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Summary 14 

We present a Bayesian hierarchical approach to the estimation of length-weight relationships 15 

(LWR) in fishes. In particular, we provide prior estimates for the LWR parameters a and b in 16 

general and by body shape. We use these priors and existing LWR studies to derive species-17 

specific LWR parameters. In the case of data-poor species, we include in the analysis LWR 18 

studies of closely related species with the same body shape. This approach yielded LWR 19 

parameter estimates with measure of uncertainty for practically all known 32,000 species of 20 

fishes. We provide a large LWR data set extracted from www.fishbase.org, the source code of 21 

the respective analyses, and ready-to use tools for practitioners. We present this as an example 22 

of a self-learning online database, where the addition of new studies improves the species-23 

specific parameter estimates, and where these parameter estimates inform the analysis of new 24 

data. 25 
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Introduction 32 

For convenience, size in fishes is often measured in body length.  However, management for 33 

fisheries or conservation requires information about body weight for regulation of catches and 34 

estimation of biomass. Weight (W) can be predicted from length (L) with the help of length-35 

weight relationships (LWR) of the form W = a Lb, where parameter b indicates isometric 36 

growth in body proportions if b ~ 3, and a is a parameter describing body shape and condition 37 

if b ~ 3 (Froese 2006). FishBase (Froese and Pauly 2012) has compiled LWR parameters for 38 

thousands of species of fishes. However, usage of published LWRs brings up three questions: 39 

1) If there are many studies for a species, how can this information be meaningfully combined 40 

into a joint LWR? 2) If there is only one study for a given species, how well does this study 41 

represent the variability that is to be expected? 3) How can existing studies inform a new 42 

LWR estimate derived from new data? The aim of this paper is to apply hierarchical Bayesian 43 

inference to answer these questions. We present web tools that facilitate the application of the 44 

methods by practitioners and that provide the basis for a self-learning online database.     45 

 46 

Material and Methods 47 

We first describe our general approach to the analysis. We then describe in more detail the 48 

data and the statistical models. 49 

 50 

General approach 51 

Bayesian methods combine existing knowledge (prior probabilities) with additional 52 

knowledge derived from new data (the likelihood function). This results in updated 53 

knowledge (posterior probabilities), which can be used as priors in subsequent analyses and 54 

thus provide learning chains in science (Kuikka et al., 2013).  Note that the standard deviation 55 

(SD) of a posterior distribution for a parameter represents the uncertainty about the sampling 56 

distribution and thus is a standard error (SE) by definition. 57 

   58 

 We first established broad overall priors for parameters a and b, based on textbooks and 59 

reviews (step 1 below). We then estimated posterior distributions for model parameters for 60 

fishes in general by analyzing the distribution of a and b in a large data set of LWR studies 61 

(step 2). We further refined the estimated posterior distributions by grouping fish species into 62 

body-shape groups, from eel-like to short & deep, and estimating the parameters for each 63 
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individual group (step 3). We used the body-shape posteriors as priors for the analysis of 64 

studies done for a given species (step 4). In data-poor species, we used the model to learn also 65 

from studies done on related species with the same body shape, i.e., we applied multivariate 66 

hierarchical Bayesian inference, treating each species as its own hierarchical level (step 5). As 67 

a result we obtained LWR parameter estimates for practically all fish species, with indication 68 

of uncertainty of the parameters and of the weight predicted from length. These species-69 

specific parameters can then be applied directly, or they can serve as priors in the analysis of 70 

new weight-at-length data (step 6). FishBase (www.fishbase.org) contains online tools that 71 

incorporate these steps and facilitate the analysis of existing parameters and of new weight-at-72 

length data (see also Web Tools section in the Appendix).  73 

 74 

Step 1: Getting overall priors for LWR parameters a and b, based on the literature:   75 

Parameter b is the slope of a regression line over log-transformed weight-at-length data. It is 76 

considered to be normally distributed (Carlander 1969). Parameter b should average 77 

approximately 3 in species that do not change body shape as they grow (Spencer 1864-1867) 78 

and usually falls between 2.5 and 3.5 (Carlander 1969). This information is interpreted here as 79 

a normally distributed prior for b with mean = 3 and SD = 0.5.  Parameter a is the intercept of 80 

a regression line over log-transformed weight-at-length data. It is considered to be log-81 

normally distributed (Carlander 1977) and reflects the body-shape of the species (Froese 82 

