Figure 6.13. Box-and-Whisker plots for the "large query" scenario

72

Chapter 7

Conclusion

7.1 Summary and Discussion

The thesis provided an overview of the current model repository technologies in
the context of the Eclipse Modeling Framework. Five different repositories were
investigated and classified with respect to requirements necessary for the MAMBA
framework. The thesis showed that many model repository technologies only
recreate the default persistence mechanism by adding only a persistence backend.
This faces the problem with insufficient memory but do not support collaborative
work on models.

At this time, only the Connected Data Objects model repository support the
persistence aspect as well as the distributed shared model approach. Since there
already exists a model repository with the capabilities that we require in the context
of MAMBA, this thesis investigated the use of graph databases by using CDO.
We implemented a CDO store based on the Neo4j graph database. Neo4j is not
intended to persist large amount of data within one transaction. If models are large
enough, they cannot be persisted anymore. Therefore, we proposed an approach
to split a large transaction into multiple smaller transactions in order to meet
the ability of Neo4j. This split makes it necessary to provide a mechanism for
preserving the consistency.

CDO does not provide the object graph to its backend but rather flatten the
graph into a list of objects. This makes it difficult to exploit the graph properties of
the object graph. In order to exploit the graph properties, it would be necessary to
reconstruct the graph which results in expensive insert operations. Furthermore,
CDO queries requests only a single object per time from its backend. Because of
that, we decided to store the objects by using an index. This is a fast way to look
up objects referenced by a unique ID.

73

7. Conclusion

The evaluation showed that the developed Neo4jStore with its graph database
is slower than the DBStore with a relational database management system. This
statement must be considered very carfully. Actually we compared an index with
a relational database and not a graph database. As Barmpis and Kolovos [2012]
showed, Neo4j seems to be pretty useful in the context of EMF.

7.2 Future Work

There could be some space for improvement of the developed Neo4jStore. For
example the optimal chunk size for split transaction must be experimentally inves-
tigated. Furthermore, it should be investigated whether the assumption is correct
that the recreation of the object graph is useless.

The performance of other CDO stores could be considered, e. g., the Ojectivi-
tyStore. With the new version of CDO the LissomeStore was introduced. Maybe
these CDO stores provides better performances.

The evaluation of the CDO stores showed that, MongoDB is very fast for small mod-
els. A mechanism is required that allows to store larger models in the MongoDB.
Then, it would be possible that the MongoDB accomplish the best performance.

Finally, there are some improvements for our proposed benchmark. Until now, it
does not consider concurrent access of the model repository.

74

Bibliography

[Barmpis and Kolovos 2012] K. Barmpis and D. S. Kolovos. Comparative Analysis
of Data Persistence Technologies for Large-Scale Models. In: Proceedings of the
15th International Conference on Model Driven Engineering Languages & Systems
(MoDELS ’12). Oct. 2012. (Cited on pages 13–15, and 74)

[Edlich et al. 2010] S. Edlich, A. Friedland, J. Hampe, and B. Brauer. NoSQL: Einstieg
in die Welt nichtrelationaler Web 2.0 Datenbanken. Hanser Fachbuchverlag,
Oct. 2010. (Cited on page 10)

[Espinazo-Pagán et al. 2011] J. Espinazo-Pagán, J. S. Cuadrado, and J. G. Molina.
Morsa: a scalable approach for persisting and accessing large models. In:
MoDELS. Edited by J. Whittle, T. Clark, and T. Kühne. Volume 6981. Lecture
Notes in Computer Science. Springer, 2011, pages 77–92. url: http://dblp.uni-
trier.de/db/conf/models/models2011.html#Espinazo-PaganCM11. (Cited on pages 1, 2, 13,
and 22)

[Fahrmeir et al. 2009] L. Fahrmeir, R. Künstler, I. Pigeot, and G. Tutz. Statistik -
Der Weg der Datenanalyse. Springer-Verlag, 2009. (Cited on page 55)

[Frey et al. 2011] S. Frey, A. van Hoorn, R. J. andWilhelm Hasselbring, and B. Kiel.
MAMBA: A Measurement Architecture for Model-Based Analysis. Technical
report. Department of Computer Science, University of Kiel,Germany, 2011.
(Cited on page 1)

[Georges et al. 2007] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous
java performance evaluation. In: Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems and applications. OOPSLA ’07.
ACM, 2007, pages 57–76. (Cited on pages 51, 53–56)

[Goncalves 2010] A. Goncalves. Beginning Java EE 6 with GlassFish 3. Apresspod
Series. Apress, 2010. (Cited on page 12)

[Hedderich and Sachs 2012] J. Hedderich and L. Sachs. Angewandte Statistik -
Methodensammlung mit R. Springer Gabler, 2012. (Cited on pages 51–54, and
57)

75

http://dblp.uni-trier.de/db/conf/models/models2011.html#Espinazo-PaganCM11
http://dblp.uni-trier.de/db/conf/models/models2011.html#Espinazo-PaganCM11

Bibliography

[Kloos et al. 2012] U. Kloos, N. Martínez, and G. Tullius. Informatics Inside 2012:
Reality++ - Tomorrow comes today! Hochschule Reutlingen, 2012. (Cited on
pages 29–31)

[Kähler 2010] W.-M. Kähler. Statistische Datenanalyse. Vieweg+Teubner, 2010.
(Cited on page 52)

[Lübbe 2012] K. Y. Lübbe. Improving a Transformation of Java Models to KDM.
Bachelor’s thesis. Kiel University, Sept. 2012. (Cited on page 2)

