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A flow-injection (FI)-based instrument under LabVIEW control for monitoring iron in marine waters is described. The instru-
ment incorporates a miniature, low-power photomultiplier tube (PMT), and a number of microelectric and solenoid actuated
valves and peristaltic pumps. The software allows full control of all flow injection components and processing of the data from
the PMT. The optimised system is capable of 20 injections per hour, including preconcentration and wash steps. The detection
limit (3 sd of the blank) is 21 pM at sea and the linear range is 21-2000 pM with a 60-second sample load time. Typical precision
between replicate FI peaks is 5.9 = 3.2% (n = 4) over the linear range.

1. INTRODUCTION

Iron is an important parameter to determine in seawater be-
cause of its role in photosynthetic processes [1], ocean pro-
ductivity [2], and hence global carbon cycling [3]. Open-
ocean concentrations of dissolved iron(II+III) are in the
range of 50-700 pM [4] and are typically depleted in surface
waters and elevated at depth. Iron in seawater can be deter-
mined in the laboratory using isotope dilution HR-ICP-MS
after coprecipitation [5] or HR-ICP-MS after solid-phase ex-
traction [6], GFAAS after solvent extraction [7], flow injec-
tion (FI) with chemiluminescence (CL) [8, 9], spectropho-
tometric [10] detection or cathodic stripping voltammetry
[11]. Current oceanographic studies however require the de-
termination of iron at sea in real time and this necessitates
the use of portable, shipboard instrumentation, for which FI
techniques are ideally suited.

This paper describes the design and performance char-
acteristics of a fully automated and portable FI instrument
with CL detection for real-time monitoring of iron at sea.
The system incorporates a low power (5V) photomulti-
plier tube (PMT), an immobilised chelating resin for an-
alyte preconcentration and luminol chemistry for detec-
tion. Iron(Il) can be determined directly by its enhancing
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effect on the luminol reaction and “total” iron(II+III) can
be determined after acidification and sample reduction
steps. A graphical programming environment (LabVIEW,
http://sine.ni.com/labview) facilitates the design of a virtual
instrument with a fully flexible user interface for instrument
control and data acquisition.

2. EXPERIMENTAL

2.1. Reagents and standards

All chemicals were obtained from Merck BDH (Crown Scien-
tific, Kingston, Australia), unless otherwise stated. Labware
was cleaned by soaking in successive baths of hot 5% (v/v)
micro-detergent (Decon) for 24 hours, 6 M HCI (AnalaR) for
1 week, and 2M HNOs; (AnalaR) for 1 week, with thorough
rinses using doubly deionised water (DIW, 18.2MQ cm™!)
between each step. Sample handling was carried out in a
class-100 laminar flow hood. High purity quartz distilled
(Q-) HCI, HNO3, ammonia, and acetic acid were obtained
from Seastar (Baseline grade, Sidney, BC, Canada).

Iron(II) standards were prepared daily in 0.1 M Q-HCl
from Fe(NHy),(SO4);-6H,0O. Luminol (Sigma, Perth, Aus-
tralia) (1 x 107> M) was prepared in 0.1 M Na,CO; by di-
lution of a 0.01M stock, adjusted to pH 12.2 with 2M
NaOH, and passed through a Chelex-100 (Sigma) chelating
resin column just prior to use. Ammonium acetate sample
buffer (0.4 M) was prepared from a 2 M stock and adjusted
to pH 5.5 with Q-acetic acid. An iron(III) reducing agent
of 100 uM Na,SO; (extra pure) was prepared from a 0.4 M
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F1GURre 1: FI-CL manifold for the determination of iron in seawater.

stock pre-cleaned through an 8-HQ column. The eluent was
0.09 M Q-HCI and the strong acid wash (used only periodi-
cally to clean the manifold) was 0.6 M Q-HCI. Low iron sea-
water (LISW) obtained from the open ocean was used as the
carrier stream to transport the sample from the holding loop
to the preconcentration column.

2.2. Flmanifold

Figure 1 shows the automated FI-CL manifold. Pumps A, B,
and C were 4-channel peristaltic pumps (Gilson Minipuls 3,
Anachem, Luton, UK). Injection valves 1 and 2 were 4-28, 6-
port, low-pressure valves (Cheminert C22, Valco, Houston,
USA) with two position microelectronic actuation. A %4-28,
10-port, low-pressure selection valve (Cheminert C25, Valco,
Houston, USA) with multiposition micro-electronic actua-
tion was used to switch between standards and the sample.
Switching valves were PTFE 3-way, two-position solenoids
(EW-01367-72, Cole-Parmer, Hanwell, UK). Pumps and
valves were operated at 5V dc (TTL) and switches at 12V dc.

A power saver relay reduced the solenoid input voltage to 8 V
dc when energising for extended periods.