2006). With weight in gram and length in centimeter, a = 0.01 represents a fusiform fish, 83 

bracketed by a = 0.001 in eel-like fish and a = 0.1 in spherical fish (Froese 2006). This 84 

information is here interpreted as a normally distributed prior of log10(a) with mean = -2 and 85 

SD = 1.  86 

 87 

Step 2: Getting parameter estimates across all available LWR studies 88 

LWR studies compiled in FishBase were used to obtain across-all-studies distributions for 89 

parameters a and b. A score reflecting the reliability of a study (see below) was used as 90 

weighting factor. The overall priors from step 1 were used in this analysis. For the 91 

measurement error in length and weight we assumed an uninformative prior (Gelman 2006). 92 

 In this analysis, a and b estimates for each individual species were considered as co-93 

varying within the bounds of the species-specific body plan. However, for the across species 94 

analysis, a and b were considered as not correlated (see also Discussion). Looking at within 95 

and across species variability allowed for decomposing the total variability into measurement 96 
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error and predictive error, where the latter is a combination of true natural variability and the 97 

error resulting from the LWR model only approximating the true relationship between length 98 

and weight. The predictive posterior parameter distributions arising from this across-all-99 

studies-and-species analysis can be used as priors in single species analysis where body shape 100 

information is missing or does not match any of the shapes defined below. 101 

 102 

Step 3: Getting parameter estimates by body shape group 103 

Based on available drawings, photos or morphometric data, FishBase staff has assigned 104 

species to the body shape groups eel-like, elongated,  fusiform, and short & deep.  The 105 

approach described in step 2) was used for each of these body shape groups.  The 106 

measurement and predictive error distributions resulting from this analysis were used as 107 

respective priors in the subsequent steps.  The parameter and error distributions resulting from 108 

this analysis were used as priors for single species analysis within the respective body shape 109 

group, see below. 110 

 111 

Step 4:  Getting joint parameter estimates for a species 112 

For species with many available LWR studies, the parameters a and b from these studies were 113 

considered as negatively correlated due to well-known correlations between intercept and 114 

slope induced by common estimation methods (Peters 1983). The a and b values were 115 

analysed together with the priors from the respective body shape group (see Single-Species 116 

model below). The resulting species-specific parameter estimates can then either be used 117 

directly for predicting weight from length, or they can serve as priors for a new LWR study. 118 

 119 

Step 5:  Getting parameter estimates for species with few available studies 120 

For species with few available studies (e.g. less than 5), information from related species 121 

(species in the same Genus, Subfamily or Family and with the same body shape) was used in 122 

a hierarchical analysis. First, parameters were derived for every related species, as in step 4). 123 

Then these parameters, together with the body shape priors, were used to derive the parameter 124 

estimates for the target species (see Few-Studies model below). The resulting species-specific 125 

parameter estimates can then either be used directly for predicting weight from length, or they 126 

can serve as priors for a new LWR study. 127 

 128 

Step 6:  Using parameter estimates as priors in the analysis of new weight-at-length data 129 
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For analysis of new weight-at-length data, the posteriors of the parameter analysis for the 130 

respective species (steps 4 or 5) can be used as priors. If no previous LWR study exists for the 131 

species, then the body shape priors (from step 3) can be treated as if they were an existing 132 

study, and the parameter analysis of step 5 can be run to updated the body shape priors with 133 

information from related species. If there are no LWR estimates for related species, the body 134 

shape priors can be used instead of species-specific priors.  Additionally, if no previous LWR 135 

study exists and the body shape does not match the available choices, then generic priors 136 

(from step 2) can be used. The analysis of new weight-at-length data is done with a Bayesian 137 

linear regression of log10(W) as a function of log10(L), weighted by number of individuals, 138 

with priors as indicated above. The analysis assumes a raw data set that has been cleansed 139 

beforehand of extreme outliers. 140 

 141 

Data 142 

For steps 2-5, we analyzed LWR parameters compiled in FishBase 12/2012. We only used 143 

studies of species that had independently assigned body shapes (eel-like, elongated, fusiform, 144 

short & deep) and where length measurements were reported in total length or fork length. 145 

