
SynchroVis: 3D Visualization of Monitoring Traces
in the City Metaphor for Analyzing Concurrency

Jan Waller, Christian Wulf, Florian Fittkau, Philipp Döhring, and Wilhelm Hasselbring
Software Engineering Group, Department of Computer Science, Kiel University, Kiel, Germany

Email: (jwa, chw, ffi, pdo, wha) @informatik.uni-kiel.de

Abstract—The increasing code complexity in modern software
systems exceeds the capabilities of most software engineers to
understand the system’s behavior by just looking at its program
code. The addition of concurrency issues through the advent of
multi-core processors in the consumer market further escalates
this complexity.

A solution to these problems is visualizing a model of the
system to ease program comprehension. Especially for the com-
prehension of concurrency issues, static information is often not
sufficient. For this purpose, profiling and monitoring can provide
additional information on the actual behavior of a system. An
established visualization approach is the 3D city metaphor. It
utilizes the familiarity with navigating a city to improve program
comprehension.

In this paper, we present our trace-based SynchroVis 3D
visualization approach for concurrency. It employs the city
metaphor to visualize both static and dynamic properties of
software systems with a focus on illustrating the concurrent
behavior. To evaluate our approach, we provide an open source
implementation of our concepts and present an exemplary dining
philosophers scenario showing its feasibility.

I. INTRODUCTION

Through the advent of multi-core processors in the con-

sumer market, parallel systems became a commodity. The

resulting addition of concurrent behavior in software systems

leads to further challenges in program comprehension.

For this reason, specifications and tools have been invented

which facilitate the analysis of software systems to be more

clearly represented. For instance, the Unified Modeling Lan-

guage (UML) provides several diagrams to visualize both the

static structure of a system (in terms of software entities and

their relationships) and the dynamic aspects, namely class

instantiations and message interactions in the context of time.

Recent approaches [e. g., 1, 2, 3, 4, 5] expand the 2D visual-

ization of, for example, UML diagrams by another dimension

to describe a software system’s static and dynamic proper-

ties. The city metaphor is such a 3D visualization approach

displaying a software system as a large city. The viewers day-

to-day familiarity in navigating a city (e. g., reading a street

map, orienting with the help of large buildings, etc.) supports

the understanding of the visualized application [2].

In addition, there has been work on tools analyzing the

runtime behavior of software systems. So-called monitoring

tools, such as Kieker [6], are able to collect information

on operations, e. g., associated classes, response times, and

concurrent behavior, by means of software probes inserted

into the target system. However, these execution traces produce

enormous quantities of information [4] making them challeng-

ing to analyze and to visualize.
In our SynchroVis approach [7] we chose the city metaphor

to improve program comprehension for software systems. Our

visualization of the system’s static structure is based on a

source code analysis, while the dynamic behavior is gathered

from information collected in monitoring traces. The focus of

our approach is on providing a detailed visualization of the

system’s concurrent behavior. The SynchroVis tool including

some examples is available as open source software.1

In summary, our main contributions are:

• A 3D city metaphor to simultaneously visualize the static

and dynamic properties of software systems

• A visualization of the system’s concurrent behavior

within the city metaphor

• Additional support for displaying and navigating col-

lected program traces within the city metaphor

The rest of the paper is organized as follows. In Section II,

we describe our SynchroVis approach and our contributions.

The evaluation scenario is presented in Section III, while

related work is discussed in Section IV. Finally, we draw the

conclusions and present future work (Section V).

II. THE SYNCHROVIS TOOL

We present our SynchroVis approach according to the nested

model for visualization design by Munzner [8].
The domain of our approach is program comprehension with

a focus on concurrency. Typical tasks include understanding

the existence and interaction (e. g., the mutual calling behav-

ior) of classes or components in a software system under

study, as well as understanding concurrency (e. g., locking and

starvation).
The information used for program comprehension are gath-

ered from a static analysis for the static structure of the

software system and from monitoring program traces [6] for

the dynamic and concurrent behavior. This information is

transformed into internal data formats (e. g., class instances,

relationships, and traces) used for our visualization. This

operation and data type abstraction is described in greater

detail by Döhring [7].
The main contribution of our approach is in the design

encoding and interaction technique level. We employ the city

metaphor to visualize the gathered and prepared information.