The detection system was a coiled transparent PVC flow
cell (1.0 mm i.d.) mounted on the side window of a 5V dc
photon counting head (model H6240-01, Hamamatsu Pho-
tonics, Welwyn Garden City, UK). Detector specifications are
given in Table 1. The TTL pulse train from the photon count-
ing head was integrated, amplified, and filtered prior to data
acquisition (Figure 2).

Flow lines, fittings, and connectors were cleaned for 1
day with 0.6 M Q-HCI and DIW prior to use. Manifold
tubing was 0.75mm i.d. PTFE (Fisher Scientific, Lough-
borough, UK). Peristaltic pump tubing was flow-rated PVC
(Elkay, Basingstoke, UK). Preconcentration, matrix elimina-
tion, and sample buffer clean-up was performed in line us-
ing 8-hydroxyquinoline (8HQ) immobilised on a vinyl co-
polymer resin packed into 50 yL micro-columns [8].

Clean surface seawater was supplied to the FI manifold
at sea using a high-volume peristaltic pump (7591-00, Cole
Palmer Instrument Co.) connected to a torpedo-shaped fish,
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TaBLE 1: Specifications of miniature photon counting head.
Maximum ratings
Parameter Value Unit
Supply voltage +6 Vdc
Operating temperature range +5 to 40 °C
Storage temperature range —20 to 50 °C
Specifications at 25°C
Parameter H6240-01 Unit
Effective area 4%20 mm?
Spectral response 185 to 850 nm
Typical dark count 80 cps
Maximum dark count 200 cps
Counting linearity 2.5 Mcps
Pulse pair resolution 35 ns
Output pulse width 30 ns
Output logic TTL, positive
Input voltage +5 Vdc
Input current at 2.5 Mcps output Maximum 80 mA
Main control unit PMT interface
| Mains I
input i i
P Mains filter 12V linear +8 V regulator +5V regulator
and switch J/ power supply l J/ _J/
240 VAC +12VDC +8VDC +5VDC
240VDC —— 5405 VAC
i . lavs 4 outputs
[ 4 TTL lines PAO-PA3 mains relay:
+5VDC ——|
PAO-PA7 4 TTL lines PA4-PA7 > >VDC open
drain outputs 12 outputs
PCMCIA card
(DAQCard-DIO-24)| PBO-PB7 _ 8 TTLlines __ PBO-PB7 > (TTL control)
PC0-PC7 _ 8 TTL lines PCO—PC7> 12/8 VDC
open drain j‘> 8 outputs
+12VDC ——| outputs
Power saver ? p
+8VDC 7 relay (solenoids)
DO6
+5VDC ——> PMT power —— +5VDC (PMT2)
2 TTL lines DO4—DOS> switch —> +5VDC (PMT1)
PMT2 | X100 %1000
. in selector —— X1000
2 TTL lines DO4-DO5 gain selector %2000
——> %2000 %5000
(2-4 decoder) |3 5000 \Li
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FIGURE 2: Block diagram of the automated FI-CL instrument incorporating the main control unit and PMT interface (integrator, amplifier,
and filter are shown on PMT 1 only).
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TaBLE 2: Timing sequence for one analytical cycle. The pump and valve numbers refer to those shown in Figure 1.

Elapsed time (s) Pumps Injection valves Switching valves 10-way self:§t10crl Operation
A B C 1 5 1 b valve position
0 On On Off On Off On Off 1 Load
60 On Off On Off Off Off Off 1 Wash
100 On Off Off Off On Off Off 1 Elute
160 On Off On Off Off Off Off 1 Rinse
180 Cycle back to line 1

Injection valves: Off=load sample and On=elute sample.

bSwitching valve 2 is On only when an acid wash solution is passed over the 8HQ column.

€10-way selection valve remains in position 1 (sample port). For calibration this valve switches to positions 2-10 (depending on

the number of standards to be run).

which was towed alongside the research vessel at a depth of
1-2m below the surface, 5m from the ship’s hull. For wa-
ter column samples, seawater was collected in acid-washed
polycarbonate samplers suspended off Kevlar hydroline, fol-
lowing standard trace metal sampling methods [12]. Sea-
water was filtered in-line through a 0.4 ym cellulose acetate
membrane contained in a polypropylene cartridge unit (Sar-
torius, Epsom, UK). Samples for iron(II) determinations
were fed directly to the analyser at ambient seawater pH.
Samples for iron(II+III) were acidified to pH ~ 2 with Q-
HCI and reduced off-line using 100 uM Na,SO3 (4 h) prior
to analysis.

One complete analytical cycle, consisting of sample load,
DIW rinse and elution, took 3 minutes. The operation, the
state of each component (on or off for switching and injec-
tion valves; position for selection valve), and associated tim-
ing parameters during each cycle are shown in Table 2.