Additionally, we only included studies where the parameters were estimated with type-I linear 146 

regression of log-transformed weights and lengths. Finally, we excluded studies that were 147 

marked by FishBase staff as questionable. This data filtering yielded 5150 studies for 1821 148 

species (see Table 1). 149 

 We assigned scores (S) that represent data quality for each study.  These were 150 

subsequently used to downweight information from studies that were deemed less reliable 151 

than others, and ranged from 0.5 to 1 using the following scoring guide: 152 

• If a coefficient of determination (r2) was given by the study, then S = r2  153 

• Else, if the length range of the raw data was indicated, then S = 0.7 154 

• Else, if the number of measured specimens was > 10, then S = 0.6 155 

• Else, S = 0.5  156 

Thus, a high-quality study (i.e. with a high coefficient of determination) received about 157 

double the score of a study that just presented the parameters a and b without additional 158 

information. This data file is available for download, see Table 5. 159 

 160 

Statistical models 161 
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We used the R statistical package with libraries r2jags (Su & Yajima 2012) and the JAGS 162 

sampler software (Plummer 2003) for conducting the Bayesian analyses, called from the R 163 

Statistical Environment (R Development Core Team 2011). These packages are open source 164 

and freely available on the Internet. The models used in steps 2-6 above are described below 165 

in more detail. Logarithmic transformation of length and weight data can be done with any 166 

base. For convenience, we used natural logarithms in the model description below. In the R-167 

code and the resulting graphs we used base-10 logarithms, because this facilitates the reading 168 

of log-axes, with log10(a) = -3  giving a = 0.001, log10(L) = 2 giving L = 100 cm, etc.  For 169 

presentation of the models, we also adopted the convention that all parameters are represented 170 

by Greek letters while all data are represented by Latin letters. Thus, in the following section 171 

formally describing the models, a and b from existing LWR studies are considered data, 172 

whereas α and β represent the respective parameters estimated by the models. We additionally 173 

specify that the character i is reserved for indices.   174 

 175 

The Body-Shape model 176 

The Body-Shape model uses the species-specific measure of as and bs for each available study 177 

is, as well as the associated quality score Ss and binomial genus-species gss (the subscript s 178 

stands for ‘study’, and each variable with subscript s has an individual value for each 179 

observation in the database).  Each scientific name is associated with a body-shape, bsgs, 180 

where igs is an index associated with each unique species (the subscript gs standards for 181 

‘genus-species’, and each variable with subscript gs has an individual value for each unique 182 

species in the database).  The model estimates a 'true' but unobserved value for each species in 183 

the dataset, log10(αgs) and βgs.  These vary around their average value for a given body-shape, 184 

αbs and βbs, where ibs is an index associated with each of four body-shape types (the variable 185 

bs standards for ‘body-shape’ and each variable with subscript bs has an individual value for 186 

each unique body-shape in the database).  Parameters log10(αgs) and βgs for each species vary 187 

around the average value for their body shape according to a normal distribution, with a 188 

separate variance τ2logα and τ2β for log10(α) and β:  189 

4
2

10 10 log
1

log ( ) ~Normal log ( ) ( ),
bs

gs bs gs bs
i

I bs i αα α τ
=

 
⋅ = 
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where I(bsgs=ibs) is an indicator function that equals one when bsgs equals ibs and zero 192 

otherwise, and ( )2
10 logNormal log ( ) ( ),bs

bs

n
bs gs bsi

I bs i αα τ⋅ =∑  is normal distribution with mean 193 

10log ( ) ( )bs

bs

n
bs gs bsi

I bs iα ⋅ =∑  and variance τ2logα (we define other normal distributions 194 

similarly).   195 

 LWR parameter estimates are known to be negative correlated (Froese 2006), i.e., in a 196 

log-log plot of weight over length for a given species, an increase in the slope of the 197 

regression line will result in a decrease of the intercept on the weight axis, and vice-versa. We 198 

accounted for this correlation between log10(a) and b within each study by specifying that 199 