[MacDonald et al. 2005] A. MacDonald, D. M. Russell, and B. Atchison. Model-
driven development within a legacy system: an industry experience report. In:
Australian Software Engineering Conference. 2005, pages 14–22. (Cited on page 8)

[Mohagheghi 2008] P. Mohagheghi. Evaluating software development method-
ologies based on their practices and promises. In: SoMeT. 2008, pages 14–35.
(Cited on pages 1, 7, 8)

[Mohagheghi and Aagedal 2007] P. Mohagheghi and J. Aagedal. Evaluating
quality in model-driven engineering. In: Proceedings of the International Workshop
on Modeling in Software Engineering. MISE ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pages 6–8. (Cited on page 1)

[Knowledge Discovery Meta-Model v1.3] Object Management Group. Knowledge
Discovery Meta-Model v1.3. url: http://www.omg.org/spec/KDM/1.3. (Cited on
page 1)

[Structured Metrics Meta-Model v1.0] Object Management Group. Structured Metrics
Meta-Model v1.0. url: http://www.omg.org/spec/SMM/1.0. (Cited on page 1)

[Pearson and Hartley 1976] E. Pearson and H. Hartley. Biometrika tables for
statisticians. 1. Biometrika Tables for Statisticians. Biometrika Trust, University
college, 1976. (Cited on page 56)

[Robinson et al. 2013] I. Robinson, J. Webber, and E. Eifrem. Graph Databases. 1.
Aufl. O’Reilly Media, Incorporated, 2013. (Cited on pages 2, 11, 12)

[Staron 2006] M. Staron. Adopting Model Driven Software Development in
Industry – A Case Study at Two Companies. In: Model Driven Engineering
Languages and Systems. Edited by O. Nierstrasz, J. Whittle, D. Harel, and G.
Reggio. Volume 4199. Springer Berlin Heidelberg, 2006. Chapter 5, pages 57–72.
(Cited on page 7)

76

http://www.omg.org/spec/KDM/1.3
http://www.omg.org/spec/SMM/1.0

Bibliography

[Steinberg et al. 2009] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
EMF: Eclipse Modeling Framework. 2nd. Addison-Wesley, 2009. (Cited on
pages 2, 8, 19, and 32)

[CDO Model Repository Documentation] E. Stepper. CDO Model Repository Docu-
mentation. url: http://www.eclipse.org/cdo/documentation/. (Cited on page 27)

[CDO Model Repository Overview] E. Stepper. CDO Model Repository Overview.
last visit: June 3, 2013. url: http://www.eclipse.org/cdo/documentation/. (Cited on
page 27)

[Stepper 2010] E. Stepper. Scale, share and store your models with cdo / dawn.
In: Presented on Eclipse Summit Europe 2010, Ludwigsburg/Germany, 2010.
(Cited on pages 19, 33, 34)

77

http://www.eclipse.org/cdo/documentation/
http://www.eclipse.org/cdo/documentation/

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Summary of Results
	1.4 Document Structure

	2 Foundations and Technologies
	2.1 Model-Driven Engineering (MDE)
	2.2 Eclipse Modeling Project (EMP)
	2.3 Model Repositories
	2.4 NoSQL Databases
	2.5 Neo4j Graph Database
	2.6 Data Persistence Technologies for Large-Scale Models
	2.6.1 Storing Models
	2.6.2 Querying Models

	3 Evaluation of Model Repository Technologies
	3.1 Requirements
	3.2 EMF's Default Persistence Mechanism
	3.3 Investigated Model Repository Technologies
	3.3.1 MongoEMF
	3.3.2 emftriple
	3.3.3 Morsa
	3.3.4 EMFStore
	3.3.5 CDO

	3.4 Summary

	4 Connected Data Objects (CDO)
	4.1 Features
	4.1.1 Multi User Access
	4.1.2 Transactional Access
	4.1.3 Transparent Temporality
	4.1.4 Parallel Evolution
	4.1.5 Scalability
	4.1.6 Thread Safety
	4.1.7 Collaboration
	4.1.8 Data Integrity
	4.1.9 Fault Tolerance
	4.1.10 Offline Work

	4.2 CDO Client and Server Architecture
	4.3 CDO Model Repository Internals
	4.3.1 Converting from Revisions to Objects
	4.3.2 Distributed Shared Models
	4.3.3 States of Objects
	4.3.4 Resources and Resource Folder

	4.4 Existing CDO Stores
	4.5 Developing a Custom CDO Store

	5 A CDO Store with Graph Database Backend
	5.1 Supported Features
	5.2 General Design Desicions
	5.3 General Overview of the Repository Schema
	5.4 Persisting Meta-Models
	5.5 Persisting CDO Revisions
	5.5.1 General Approach
	5.5.2 Consistency
	5.5.3 Correctness
	5.5.4 Summary

	6 Evaluation
	6.1 Statistical Foundations
	6.1.1 Box-And-Whisker Plots
	6.1.2 Choosing an Appropriate Statistical Test Method
	6.1.3 Overlapping Confidence Intervals
	6.1.4 Shapiro-Wilk Test
	6.1.5 Bartlett Test
	6.1.6 Kruskal-Wallis Test
	6.1.7 Multiple Pairwise Comparison of Average Ranks

	6.2 Execution Environment
	6.3 Benchmark for CDO
	6.3.1 The Models
	6.3.2 Benchmark Design
	6.3.3 Benchmark Results
	Scenario 1: Model Import
	Scenario 2: Model Export
	Scenario 3: Small Query
	Scenario 4: Large Query

	7 Conclusion
	7.1 Summary and Discussion
	7.2 Future Work

	Bibliography