This city metaphor is detailed in the following.

1http://kieker-monitoring.net/download/synchrovis/



(a) Our city metaphor

(b) Thread building visualizing started threads

(c) Synchronization with semaphores / monitors

(d) Synchronization with wait / notify

Figure 1. Schematic view of our SynchroVis approach (based upon [7])

A. Our City Metaphor

A schematic view of our city metaphor used as the basis

for our visualization approach is depicted in Figure 1a. We

employ the three general concepts of (1) districts to break our

city into parts, of (2) buildings to represent static parts of the

software system, and of (3) streets to connect our static parts

according to dynamic interactions.

Districts: Packages (e. g., in Java) or components (as a more

general concept) form the districts of our city metaphor. Each

package is visualized as a rectangular layer with a fixed height.

Several packages are stacked upon one another to display their

subpackage hierarchies with increasing lightness.

Buildings: Each class is represented by a building which is

placed in its corresponding district (determined by its pack-

age). The ground floor of the building represents the actual

class object, while the upper floors represent dynamically

created class instances.

Streets: Operation calls contained in the program trace are

represented by streets, i. e., colored arrows between floors of

the same or different buildings. Each color corresponds to

a single thread to simplify the comprehension of different

traces. Arrows entering the ground floor represent either calls

Figure 2. Visualizing the static structure of the large software system Vuze

of static operations or of constructors. A constructor call also

adds a new floor to the building. Arrows entering upper floors

represent operation calls on the corresponding object instances.

In addition, SynchroVis allows to show or to hide static

relations of either a selected class or of all classes in our

visualization. All of these relations are displayed as arrows

connecting building roofs. Black arrows symbolize inheritance

relationships, gray arrows symbolize interface implementa-

tions, while white arrows symbolize general associations.

An example of visualizing the static information of a

large software system is depicted in Figure 2. In this case,

the packages, classes, and relations of the Java-based Vuze

Bittorrent Client are displayed.

B. Mechanisms for Visualizing Concurrency

Besides visualizing the interleaving of concurrent threads as

described in the previous section, we also provide mechanisms

to visualize four specific synchronization concepts.

Threads: All program traces start at a special thread build-

ing in an external district. The ground floor of the thread build-

ing represents the starting thread of the program execution.

Each time a new thread starts, a new floor is added, colored

in the respective thread’s color. The initial arrow of the new

trace starts within the respective floor of this thread building.

In case of thread termination, the associated floor looses its

color. Refer to Figure 1b for a schematic representation.

Monitor / Semaphore: A classic synchronization concept is

the monitor, e. g., realized by the synchronized keyword

in Java. It is similar to the concept of binary semaphores. Each

semaphore or monitor is visualized by a separate floor on a

specific semaphore building next to the thread building. If the

monitor gets acquired, the floor gets colored by the respective

thread’s color, otherwise it is uncolored. Furthermore, any

successful acquire or entry operation is depicted with a solid

arrow directed between source class instance floor and the

semaphore floor. Blocking operations are depicted with similar

dashed arrows. Thus, a waiting thread is visible by its directed

arrow entering a differently colored semaphore. Similarly,

it is possible to spot deadlocks by comparing the different

semaphore floors and their respective waiting threads. This

semaphore / monitor mechanism is depicted in Figure 1c.



Figure 3. Visualizing a normal run of the dining philosophers problem

Wait / Notify: The next synchronization concept supported

by our SynchroVis approach is the wait and notify mechanism.

Again, we add a special building to the extra district and assign

a floor to each object a thread is waiting on. Each wait
operation is depicted with a dashed arrow between the source

floor and the respective floor of the special building, while

each notify or notifyAll operation is depicted with a

solid arrow. This allows for a visualization very similar to the

visualization of locking and deadlock behavior of semaphores.

This mechanism is illustrated in Figure 1d.

Thread Join: The final synchronization concept realized

within our approach is the joining concept of threads, where

threads wait upon the completion of another thread. This is

visualized by dashed arrows into the respective floor of the

thread building that the other threads are waiting upon.