study-specific observations vary around the 'true' but unobserved species-specific value 200 

according to a multivariate normal distribution.   201 

10 10
1 1

log ( ), ~ MVN log ( ) ( ), ( ) ,
species species

gs gs

n n

s s gs s gs gs s gs s
i i

a b I gs i I gs iα β
= =

 
 = = Σ 
 
 
∑ ∑  (3) 202 

where Σs is the measurement error covariance for observation s, which is composed of 203 

measurement error variance σ2
loga and σ2

b for log10(a) and b, as well as the correlation ρ in 204 

measurement errors: 205 

2
log log2

2
log

a a b
s s

a b b

S
σ ρσ σ

ρσ σ σ
−Σ =  (4) 206 

This measurement error covariance varies among studies such that measurement errors are 207 

greater for low-scoring studies.  Using a multivariate distribution has previously been shown 208 

to reduce the uncertainty of the parameter estimates (Pulkkinen et al. 2011). 209 

 Parameters are given priors, as is necessary for any Bayesian analysis.  Specifically, 210 

standard deviation parameters τlogα, τβ, σlogα, and σβ, were given initially broad inverse-gamma 211 

(0.001, 0.001) priors, and measurement error correlation ρ was given a uniform negative prior 212 

from -0.99 to 0. Prior distributions for each body shape αbs and βbs were defined as described 213 

previously.   214 

 215 

Across-all-Observations-and-Species model 216 

The model for all observations and species but without body-shape is identical to the 217 

preceding Body-Shape model, with one exception.  Specifically, the vector bs is replaced with 218 

a dummy vector 1, which has the value one for all entries.  This change implies that all 219 
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species in this model have the same value for log10(αbs) and βbs.  It consequently provides an 220 

average value for log10(α) and β for species for which the body-shape is unknown. 221 

  222 

The Few-Studies model 223 

The Few-Studies model uses the same set of equations (Eq. 1-4) as the Body-Shape model, 224 

but incorporates the following changes.  First, it replaces the broad priors for log10(αgs) and βgs 225 

with more informative priors estimated from the previous Body-Shape analysis.  Second, it 226 

replaces the uninformative priors for between-species (τ2logα and τ2β) and measurement error 227 

variance (σ2
logα and σ2

β) with informative priors.  Specifically, it specifies a gamma 228 

distribution for the standard deviation of between-species and measurement error variability, 229 

and parameterizes it such that the mean and standard deviation of this gamma distribution 230 

match the posterior mean and standard deviation from the Body-Shape model.  231 

 232 

The Single-Species model 233 

The Single-Species model uses a reduced set of equations (Eq. 3-4) from the Body-Shape 234 

Model.  It assumes that previous LWR studies for the species are sufficiently numerous and 235 

informative so that no inclusion of data from other related species is needed. Its uses priors for 236 

log10(α) and β and for the standard deviation of measurement errors based on the Body-Shape 237 

model.  238 

 239 

The New Weight-at-Length-Data model 240 

The model for new weight-at-length data uses the individual observations of length lj and wj 241 

for nobs fish observations.  Specifically, it specifies the base-10 logarithm of weight as a 242 

function of the base-10 logarithm of length:  243 

( )2
10 10 10 loglog ( ) ~ Normal log ( ) log ( ),j gs gs j ww lα β σ+  (5) 244 

where σ2
logw is the residual log-normal variance in the LWR.  We additionally specify that the 245 

priors for αgs and βgs match the estimated posteriors from the Few-Studies or Single-Species 246 

models.   247 

 248 

Results and Discussion 249 

We sought to estimate LWR parameter distributions for log10(a) and b for a hypothetical 250 

species of a given body-shape, while accounting for correlations between log10(a) and b for 251 
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observations within a given species, but not between species. We made this distinction 252 

because clearly, for a species with a given body shape (which determines a) and a given life 253 

history strategy how much this shape changes as the fish grows (which determines b), 254 

intercept log10(a) and slope b cannot but co-vary within the narrow bounds of log-transformed 255 

weight-at-length data. Accounting for this negative correlation reduces the uncertainty of the 256 

parameter estimates (Pulkkinen et al. 2011). However, other species may have different body 257 