2.3. Interface

Instrument control was achieved via a DAQCard-DIO-24
card (National Instruments Corp., Newbury, UK) with 24
digital input/output TTL lines, and signal acquisition was
viaa DAQCard-700, with 16-channel, 12-bit A/D conversion.
This card was also used for changing PMT gain. Virtual in-
strument (VI) software (Ruthern Instruments Ltd., Bodmin,
UK) was written in LabVIEW version 5.1 (National Instru-
ments Corp.). The interface had two units, one for control-
ling pumps and valves and one for the PMT and signal pro-
cessing (Figure 2). The LabVIEW VI front panel contained
ready-to-use switches, buttons, controls, and graphical dis-
plays of detector readings (Figure 3). Each element in the
front panel was connected via the wiring diagram (Figure 4),
which included functions for signal processing, timing of op-
erations, and file management.

3. RESULTS AND DISCUSSION

3.1. Detector performance

The PMT interface contained a 4-position switched gain am-
plifier (Figure 2). This provided settings of %100, x1000,
%2000, and %5000, selectable by the control VI software,
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FIGURE 3: LabVIEW graphical user front panel for the automated
virtual instrument. The PMT data and Data history displays show
the unit in calibration mode.

which allowed the sensitivity to be adjusted to suit the vari-
able concentrations of iron found in seawater. The effect
of each of these settings on the CL background emission,
background noise, and analyte signal for a 2.0 nM iron(II)
standard was investigated in direct injection mode (i.e., no
preconcentration column), and the results are shown in
Figure 5. The CL background noise (peak-to-peak) showed
no change with gain setting, but both the CL emission for
iron and the background CL emission increased linearly with
respect to PMT gain. The maximum signal-to-noise ratio
was obtained at the highest gain setting (x5000), which was
therefore most suitable for iron-depleted open-ocean mea-
surements. For environments with higher iron concentra-
tions (such as coastal and estuarine waters), a lower gain set-
ting can be used to provide an expanded linear range.

3.2. Analytical figures of merit

Figure 6 shows a typical FI trace for the blank, sample, and
standard additions of 0.2-1.0 nM iron(II) spikes to a seawa-
ter sample. The mean repeatability and standard deviation
for 4 replicates over this range was 5.9 + 3.2%. The standard
addition plot showed excellent linearity (R? = 0.9979) over
this range. The iron(II) blank was typically 24+7 pM (n = 4),
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FIGURE 4: Wiring diagram showing the graphical code for instrument control and data acquisition. This code drives the functions shown on
the front panel in Figure 3.
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FiGure 6: Shipboard calibration peaks and corresponding standard additions plot for iron over the range 0.2—1.0 nM. Error bars indicate

+1 sd.

resulting in a limit of detection of 21 pM (defined as three
times the standard deviation of the blank). The major con-
tributions to the blank signal were from iron impurities in
the ammonium acetate buffer, DIW used for column wash-
ing, and (for iron(II+III) determinations) the acid and sulfite
used for sample pretreatment [8].

3.3. Field validation

The optimised FI-CL instrument was trialled at a hydrocast
station close to the Antarctic continent during a Southern
Ocean expedition (November 2001) along the CLIVAR SR3
line (~ 141°E). Figure 7 shows the profiles of dissolved iron
and temperature in the upper water column (25-300 m), il-
lustrating the depletion of iron in the mixed layer (down to
100 m) due to biological uptake and its gradual regeneration
at depth due to microbial decomposition of biogenic parti-
cles. Iron concentrations were between 220 and 360 pM at
this location, consistent with literature data [13]. At sea, the
instrument was totally reliable over 50 days of near contin-
uous use for surface transects and depth profiling, with no
downtime in spite of the harsh conditions experienced in this
environment. A report on the environmental significance of
the complete dataset from the 2001 CLIVAR SR3 expedition,
obtained using this instrumentation, will be presented else-
where.

4. CONCLUSIONS

The automated virtual instrument uses flow injection with
chemiluminescence detection for the determination of iron
in seawater. This is an inexpensive, portable, and robust
system suitable for shipboard deployment. The detection
limit of 21 pM allows the determination of iron in all ma-
rine environments, including remote, iron-limited open-
ocean regions. In addition, the use of off-the-shelf compo-
nents and industry standard graphical programming soft-
ware makes the instrument readily adaptable to related
analytes (e.g., cobalt [14], copper [15]) using well doc-
umented chemiluminescence reactions. This instrumenta-
tion should be easily transferable between laboratories, thus
facilitating the harmonisation of analytical methods for
the determination of iron in seawater, a current initiative
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FiGgure 7: Typical depth profiles of dissolved iron and temperature
in the upper water column of the Southern Ocean south of Australia
at 141° E, 61° S. Error bars indicate +1 sd.

of the Scientific Committee for Oceanic Research (SCOR)
Working Group 109 (Biogeochemistry of Iron in Seawater)
(http://www.jhu.edu/~scor/wgl09front.htm).
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