C. Displaying and Navigating Collected Program Traces

The SynchroVis tool provides the usual means for in-

teractively navigating the city (e. g., moving, rotating, and

zooming), as well as for searching and locating specific entities

within. It is also possible to select an arbitrary scene element

to get further information on it.

Furthermore, SynchroVis provides specific support for nav-

igating program traces. The user is able to use both a

chronological and a hierarchical display of program traces.

The chronological display allows to iterate over all events

of all threads sorted by time in ascending order, while the

hierarchical display allows to iterate over the events of a single

thread. Additionally, it is possible to use a time-based stepping
with a configurable interval.

For enhanced usability, SynchroVis provides the option to

directly jump to a specific point in time or to a specific event.

Moreover, it offers the possibility to automatically step through

the trace by means of a movie mode. In this mode, the user

is able to watch and to study the recorded behavior of the

application.

Figure 4. Visualizing a deadlock in the dining philosophers problem

III. EVALUATION

Due to space concerns, we limit ourselves to a single

evaluation scenario in this paper. Refer to Döhring [7] for an

discussion of the benefits of our approach and for an anecdotal

expert interview conducted with several internal developers

concerning questions of comprehensibility and usability.

As an example scenario, we describe a typical concurrency

analysis of the well known dining philosophers problem with

SynchroVis. This scenario is often used to study locking

behavior, especially deadlocks. For the sake of simplicity,

we assume three present philosophers, realized by separate

threads, and three shared forks, realized by monitors.

A normal run of the dining philosophers problem is pre-

sented in Figure 3. Here, the philosopher represented by the

red thread acquired his two forks (monitors) and is executing

his eating time. The green philosopher acquired only a single

fork and is waiting for the release of his second fork, currently

held by the red thread. This is visualized by the green arrow

pointing at the red floor of the semaphore / monitor building.

A run resulting in a deadlock is presented in Figure 4. In

this case, all three philosophers managed to acquire a single

fork. Thus, all three threads are waiting upon each other

to release the respective monitors. This is visualized by the

colored arrows pointing at the differently colored floors of

the semaphore / monitor building. The navigation within the

program traces allows for an analysis of the cause of this

deadlock.

Both runs of this evaluation scenario are included in our

distribution of SynchroVis.

IV. RELATED WORK

For reasons of limited space, we only discuss closely related

approaches to our visualization, i. e., visualizations based on

the city metaphor and visualizations of concurrency. A general

overview on several 3D visualizations of software systems is

provided, for example, by Teyseyre and Campo [9].



A. 3D Visualization with the City Metaphor

Software World by Knight and Munro [1] was one of the

first approaches employing the 3D city metaphor to visualize

software systems. A similar more recent approach is provided

by Wettel and Lanza [2]. Contrary to SynchroViz, both ap-

proaches only visualize the static structure of a system.

Panas et al. [3] present a realistic 3D city visualization

focusing on the static structure and the communication based

on program traces. In contrast to our approach, the authors

use a more realistic visualization (e. g., cars to represent

communication) but provide no direct support for concurrency.

EvoSpace [4] utilizes the 3D city metaphor with a day

view to display a system’s static structure and a night view to

display its dynamic behavior. Contrary, our approach combines

both views into one and also offers support for concurrency.

Caserta et al. [5] visualize large software systems with their

static and dynamic properties using hierarchical edge bundles

to aggregate dynamic relations. In contrast, our approach is fo-

cused on visualizing single execution traces and concurrency.

B. Visualizing Concurrency

Much research has been conducted for visualizing con-

currency utilizing UML diagrams. Mehner and Weymann

[10] enhance UML communication diagrams to visualize Java

monitors. Artho et al. [11] and Malnati et al. [12] provide

extensions of UML sequence diagrams to explicitly support

concurrency. Leroux et al. [13] utilize state charts in combina-

tion with an extension to UML sequence diagrams to visualize

the concurrent behavior of a software system. SynchroVis

builds upon several of these extensions [12, 13] and adapts

them to our city metaphor. Furthermore, we combine the

visualization of static and dynamic properties and provide

better scalability by utilizing the third dimension.