shapes but the same growth strategy. For example, an eel will have a thin, long body which 258 

fills only a small fraction (= a) of a cube with a length equal to the eel’s body length. In 259 

comparison, a box fish is likely to fill a substantial fraction of its respective cube, resulting in 260 

a much higher value of a. This high a, however, does not mean that the boxfish will have a 261 

lower b than the eel. This reasoning is confirmed by the results of the body shape analysis 262 

shown in Table 1, where the 95% ranges of a values are far apart between eel-like and short & 263 

deep body shapes, but the 95% b ranges are nearly identical.  264 

 We used a hierarchical model that estimates mean and between-species variability in 265 

log10(a) and b for each body-shape. The model then estimates log10(a) and b for each species 266 

with the respective body shape, while shrinking estimates for poorly-estimated species 267 

towards their body-shape mean (Gelman and Hill 2007).  Essentially, the model uses multiple 268 

observations within each species to estimate the 'measurement errors' for the average LWR 269 

study. Variability between-species in excess of these 'measurement errors' is then attributed to 270 

a 'process error' that arises due to natural between-species variability in log10(a) and b (Clark 271 

2003).  Additionally, systematic differences in log10(a) and b between body-shapes were 272 

ultimately attributed to effects stemming from different body plans.  273 

 Figure 1 shows histograms of parameters a and b across all studies. The overlaid bold 274 

normal probability density curves use mean and standard deviation of the data and confirm 275 

that log10(a) and b are approximately normally distributed. Figure 1 also shows nicely the 276 

updating of prior beliefs from the initial broad estimates derived from textbooks (dashed 277 

curve), to the observed variability in 5150 data sets (bold curve), to the predictive distribution 278 

(dotted curve) which excludes measurement errors. The narrower posterior distribution 279 

especially for parameter b confirms observations by Carlander (1977) and Froese (2006) that 280 

strong deviations from b=3.0 often stem from questionable studies with few specimens, 281 

narrow length ranges, or low explained variability. 282 

 283 
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 Table 1 shows weighted means and standard deviations by body-shape group for the LWR 284 

studies compiled in FishBase 12/2012. For all body-shape groups, mean b values were close 285 

to 3, confirming that most fish do not change their body shape as adults (Froese 2006). 286 

However, geometric mean a values clearly differed between body-shape groups, from a = 287 

0.001 in eel-like fishes to a = 0.02 in short & deep fishes, confirming the pattern proposed by 288 

Froese (2006). Table 2 gives the measurement and process errors, respectively.   289 

 For the estimation of parameter distributions by species we used the weighted means and 290 

standard deviations of the respective body-shape group as priors. We assumed that differences 291 

in parameter estimates between different studies for a given species were mostly caused by 292 

different sample size structure or season rather than by different localities (Froese 2006). 293 

Therefore we treated all populations of a species as being of the same hierarchical level with 294 

respect to LWR. We applied this approach to 48 weighted LWR studies of the European 295 

Anchovy Engraulis encrasicolus. The resulting joint parameters had reasonably narrow 296 

distributions shown in Figure 2, with means (peak of continuous curve) that did not deviate 297 

significantly from the means of the data (indicated by the single points).  298 

 Note that the posterior standard deviation of log10(a) is also the standard error of body 299 

weight predicted from length. For example, using the parameters estimated for European 300 

anchovy in Figure 2, the mean weight predicted for 12 cm total length is given by 301 

𝑊𝑚𝑒𝑎𝑛 = 10−2.26+ 3.04 𝑙𝑜𝑔10(12) = 10.5  302 

and the range that is likely to contain 95% of the variability in weight is given by 303 

𝑊𝑟𝑎𝑛𝑔𝑒 = 10(−2.26+ 3.04 𝑙𝑜𝑔10(12) ± 1.96 × 0.0399) = 8.8 − 12.6 

 For the estimation of parameter distributions by species and related species (congeners or 304 

Family members with the same body-shape), we applied multivariate hierarchical Bayesian 305 

inference, treating each species as its own hierarchical level. In other words, we did not use 306 

hierarchical levels for Genus- or Family-groups, because we considered the deviation of the 307 

body shape of a species from the mean shape of its Genus or Family-group not as an error but 308 

as a true manifestation of differences between species. Again, we assumed a correlation 309 

between parameters a and b within species, but we treated these parameters as independent 310 

when summarizing across species.  311 

 An example of a species with a single LWR study in FishBase was the Pacific short-312 

finned eel, Anguilla obscura (Figure 3). The parameters given were n=145, a = 0.00021, 313 

b=3.38, r2=0.99 (Jellyman 1991), which represents a considerable deviation from the body 314 

shape means for eel-like fishes of a = 0.001 and b = 3.06 (Table 3), probably as a case of 315 
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negative parameter co-variation, i.e., the a estimate appears too low and b too high. In this 316 

case, single-species analysis would combine the only study with the information provided by 317 

the prior for eel-like species, suggesting a = 0.00067 and b = 3.09, and thus pulling the 318 

parameters suggested by the single study strongly in the direction of the prior. However, other 319 

LWR studies for species of the Genus Anguilla confirm a deviation from the eel-like prior, 320 

although less strongly than suggested by the single study. Including the information from 321 

these related species gives a = 0.00085 (0.00058 – 0.0013) and b = 3.17 (3.07 – 3.26), which 322 

appears to be a meaningful summary of the available information, accommodating the single 323 

study under the tails of the proposed parameter distributions (see single points in Figure 3).      324 

 Finally, we wanted to inform a new analysis of weight-at-length data with parameter 325 

estimates from existing studies. If no previous study existed for the target species, then the 326 

body shape priors in Tables 1 and 2 would represent the existing knowledge. Otherwise, a 327 

parameter analysis as described above was first conducted on the existing studies for the 328 

target species, including related species if necessary. This analysis then provided the priors for 329 

the new study. 330 

 For example, we used weight-at-length data for North Sea turbot (Scophthalmus maximus) 331 

extracted in November 2012 from the DATRAS database (http://datras.ices.dk) for the years 332 

2010-2012. A plot of log10(W) over log10(L) showed one extreme outlier, which we removed. 333 

We run a parameter analysis across the 10 existing studies for the species. We used the 334 

resulting means and standard deviations for log10(a), b, and measurement error of log10(a) as 335 

priors for the new analysis. The results are presented in Table 4, which can serve as a model 336 

for meaningful reporting of Bayesian LWR analyses in publications.  337 

 It is interesting to compare the results of the Bayesian LWR analysis with those of a 338 

regular linear regression. In our example for turbot, the Bayesian analysis included, in a 339 

hierarchical process, information from the body-shape group and from other studies done for 340 

the species. In contrast, the regular regression only analyzed the data at hand. The prior means 341 

for log10(a) = -1.83 and b = 3.04 did not differ much from the means of the data, as provided 342 

by regular regression with log10(a) = -1.81, b = 3.06, and hence the means provided by the 343 

Bayesian analysis were identical to those of the regular regression. However, the prior 344 

estimates of uncertainty SD[log10(a)] = 0.069 and SD[b] = 0.0486 were considerably wider 345 

than those of the regular regression with SE[log10(a)] = 0.0271 and SE[b] = 0.0187. In other 346 

words, the estimates of uncertainty provided by the regular regression were only 347 

representative for the analyzed data, but too narrow if data from other years and areas were 348 
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considered. The Bayesian analysis incorporated this additional information and provided more 349 

realistic estimates of uncertainty that were intermediate between the priors and the data, with 350 

SD[log10(a)] = 0.0461 and SD[b] = 0.0317.    351 

 352 

Preliminary LWR parameters for all species of fishes 353 

FishBase 12/12 contained 32,470 species of fishes in 554 Families. However, LWR studies 354 

were only available for 3,587 species in 357 Families. Based on the results of this study, the 355 