Further approaches [e. g., 14, 15] focus on supporting pro-

gram comprehension of concurrent applications without using

the UML. In contrast to these two approaches, our approach is

able to visualize both static and dynamic properties (including

concurrency) of the software system in a single view.

To the best of our knowledge, SynchroVis is the first tool to

visualize concurrency with the help of the 3D city metaphor.

V. CONCLUSIONS & OUTLOOK

3D visualization of monitoring traces with the help of the

city metaphor provides an effective means to ease program

comprehension of concurrency. Our SynchroVis approach and

its corresponding tool enables the visualization of static and

dynamic properties of a software system. Furthermore, it

supports software engineers in debugging and understanding

the concurrent behavior of their applications.

As future work for our SynchroVis tool, we will implement

a space-optimizing layout algorithm, also minimizing edge

lengths and crossings. Furthermore, our city metaphor can

be improved by diversifying the look of our buildings, e. g.,

by using cylinders instead of cubes for the special buildings.

Finally, we will focus on providing greater scalability of our

visualizations for larger software systems.

REFERENCES

[1] C. Knight and M. Munro, “Virtual but visible software,”

in Proc. of the Int. Conf. on Information Visualisation.

IEEE Computer Society, 2000, pp. 198–205.

[2] R. Wettel and M. Lanza, “Visualizing software systems

as cities,” in Proc. of the 4th Int. Workshop on Visual-
izing Software For Understanding and Analysis. IEEE

Computer Society, 2007, pp. 92–99.

[3] T. Panas, R. Berrigan, and J. Grundy, “A 3D metaphor

for software production visualization,” in Proc. of the 7th
Int. Conf. on Inf. Visualization, 2003, pp. 314–320.

[4] P. Dugerdil and S. Alam, “Execution trace visualization

in a 3D space,” in Proc. of the 5th Int. Conf. on
Information Technology: New Gen., 2008, pp. 38–43.

[5] P. Caserta, O. Zendra, and D. Bodenes, “3D hierarchical

edge bundles to visualize relations in a software city

metaphor,” in Proc. of the 6th Int. Workshop on Visu-
alizing Software for Understanding and Analysis. IEEE

Computer Society, 2011, pp. 1–8.

[6] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker:

A framework for application performance monitoring and

dynamic software analysis,” in Proc. of the 3rd Int. Conf.
on Perf. Eng. ACM, 2012, pp. 247–248.

[7] P. Döhring, “Visualisierung von Synchronisationspunk-

ten in Kombination mit der Statik und Dynamik eines

Softwaresystems,” MSc thesis, Kiel University, 2012.

[8] T. Munzner, “A nested model for visualization design

and validation,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, no. 6, pp. 921–928, 2009.

[9] A. R. Teyseyre and M. R. Campo, “An overview of 3D

software visualization,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 15, pp. 87–105, 2009.

[10] K. Mehner and B. Weymann, “Visualization and debug-

ging of concurrent Java programs with UML,” in Proc.
of the Workshop on Soft. Vis., 2001, pp. 59–64.

[11] C. Artho, K. Havelund, and S. Honiden, “Visualization of

concurrent program executions,” in Proc. of the 31st An-
nual Int. Comp. Software and Applications Conf. IEEE

Computer Society, 2007, pp. 541–546.

[12] G. Malnati, C. M. Cuva, and C. Barberis, “JThreadSpy:

Teaching multithreading programming by analyzing exe-

cution traces,” in Proc. of the ACM Workshop on Par. and
Distr. Systems: Testing and Debugging, 2007, pp. 3–13.

[13] H. Leroux, C. Mingins, and A. Réquilé-Romanczuk,

“JACOT: A UML-based tool for the run-time inspection

of concurrent Java programs,” in Proc. of 1st Workshop
on Adv. the State-of-the-Art in Run-Time Insp., 2003.

[14] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M.

Vlissides, and J. Yang, “Visualizing the execution of Java

programs,” in Int. Sem. Revised Lectures on Software
Visualization. Springer, 2002, pp. 151–162.

[15] J. Trümper, J. Bohnet, and J. Döllner, “Understanding

complex multithreaded software systems by using trace

visualization,” in Proc. of the 5th Int. Symp. on Software
Visualization. ACM, 2010, pp. 133–142.