FishBase team assigned preliminary LWR parameters as follows: 356 

• For the over 2,500 species in the 197 Families without LWR studies, the respective 357 

body shape priors (step 3 above) were assigned.  If no matching body shape 358 

information was available, the overall priors (step 2 above) were assigned. 359 

• For the over 26,000 species without specific LWR studies but with studies for other 360 

species in their Families, the respective body shape priors were treated as if they 361 

were an existing study and the parameter analysis of step 5 above was run to 362 

updated the body shape priors with information from related species. 363 

• For the over 3,500 species with existing LWR studies, steps 4 or 5 above were used 364 

to estimate representative parameters.  365 

 366 

This approach assigned preliminary LWR parameters to practically all species of fishes, 367 

summarizing the best available information. These parameters will be updated whenever new 368 

studies are added to FishBase.  369 

 370 

Conclusion 371 

We present an example of a self-learning online database, where the addition of new studies 372 

improves the species-specific parameter estimates, and where these parameter estimates 373 

inform the analysis of new data. We used a Bayesian approach to the estimation of length-374 

weight relationships for practically all species of fishes. We show how the use of all available 375 

prior information can improve parameter estimates. The increased uncertainty in species with 376 

little available data is expressed in wider respective parameter distributions. We make a large 377 

standardized data set available for further research. We hope our read-to-use tools will help in 378 

spreading the application of Bayesian methods in fisheries.     379 
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Figures 443 

 444 
Figure 1. Weighted distribution of parameters b and a in 5150 LWR studies for 1821 species 445 
of fishes. The overlaid curves are normal density functions, i.e. the areas under the histograms 446 
and under the curves are identical and equal to 1. The bold normal curves use mean and 447 
standard deviation of the data. They confirm that b and log10(a) are approximately normally 448 
distributed. The dashed curves represent the overall priors derived from the literature. The 449 
dotted curves represent the predictive posterior distributions. They are narrower because they 450 
represent only the errors in parameter estimation and between-species variability, excluding 451 
measurement errors.   452 
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 463 
Figure 2. Distribution of parameters a and b for 48 LWR studies of the European anchovy 464 
Engraulis encrasicolus. The single points present the mean values of the data. The dashed 465 
lines indicate the prior distributions for elongated fishes. Mean log10(a) = -2.26, SD of 466 
log10(a) and log10(W) = 0.0397, geometric mean a = 0.00554, 95% range a = 0.00464 – 467 
0.00662, for total length, and mean b = 3.04, SD b = 0.0291, and 95% credible interval b = 468 
2.98 – 3.1. The measurement error ϭ of log10(a) was mean = 0.255, SD = 0.00319, and of b 469 
was mean = 0.188, SD = 0.00224. 470 
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 473 
Figure 3. Distribution of parameters a and b for one study with a=0.00021 and b=3.38 for the 474 
Pacific short-finned eel, Anguilla obscura (indicated by single points) and 33 LWR studies of 475 
four species of the Genus Anguilla. The dashed curves indicate the prior distributions for eel-476 
like fishes. Resulting mean log10(a) = -3.28, SD of log10(a) and log10(W) = 0.123, geometric 477 
mean a = 0.000519, 95% range a = 0.000293 – 0.000907, and mean b = 3.14, SD b = 0.0790, 478 
and 95% range b = 2.99 – 3.30. The measurement error of log10(a) was mean = 0.264, 479 
SD=0.00324, and for b it was mean = 0.182, SD=0.0225. 480 
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Tables 488 
 489 
Table 1. Weighted means and standard deviations of parameters a and b from 5150 LWR studies for 1821 species of fishes, by body shape. Geom. 490 
mean stands for geometric mean and the 95% range includes about 95% of the observations.   491 
Body shape Mean 

log10(a) 
SD    

log10(a) 
Geom. mean     

a 
95% range               

 a 
Mean    

b 
SD      
b 

95% range           
b 

n 

eel-like -2.99 0.175 0.00102 0.000464 – 0.00225 3.06 0.0896 2.88 – 3.24 162 
elongated -2.41 0.171 0.00389 0.00180 – 0.00842 3.12 0.0900 2.94 – 3.30 712 
fusiform -1.95 0.173 0.0112 0.00514 – 0.0245 3.04 0.0857 2.87 – 3.21 3478 
short & deep -1.70 0.175 0.0200 0.0182 – 0.0218 3.01 0.0905 2.83 – 3.19 798 
all -2.00 0.313 0.0100 0.00244 – 0.0411 3.04 0.119 2.81 – 3.27 5150 
 492 
 493 
 494 
 495 
  496 
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Table 2. Measurement and process errors derived from 5150 LWR studies for 1821 species. 497 
For convenience, the parameters are also given as shape and rate, ready for use with a 498 
gamma distribution.  499 
Type of error mean ϭ sd ϭ shape rate 
Measurement error log10(a) 0.260 0.00322 25076 6520 
Measurement error b 0.184 0.00223 37001 6808 
Process error log10(a) 0.173 0.00467 7933 1372 
Process error b 0.088 0.00368 6498 572 
 500 
 501 
  502 
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Table 3. Demonstration of how parameter estimates from a single LWR study (for Anguilla 503 
obscura),  which deviated strongly from the means for eel-like fishes, were made more 504 
realistic by inclusion of prior information, first for eel-like fishes, and then for eel-like fishes 505 
and related species in the Genus Anguilla. The relatively wide standard deviations (also 506 
shown in Figure 3) account for the remaining uncertainty in the estimates. 507 
Data sources a log10(a) sd b sd 
eel-like prior 0.00102 -2.99 0.175 3.06 0.0896 
single study 0.00021 -3.68 - 3.38 - 
study + prior 0.000665 -3.18 0.131 3.09 0.0785 
33 Genus studies  0.000853 -3.07 0.086 3.17 0.0484 
study + prior + Genus 0.000519 -3.28 0.123 3.14 0.0790 
 508 
 509 
 510 
 511 
  512 
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Table 4. Analysis of weight-at-length data for North Sea turbot for the years 2010 - 2012. Priors were derived from parameter analysis of existing 513 
studies in FishBase 12/2012. The analysis used total lengths in cm and whole body weight in g. 514 
Species n Length 

(cm)  
Weight 

(g)  
log10(a) sd a 95% range  b sd 95% range r2 

Scophthalmus 
maximus 

742 9 – 52  15 – 3252 -1.81 0.0467 0.0155 0.0126 – 0.0192 3.06 0.0322 2.99 – 3.12 0.972 

 515 
 516 
 517 
 518 
 519 
 520 
  521 
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Appendix: Web tools 522 
 523 
The Bayesian approaches described in this study have been implemented in web tools 524 

available from www.fishbase.org. On a FishBase species summary page, go to the ‘More 525 

information’ section and select the link ‘Length-weight’. This opens a new page with a table 526 

of available LWR studies, and a plot of log10(a) over b values, which should typically cluster 527 

around a line with a negative slope. This graph is meant to help identification of studies that 528 

deviate from the others, often because they used a different type of length measurement. The 529 

default scores used for weighting are shown for each study and can be modified by the user. 530 

The available studies can then be analysed, with inclusion of other species from the same 531 

Genus or Family in cases where, e.g., fewer than 5 studies are available for the target species. 532 

The respective priors shown in Tables 1 and 2 are used automatically by the web tools.  533 

 534 

 A successful analysis will present the parameter estimates as well as the measurement 535 

error, together with standard deviations and 95% ranges. There is also an option to analyze 536 

new weight-at-length data, using the results from the available studies as priors. Alternatively, 537 

users can download data and R-code and perform the analyses locally. The analyses described 538 

above can also be done by life stage or sex or for a certain region, simply by only including 539 

the respective studies in the parameter analysis.     540 

 541 

The preliminary LWR parameter estimates assigned to all species in FishBase are available 542 

from the bottom of the FishBase species summary page, in the section entitled: Estimation of 543 

some characteristics with mathematical models.  544 

 545 
The R-code and the data used in the Figures and Tables can be downloaded as indicated in 546 
Table 5.  547 
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Table 5. R-code and data files used for graphs and tables can be downloaded from 548 
http://oceanrep.geomar.de/21875/ 549 

Figure / Table R-code Data source 
Figure 1 LWR_Stats_3.R BodyShape_3.csv, also data from Table 1 
Figure 2 SingleSpecies LWR_7.R BodyShape_3.csv 
Figure 3 RelativesLWR_4.R BodyShape_3.csv 
Table 1+2 BodyShapePar_v5.R BodyShape_3.csv 
Table 3 RelativesLWR_4.R BodyShape_3.csv 
Table 4 LW_data_v6.R Scophthalmus_maximus_LW.csv 
 550 
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